Module mathcomp.analysis.topology_theory.metric_structure
From HB Require Import structures.From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum matrix.
From mathcomp Require Import interval_inference rat interval zmodp vector.
From mathcomp Require Import fieldext falgebra archimedean finmap.
#[warning="-warn-library-file-internal-analysis"]
From mathcomp Require Import unstable.
From mathcomp Require Import mathcomp_extra boolp classical_sets.
From mathcomp Require Import contra reals topology_structure.
From mathcomp Require Import uniform_structure pseudometric_structure.
From mathcomp Require Import num_topology product_topology separation_axioms.
# Metric spaces
```
metricType K == metric structure with distance mdist
The HB class is Metric.
R^o with R : numFieldType is shown to be a metric space.
The mixin PseudoMetric_isMetric extends PseudoMetric.
The factor isMetric just requires a distance.
```
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
HB.mixin Record PseudoMetric_isMetric (K : numDomainType) M of PseudoMetric K M := {
mdist : M -> M -> K ;
mdist_ge0 : forall x y, 0 <= mdist x y ;
mdist_positivity : forall x y, mdist x y = 0 -> x = y;
ballEmdist : forall x d, ball x d = [set y | mdist x y < d]
}.
#[short(type="metricType")]
HB.structure Definition Metric (K : numDomainType) :=
{ M of PseudoMetric K M & PseudoMetric_isMetric K M }.
Section metric_lemmas.
Context {R : realFieldType} (T : metricType R).
Let dist := @mdist R T.
Lemma metric_sym x y : dist x y = dist y x.
Proof.
Lemma mdistxx x : dist x x = 0.
Proof.
apply/eqP; rewrite eq_le mdist_ge0 andbT; apply/ler_addgt0Pl => /= e e0.
rewrite addr0 leNgt; apply/negP => exx.
by have := @ball_center _ _ x (PosNum e0); rewrite ballEmdist/= ltNge (ltW exx).
Qed.
rewrite addr0 leNgt; apply/negP => exx.
by have := @ball_center _ _ x (PosNum e0); rewrite ballEmdist/= ltNge (ltW exx).
Qed.
Lemma mdist_gt0 x y : (0 < dist x y) = (x != y).
Proof.
Lemma metric_triangle x y z : dist x z <= dist x y + dist y z.
Proof.
Lemma metric_hausdorff : hausdorff_space T.
Proof.
move=> p q pq; absurd_not => qp; move: pq.
pose D := dist p q / 2; have D0 : 0 < D.
by rewrite divr_gt0// mdist_gt0.
have p2Dq : ~ ball p (dist p q) q by rewrite ballEmdist/= ltxx.
move=> /(_ (ball p _) (ball q _) (nbhsx_ballx _ _ D0) (nbhsx_ballx _ _ D0)).
move/set0P/eqP; apply; rewrite -subset0 => x [pDx /ball_sym qDx].
by have := ball_triangle pDx qDx; rewrite -splitr.
Qed.
pose D := dist p q / 2; have D0 : 0 < D.
by rewrite divr_gt0// mdist_gt0.
have p2Dq : ~ ball p (dist p q) q by rewrite ballEmdist/= ltxx.
move=> /(_ (ball p _) (ball q _) (nbhsx_ballx _ _ D0) (nbhsx_ballx _ _ D0)).
move/set0P/eqP; apply; rewrite -subset0 => x [pDx /ball_sym qDx].
by have := ball_triangle pDx qDx; rewrite -splitr.
Qed.
End metric_lemmas.
HB.factory Record isMetric (K : numFieldType) (M : Type) of Choice M := {
mdist : M -> M -> K ;
mdistxx : forall x, mdist x x = 0 ;
mdist_positivity : forall x y, mdist x y = 0 -> x = y ;
mdist_sym : forall x y, mdist x y = mdist y x ;
mdist_triangle : forall y x z, mdist x z <= mdist x y + mdist y z
}.
HB.builders Context K M of isMetric K M.
Let ball (x : M) e : set M := [set y | mdist x y < e].
Let ent : set_system (M * M) := entourage_ ball.
