Module mathcomp.analysis.normedtype

From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum finmap matrix.
From mathcomp Require Import rat interval zmodp vector fieldext falgebra.
From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality set_interval Rstruct.
Require Import ereal reals signed topology prodnormedzmodule.

# Norm-related Notions This file extends the topological hierarchy with norm-related notions. Note that balls in topology.v are not necessarily open, here they are. We used these definitions to prove the intermediate value theorem and the Heine-Borel theorem, which states that the compact sets of $\mathbb{R}^n$ are the closed and bounded sets, Urysohn's lemma, Vitali's covering lemmas (finite case), etc. * Limit superior and inferior: limf_esup f F, limf_einf f F == limit sup/inferior of f at "filter" F f has type X -> \bar R. F has type set (set X). ## Normed Topological Abelian groups: ``` pseudoMetricNormedZmodType R == interface type for a normed topological Abelian group equipped with a norm PseudoMetricNormedZmodule.Mixin nb == builds the mixin for a normed topological Abelian group from the compatibility between the norm and balls; the carrier type must have a normed Zmodule over a numDomainType. ``` lower_semicontinuous f == the extented real-valued function f is lower-semicontinuous. The type of f is X -> \bar R with X : topologicalType and R : realType ## Normed modules ``` normedModType K == interface type for a normed module structure over the numDomainType K. NormedModMixin normZ == builds the mixin for a normed module from the property of the linearity of the norm; the carrier type must have a pseudoMetricNormedZmodType structure NormedModType K T m == packs the mixin m to build a normedModType K; T must have canonical pseudoMetricNormedZmodType K and pseudoMetricType structures. [normedModType K of T for cT] == T-clone of the normedModType K structure cT. [normedModType K of T] == clone of a canonical normedModType K structure on T. `|x| == the norm of x (notation from ssrnum). ball_norm == balls defined by the norm. edist == the extended distance function for a pseudometric X, from X*X -> \bar R edist_inf A == the infimum of distances to the set A Urysohn A B == a continuous function T -> [0,1] which separates A and B when `uniform_separator A B` uniform_separator A B == There is a suitable uniform space and entourage separating A and B nbhs_norm == neighborhoods defined by the norm. closed_ball == closure of a ball. f @`[ a , b ], f @`] a , b [ == notations for images of intervals, intended for continuous, monotonous functions, defined in ring_scope and classical_set_scope respectively as: f @`[ a , b ] := `[minr (f a) (f b), maxr (f a) (f b)]%O f @`] a , b [ := `]minr (f a) (f b), maxr (f a) (f b)[%O f @`[ a , b ] := `[minr (f a) (f b), maxr (f a) (f b)]%classic f @`] a , b [ := `]minr (f a) (f b), maxr (f a) (f b)[%classic ``` ## Domination notations ``` dominated_by h k f F == `|f| <= k * `|h|, near F bounded_near f F == f is bounded near F [bounded f x | x in A] == f is bounded on A, ie F := globally A [locally [bounded f x | x in A] == f is locally bounded on A bounded_set == set of bounded sets. := [set A | [bounded x | x in A]] bounded_fun == set of functions bounded on their whole domain. := [set f | [bounded f x | x in setT]] lipschitz_on f F == f is lipschitz near F [lipschitz f x | x in A] == f is lipschitz on A [locally [lipschitz f x | x in A] == f is locally lipschitz on A k.-lipschitz_on f F == f is k.-lipschitz near F k.-lipschitz_A f == f is k.-lipschitz on A [locally k.-lipschitz_A f] == f is locally k.-lipschitz on A contraction q f == f is q.-lipschitz and q < 1 is_contraction f == exists q, f is q.-lipschitz and q < 1 is_interval E == the set E is an interval bigcup_ointsub U q == union of open real interval included in U and that contain the rational number q Rhull A == the real interval hull of a set A shift x y == y + x center c := shift (- c) ``` ## Complete normed modules ``` completeNormedModType K == interface type for a complete normed module structure over a realFieldType K. [completeNormedModType K of T] == clone of a canonical complete normed module structure over K on T. ``` ## Filters ``` at_left x, at_right x == filters on real numbers for predicates s.t. nbhs holds on the left/right of x ``` ``` cpoint A == the center of the set A if it is an open ball radius A == the radius of the set A if it is an open ball Radius A has type {nonneg R} with R a numDomainType. is_ball A == boolean predicate that holds when A is an open ball k *` A == open ball with center cpoint A and radius k * radius A if A is an open ball and set0 o.w. vitali_collection_partition B V r n == subset of indices of V such the the ball B i has a radius between r/2^n+1 and r/2^n ```

Reserved Notation "f @`[ a , b ]" (at level 20, b at level 9,
  format "f  @`[ a ,  b ]").
Reserved Notation "f @`] a , b [" (at level 20, b at level 9,
  format "f  @`] a ,  b [").
Reserved Notation "x ^'+" (at level 3, format "x ^'+").
Reserved Notation "x ^'-" (at level 3, format "x ^'-").
Reserved Notation "+oo_ R" (at level 3, format "+oo_ R").
Reserved Notation "-oo_ R" (at level 3, format "-oo_ R").
Reserved Notation "[ 'bounded' E | x 'in' A ]"
  (at level 0, x name, format "[ 'bounded'  E  |  x  'in'  A ]").
Reserved Notation "k .-lipschitz_on f"
  (at level 2, format "k .-lipschitz_on  f").
Reserved Notation "k .-lipschitz_ A f"
  (at level 2, A at level 0, format "k .-lipschitz_ A  f").
Reserved Notation "k .-lipschitz f" (at level 2, format "k .-lipschitz  f").
Reserved Notation "[ 'lipschitz' E | x 'in' A ]"
  (at level 0, x name, format "[ 'lipschitz'  E  |  x  'in'  A ]").
Reserved Notation "k *` A" (at level 40, left associativity, format "k  *`  A").

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldTopology.Exports.

Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

Section limf_esup_einf .
Variables ( T : choiceType) ( X : filteredType T) ( R : realFieldType).
Implicit Types (f : X -> \bar R) (F : set (set X)).
Local Open Scope ereal_scope.

Definition limf_esup f F := ereal_inf [set ereal_sup (f @` V) | V in F].

Definition limf_einf f F := - limf_esup (\- f) F.

Lemma limf_esupE f F :
  limf_esup f F = ereal_inf [set ereal_sup (f @` V) | V in F].
Proof.
by []. Qed.

Lemma limf_einfE f F :
  limf_einf f F = ereal_sup [set ereal_inf (f @` V) | V in F].
Proof.
rewrite /limf_einf limf_esupE /ereal_inf oppeK -[in RHS]image_comp /=.
congr (ereal_sup [set _ | _ in [set ereal_sup _ | _ in _]]).
by under eq_fun do rewrite -image_comp.
Qed.

Lemma limf_esupN f F : limf_esup (\- f) F = - limf_einf f F.
Proof.
by rewrite /limf_einf oppeK. Qed.

Lemma limf_einfN f F : limf_einf (\- f) F = - limf_esup f F.
Proof.
by rewrite /limf_einf; under eq_fun do rewrite oppeK. Qed.

End limf_esup_einf.

Definition pointed_of_zmodule ( R : zmodType) : pointedType := PointedType R 0.

Definition filtered_of_normedZmod ( K : numDomainType) ( R : normedZmodType K)
  : filteredType R := Filtered.Pack (Filtered.Class
    (@Pointed.class (pointed_of_zmodule R))
    (nbhs_ball_ (ball_ (fun x => `|x|)))).

Section pseudoMetric_of_normedDomain .
Variables ( K : numDomainType) ( R : normedZmodType K).
Lemma ball_norm_center ( x : R) ( e : K) : 0 < e -> ball_ normr x e x.
Proof.
by move=> ? /=; rewrite subrr normr0. Qed.
Lemma ball_norm_symmetric ( x y : R) ( e : K) :
  ball_ normr x e y -> ball_ normr y e x.
Proof.
by rewrite /= distrC. Qed.
Lemma ball_norm_triangle ( x y z : R) ( e1 e2 : K) :
  ball_ normr x e1 y -> ball_ normr y e2 z -> ball_ normr x (e1 + e2) z.
Proof.
move=> /= ? ?; rewrite -(subr0 x) -(subrr y) opprD opprK (addrA x _ y) -addrA.
by rewrite (le_lt_trans (ler_norm_add _ _)) // ltr_add.
Qed.
Definition pseudoMetric_of_normedDomain
  : PseudoMetric.mixin_of K (@entourage_ K R R (ball_ (fun x => `|x|)))
  := PseudoMetricMixin ball_norm_center ball_norm_symmetric ball_norm_triangle erefl.

Lemma nbhs_ball_normE :
  @nbhs_ball_ K R R (ball_ normr) = nbhs_ (entourage_ (ball_ normr)).
Proof.
rewrite /nbhs_ entourage_E predeq2E => x A; split.
  move=> [e egt0 sbeA].
  by exists [set xy | ball_ normr xy.1 e xy.2] => //; exists e.
by move=> [E [e egt0 sbeE] sEA]; exists e => // ??; apply/sEA/sbeE.
Qed.
End pseudoMetric_of_normedDomain.

Lemma nbhsN ( R : numFieldType) ( x : R) : nbhs (- x) = -%R @ x.
Proof.
rewrite predeqE => A; split=> //= -[] e e_gt0 xeA; exists e => //= y /=.
  by move=> ?; apply: xeA => //=; rewrite -opprD normrN.
by rewrite -opprD normrN => ?; rewrite -[y]opprK; apply: xeA; rewrite /= opprK.
Qed.

Lemma nbhsNimage ( R : numFieldType) ( x : R) :
  nbhs (- x) = [set -%R @` A | A in nbhs x].
Proof.
rewrite nbhsN /fmap/=; under eq_set => A do rewrite preimageEinv//= inv_oppr.
by rewrite (eq_imageK opprK opprK).
Qed.

Lemma nearN ( R : numFieldType) ( x : R) ( P : R -> Prop) :
  (\forall y \near - x, P y) <-> \near x, P (- x).
Proof.
by rewrite -near_simpl nbhsN. Qed.

Lemma openN ( R : numFieldType) ( A : set R) :
  open A -> open [set - x | x in A].
Proof.
move=> Aop; rewrite openE => _ [x /Aop x_A <-].
by rewrite /interior nbhsNimage; exists A.
Qed.

Lemma closedN ( R : numFieldType) ( A : set R) :
  closed A -> closed [set - x | x in A].
Proof.
move=> Acl x clNAx.
suff /Acl : closure A (- x) by exists (- x)=> //; rewrite opprK.
move=> B oppx_B; have : [set - x | x in A] `&` [set - x | x in B] !=set0.
  by apply: clNAx; rewrite -[x]opprK nbhsNimage; exists B.
move=> [y [[z Az oppzey] [t Bt opptey]]]; exists (- y).
by split; [rewrite -oppzey opprK|rewrite -opptey opprK].
Qed.

Lemma dnbhsN {R : numFieldType} ( r : R) :
  (- r)%R^' = (fun A => -%R @` A) @` r^'.
Proof.
apply/seteqP; split=> [A [e/= e0 reA]|_/= [A [e/= e0 reA <-]]].
  exists (-%R @` A).
    exists e => // x/= rxe xr; exists (- x)%R; rewrite ?opprK//.
    by apply: reA; rewrite ?eqr_opp//= opprK addrC distrC.
  rewrite image_comp (_ : _ \o _ = idfun) ?image_id// funeqE => x/=.
  by rewrite opprK.
exists e => //= x/=; rewrite -opprD normrN => axe xa.
exists (- x)%R; rewrite ?opprK//; apply: reA; rewrite ?eqr_oppLR//=.
by rewrite opprK.
Qed.

