Library mathcomp.analysis.exp

(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C.              *)
From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum matrix.
From mathcomp Require Import interval rat.
Require Import mathcomp_extra boolp reals ereal nsatz_realtype classical_sets.
Require Import signed functions topology normedtype landau sequences derive.
Require Import realfun.

Theory of exponential/logarithm functions
This file defines exponential and logarithm functions and develops their theory.

Differentiability of series (Section PseriesDiff)

This formalization is inspired by HOL-Light (transc.ml). This part is temporary: it should be subsumed by a proper theory of power series. pseries f x == [series f n * x ^ n]_n pseries_diffs f i == (i + 1) * f (i + 1)
ln x == the natural logarithm a `^ x == exponential functions riemannR a == sequence n |-> 1 / (n.+1) `^ a where a has a type of type realType

Set Implicit Arguments.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldNormedType.Exports.

Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

PR to mathcomp in progress
Lemma normr_nneg (R : numDomainType) (x : R) : `|x| \is Num.nneg.
#[global] Hint Resolve normr_nneg : core.
/PR to mathcomp in progress

Section PseriesDiff.

Variable R : realType.

Definition pseries f (x : R) := [series f i × x ^+ i]_i.

Fact is_cvg_pseries_inside_norm f (x z : R) :
  cvg (pseries f x) `|z| < `|x| cvg (pseries (fun i`|f i|) z).

Fact is_cvg_pseries_inside f (x z : R) :
  cvg (pseries f x) `|z| < `|x| cvg (pseries f z).

Definition pseries_diffs (f : nat R) i := i.+1%:R × f i.+1.

Lemma pseries_diffsN (f : nat R) : pseries_diffs (- f) = -(pseries_diffs f).

Lemma pseries_diffs_inv_fact :
  pseries_diffs (fun n(n`!%:R)^-1) = (fun n(n`!%:R)^-1 : R).

Lemma pseries_diffs_sumE n f x :
  \sum_(0 i < n) pseries_diffs f i × x ^+ i =
  (\sum_(0 i < n) i%:R × f i × x ^+ i.-1) + n%:R × f n × x ^+ n.-1.

Lemma pseries_diffs_equiv f x :
  let s i := i%:R × f i × x ^+ i.-1 in
  cvg (pseries (pseries_diffs f) x) series s -->
  lim (pseries (pseries_diffs f) x).

Lemma is_cvg_pseries_diffs_equiv f x :
  cvg (pseries (pseries_diffs f) x) cvg [series i%:R × f i × x ^+ i.-1]_i.

Let pseries_diffs_P1 m (z h : R) :
  \sum_(0 i < m) ((h + z) ^+ (m - i) × z ^+ i - z ^+ m) =
  \sum_(0 i < m) z ^+ i × ((h + z) ^+ (m - i) - z ^+ (m - i)).

Let pseries_diffs_P2 n (z h : R) :
  h != 0
  ((h + z) ^+ n - (z ^+ n)) / h - n%:R × z ^+ n.-1 =
  h × \sum_(0 i < n.-1) z ^+ i ×
      \sum_(0 j < n.-1 - i) (h + z) ^+ j × z ^+ (n.-2 - i - j).

Let pseries_diffs_P3 (z h : R) n K :
  h != 0 `|z| K `|h + z| K
    `|((h +z) ^+ n - z ^+ n) / h - n%:R × z ^+ n.-1|
       n%:R × n.-1%:R × K ^+ n.-2 × `|h|.

Lemma pseries_snd_diffs (c : R^nat) K x :
  cvg (pseries c K)
  cvg (pseries (pseries_diffs c) K)
  cvg (pseries (pseries_diffs (pseries_diffs c)) K)
  `|x| < `|K|
  is_derive x 1
    (fun xlim (pseries c x))
    (lim (pseries (pseries_diffs c) x)).

End PseriesDiff.

Section expR.
Variable R : realType.
Implicit Types x : R.

Lemma expR0 : expR 0 = 1 :> R.

Lemma expR_ge1Dx x : 0 x 1 + x expR x.

Lemma exp_coeffE x : exp_coeff x = (fun n ⇒ (fun n(n`!%:R)^-1) n × x ^+ n).

Import GRing.Theory.
Local Open Scope ring_scope.