Let nbhs (x : M) : set_system M := nbhs_ ent x.
Let nbhsE : nbhs = nbhs_ ent
Proof.
by []. Qed.
HB.instance Definition _ := hasNbhs.Build M nbhs.
Let ball_center x (e : K) : 0 < e -> ball x e x.
Let ball_sym x y (e : K) : ball x e y -> ball y e x.
Let ball_triangle x y z e1 e2 : ball x e1 y -> ball y e2 z ->
ball x (e1 + e2) z.
Proof.
Let entourageE : ent = entourage_ ball
Proof.
by []. Qed.
HB.instance Definition _ := @Nbhs_isPseudoMetric.Build K M
ent nbhsE ball ball_center ball_sym ball_triangle entourageE.
Let mdist_ge0 x y : 0 <= mdist x y.
Proof.
rewrite -(@pmulrn_lge0 _ _ 2)// -(mdistxx x).
by rewrite (le_trans (mdist_triangle y _ _))// mdist_sym -mulr2n.
Qed.
by rewrite (le_trans (mdist_triangle y _ _))// mdist_sym -mulr2n.
Qed.
Let ballEmdist x d : ball x d = [set y | mdist x y < d]
Proof.
by []. Qed.
HB.instance Definition _ := PseudoMetric_isMetric.Build K M
mdist_ge0 mdist_positivity ballEmdist.
HB.end.
Section numFieldType_metric.
Context {R : numFieldType}.
Implicit Type x y : R.
Let dist x y := `|y - x|.
Let dist_ge0 x y : 0 <= dist x y.
Proof.
Let dist_positivity x y : dist x y = 0 -> x = y.
Proof.
Let ballEmdist x d : ball x d = [set y | dist x y < d].
HB.instance Definition _ :=
@PseudoMetric_isMetric.Build R R^o dist dist_ge0 dist_positivity ballEmdist.
End numFieldType_metric.
Module metricType_numDomainType.
Section metricType_numDomainType.
Context {K : numDomainType} {V : metricType K}.
Local Notation ball_mdist := (fun x d => [set y : V | mdist x y < d]).
Lemma ball_mdistE : ball_mdist = ball.
Proof.
Local Notation nbhs_mdist := (nbhs_ball_ ball_mdist).
Lemma nbhs_nbhs_mdist : nbhs_mdist = nbhs.
Proof.
Lemma nbhs_mdistP x (P : V -> Prop) : (\near x, P x) <-> nbhs_mdist x P.
Proof.
Lemma filter_from_mdist_nbhs (y : V) :
filter_from (fun i : K => 0 < i) (fun (i : K) (y' : V) => mdist y y' < i)
= nbhs y.
Proof.
rewrite -filter_from_ballE; apply/seteqP; split => [A|A]/=.
by move=> [x x0 yxA]; exists x => //; rewrite ballEmdist.
by move=> [x x0 yxA]; exists x => //; rewrite ballEmdist in yxA.
Qed.
by move=> [x x0 yxA]; exists x => //; rewrite ballEmdist.
by move=> [x x0 yxA]; exists x => //; rewrite ballEmdist in yxA.
Qed.
Let nbhs_simpl := (nbhs_simpl,@nbhs_nbhs_mdist,@filter_from_mdist_nbhs).
Lemma fcvgrPdist_lt {F : set_system V} {FF : Filter F} (y : V) :
F --> y <-> forall eps, 0 < eps -> \forall y' \near F, mdist y y' < eps.
Proof.
Lemma cvgrPdist_lt {T} {F : set_system T} {FF : Filter F} (f : T -> V) (y : V) :
f @ F --> y <-> forall eps, 0 < eps -> \forall t \near F, mdist y (f t) < eps.
Proof.
Lemma cvgr_dist_lt {T} {F : set_system T} {FF : Filter F} (f : T -> V) (y : V) :
f @ F --> y -> forall eps, eps > 0 -> \forall t \near F, mdist y (f t) < eps.
Proof.
Lemma cvgr_dist_le {T} {F : set_system T} {FF : Filter F} (f : T -> V) (y : V) :
f @ F --> y -> forall eps, eps > 0 -> \forall t \near F, mdist y (f t) <= eps.