Module PseudoMetricNormedZmodule .
Section ClassDef .
Variable R : numDomainType.
Record mixin_of ( T : normedZmodType R) ( ent : set (set (T * T)))
    ( m : PseudoMetric.mixin_of R ent) := Mixin {
  _ : PseudoMetric.ball m = ball_ (fun x => `| x |) }.

Record class_of ( T : Type) := Class {
   base : Num.NormedZmodule.class_of R T;
   pointed_mixin : Pointed.point_of T ;
   nbhs_mixin : Filtered.nbhs_of T T ;
   topological_mixin : @Topological.mixin_of T nbhs_mixin ;
   uniform_mixin : @Uniform.mixin_of T nbhs_mixin ;
   pseudoMetric_mixin :
    @PseudoMetric.mixin_of R T (Uniform.entourage uniform_mixin) ;
   mixin : @mixin_of (Num.NormedZmodule.Pack _ base) _ pseudoMetric_mixin
}.
Local Coercion base : class_of >-> Num.NormedZmodule.class_of.
Definition base2 T c := @PseudoMetric.Class _ _
    (@Uniform.Class _
      (@Topological.Class _
        (Filtered.Class
         (Pointed.Class (@base T c) (pointed_mixin c))
         (nbhs_mixin c))
        (topological_mixin c))
      (uniform_mixin c))
    (pseudoMetric_mixin c).
Local Coercion base2 : class_of >-> PseudoMetric.class_of.

Structure type ( phR : phant R) :=
  Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.

Variables ( phR : phant R) ( T : Type) ( cT : type phR).

Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone c of phant_id class c := @Pack phR T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).
Definition pack ( b0 : Num.NormedZmodule.class_of R T) lm0 um0
  ( m0 : @mixin_of (@Num.NormedZmodule.Pack R (Phant R) T b0) lm0 um0) :=
  fun bT ( b : Num.NormedZmodule.class_of R T)
      & phant_id (@Num.NormedZmodule.class R (Phant R) bT) b =>
  fun uT ( u : PseudoMetric.class_of R T) & phant_id (@PseudoMetric.class R uT) u =>
  fun ( m : @mixin_of (Num.NormedZmodule.Pack _ b) _ u) & phant_id m m0 =>
  @Pack phR T (@Class T b u u u u u m).

Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition normedZmodType := @Num.NormedZmodule.Pack R phR cT xclass.
Definition pointedType := @Pointed.Pack cT xclass.
Definition filteredType := @Filtered.Pack cT cT xclass.
Definition topologicalType := @Topological.Pack cT xclass.
Definition uniformType := @Uniform.Pack cT xclass.
Definition pseudoMetricType := @PseudoMetric.Pack R cT xclass.
Definition pointed_zmodType := @GRing.Zmodule.Pack pointedType xclass.
Definition filtered_zmodType := @GRing.Zmodule.Pack filteredType xclass.
Definition topological_zmodType := @GRing.Zmodule.Pack topologicalType xclass.
Definition uniform_zmodType := @GRing.Zmodule.Pack uniformType xclass.
Definition pseudoMetric_zmodType := @GRing.Zmodule.Pack pseudoMetricType xclass.
Definition pointed_normedZmodType := @Num.NormedZmodule.Pack R phR pointedType xclass.
Definition filtered_normedZmodType := @Num.NormedZmodule.Pack R phR filteredType xclass.
Definition topological_normedZmodType := @Num.NormedZmodule.Pack R phR topologicalType xclass.
Definition uniform_normedZmodType := @Num.NormedZmodule.Pack R phR uniformType xclass.
Definition pseudoMetric_normedZmodType := @Num.NormedZmodule.Pack R phR pseudoMetricType xclass.

End ClassDef.


Module Exports .
Coercion base : class_of >-> Num.NormedZmodule.class_of.
Coercion base2 : class_of >-> PseudoMetric.class_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion normedZmodType : type >-> Num.NormedZmodule.type.
Canonical normedZmodType.
Coercion pointedType : type >-> Pointed.type.
Canonical pointedType.
Coercion filteredType : type >-> Filtered.type.
Canonical filteredType.
Coercion topologicalType : type >-> Topological.type.
Canonical topologicalType.
Coercion uniformType : type >-> Uniform.type.
Canonical uniformType.
Coercion pseudoMetricType : type >-> PseudoMetric.type.
Canonical pseudoMetricType.
Canonical pointed_zmodType.
Canonical filtered_zmodType.
Canonical topological_zmodType.
Canonical uniform_zmodType.
Canonical pseudoMetric_zmodType.
Canonical pointed_normedZmodType.
Canonical filtered_normedZmodType.
Canonical topological_normedZmodType.
Canonical uniform_normedZmodType.
Canonical pseudoMetric_normedZmodType.
Notation pseudoMetricNormedZmodType R := (type (Phant R)).
Notation PseudoMetricNormedZmodType R T m :=
  (@pack _ (Phant R) T _ _ _ m _ _ idfun _ _ idfun _ idfun).
Notation "[ 'pseudoMetricNormedZmodType' R 'of' T 'for' cT ]" :=
  (@clone _ (Phant R) T cT _ idfun)
  (at level 0, format "[ 'pseudoMetricNormedZmodType'  R  'of'  T  'for'  cT ]") :
  form_scope.
Notation "[ 'pseudoMetricNormedZmodType' R 'of' T ]" :=
  (@clone _ (Phant R) T _ _ idfun)
  (at level 0, format "[ 'pseudoMetricNormedZmodType'  R  'of'  T ]") : form_scope.
End Exports.

End PseudoMetricNormedZmodule.
Export PseudoMetricNormedZmodule.Exports.

Section pseudoMetricnormedzmodule_lemmas .
Context {K : numDomainType} {V : pseudoMetricNormedZmodType K}.

Local Notation ball_norm := (ball_ (@normr K V)).

Lemma ball_normE : ball_norm = ball.
Proof.
by case: V => ? [? ? ? ? ? ? []]. Qed.

End pseudoMetricnormedzmodule_lemmas.

Lemma bigcup_ballT {R : realType} : \bigcup_n ball (0%R : R) n%:R = setT.
Proof.
apply/seteqP; split => // x _; have [x0|x0] := ltP 0%R x.
  exists `|ceil x|.+1 => //.
  rewrite /ball /= sub0r normrN gtr0_norm// (le_lt_trans (ceil_ge _))//.
  by rewrite -natr1 natr_absz -abszE gtz0_abs// ?ceil_gt0// ltr_spaddr.
exists `|ceil (- x)|.+1 => //.
rewrite /ball /= sub0r normrN ler0_norm// (le_lt_trans (ceil_ge _))//.
rewrite -natr1 natr_absz -abszE gez0_abs ?ceil_ge0// 1?ler_oppr ?oppr0//.
by rewrite ltr_spaddr.
Qed.

Section lower_semicontinuous .
Context {X : topologicalType} {R : realType}.
Implicit Types f : X -> \bar R.
Local Open Scope ereal_scope.

Definition lower_semicontinuous f := forall x a, a%:E < f x ->
  exists2 V, nbhs x V & forall y, V y -> a%:E < f y.

Lemma lower_semicontinuousP f :
  lower_semicontinuous f <-> forall a, open [set x | f x > a%:E].
Proof.
split=> [sci a|openf x a afx].
  rewrite openE /= => x /= /sci[A + Aaf]; rewrite nbhsE /= => -[B xB BA].
  apply: nbhs_singleton; apply: nbhs_interior.
  by rewrite nbhsE /=; exists B => // y /BA /=; exact: Aaf.
exists [set x | a%:E < f x] => //.
by rewrite nbhsE/=; exists [set x | a%:E < f x].
Qed.

End lower_semicontinuous.

neighborhoods

Section Nbhs' .
Context {R : numDomainType} {T : pseudoMetricType R}.

Lemma ex_ball_sig ( x : T) ( P : set T) :
  ~ (forall eps : {posnum R}, ~ (ball x eps%:num `<=` ~` P)) ->
    {d : {posnum R} | ball x d%:num `<=` ~` P}.
Proof.
rewrite forallNE notK => exNP.
pose D := [set d : R^o | d > 0 /\ ball x d `<=` ~` P].
have [|d_gt0] := @getPex _ D; last by exists (PosNum d_gt0).
by move: exNP => [e eP]; exists e%:num.
Qed.

Lemma nbhsC ( x : T) ( P : set T) :
  ~ (forall eps : {posnum R}, ~ (ball x eps%:num `<=` ~` P)) ->
  nbhs x (~` P).
Proof.
by move=> /ex_ball_sig [e] ?; apply/nbhs_ballP; exists e%:num => /=. Qed.

Lemma nbhsC_ball ( x : T) ( P : set T) :
  nbhs x (~` P) -> {d : {posnum R} | ball x d%:num `<=` ~` P}.
Proof.
move=> /nbhs_ballP xNP; apply: ex_ball_sig.
by have [_ /posnumP[e] eP /(_ _ eP)] := xNP.
Qed.

Lemma nbhs_ex ( x : T) ( P : T -> Prop) : nbhs x P ->
  {d : {posnum R} | forall y, ball x d%:num y -> P y}.
Proof.
move=> /nbhs_ballP xP.
pose D := [set d : R^o | d > 0 /\ forall y, ball x d y -> P y].
have [|d_gt0 dP] := @getPex _ D; last by exists (PosNum d_gt0).
by move: xP => [e bP]; exists (e : R).
Qed.

End Nbhs'.

Lemma coord_continuous {K : numFieldType} m n i j :
  continuous (fun M : 'M[K]_(m, n) => M i j).
Proof.
move=> /= M s /= /(nbhs_ballP (M i j)) [e e0 es].
apply/nbhs_ballP; exists e => //= N MN; exact/es/MN.
Qed.

Global Instance Proper_dnbhs_numFieldType ( R : numFieldType) ( x : R) :
  ProperFilter x^'.
Proof.
apply: Build_ProperFilter => A /nbhs_ballP[_/posnumP[e] Ae].
exists (x + e%:num / 2); apply: Ae; last first.
  by rewrite eq_sym addrC -subr_eq subrr eq_sym.
rewrite /ball /= opprD addrA subrr distrC subr0 ger0_norm //.
by rewrite {2}(splitr e%:num) ltr_spaddl.
Qed.

#[global] Hint Extern 0 (ProperFilter _^') =>
  (apply: Proper_dnbhs_numFieldType) : typeclass_instances.

Definition pinfty_nbhs ( R : numFieldType) : set (set R) :=
  fun P => exists M, M \is Num.real /\ forall x, M < x -> P x.
Arguments pinfty_nbhs R : clear implicits.
Definition ninfty_nbhs ( R : numFieldType) : set (set R) :=
  fun P => exists M, M \is Num.real /\ forall x, x < M -> P x.
Arguments ninfty_nbhs R : clear implicits.

Notation "+oo_ R" := (pinfty_nbhs [numFieldType of R])
  (only parsing) : ring_scope.
Notation "-oo_ R" := (ninfty_nbhs [numFieldType of R])
  (only parsing) : ring_scope.

Notation "+oo" := (pinfty_nbhs _) : ring_scope.
Notation "-oo" := (ninfty_nbhs _) : ring_scope.