Lemma expRE :
  expR = fun xlim (pseries (fun n ⇒ (fun n(n`!%:R)^-1) n) x).

Global Instance is_derive_expR x : is_derive x 1 expR (expR x).

Lemma derivable_expR x : derivable expR x 1.

Lemma continuous_expR : continuous (@expR R).

Lemma expRxDyMexpx x y : expR (x + y) × expR (- x) = expR y.

Lemma expRxMexpNx_1 x : expR x × expR (- x) = 1.

Lemma pexpR_gt1 x : 0 < x 1 < expR x.

Lemma expR_gt0 x : 0 < expR x.

Lemma expRN x : expR (- x) = (expR x)^-1.

Lemma expRD x y : expR (x + y) = expR x × expR y.

Lemma expRMm n x : expR (n%:R × x) = expR x ^+ n.

Lemma expR_gt1 x: (1 < expR x) = (0 < x).

Lemma expR_lt1 x: (expR x < 1) = (x < 0).

Lemma expRB x y : expR (x - y) = expR x / expR y.

Lemma ltr_expR : {mono (@expR R) : x y / x < y}.

Lemma ler_expR : {mono (@expR R) : x y / x y}.

Lemma expR_inj : injective (@expR R).

Lemma expR_total_gt1 x :
  1 x y, [/\ 0 y, 1 + y x & expR y = x].

Lemma expR_total x : 0 < x y, expR y = x.

End expR.

Section Ln.
Variable R : realType.
Implicit Types x : R.

Notation exp := (@expR R).

Definition ln x : R := xget 0 [set y | exp y == x ].

Fact ln0 x : x 0 ln x = 0.

Lemma expK : cancel exp ln.

Lemma lnK : {in Num.pos, cancel ln exp}.

Lemma lnK_eq x : (exp (ln x) == x) = (0 < x).

Lemma ln1 : ln 1 = 0.

Lemma lnM : {in Num.pos &, {morph ln : x y / x × y >-> x + y}}.

Lemma ln_inj : {in Num.pos &, injective ln}.

Lemma lnV : {in Num.pos, {morph ln : x / x ^-1 >-> - x}}.

Lemma ln_div : {in Num.pos &, {morph ln : x y / x / y >-> x - y}}.

Lemma ltr_ln : {in Num.pos &, {mono ln : x y / x < y}}.

Lemma ler_ln : {in Num.pos &, {mono ln : x y / x y}}.

Lemma lnX n x : 0 < x ln(x ^+ n) = ln x *+ n.

Lemma le_ln1Dx x : 0 x ln (1 + x) x.

Lemma ln_sublinear x : 0 < x ln x < x.

Lemma ln_ge0 x : 1 x 0 ln x.

Lemma ln_gt0 x : 1 < x 0 < ln x.

Lemma continuous_ln x : 0 < x {for x, continuous ln}.

Global Instance is_derive1_ln (x : R) : 0 < x is_derive x 1 ln x^-1.

End Ln.

Section ExpFun.
Variable R : realType.
Implicit Types a x : R.

Definition exp_fun a x := expR (x × ln a).


Lemma exp_fun_gt0 a x : 0 < a `^ x.

Lemma exp_funr1 a : 0 < a a `^ 1 = a.

Lemma exp_funr0 a : 0 < a a `^ 0 = 1.

Lemma exp_fun1 : exp_fun 1 = fun 1.

Lemma ler_exp_fun a : 1 < a {homo exp_fun a : x y / x y}.

Lemma exp_funD a : 0 < a {morph exp_fun a : x y / x + y >-> x × y}.

Lemma exp_fun_inv a : 0 < a a `^ (-1) = a ^-1.

Lemma exp_fun_mulrn a n : 0 < a exp_fun a n%:R = a ^+ n.

End ExpFun.
Notation "a `^ x" := (exp_fun a x).

Section riemannR_series.
Variable R : realType.
Implicit Types a : R.
Local Open Scope ring_scope.

Definition riemannR a : R ^nat := fun n(n.+1%:R `^ a)^-1.
Arguments riemannR a n /.

Lemma riemannR_gt0 a i : 0 < a 0 < riemannR a i.

Lemma dvg_riemannR a : 0 < a 1 ¬ cvg (series (riemannR a)).

End riemannR_series.