Proof.
End metricType_numDomainType.
Section at_left_right_metricType.
Variables (R : numFieldType) (V : metricType R).
Lemma nbhsr0P (P : set V) x :
(\forall y \near x, P y) <->
(\forall e \near 0^'+, forall y, mdist x y <= e -> P y).
Proof.
rewrite (*nbhs0P*)/= near_withinE !near_simpl.
split.
move => /nbhs_mdistP[/= _/posnumP[e] /(_ _) Px].
apply/(@nbhs_mdistP R R^o).
exists e%:num => //= r /= re yr y xyr.
apply: Px => /=.
rewrite (le_lt_trans _ re)//.
rewrite (le_trans xyr)//.
by rewrite /mdist/= subr0 real_ler_norm// gtr0_real.
move => /(@nbhs_mdistP R R^o)[/= _/posnumP[e] /(_ _) Px].
apply/(@nbhs_mdistP R V).
exists (e%:num / 2) => //= r /= re; apply: (Px (e%:num / 2)) => //=.
by rewrite /mdist/= subr0 gtr0_norm// ltr_pdivrMr// ltr_pMr// ltr1n.
by rewrite ltW.
Qed.
split.
move => /nbhs_mdistP[/= _/posnumP[e] /(_ _) Px].
apply/(@nbhs_mdistP R R^o).
exists e%:num => //= r /= re yr y xyr.
apply: Px => /=.
rewrite (le_lt_trans _ re)//.
rewrite (le_trans xyr)//.
by rewrite /mdist/= subr0 real_ler_norm// gtr0_real.
move => /(@nbhs_mdistP R R^o)[/= _/posnumP[e] /(_ _) Px].
apply/(@nbhs_mdistP R V).
exists (e%:num / 2) => //= r /= re; apply: (Px (e%:num / 2)) => //=.
by rewrite /mdist/= subr0 gtr0_norm// ltr_pdivrMr// ltr_pMr// ltr1n.
by rewrite ltW.
Qed.
Let cvgrP {F : set_system V} {FF : Filter F} (y : V) : [<->
F --> y;
forall eps, 0 < eps -> \forall t \near F, mdist y t <= eps;
\forall eps \near 0^'+, \forall t \near F, mdist y t <= eps;
\forall eps \near 0^'+, \forall t \near F, mdist y t < eps].
Proof.
tfae; first by move=> *; apply: cvgr_dist_le.
- by move=> Fy; near do apply: Fy; apply: nbhs_right_gt.
- move=> Fy; near=> e; near (0:R)^'+ => d; near=> x.
rewrite (@le_lt_trans _ _ d)//; first by near: x; near: d.
by near: d; apply: nbhs_right_lt; near: e; apply: nbhs_right_gt.
- move=> Fy; apply/cvgrPdist_lt => e e_gt0; near (0:R)^'+ => d.
near=> x; rewrite (@lt_le_trans _ _ d)//; first by near: x; near: d.
by near: d; apply: nbhs_right_le.
Unshelve. all: by end_near. Qed.
- by move=> Fy; near do apply: Fy; apply: nbhs_right_gt.
- move=> Fy; near=> e; near (0:R)^'+ => d; near=> x.
rewrite (@le_lt_trans _ _ d)//; first by near: x; near: d.
by near: d; apply: nbhs_right_lt; near: e; apply: nbhs_right_gt.
- move=> Fy; apply/cvgrPdist_lt => e e_gt0; near (0:R)^'+ => d.
near=> x; rewrite (@lt_le_trans _ _ d)//; first by near: x; near: d.
by near: d; apply: nbhs_right_le.
Unshelve. all: by end_near. Qed.
Lemma cvgrPdist_le {T} {F : set_system T} {FF : Filter F} (f : T -> V) (y : V) :
f @ F --> y <-> forall eps, 0 < eps -> \forall t \near F, mdist y (f t) <= eps.
Proof.
End at_left_right_metricType.
End metricType_numDomainType.
Section cvg_nbhsP.
Variables (R : realType) (V : metricType R).
Import metricType_numDomainType.