Section infty_nbhs_instances .
Context {R : numFieldType}.
Let R_topologicalType := [topologicalType of R].
Implicit Types r : R.

Global Instance proper_pinfty_nbhs : ProperFilter (pinfty_nbhs R).
Proof.
apply Build_ProperFilter.
  by move=> P [M [Mreal MP]]; exists (M + 1); apply MP; rewrite ltr_addl.
split=> /= [|P Q [MP [MPr gtMP]] [MQ [MQr gtMQ]] |P Q sPQ [M [Mr gtM]]].
- by exists 0.
- exists (maxr MP MQ); split=> [|x]; first exact: max_real.
  by rewrite comparable_lt_maxl ?real_comparable // => /andP[/gtMP ? /gtMQ].
- by exists M; split => // ? /gtM /sPQ.
Qed.

Global Instance proper_ninfty_nbhs : ProperFilter (ninfty_nbhs R).
Proof.
apply Build_ProperFilter.
  move=> P [M [Mr ltMP]]; exists (M - 1).
  by apply: ltMP; rewrite gtr_addl oppr_lt0.
split=> /= [|P Q [MP [MPr ltMP]] [MQ [MQr ltMQ]] |P Q sPQ [M [Mr ltM]]].
- by exists 0.
- exists (Num.min MP MQ); split=> [|x]; first exact: min_real.
  by rewrite comparable_lt_minr ?real_comparable // => /andP[/ltMP ? /ltMQ].
- by exists M; split => // x /ltM /sPQ.
Qed.

Lemma nbhs_pinfty_gt r : r \is Num.real -> \forall x \near +oo, r < x.
Proof.
by exists r. Qed.

Lemma nbhs_pinfty_ge r : r \is Num.real -> \forall x \near +oo, r <= x.
Proof.
by exists r; split => //; apply: ltW. Qed.

Lemma nbhs_ninfty_lt r : r \is Num.real -> \forall x \near -oo, r > x.
Proof.
by exists r. Qed.

Lemma nbhs_ninfty_le r : r \is Num.real -> \forall x \near -oo, r >= x.
Proof.
by exists r; split => // ?; apply: ltW. Qed.

Lemma nbhs_pinfty_real : \forall x \near +oo, x \is @Num.real R.
Proof.
by apply: filterS (nbhs_pinfty_gt (@real0 _)); apply: gtr0_real. Qed.

Lemma nbhs_ninfty_real : \forall x \near -oo, x \is @Num.real R.
Proof.
by apply: filterS (nbhs_ninfty_lt (@real0 _)); apply: ltr0_real. Qed.

Lemma pinfty_ex_gt ( m : R) ( A : set R) : m \is Num.real ->
  (\forall k \near +oo, A k) -> exists2 M, m < M & A M.
Proof.
move=> m_real Agt; near (pinfty_nbhs R) => M.
by exists M; near: M => //; apply: nbhs_pinfty_gt.
Unshelve. all: by end_near. Qed.

Lemma pinfty_ex_ge ( m : R) ( A : set R) : m \is Num.real ->
  (\forall k \near +oo, A k) -> exists2 M, m <= M & A M.
Proof.
move=> m_real Agt; near (pinfty_nbhs R) => M.
by exists M; near: M => //; apply: nbhs_pinfty_ge.
Unshelve. all: by end_near. Qed.

Lemma pinfty_ex_gt0 ( A : set R) :
  (\forall k \near +oo, A k) -> exists2 M, M > 0 & A M.
Proof.
exact: pinfty_ex_gt. Qed.

Lemma near_pinfty_div2 ( A : set R) :
  (\forall k \near +oo, A k) -> (\forall k \near +oo, A (k / 2)).
Proof.
move=> [M [Mreal AM]]; exists (M * 2); split; first by rewrite realM.
by move=> x; rewrite -ltr_pdivl_mulr //; exact: AM.
Qed.

End infty_nbhs_instances.

#[global] Hint Extern 0 (is_true (_ < ?x)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_pinfty_gt end : core.
#[global] Hint Extern 0 (is_true (_ <= ?x)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_pinfty_ge end : core.
#[global] Hint Extern 0 (is_true (_ > ?x)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_ninfty_lt end : core.
#[global] Hint Extern 0 (is_true (_ >= ?x)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_ninfty_le end : core.
#[global] Hint Extern 0 (is_true (?x \is Num.real)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_pinfty_real end : core.
#[global] Hint Extern 0 (is_true (?x \is Num.real)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_ninfty_real end : core.

#[global] Hint Extern 0 (is_true (_ < ?x)%E) => match goal with
  H : x \is_near _ |- _ => near: x; exact: ereal_nbhs_pinfty_gt end : core.
#[global] Hint Extern 0 (is_true (_ <= ?x)%E) => match goal with
  H : x \is_near _ |- _ => near: x; exact: ereal_nbhs_pinfty_ge end : core.
#[global] Hint Extern 0 (is_true (_ > ?x)%E) => match goal with
  H : x \is_near _ |- _ => near: x; exact: ereal_nbhs_ninfty_lt end : core.
#[global] Hint Extern 0 (is_true (_ >= ?x)%E) => match goal with
  H : x \is_near _ |- _ => near: x; exact: ereal_nbhs_ninfty_le end : core.
#[global] Hint Extern 0 (is_true (fine ?x \is Num.real)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: ereal_nbhs_pinfty_real end : core.
#[global] Hint Extern 0 (is_true (fine ?x \is Num.real)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: ereal_nbhs_ninfty_real end : core.

Section cvg_infty_numField .
Context {R : numFieldType}.

Let cvgryPnum {F : set (set R)} {FF : Filter F} : [<->
F --> +oo;
forall A, A \is Num.real -> \forall x \near F, A <= x;
forall A, A \is Num.real -> \forall x \near F, A < x;
\forall A \near +oo, \forall x \near F, A < x;
\forall A \near +oo, \forall x \near F, A <= x ].
Proof.
tfae; first by move=> Foo A Areal; apply: Foo; apply: nbhs_pinfty_ge.
- move=> AF A Areal; near +oo_R => B.
  by near do apply: (@lt_le_trans _ _ B) => //=; apply: AF.
- by move=> Foo; near do apply: Foo => //.
- by apply: filterS => ?; apply: filterS => ?; apply: ltW.
case=> [A [AR AF]] P [x [xR Px]]; near +oo_R => B.
by near do [apply: Px; apply: (@lt_le_trans _ _ B) => //]; apply: AF.
Unshelve. all: by end_near. Qed.

Let cvgrNyPnum {F : set (set R)} {FF : Filter F} : [<->
F --> -oo;
forall A, A \is Num.real -> \forall x \near F, A >= x;
forall A, A \is Num.real -> \forall x \near F, A > x;
\forall A \near -oo, \forall x \near F, A > x;
\forall A \near -oo, \forall x \near F, A >= x ].
Proof.
tfae; first by move=> Foo A Areal; apply: Foo; apply: nbhs_ninfty_le.
- move=> AF A Areal; near -oo_R => B.
  by near do apply: (@le_lt_trans _ _ B) => //; apply: AF.
- by move=> Foo; near do apply: Foo => //.
- by apply: filterS => ?; apply: filterS => ?; apply: ltW.
case=> [A [AR AF]] P [x [xR Px]]; near -oo_R => B.
by near do [apply: Px; apply: (@le_lt_trans _ _ B) => //]; apply: AF.
Unshelve. all: end_near. Qed.

Context {T} {F : set (set T)} {FF : Filter F}.
Implicit Types f : T -> R.

Lemma cvgryPger f :
  f @ F --> +oo <-> forall A, A \is Num.real -> \forall x \near F, A <= f x.
Proof.
exact: (cvgryPnum 0%N 1%N). Qed.

Lemma cvgryPgtr f :
  f @ F --> +oo <-> forall A, A \is Num.real -> \forall x \near F, A < f x.
Proof.
exact: (cvgryPnum 0%N 2%N). Qed.

Lemma cvgryPgty f :
  f @ F --> +oo <-> \forall A \near +oo, \forall x \near F, A < f x.
Proof.
exact: (cvgryPnum 0%N 3%N). Qed.

Lemma cvgryPgey f :
  f @ F --> +oo <-> \forall A \near +oo, \forall x \near F, A <= f x.
Proof.
exact: (cvgryPnum 0%N 4%N). Qed.

Lemma cvgrNyPler f :
  f @ F --> -oo <-> forall A, A \is Num.real -> \forall x \near F, A >= f x.
Proof.
exact: (cvgrNyPnum 0%N 1%N). Qed.

Lemma cvgrNyPltr f :
  f @ F --> -oo <-> forall A, A \is Num.real -> \forall x \near F, A > f x.
Proof.
exact: (cvgrNyPnum 0%N 2%N). Qed.

Lemma cvgrNyPltNy f :
  f @ F --> -oo <-> \forall A \near -oo, \forall x \near F, A > f x.
Proof.
exact: (cvgrNyPnum 0%N 3%N). Qed.

Lemma cvgrNyPleNy f :
  f @ F --> -oo <-> \forall A \near -oo, \forall x \near F, A >= f x.
Proof.
exact: (cvgrNyPnum 0%N 4%N). Qed.

Lemma cvgry_ger f :
  f @ F --> +oo -> forall A, A \is Num.real -> \forall x \near F, A <= f x.
Proof.
by rewrite cvgryPger. Qed.

Lemma cvgry_gtr f :
  f @ F --> +oo -> forall A, A \is Num.real -> \forall x \near F, A < f x.
Proof.
by rewrite cvgryPgtr. Qed.

Lemma cvgrNy_ler f :
  f @ F --> -oo -> forall A, A \is Num.real -> \forall x \near F, A >= f x.
Proof.
by rewrite cvgrNyPler. Qed.

Lemma cvgrNy_ltr f :
  f @ F --> -oo -> forall A, A \is Num.real -> \forall x \near F, A > f x.
Proof.
by rewrite cvgrNyPltr. Qed.

Lemma cvgNry f : (- f @ F --> +oo) <-> (f @ F --> -oo).
Proof.
rewrite cvgrNyPler cvgryPger; split=> Foo A Areal;
by near do rewrite -ler_opp2 ?opprK; apply: Foo; rewrite rpredN.
Unshelve. all: end_near. Qed.

Lemma cvgNrNy f : (- f @ F --> -oo) <-> (f @ F --> +oo).
Proof.
by rewrite -cvgNry opprK. Qed.

End cvg_infty_numField.

Section cvg_infty_realField .
Context {R : realFieldType}.
Context {T} {F : set (set T)} {FF : Filter F} ( f : T -> R).

Lemma cvgryPge : f @ F --> +oo <-> forall A, \forall x \near F, A <= f x.
Proof.
by rewrite cvgryPger; under eq_forall do rewrite num_real; split=> + *; apply.
Qed.

Lemma cvgryPgt : f @ F --> +oo <-> forall A, \forall x \near F, A < f x.
Proof.
by rewrite cvgryPgtr; under eq_forall do rewrite num_real; split=> + *; apply.
Qed.

Lemma cvgrNyPle : f @ F --> -oo <-> forall A, \forall x \near F, A >= f x.
Proof.
by rewrite cvgrNyPler; under eq_forall do rewrite num_real; split=> + *; apply.
Qed.

Lemma cvgrNyPlt : f @ F --> -oo <-> forall A, \forall x \near F, A > f x.
Proof.
by rewrite cvgrNyPltr; under eq_forall do rewrite num_real; split=> + *; apply.
Qed.

