Library mathcomp.ssreflect.ssrbool


Local additions: {pred T} == a type convertible to pred T but that presents the pred_sort coercion class. PredType toP == the predType structure for toP : A -> pred T. relpre f r == the preimage of r by f, simplifying to r (f x) (f y). > These will become part of the core SSReflect library with Coq 8.11. This file also anticipates a v8.11 change in the definition of simpl_pred to T -> simpl_pred T. This change ensures that inE expands the definition of r : simpl_rel along with the \in, when rewriting in y \in r x.

Notation "{ 'pred' T }" := (pred_sort (predPredType T)) (at level 0,
  format "{ 'pred' T }") : type_scope.

Lemma simpl_pred_sortE T (p : pred T) : (SimplPred p : {pred T}) =1 p.
Definition inE := (inE, simpl_pred_sortE).

Definition PredType : T pT, (pT pred T) predType T.
Defined.

Definition simpl_rel T := T simpl_pred T.
Definition SimplRel {T} (r : rel T) : simpl_rel T := fun xSimplPred (r x).
Coercion rel_of_simpl_rel T (sr : simpl_rel T) : rel T := sr.

Notation "[ 'rel' x y | E ]" := (SimplRel (fun x yE%B)) (at level 0,
  x ident, y ident, format "'[hv' [ 'rel' x y | '/ ' E ] ']'") : fun_scope.
Notation "[ 'rel' x y : T | E ]" := (SimplRel (fun x y : TE%B)) (at level 0,
  x ident, y ident, only parsing) : fun_scope.
Notation "[ 'rel' x y 'in' A & B | E ]" :=
  [rel x y | (x \in A) && (y \in B) && E] (at level 0, x ident, y ident,
  format "'[hv' [ 'rel' x y 'in' A & B | '/ ' E ] ']'") : fun_scope.
Notation "[ 'rel' x y 'in' A & B ]" := [rel x y | (x \in A) && (y \in B)]
  (at level 0, x ident, y ident,
  format "'[hv' [ 'rel' x y 'in' A & B ] ']'") : fun_scope.
Notation "[ 'rel' x y 'in' A | E ]" := [rel x y in A & A | E]
  (at level 0, x ident, y ident,
  format "'[hv' [ 'rel' x y 'in' A | '/ ' E ] ']'") : fun_scope.
Notation "[ 'rel' x y 'in' A ]" := [rel x y in A & A] (at level 0,
  x ident, y ident, format "'[hv' [ 'rel' x y 'in' A ] ']'") : fun_scope.

Notation xrelpre := (fun f (r : rel _) x yr (f x) (f y)).
Definition relpre {T rT} (f : T rT) (r : rel rT) :=
  [rel x y | r (f x) (f y)].