Lemma cvg_nbhsP (f : V -> V) (p l : V) : f x @[x --> p] --> l <->
(forall u : nat -> V, (u n @[n --> \oo] --> p) -> f (u n) @[n --> \oo] --> l).
Proof.
split=> [/cvgrPdist_le /= fpl u /cvgrPdist_lt /= uyp|pfl].
apply/cvgrPdist_le => e /fpl.
rewrite -filter_from_mdist_nbhs => -[d d0 pdf].
by apply: filterS (uyp d d0) => t /pdf.
apply: contrapT => fpl; move: pfl; apply/existsNP.
suff: exists2 x : nat -> V,
x n @[n --> \oo] --> p & ~ f (x n) @[n --> \oo] --> l.
by move=> [x_] hp; exists x_; exact/not_implyP.
have [e He] : exists e : {posnum R}, forall d : {posnum R},
exists xn, mdist xn p < d%:num /\ mdist (f xn) l >= e%:num.
apply: contrapT; apply: contra_not fpl => /forallNP h.
apply/cvgrPdist_le => e e0; have /existsNP[d] := h (PosNum e0).
move/forallNP => {}h; near=> t.
have /not_andP[abs|/negP] := h t.
- absurd: abs.
near: t.
rewrite !near_simpl /prop_near1 -nbhs_nbhs_mdist.
by exists d%:num => //= z/=; rewrite metric_sym.
- by rewrite -ltNge metric_sym => /ltW.
exists (fun n => sval (cid (He n.+1%:R^-1%:pos))).
apply/cvgrPdist_lt => r r0; near=> t.
rewrite /sval/=; case: cid => x [xpt _].
rewrite metric_sym (lt_le_trans xpt)//.
rewrite -[leRHS]invrK lef_pV2 ?posrE ?invr_gt0//.
near: t; exists (truncn r^-1) => // s /= rs.
by rewrite (le_trans (ltW (truncnS_gt _)))// ler_nat.
move=> /cvgrPdist_lt/(_ e%:num (ltac:(by [])))[] n _ /(_ _ (leqnn _)).
rewrite /sval/=; case: cid => // x [px xpn].
by rewrite ltNge metric_sym => /negP.
Unshelve. all: end_near. Qed.
apply/cvgrPdist_le => e /fpl.
rewrite -filter_from_mdist_nbhs => -[d d0 pdf].
by apply: filterS (uyp d d0) => t /pdf.
apply: contrapT => fpl; move: pfl; apply/existsNP.
suff: exists2 x : nat -> V,
x n @[n --> \oo] --> p & ~ f (x n) @[n --> \oo] --> l.
by move=> [x_] hp; exists x_; exact/not_implyP.
have [e He] : exists e : {posnum R}, forall d : {posnum R},
exists xn, mdist xn p < d%:num /\ mdist (f xn) l >= e%:num.
apply: contrapT; apply: contra_not fpl => /forallNP h.
apply/cvgrPdist_le => e e0; have /existsNP[d] := h (PosNum e0).
move/forallNP => {}h; near=> t.
have /not_andP[abs|/negP] := h t.
- absurd: abs.
near: t.
rewrite !near_simpl /prop_near1 -nbhs_nbhs_mdist.
by exists d%:num => //= z/=; rewrite metric_sym.
- by rewrite -ltNge metric_sym => /ltW.
exists (fun n => sval (cid (He n.+1%:R^-1%:pos))).
apply/cvgrPdist_lt => r r0; near=> t.
rewrite /sval/=; case: cid => x [xpt _].
rewrite metric_sym (lt_le_trans xpt)//.
rewrite -[leRHS]invrK lef_pV2 ?posrE ?invr_gt0//.
near: t; exists (truncn r^-1) => // s /= rs.
by rewrite (le_trans (ltW (truncnS_gt _)))// ler_nat.
move=> /cvgrPdist_lt/(_ e%:num (ltac:(by [])))[] n _ /(_ _ (leqnn _)).
rewrite /sval/=; case: cid => // x [px xpn].
by rewrite ltNge metric_sym => /negP.
Unshelve. all: end_near. Qed.
End cvg_nbhsP.