Lemma cvgry_ge : f @ F --> +oo -> forall A, \forall x \near F, A <= f x.
Proof.
by rewrite cvgryPge. Qed.

Lemma cvgry_gt : f @ F --> +oo -> forall A, \forall x \near F, A < f x.
Proof.
by rewrite cvgryPgt. Qed.

Lemma cvgrNy_le : f @ F --> -oo -> forall A, \forall x \near F, A >= f x.
Proof.
by rewrite cvgrNyPle. Qed.

Lemma cvgrNy_lt : f @ F --> -oo -> forall A, \forall x \near F, A > f x.
Proof.
by rewrite cvgrNyPlt. Qed.

End cvg_infty_realField.

Lemma cvgrnyP {R : realType} {T} {F : set (set T)} {FF : Filter F} ( f : T -> nat) :
   (((f n)%:R : R) @[n --> F] --> +oo) <-> (f @ F --> \oo).
Proof.
split=> [/cvgryPge|/cvgnyPge] Foo.
  by apply/cvgnyPge => A; near do rewrite -(@ler_nat R); apply: Foo.
apply/cvgryPgey; near=> A; near=> n.
rewrite (le_trans (@ceil_ge R A))// (ler_int _ _ (f n)) [ceil _]intEsign.
by rewrite le_gtF ?expr0 ?mul1r ?lez_nat ?ceil_ge0//; near: n; apply: Foo.
Unshelve. all: by end_near. Qed.

Section ecvg_infty_numField .
Local Open Scope ereal_scope.

Context {R : numFieldType}.

Let cvgeyPnum {F : set (set \bar R)} {FF : Filter F} : [<->
F --> +oo;
forall A, A \is Num.real -> \forall x \near F, A%:E <= x;
forall A, A \is Num.real -> \forall x \near F, A%:E < x;
\forall A \near +oo%R, \forall x \near F, A%:E < x;
\forall A \near +oo%R, \forall x \near F, A%:E <= x ].
Proof.
tfae; first by move=> Foo A Areal; apply: Foo; apply: ereal_nbhs_pinfty_ge.
- move=> AF A Areal; near +oo_R => B.
  by near do rewrite (@lt_le_trans _ _ B%:E) ?lte_fin//; apply: AF.
- by move=> Foo; near do apply: Foo => //.
- by apply: filterS => ?; apply: filterS => ?; apply: ltW.
case=> [A [AR AF]] P [x [xR Px]]; near +oo_R => B.
by near do [apply: Px; rewrite (@lt_le_trans _ _ B%:E) ?lte_fin//]; apply: AF.
Unshelve. all: end_near. Qed.

Let cvgeNyPnum {F : set (set \bar R)} {FF : Filter F} : [<->
F --> -oo;
forall A, A \is Num.real -> \forall x \near F, A%:E >= x;
forall A, A \is Num.real -> \forall x \near F, A%:E > x;
\forall A \near -oo%R, \forall x \near F, A%:E > x;
\forall A \near -oo%R, \forall x \near F, A%:E >= x ].
Proof.
tfae; first by move=> Foo A Areal; apply: Foo; apply: ereal_nbhs_ninfty_le.
- move=> AF A Areal; near -oo_R => B.
  by near do rewrite (@le_lt_trans _ _ B%:E) ?lte_fin//; apply: AF.
- by move=> Foo; near do apply: Foo => //.
- by apply: filterS => ?; apply: filterS => ?; apply: ltW.
case=> [A [AR AF]] P [x [xR Px]]; near -oo_R => B.
by near do [apply: Px; rewrite (@le_lt_trans _ _ B%:E) ?lte_fin//]; apply: AF.
Unshelve. all: end_near. Qed.

Context {T} {F : set (set T)} {FF : Filter F}.
Implicit Types (f : T -> \bar R) (u : T -> R).

Lemma cvgeyPger f :
  f @ F --> +oo <-> forall A, A \is Num.real -> \forall x \near F, A%:E <= f x.
Proof.
exact: (cvgeyPnum 0%N 1%N). Qed.

Lemma cvgeyPgtr f :
  f @ F --> +oo <-> forall A, A \is Num.real -> \forall x \near F, A%:E < f x.
Proof.
exact: (cvgeyPnum 0%N 2%N). Qed.

Lemma cvgeyPgty f :
  f @ F --> +oo <-> \forall A \near +oo%R, \forall x \near F, A%:E < f x.
Proof.
exact: (cvgeyPnum 0%N 3%N). Qed.

Lemma cvgeyPgey f :
  f @ F --> +oo <-> \forall A \near +oo%R, \forall x \near F, A%:E <= f x.
Proof.
exact: (cvgeyPnum 0%N 4%N). Qed.

Lemma cvgeNyPler f :
  f @ F --> -oo <-> forall A, A \is Num.real -> \forall x \near F, A%:E >= f x.
Proof.
exact: (cvgeNyPnum 0%N 1%N). Qed.

Lemma cvgeNyPltr f :
  f @ F --> -oo <-> forall A, A \is Num.real -> \forall x \near F, A%:E > f x.
Proof.
exact: (cvgeNyPnum 0%N 2%N). Qed.

Lemma cvgeNyPltNy f :
  f @ F --> -oo <-> \forall A \near -oo%R, \forall x \near F, A%:E > f x.
Proof.
exact: (cvgeNyPnum 0%N 3%N). Qed.

Lemma cvgeNyPleNy f :
  f @ F --> -oo <-> \forall A \near -oo%R, \forall x \near F, A%:E >= f x.
Proof.
exact: (cvgeNyPnum 0%N 4%N). Qed.

Lemma cvgey_ger f :
  f @ F --> +oo -> forall A, A \is Num.real -> \forall x \near F, A%:E <= f x.
Proof.
by rewrite cvgeyPger. Qed.

Lemma cvgey_gtr f :
  f @ F --> +oo -> forall A, A \is Num.real -> \forall x \near F, A%:E < f x.
Proof.
by rewrite cvgeyPgtr. Qed.

Lemma cvgeNy_ler f :
  f @ F --> -oo -> forall A, A \is Num.real -> \forall x \near F, A%:E >= f x.
Proof.
by rewrite cvgeNyPler. Qed.

Lemma cvgeNy_ltr f :
  f @ F --> -oo -> forall A, A \is Num.real -> \forall x \near F, A%:E > f x.
Proof.
by rewrite cvgeNyPltr. Qed.

Lemma cvgNey f : (\- f @ F --> +oo) <-> (f @ F --> -oo).
Proof.
rewrite cvgeNyPler cvgeyPger; split=> Foo A Areal;
by near do rewrite -lee_opp2 ?oppeK; apply: Foo; rewrite rpredN.
Unshelve. all: end_near. Qed.

Lemma cvgNeNy f : (\- f @ F --> -oo) <-> (f @ F --> +oo).
Proof.
by rewrite -cvgNey (_ : \- \- f = f)//; apply/funeqP => x /=; rewrite oppeK.
Qed.

Lemma cvgeryP u : ((u x)%:E @[x --> F] --> +oo) <-> (u @ F --> +oo%R).
Proof.
split=> [/cvgeyPger|/cvgryPger] Foo.
  by apply/cvgryPger => A Ar; near do rewrite -lee_fin; apply: Foo.
by apply/cvgeyPger => A Ar; near do rewrite lee_fin; apply: Foo.
Unshelve. all: end_near. Qed.

Lemma cvgerNyP u : ((u x)%:E @[x --> F] --> -oo) <-> (u @ F --> -oo%R).
Proof.
split=> [/cvgeNyPler|/cvgrNyPler] Foo.
  by apply/cvgrNyPler => A Ar; near do rewrite -lee_fin; apply: Foo.
by apply/cvgeNyPler => A Ar; near do rewrite lee_fin; apply: Foo.
Unshelve. all: end_near. Qed.

End ecvg_infty_numField.

Section ecvg_infty_realField .
Local Open Scope ereal_scope.
Context {R : realFieldType}.
Context {T} {F : set (set T)} {FF : Filter F} ( f : T -> \bar R).

Lemma cvgeyPge : f @ F --> +oo <-> forall A, \forall x \near F, A%:E <= f x.
Proof.
by rewrite cvgeyPger; under eq_forall do rewrite num_real; split=> + *; apply.
Qed.

Lemma cvgeyPgt : f @ F --> +oo <-> forall A, \forall x \near F, A%:E < f x.
Proof.
by rewrite cvgeyPgtr; under eq_forall do rewrite num_real; split=> + *; apply.
Qed.

Lemma cvgeNyPle : f @ F --> -oo <-> forall A, \forall x \near F, A%:E >= f x.
Proof.
by rewrite cvgeNyPler; under eq_forall do rewrite num_real; split=> + *; apply.
Qed.

Lemma cvgeNyPlt : f @ F --> -oo <-> forall A, \forall x \near F, A%:E > f x.
Proof.
by rewrite cvgeNyPltr; under eq_forall do rewrite num_real; split=> + *; apply.
Qed.

Lemma cvgey_ge : f @ F --> +oo -> forall A, \forall x \near F, A%:E <= f x.
Proof.
by rewrite cvgeyPge. Qed.

Lemma cvgey_gt : f @ F --> +oo -> forall A, \forall x \near F, A%:E < f x.
Proof.
by rewrite cvgeyPgt. Qed.

Lemma cvgeNy_le : f @ F --> -oo -> forall A, \forall x \near F, A%:E >= f x.
Proof.
by rewrite cvgeNyPle. Qed.

Lemma cvgeNy_lt : f @ F --> -oo -> forall A, \forall x \near F, A%:E > f x.
Proof.
by rewrite cvgeNyPlt. Qed.

End ecvg_infty_realField.

Lemma cvgenyP {R : realType} {T} {F : set (set T)} {FF : Filter F} ( f : T -> nat) :
   (((f n)%:R : R)%:E @[n --> F] --> +oo%E) <-> (f @ F --> \oo).
Proof.
by rewrite cvgeryP cvgrnyP. Qed.

Modules with a norm

Module NormedModule .

Record mixin_of ( K : numDomainType)
  ( V : pseudoMetricNormedZmodType K) ( scale : K -> V -> V) := Mixin {
  _ : forall ( l : K) ( x : V), `| scale l x | = `| l | * `| x |;
}.

Section ClassDef .

Variable K : numDomainType.

Record class_of ( T : Type) := Class {
   base : PseudoMetricNormedZmodule.class_of K T ;
   lmodmixin : GRing.Lmodule.mixin_of K (GRing.Zmodule.Pack base) ;
   mixin : @mixin_of K (PseudoMetricNormedZmodule.Pack (Phant K) base)
                      (GRing.Lmodule.scale lmodmixin)
}.
Local Coercion base : class_of >-> PseudoMetricNormedZmodule.class_of.
Local Coercion base2 T ( c : class_of T) : GRing.Lmodule.class_of K T :=
  @GRing.Lmodule.Class K T (base c) (lmodmixin c).
Local Coercion mixin : class_of >-> mixin_of.

Structure type ( phK : phant K) :=
  Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.

Variables ( phK : phant K) ( T : Type) ( cT : type phK).

Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone c of phant_id class c := @Pack phK T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).

Definition pack b0 l0
                ( m0 : @mixin_of K (@PseudoMetricNormedZmodule.Pack K (Phant K) T b0)
                                (GRing.Lmodule.scale l0)) :=
  fun bT b & phant_id (@PseudoMetricNormedZmodule.class K (Phant K) bT) b =>
  fun l & phant_id l0 l =>
  fun m & phant_id m0 m => Pack phK (@Class T b l m).

Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition normedZmodType := @Num.NormedZmodule.Pack K phK cT xclass.
Definition lmodType := @GRing.Lmodule.Pack K phK cT xclass.
Definition pointedType := @Pointed.Pack cT xclass.
Definition filteredType := @Filtered.Pack cT cT xclass.
Definition topologicalType := @Topological.Pack cT xclass.
Definition uniformType := @Uniform.Pack cT xclass.
Definition pseudoMetricType := @PseudoMetric.Pack K cT xclass.
Definition pseudoMetricNormedZmodType := @PseudoMetricNormedZmodule.Pack K phK cT xclass.
Definition pointed_lmodType := @GRing.Lmodule.Pack K phK pointedType xclass.
Definition filtered_lmodType := @GRing.Lmodule.Pack K phK filteredType xclass.
Definition topological_lmodType := @GRing.Lmodule.Pack K phK topologicalType xclass.
Definition uniform_lmodType := @GRing.Lmodule.Pack K phK uniformType xclass.
Definition pseudoMetric_lmodType := @GRing.Lmodule.Pack K phK pseudoMetricType xclass.
Definition normedZmod_lmodType := @GRing.Lmodule.Pack K phK normedZmodType xclass.
Definition pseudoMetricNormedZmod_lmodType := @GRing.Lmodule.Pack K phK pseudoMetricNormedZmodType xclass.
End ClassDef.

Module Exports .

Coercion base : class_of >-> PseudoMetricNormedZmodule.class_of.
Coercion base2 : class_of >-> GRing.Lmodule.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion normedZmodType : type >-> Num.NormedZmodule.type.
Canonical normedZmodType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Coercion pointedType : type >-> Pointed.type.
Canonical pointedType.
Coercion filteredType : type >-> Filtered.type.
Canonical filteredType.
Coercion topologicalType : type >-> Topological.type.
Canonical topologicalType.
Coercion uniformType : type >-> Uniform.type.
Canonical uniformType.
Coercion pseudoMetricType : type >-> PseudoMetric.type.
Canonical pseudoMetricType.
Coercion pseudoMetricNormedZmodType : type >-> PseudoMetricNormedZmodule.type.
Canonical pseudoMetricNormedZmodType.
Canonical pointed_lmodType.
Canonical filtered_lmodType.
Canonical topological_lmodType.
Canonical uniform_lmodType.
Canonical pseudoMetric_lmodType.
Canonical normedZmod_lmodType.
Canonical pseudoMetricNormedZmod_lmodType.
Notation normedModType K := (type (Phant K)).
Notation NormedModType K T m := (@pack _ (Phant K) T _ _ m _ _ idfun _ idfun _ idfun).
Notation NormedModMixin := Mixin.
Notation "[ 'normedModType' K 'of' T 'for' cT ]" := (@clone _ (Phant K) T cT _ idfun)
  (at level 0, format "[ 'normedModType'  K  'of'  T  'for'  cT ]") : form_scope.
Notation "[ 'normedModType' K 'of' T ]" := (@clone _ (Phant K) T _ _ id)
  (at level 0, format "[ 'normedModType'  K  'of'  T ]") : form_scope.
End Exports.

End NormedModule.

Export NormedModule.Exports.

Module regular_topology .

Section regular_topology .
Local Canonical pseudoMetricNormedZmodType ( R : numFieldType) :=
  @PseudoMetricNormedZmodType
    R R^o
    (PseudoMetricNormedZmodule.Mixin (erefl : @ball _ R = ball_ Num.norm)).
Local Canonical normedModType ( R : numFieldType) :=
  NormedModType R R^o (@NormedModMixin _ _ ( *:%R : R -> R^o -> _) (@normrM _)).
End regular_topology.

Module Exports .
Canonical pseudoMetricNormedZmodType.
Canonical normedModType.
End Exports.

End regular_topology.
Export regular_topology.Exports.

Module numFieldNormedType .

Section realType .
Variable ( R : realType).
Local Canonical real_lmodType := [lmodType R of R for [lmodType R of R^o]].
Local Canonical real_lalgType := [lalgType R of R for [lalgType R of R^o]].
Local Canonical real_algType := [algType R of R for [algType R of R^o]].
Local Canonical real_comAlgType := [comAlgType R of R].
Local Canonical real_unitAlgType := [unitAlgType R of R].
Local Canonical real_comUnitAlgType := [comUnitAlgType R of R].
Local Canonical real_vectType := [vectType R of R for [vectType R of R^o]].
Local Canonical real_FalgType := [FalgType R of R].
Local Canonical real_fieldExtType :=
  [fieldExtType R of R for [fieldExtType R of R^o]].
Local Canonical real_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of R for [pseudoMetricNormedZmodType R of R^o]].
Local Canonical real_normedModType :=
  [normedModType R of R for [normedModType R of R^o]].
End realType.

Section rcfType .
Variable ( R : rcfType).
Local Canonical rcf_lmodType := [lmodType R of R for [lmodType R of R^o]].
Local Canonical rcf_lalgType := [lalgType R of R for [lalgType R of R^o]].
Local Canonical rcf_algType := [algType R of R for [algType R of R^o]].
Local Canonical rcf_comAlgType := [comAlgType R of R].
Local Canonical rcf_unitAlgType := [unitAlgType R of R].
Local Canonical rcf_comUnitAlgType := [comUnitAlgType R of R].
Local Canonical rcf_vectType := [vectType R of R for [vectType R of R^o]].
Local Canonical rcf_FalgType := [FalgType R of R].
Local Canonical rcf_fieldExtType :=
  [fieldExtType R of R for [fieldExtType R of R^o]].
Local Canonical rcf_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of R for [pseudoMetricNormedZmodType R of R^o]].
Local Canonical rcf_normedModType :=
  [normedModType R of R for [normedModType R of R^o]].
End rcfType.

Section archiFieldType .
Variable ( R : archiFieldType).
Local Canonical archiField_lmodType :=
  [lmodType R of R for [lmodType R of R^o]].
Local Canonical archiField_lalgType :=
  [lalgType R of R for [lalgType R of R^o]].
Local Canonical archiField_algType := [algType R of R for [algType R of R^o]].
Local Canonical archiField_comAlgType := [comAlgType R of R].
Local Canonical archiField_unitAlgType := [unitAlgType R of R].
Local Canonical archiField_comUnitAlgType := [comUnitAlgType R of R].
Local Canonical archiField_vectType :=
  [vectType R of R for [vectType R of R^o]].
Local Canonical archiField_FalgType := [FalgType R of R].
Local Canonical archiField_fieldExtType :=
  [fieldExtType R of R for [fieldExtType R of R^o]].
Local Canonical archiField_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of R for [pseudoMetricNormedZmodType R of R^o]].
Local Canonical archiField_normedModType :=
  [normedModType R of R for [normedModType R of R^o]].
End archiFieldType.

Section realFieldType .
Variable ( R : realFieldType).
Local Canonical realField_lmodType := [lmodType R of R for [lmodType R of R^o]].
Local Canonical realField_lalgType := [lalgType R of R for [lalgType R of R^o]].
Local Canonical realField_algType := [algType R of R for [algType R of R^o]].
Local Canonical realField_comAlgType := [comAlgType R of R].
Local Canonical realField_unitAlgType := [unitAlgType R of R].
Local Canonical realField_comUnitAlgType := [comUnitAlgType R of R].
Local Canonical realField_vectType := [vectType R of R for [vectType R of R^o]].
Local Canonical realField_FalgType := [FalgType R of R].
Local Canonical realField_fieldExtType :=
  [fieldExtType R of R for [fieldExtType R of R^o]].
Local Canonical realField_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of R for [pseudoMetricNormedZmodType R of R^o]].
Local Canonical realField_normedModType :=
  [normedModType R of R for [normedModType R of R^o]].
Definition lmod_latticeType := [latticeType of realField_lmodType].
Definition lmod_distrLatticeType := [distrLatticeType of realField_lmodType].
Definition lmod_orderType := [orderType of realField_lmodType].
Definition lmod_realDomainType := [realDomainType of realField_lmodType].
Definition lalg_latticeType := [latticeType of realField_lalgType].
Definition lalg_distrLatticeType := [distrLatticeType of realField_lalgType].
Definition lalg_orderType := [orderType of realField_lalgType].
Definition lalg_realDomainType := [realDomainType of realField_lalgType].
Definition alg_latticeType := [latticeType of realField_algType].
Definition alg_distrLatticeType := [distrLatticeType of realField_algType].
Definition alg_orderType := [orderType of realField_algType].
Definition alg_realDomainType := [realDomainType of realField_algType].
Definition comAlg_latticeType := [latticeType of realField_comAlgType].
Definition comAlg_distrLatticeType :=
  [distrLatticeType of realField_comAlgType].
Definition comAlg_orderType := [orderType of realField_comAlgType].
Definition comAlg_realDomainType := [realDomainType of realField_comAlgType].
Definition unitAlg_latticeType := [latticeType of realField_unitAlgType].
Definition unitAlg_distrLatticeType :=
  [distrLatticeType of realField_unitAlgType].
Definition unitAlg_orderType := [orderType of realField_unitAlgType].
Definition unitAlg_realDomainType := [realDomainType of realField_unitAlgType].
Definition comUnitAlg_latticeType := [latticeType of realField_comUnitAlgType].
Definition comUnitAlg_distrLatticeType :=
  [distrLatticeType of realField_comUnitAlgType].
Definition comUnitAlg_orderType := [orderType of realField_comUnitAlgType].
Definition comUnitAlg_realDomainType :=
  [realDomainType of realField_comUnitAlgType].
Definition vect_latticeType := [latticeType of realField_vectType].
Definition vect_distrLatticeType := [distrLatticeType of realField_vectType].
Definition vect_orderType := [orderType of realField_vectType].
Definition vect_realDomainType := [realDomainType of realField_vectType].
Definition Falg_latticeType := [latticeType of realField_FalgType].
Definition Falg_distrLatticeType := [distrLatticeType of realField_FalgType].
Definition Falg_orderType := [orderType of realField_FalgType].
Definition Falg_realDomainType := [realDomainType of realField_FalgType].
Definition fieldExt_latticeType := [latticeType of realField_fieldExtType].
Definition fieldExt_distrLatticeType :=
  [distrLatticeType of realField_fieldExtType].
Definition fieldExt_orderType := [orderType of realField_fieldExtType].
Definition fieldExt_realDomainType :=
  [realDomainType of realField_fieldExtType].
Definition pseudoMetricNormedZmod_latticeType :=
  [latticeType of realField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_distrLatticeType :=
  [distrLatticeType of realField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_orderType :=
  [orderType of realField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_realDomainType :=
  [realDomainType of realField_pseudoMetricNormedZmodType].
Definition normedMod_latticeType := [latticeType of realField_normedModType].
Definition normedMod_distrLatticeType :=
  [distrLatticeType of realField_normedModType].
Definition normedMod_orderType := [orderType of realField_normedModType].
Definition normedMod_realDomainType :=
  [realDomainType of realField_normedModType].
End realFieldType.

Section numClosedFieldType .
Variable ( R : numClosedFieldType).
Local Canonical numClosedField_lmodType :=
  [lmodType R of R for [lmodType R of R^o]].
Local Canonical numClosedField_lalgType :=
  [lalgType R of R for [lalgType R of R^o]].
Local Canonical numClosedField_algType :=
  [algType R of R for [algType R of R^o]].
Local Canonical numClosedField_comAlgType := [comAlgType R of R].
Local Canonical numClosedField_unitAlgType := [unitAlgType R of R].
Local Canonical numClosedField_comUnitAlgType := [comUnitAlgType R of R].
Local Canonical numClosedField_vectType :=
  [vectType R of R for [vectType R of R^o]].
Local Canonical numClosedField_FalgType := [FalgType R of R].
Local Canonical numClosedField_fieldExtType :=
  [fieldExtType R of R for [fieldExtType R of R^o]].
Local Canonical numClosedField_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of R for [pseudoMetricNormedZmodType R of R^o]].
Local Canonical numClosedField_normedModType :=
  [normedModType R of R for [normedModType R of R^o]].
Definition lmod_decFieldType := [decFieldType of numClosedField_lmodType].
Definition lmod_closedFieldType := [closedFieldType of numClosedField_lmodType].
Definition lalg_decFieldType := [decFieldType of numClosedField_lalgType].
Definition lalg_closedFieldType := [closedFieldType of numClosedField_lalgType].
Definition alg_decFieldType := [decFieldType of numClosedField_algType].
Definition alg_closedFieldType := [closedFieldType of numClosedField_algType].
Definition comAlg_decFieldType := [decFieldType of numClosedField_comAlgType].
Definition comAlg_closedFieldType :=
  [closedFieldType of numClosedField_comAlgType].
Definition unitAlg_decFieldType := [decFieldType of numClosedField_unitAlgType].
Definition unitAlg_closedFieldType :=
  [closedFieldType of numClosedField_unitAlgType].
Definition comUnitAlg_decFieldType :=
  [decFieldType of numClosedField_comUnitAlgType].
Definition comUnitAlg_closedFieldType :=
  [closedFieldType of numClosedField_comUnitAlgType].
Definition vect_decFieldType := [decFieldType of numClosedField_vectType].
Definition vect_closedFieldType := [closedFieldType of numClosedField_vectType].
Definition Falg_decFieldType := [decFieldType of numClosedField_FalgType].
Definition Falg_closedFieldType := [closedFieldType of numClosedField_FalgType].
Definition fieldExt_decFieldType :=
  [decFieldType of numClosedField_fieldExtType].
Definition fieldExt_closedFieldType :=
  [closedFieldType of numClosedField_fieldExtType].
Definition pseudoMetricNormedZmod_decFieldType :=
  [decFieldType of numClosedField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_closedFieldType :=
  [closedFieldType of numClosedField_pseudoMetricNormedZmodType].
Definition normedMod_decFieldType :=
  [decFieldType of numClosedField_normedModType].
Definition normedMod_closedFieldType :=
  [closedFieldType of numClosedField_normedModType].
End numClosedFieldType.

Section numFieldType .
Variable ( R : numFieldType).
Local Canonical numField_lmodType := [lmodType R of R for [lmodType R of R^o]].
Local Canonical numField_lalgType := [lalgType R of R for [lalgType R of R^o]].
Local Canonical numField_algType := [algType R of R for [algType R of R^o]].
Local Canonical numField_comAlgType := [comAlgType R of R].
Local Canonical numField_unitAlgType := [unitAlgType R of R].
Local Canonical numField_comUnitAlgType := [comUnitAlgType R of R].
Local Canonical numField_vectType := [vectType R of R for [vectType R of R^o]].
Local Canonical numField_FalgType := [FalgType R of R].
Local Canonical numField_fieldExtType :=
  [fieldExtType R of R for [fieldExtType R of R^o]].
Local Canonical numField_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of R for [pseudoMetricNormedZmodType R of R^o]].
Local Canonical numField_normedModType :=
  [normedModType R of R for [normedModType R of R^o]].
Definition lmod_porderType := [porderType of numField_lmodType].
Definition lmod_numDomainType := [numDomainType of numField_lmodType].
Definition lalg_pointedType := [pointedType of numField_lalgType].
Definition lalg_filteredType := [filteredType R of numField_lalgType].
Definition lalg_topologicalType := [topologicalType of numField_lalgType].
Definition lalg_uniformType := [uniformType of numField_lalgType].
Definition lalg_pseudoMetricType := [pseudoMetricType R of numField_lalgType].
Definition lalg_normedZmodType := [normedZmodType R of numField_lalgType].
Definition lalg_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of numField_lalgType].
Definition lalg_normedModType := [normedModType R of numField_lalgType].
Definition lalg_porderType := [porderType of numField_lalgType].
Definition lalg_numDomainType := [numDomainType of numField_lalgType].
Definition alg_pointedType := [pointedType of numField_algType].
Definition alg_filteredType := [filteredType R of numField_algType].
Definition alg_topologicalType := [topologicalType of numField_algType].
Definition alg_uniformType := [uniformType of numField_algType].
Definition alg_pseudoMetricType := [pseudoMetricType R of numField_algType].
Definition alg_normedZmodType := [normedZmodType R of numField_algType].
Definition alg_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of numField_algType].
Definition alg_normedModType := [normedModType R of numField_algType].
Definition alg_porderType := [porderType of numField_algType].
Definition alg_numDomainType := [numDomainType of numField_algType].
Definition comAlg_pointedType := [pointedType of numField_comAlgType].
Definition comAlg_filteredType := [filteredType R of numField_comAlgType].
Definition comAlg_topologicalType := [topologicalType of numField_comAlgType].
Definition comAlg_uniformType := [uniformType of numField_comAlgType].
Definition comAlg_pseudoMetricType :=
  [pseudoMetricType R of numField_comAlgType].
Definition comAlg_normedZmodType := [normedZmodType R of numField_comAlgType].
Definition comAlg_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of numField_comAlgType].
Definition comAlg_normedModType := [normedModType R of numField_comAlgType].
Definition comAlg_porderType := [porderType of numField_comAlgType].
Definition comAlg_numDomainType := [numDomainType of numField_comAlgType].
Definition unitAlg_pointedType := [pointedType of numField_unitAlgType].
Definition unitAlg_filteredType := [filteredType R of numField_unitAlgType].
Definition unitAlg_topologicalType := [topologicalType of numField_unitAlgType].
Definition unitAlg_uniformType := [uniformType of numField_unitAlgType].
Definition unitAlg_pseudoMetricType :=
  [pseudoMetricType R of numField_unitAlgType].
Definition unitAlg_normedZmodType := [normedZmodType R of numField_unitAlgType].
Definition unitAlg_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of numField_unitAlgType].
Definition unitAlg_normedModType := [normedModType R of numField_unitAlgType].
Definition unitAlg_porderType := [porderType of numField_unitAlgType].
Definition unitAlg_numDomainType := [numDomainType of numField_unitAlgType].
Definition comUnitAlg_pointedType := [pointedType of numField_comUnitAlgType].
Definition comUnitAlg_filteredType :=
  [filteredType R of numField_comUnitAlgType].
Definition comUnitAlg_topologicalType :=
  [topologicalType of numField_comUnitAlgType].
Definition comUnitAlg_uniformType := [uniformType of numField_comUnitAlgType].
Definition comUnitAlg_pseudoMetricType :=
  [pseudoMetricType R of numField_comUnitAlgType].
Definition comUnitAlg_normedZmodType :=
  [normedZmodType R of numField_comUnitAlgType].
Definition comUnitAlg_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of numField_comUnitAlgType].
Definition comUnitAlg_normedModType :=
  [normedModType R of numField_comUnitAlgType].
Definition comUnitAlg_porderType := [porderType of numField_comUnitAlgType].
Definition comUnitAlg_numDomainType :=
  [numDomainType of numField_comUnitAlgType].
Definition vect_pointedType := [pointedType of numField_vectType].
Definition vect_filteredType := [filteredType R of numField_vectType].
Definition vect_topologicalType := [topologicalType of numField_vectType].
Definition vect_uniformType := [uniformType of numField_vectType].
Definition vect_pseudoMetricType := [pseudoMetricType R of numField_vectType].
Definition vect_normedZmodType := [normedZmodType R of numField_vectType].
Definition vect_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of numField_vectType].
Definition vect_normedModType := [normedModType R of numField_vectType].
Definition vect_porderType := [porderType of numField_vectType].
Definition vect_numDomainType := [numDomainType of numField_vectType].
Definition Falg_pointedType := [pointedType of numField_FalgType].
Definition Falg_filteredType := [filteredType R of numField_FalgType].
Definition Falg_topologicalType := [topologicalType of numField_FalgType].
Definition Falg_uniformType := [uniformType of numField_FalgType].
Definition Falg_pseudoMetricType := [pseudoMetricType R of numField_FalgType].
Definition Falg_normedZmodType := [normedZmodType R of numField_FalgType].
Definition Falg_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of numField_FalgType].
Definition Falg_normedModType := [normedModType R of numField_FalgType].
Definition Falg_porderType := [porderType of numField_FalgType].
Definition Falg_numDomainType := [numDomainType of numField_FalgType].
Definition fieldExt_pointedType := [pointedType of numField_fieldExtType].
Definition fieldExt_filteredType := [filteredType R of numField_fieldExtType].
Definition fieldExt_topologicalType :=
  [topologicalType of numField_fieldExtType].
Definition fieldExt_uniformType := [uniformType of numField_fieldExtType].
Definition fieldExt_pseudoMetricType :=
  [pseudoMetricType R of numField_fieldExtType].
Definition fieldExt_normedZmodType :=
  [normedZmodType R of numField_fieldExtType].
Definition fieldExt_pseudoMetricNormedZmodType :=
  [pseudoMetricNormedZmodType R of numField_fieldExtType].
Definition fieldExt_normedModType := [normedModType R of numField_fieldExtType].
Definition fieldExt_porderType := [porderType of numField_fieldExtType].
Definition fieldExt_numDomainType := [numDomainType of numField_fieldExtType].
Definition pseudoMetricNormedZmod_ringType :=
  [ringType of numField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_comRingType :=
  [comRingType of numField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_unitRingType :=
  [unitRingType of numField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_comUnitRingType :=
  [comUnitRingType of numField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_idomainType :=
  [idomainType of numField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_fieldType :=
  [fieldType of numField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_porderType :=
  [porderType of numField_pseudoMetricNormedZmodType].
Definition pseudoMetricNormedZmod_numDomainType :=
  [numDomainType of numField_pseudoMetricNormedZmodType].
Definition normedMod_ringType := [ringType of numField_normedModType].
Definition normedMod_comRingType := [comRingType of numField_normedModType].
Definition normedMod_unitRingType := [unitRingType of numField_normedModType].
Definition normedMod_comUnitRingType :=
  [comUnitRingType of numField_normedModType].
Definition normedMod_idomainType := [idomainType of numField_normedModType].
Definition normedMod_fieldType := [fieldType of numField_normedModType].
Definition normedMod_porderType := [porderType of numField_normedModType].
Definition normedMod_numDomainType := [numDomainType of numField_normedModType].
End numFieldType.

Module Exports .
Export topology.numFieldTopology.Exports.
Canonical real_lmodType.
Canonical real_lalgType.
Canonical real_algType.
Canonical real_comAlgType.
Canonical real_unitAlgType.
Canonical real_comUnitAlgType.
Canonical real_vectType.
Canonical real_FalgType.
Canonical real_fieldExtType.
Canonical real_pseudoMetricNormedZmodType.
Canonical real_normedModType.
Coercion real_lmodType : realType >-> lmodType.
Coercion real_lalgType : realType >-> lalgType.
Coercion real_algType : realType >-> algType.
Coercion real_comAlgType : realType >-> comAlgType.
Coercion real_unitAlgType : realType >-> unitAlgType.
Coercion real_comUnitAlgType : realType >-> comUnitAlgType.
Coercion real_vectType : realType >-> vectType.
Coercion real_FalgType : realType >-> FalgType.
Coercion real_fieldExtType : realType >-> fieldExtType.
Coercion real_pseudoMetricNormedZmodType :
  realType >-> pseudoMetricNormedZmodType.
Coercion real_normedModType : realType >-> normedModType.
Canonical rcf_lmodType.
Canonical rcf_lalgType.
Canonical rcf_algType.
Canonical rcf_comAlgType.
Canonical rcf_unitAlgType.
Canonical rcf_comUnitAlgType.
Canonical rcf_vectType.
Canonical rcf_FalgType.
Canonical rcf_fieldExtType.
Canonical rcf_pseudoMetricNormedZmodType.
Canonical rcf_normedModType.
Coercion rcf_lmodType : rcfType >-> lmodType.
Coercion rcf_lalgType : rcfType >-> lalgType.
Coercion rcf_algType : rcfType >-> algType.
Coercion rcf_comAlgType : rcfType >-> comAlgType.
Coercion rcf_unitAlgType : rcfType >-> unitAlgType.
Coercion rcf_comUnitAlgType : rcfType >-> comUnitAlgType.
Coercion rcf_vectType : rcfType >-> vectType.
Coercion rcf_FalgType : rcfType >-> FalgType.
Coercion rcf_fieldExtType : rcfType >-> fieldExtType.
Coercion rcf_pseudoMetricNormedZmodType :
  rcfType >-> pseudoMetricNormedZmodType.
Coercion rcf_normedModType : rcfType >-> normedModType.
Canonical archiField_lmodType.
Canonical archiField_lalgType.
Canonical archiField_algType.
Canonical archiField_comAlgType.
Canonical archiField_unitAlgType.
Canonical archiField_comUnitAlgType.
Canonical archiField_vectType.
Canonical archiField_FalgType.
Canonical archiField_fieldExtType.
Canonical archiField_pseudoMetricNormedZmodType.
Canonical archiField_normedModType.
Coercion archiField_lmodType : archiFieldType >-> lmodType.
Coercion archiField_lalgType : archiFieldType >-> lalgType.
Coercion archiField_algType : archiFieldType >-> algType.
Coercion archiField_comAlgType : archiFieldType >-> comAlgType.
Coercion archiField_unitAlgType : archiFieldType >-> unitAlgType.
Coercion archiField_comUnitAlgType : archiFieldType >-> comUnitAlgType.
Coercion archiField_vectType : archiFieldType >-> vectType.
Coercion archiField_FalgType : archiFieldType >-> FalgType.
Coercion archiField_fieldExtType : archiFieldType >-> fieldExtType.
Coercion archiField_pseudoMetricNormedZmodType :
  archiFieldType >-> pseudoMetricNormedZmodType.
Coercion archiField_normedModType : archiFieldType >-> normedModType.
Canonical realField_lmodType.
Canonical realField_lalgType.
Canonical realField_algType.
Canonical realField_comAlgType.
Canonical realField_unitAlgType.
Canonical realField_comUnitAlgType.
Canonical realField_vectType.
Canonical realField_FalgType.
Canonical realField_fieldExtType.
Canonical realField_pseudoMetricNormedZmodType.
Canonical realField_normedModType.
Canonical lmod_latticeType.
Canonical lmod_distrLatticeType.
Canonical lmod_orderType.
Canonical lmod_realDomainType.
Canonical lalg_latticeType.
Canonical lalg_distrLatticeType.
Canonical lalg_orderType.
Canonical lalg_realDomainType.
Canonical alg_latticeType.
Canonical alg_distrLatticeType.
Canonical alg_orderType.
Canonical alg_realDomainType.
Canonical comAlg_latticeType.
Canonical comAlg_distrLatticeType.
Canonical comAlg_orderType.
Canonical comAlg_realDomainType.
Canonical unitAlg_latticeType.
Canonical unitAlg_distrLatticeType.
Canonical unitAlg_orderType.
Canonical unitAlg_realDomainType.
Canonical comUnitAlg_latticeType.
Canonical comUnitAlg_distrLatticeType.
Canonical comUnitAlg_orderType.
Canonical comUnitAlg_realDomainType.
Canonical vect_latticeType.
Canonical vect_distrLatticeType.
Canonical vect_orderType.
Canonical vect_realDomainType.
Canonical Falg_latticeType.
Canonical Falg_distrLatticeType.
Canonical Falg_orderType.
Canonical Falg_realDomainType.
Canonical fieldExt_latticeType.
Canonical fieldExt_distrLatticeType.
Canonical fieldExt_orderType.
Canonical fieldExt_realDomainType.
Canonical pseudoMetricNormedZmod_latticeType.
Canonical pseudoMetricNormedZmod_distrLatticeType.
Canonical pseudoMetricNormedZmod_orderType.
Canonical pseudoMetricNormedZmod_realDomainType.
Canonical normedMod_latticeType.
Canonical normedMod_distrLatticeType.
Canonical normedMod_orderType.
Canonical normedMod_realDomainType.
Coercion realField_lmodType : realFieldType >-> lmodType.
Coercion realField_lalgType : realFieldType >-> lalgType.
Coercion realField_algType : realFieldType >-> algType.
Coercion realField_comAlgType : realFieldType >-> comAlgType.
Coercion realField_unitAlgType : realFieldType >-> unitAlgType.
Coercion realField_comUnitAlgType : realFieldType >-> comUnitAlgType.
Coercion realField_vectType : realFieldType >-> vectType.
Coercion realField_FalgType : realFieldType >-> FalgType.
Coercion realField_fieldExtType : realFieldType >-> fieldExtType.
Coercion realField_pseudoMetricNormedZmodType :
  Num.RealField.type >-> PseudoMetricNormedZmodule.type.
Coercion realField_normedModType : Num.RealField.type >-> NormedModule.type.
Canonical numClosedField_lmodType.
Canonical numClosedField_lalgType.
Canonical numClosedField_algType.
Canonical numClosedField_comAlgType.
Canonical numClosedField_unitAlgType.
Canonical numClosedField_comUnitAlgType.
Canonical numClosedField_vectType.
Canonical numClosedField_FalgType.
Canonical numClosedField_fieldExtType.
Canonical numClosedField_pseudoMetricNormedZmodType.
Canonical numClosedField_normedModType.
Canonical lmod_decFieldType.
Canonical lmod_closedFieldType.
Canonical lalg_decFieldType.
Canonical lalg_closedFieldType.
Canonical alg_decFieldType.
Canonical alg_closedFieldType.
Canonical comAlg_decFieldType.
Canonical comAlg_closedFieldType.
Canonical unitAlg_decFieldType.
Canonical unitAlg_closedFieldType.
Canonical comUnitAlg_decFieldType.
Canonical comUnitAlg_closedFieldType.
Canonical vect_decFieldType.
Canonical vect_closedFieldType.
Canonical Falg_decFieldType.
Canonical Falg_closedFieldType.
Canonical fieldExt_decFieldType.
Canonical fieldExt_closedFieldType.
Canonical pseudoMetricNormedZmod_decFieldType.
Canonical pseudoMetricNormedZmod_closedFieldType.
Canonical normedMod_decFieldType.
Canonical normedMod_closedFieldType.
Coercion numClosedField_lmodType : numClosedFieldType >-> lmodType.
Coercion numClosedField_lalgType : numClosedFieldType >-> lalgType.
Coercion numClosedField_algType : numClosedFieldType >-> algType.
Coercion numClosedField_comAlgType : numClosedFieldType >-> comAlgType.
Coercion numClosedField_unitAlgType : numClosedFieldType >-> unitAlgType.
Coercion numClosedField_comUnitAlgType : numClosedFieldType >-> comUnitAlgType.
Coercion numClosedField_vectType : numClosedFieldType >-> vectType.
Coercion numClosedField_FalgType : numClosedFieldType >-> FalgType.
Coercion numClosedField_fieldExtType : numClosedFieldType >-> fieldExtType.
Coercion numClosedField_pseudoMetricNormedZmodType :
  numClosedFieldType >-> pseudoMetricNormedZmodType.
Coercion numClosedField_normedModType : numClosedFieldType >-> normedModType.
Canonical numField_lmodType.
Canonical numField_lalgType.
Canonical numField_algType.
Canonical numField_comAlgType.
Canonical numField_unitAlgType.
Canonical numField_comUnitAlgType.
Canonical numField_vectType.
Canonical numField_FalgType.
Canonical numField_fieldExtType.
Canonical numField_pseudoMetricNormedZmodType.
Canonical numField_normedModType.
Canonical lmod_porderType.
Canonical lmod_numDomainType.
Canonical lalg_pointedType.
Canonical lalg_filteredType.
Canonical lalg_topologicalType.
Canonical lalg_uniformType.
Canonical lalg_pseudoMetricType.
Canonical lalg_normedZmodType.
Canonical lalg_pseudoMetricNormedZmodType.
Canonical lalg_normedModType.
Canonical lalg_porderType.
Canonical lalg_numDomainType.
Canonical alg_pointedType.
Canonical alg_filteredType.
Canonical alg_topologicalType.
Canonical alg_uniformType.
Canonical alg_pseudoMetricType.
Canonical alg_normedZmodType.
Canonical alg_pseudoMetricNormedZmodType.
Canonical alg_normedModType.
Canonical alg_porderType.
Canonical alg_numDomainType.
Canonical comAlg_pointedType.
Canonical comAlg_filteredType.
Canonical comAlg_topologicalType.
Canonical comAlg_uniformType.
Canonical comAlg_pseudoMetricType.
Canonical comAlg_normedZmodType.
Canonical comAlg_pseudoMetricNormedZmodType.
Canonical comAlg_normedModType.
Canonical comAlg_porderType.
Canonical comAlg_numDomainType.
Canonical unitAlg_pointedType.
Canonical unitAlg_filteredType.
Canonical unitAlg_topologicalType.
Canonical unitAlg_uniformType.
Canonical unitAlg_pseudoMetricType.
Canonical unitAlg_normedZmodType.
Canonical unitAlg_pseudoMetricNormedZmodType.
Canonical unitAlg_normedModType.
Canonical unitAlg_porderType.
Canonical unitAlg_numDomainType.
Canonical comUnitAlg_pointedType.
Canonical comUnitAlg_filteredType.
Canonical comUnitAlg_topologicalType.
Canonical comUnitAlg_uniformType.
Canonical comUnitAlg_pseudoMetricType.
Canonical comUnitAlg_normedZmodType.
Canonical comUnitAlg_pseudoMetricNormedZmodType.
Canonical comUnitAlg_normedModType.
Canonical comUnitAlg_porderType.
Canonical comUnitAlg_numDomainType.
Canonical vect_pointedType.
Canonical vect_filteredType.
Canonical vect_topologicalType.
Canonical vect_uniformType.
Canonical vect_pseudoMetricType.
Canonical vect_normedZmodType.
Canonical vect_pseudoMetricNormedZmodType.
Canonical vect_normedModType.
Canonical vect_porderType.
Canonical vect_numDomainType.
Canonical Falg_pointedType.
Canonical Falg_filteredType.
Canonical Falg_topologicalType.
Canonical Falg_uniformType.
Canonical Falg_pseudoMetricType.
Canonical Falg_normedZmodType.
Canonical Falg_pseudoMetricNormedZmodType.
Canonical Falg_normedModType.
Canonical Falg_porderType.
Canonical Falg_numDomainType.
Canonical fieldExt_pointedType.
Canonical fieldExt_filteredType.
Canonical fieldExt_topologicalType.
Canonical fieldExt_uniformType.
Canonical fieldExt_pseudoMetricType.
Canonical fieldExt_normedZmodType.
Canonical fieldExt_pseudoMetricNormedZmodType.
Canonical fieldExt_normedModType.
Canonical fieldExt_porderType.
Canonical fieldExt_numDomainType.
Canonical pseudoMetricNormedZmod_ringType.
Canonical pseudoMetricNormedZmod_comRingType.
Canonical pseudoMetricNormedZmod_unitRingType.
Canonical pseudoMetricNormedZmod_comUnitRingType.
Canonical pseudoMetricNormedZmod_idomainType.
Canonical pseudoMetricNormedZmod_fieldType.
Canonical pseudoMetricNormedZmod_porderType.
Canonical pseudoMetricNormedZmod_numDomainType.
Canonical normedMod_ringType.
Canonical normedMod_comRingType.
Canonical normedMod_unitRingType.
Canonical normedMod_comUnitRingType.
Canonical normedMod_idomainType.
Canonical normedMod_fieldType.
Canonical normedMod_porderType.
Canonical normedMod_numDomainType.
Coercion numField_lmodType : numFieldType >-> lmodType.
Coercion numField_lalgType : numFieldType >-> lalgType.
Coercion numField_algType : numFieldType >-> algType.
Coercion numField_comAlgType : numFieldType >-> comAlgType.
Coercion numField_unitAlgType : numFieldType >-> unitAlgType.
Coercion numField_comUnitAlgType : numFieldType >-> comUnitAlgType.
Coercion numField_vectType : numFieldType >-> vectType.
Coercion numField_FalgType : numFieldType >-> FalgType.
Coercion numField_fieldExtType : numFieldType >-> fieldExtType.
Coercion numField_pseudoMetricNormedZmodType :
  numFieldType >-> pseudoMetricNormedZmodType.
Coercion numField_normedModType : numFieldType >-> normedModType.
End Exports.

End numFieldNormedType.
Import numFieldNormedType.Exports.

Lemma limf_esup_dnbhsN {R : realType} ( f : R -> \bar R) ( a : R) :
  limf_esup f a^' = limf_esup (fun x => f (- x)%R) (- a)%R^'.
Proof.
rewrite /limf_esup dnbhsN image_comp/=.
congr (ereal_inf [set _ | _ in _]); apply/funext => A /=.
rewrite image_comp/= -compA (_ : _ \o _ = idfun)// funeqE => x/=.
by rewrite opprK.
Qed.

Section NormedModule_numDomainType .
Variables ( R : numDomainType) ( V : normedModType R).

Lemma normrZ l ( x : V) : `| l *: x | = `| l | * `| x |.
Proof.
by case: V x => V0 [a b [c]] //= v; rewrite c. Qed.

Lemma normrZV ( x : V) : `|x| \in GRing.unit -> `| `| x |^-1 *: x | = 1.
Proof.
by move=> nxu; rewrite normrZ normrV// normr_id mulVr. Qed.

End NormedModule_numDomainType.

#[deprecated(since="mathcomp-analysis 0.6.0", note="renamed `normrZ`")]
Notation normmZ := normrZ (only parsing).

Section NormedModule_numFieldType .
Variables ( R : numFieldType) ( V : normedModType R).

Lemma normfZV ( x : V) : x != 0 -> `| `|x|^-1 *: x | = 1.
Proof.
by rewrite -normr_eq0 -unitfE => /normrZV->. Qed.

End NormedModule_numFieldType.

Section PseudoNormedZmod_numDomainType .
Variables ( R : numDomainType) ( V : pseudoMetricNormedZmodType R).

Local Notation ball_norm := (ball_ (@normr R V)).

Local Notation nbhs_ball := (@nbhs_ball _ V).

Local Notation nbhs_norm := (nbhs_ball_ ball_norm).

Lemma nbhs_nbhs_norm : nbhs_norm = nbhs.
Proof.
by rewrite ball_normE funeqE => x; rewrite -filter_from_ballE. Qed.

Lemma nbhs_normP x ( P : V -> Prop) : (\near x, P x) <-> nbhs_norm x P.
Proof.
by rewrite nbhs_nbhs_norm. Qed.

Lemma nbhs_le_nbhs_norm ( x : V) : @nbhs V _ x `=>` nbhs_norm x.
Proof.
by move=> P [e e0 subP]; apply/nbhs_normP; exists e. Qed.

Lemma nbhs_norm_le_nbhs x : nbhs_norm x `=>` nbhs x.
Proof.
by move=> P /nbhs_normP [e e0 Pxe]; exists e. Qed.

Lemma filter_from_norm_nbhs x :
  @filter_from R _ [set x : R | 0 < x] (ball_norm x) = nbhs x.
Proof.
by rewrite -nbhs_nbhs_norm ball_normE. Qed.

Lemma nbhs_normE ( x : V) ( P : V -> Prop) :
  nbhs_norm x P = \near x, P x.
Proof.
by rewrite nbhs_nbhs_norm near_simpl. Qed.

Lemma filter_from_normE ( x : V) ( P : V -> Prop) :
  @filter_from R _ [set x : R | 0 < x] (ball_norm x) P = \near x, P x.
Proof.
by rewrite filter_from_norm_nbhs. Qed.

Lemma near_nbhs_norm ( x : V) ( P : V -> Prop) :
  (\forall x \near nbhs_norm x, P x) = \near x, P x.
Proof.
exact: nbhs_normE. Qed.

Lemma nbhs_norm_ball_norm x ( e : {posnum R}) :
  nbhs_norm x (ball_norm x e%:num).
Proof.
by rewrite ball_normE; exists e%:num => /=. Qed.

Lemma nbhs_ball_norm ( x : V) ( eps : {posnum R}) : nbhs x (ball_norm x eps%:num).
Proof.
rewrite -nbhs_nbhs_norm; apply: nbhs_norm_ball_norm. Qed.

Lemma ball_norm_dec x y ( e : R) : {ball_norm x e y} + {~ ball_norm x e y}.
Proof.
exact: pselect. Qed.

Lemma ball_norm_sym x y ( e : R) : ball_norm x e y -> ball_norm y e x.
Proof.
by rewrite /ball_norm/= -opprB normrN. Qed.

Lemma ball_norm_le x ( e1 e2 : R) :
  e1 <= e2 -> ball_norm x e1 `<=` ball_norm x e2.
Proof.
by move=> e1e2 y /lt_le_trans; apply. Qed.

Let nbhs_simpl := (nbhs_simpl,@nbhs_nbhs_norm,@filter_from_norm_nbhs).

Lemma fcvgrPdist_lt {F : set (set V)} {FF : Filter F} ( y : V) :
  F --> y <-> forall eps, 0 < eps -> \forall y' \near F, `|y - y'| < eps.
Proof.
by rewrite -filter_fromP /= !nbhs_simpl. Qed.

Lemma cvgrPdist_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y <-> forall eps, 0 < eps -> \forall t \near F, `|y - f t| < eps.
Proof.
exact: fcvgrPdist_lt. Qed.

Lemma cvgrPdistC_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y <-> forall eps, 0 < eps -> \forall t \near F, `|f t - y| < eps.
Proof.
by rewrite cvgrPdist_lt; under eq_forall do under eq_near do rewrite distrC.
Qed.

Lemma cvgr_dist_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> forall eps, eps > 0 -> \forall t \near F, `|y - f t| < eps.
Proof.
by move=> /cvgrPdist_lt. Qed.

Lemma __deprecated__cvg_dist {F : set (set V)} {FF : Filter F} ( y : V) :
  F --> y -> forall eps, eps > 0 -> \forall y' \near F, `|y - y'| < eps.
Proof.
exact: cvgr_dist_lt. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `cvgr_dist_lt` or a variation instead")]
Notation cvg_dist := __deprecated__cvg_dist (only parsing).

Lemma cvgr_distC_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> forall eps, eps > 0 -> \forall t \near F, `|f t - y| < eps.
Proof.
by move=> /cvgrPdistC_lt. Qed.

Lemma cvgr_dist_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> forall eps, eps > 0 -> \forall t \near F, `|y - f t| <= eps.
Proof.
by move=> ? ? ?; near do rewrite ltW//; apply: cvgr_dist_lt.
Unshelve. all: by end_near. Qed.

Lemma cvgr_distC_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> forall eps, eps > 0 -> \forall t \near F, `|f t - y| <= eps.
Proof.
by move=> ? ? ?; near do rewrite ltW//; apply: cvgr_distC_lt.
Unshelve. all: by end_near. Qed.

Lemma nbhs_norm0P {P : V -> Prop} :
  (\forall x \near 0, P x) <->
  filter_from [set e | 0 < e] (fun e => [set y | `|y| < e]) P.
Proof.
rewrite nbhs_normP; split=> -[/= e e0 Pe];
by exists e => // y /=; have /= := Pe y; rewrite distrC subr0.
Qed.

Lemma cvgr0Pnorm_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) :
  f @ F --> 0 <-> forall eps, 0 < eps -> \forall t \near F, `|f t| < eps.
Proof.
by rewrite cvgrPdistC_lt; under eq_forall do under eq_near do rewrite subr0.
Qed.

Lemma cvgr0_norm_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) :
  f @ F --> 0 -> forall eps, eps > 0 -> \forall t \near F, `|f t| < eps.
Proof.
by move=> /cvgr0Pnorm_lt. Qed.

Lemma cvgr0_norm_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) :
  f @ F --> 0 -> forall eps, eps > 0 -> \forall t \near F, `|f t| <= eps.
Proof.
by move=> ? ? ?; near do rewrite ltW//; apply: cvgr0_norm_lt.
Unshelve. all: by end_near. Qed.

Lemma nbhs0_lt e : 0 < e -> \forall x \near (0 : V), `|x| < e.
Proof.
exact: cvgr0_norm_lt. Qed.

Lemma dnbhs0_lt e : 0 < e -> \forall x \near (0 : V)^', `|x| < e.
Proof.
by move=> e_gt0; apply: cvg_within; apply: nbhs0_lt. Qed.

Lemma nbhs0_le e : 0 < e -> \forall x \near (0 : V), `|x| <= e.
Proof.
exact: cvgr0_norm_le. Qed.

Lemma dnbhs0_le e : 0 < e -> \forall x \near (0 : V)^', `|x| <= e.
Proof.
by move=> e_gt0; apply: cvg_within; apply: nbhs0_le. Qed.

Lemma nbhs_norm_ball x ( eps : {posnum R}) : nbhs_norm x (ball x eps%:num).
Proof.
rewrite nbhs_nbhs_norm; by apply: nbhsx_ballx. Qed.

Lemma nbhsDl ( P : set V) ( x y : V) :
  (\forall z \near (x + y), P z) <-> (\near x, P (x + y)).
Proof.
split=> /nbhs_normP[_/posnumP[e]/= Px]; apply/nbhs_normP; exists e%:num => //=.
  by move=> z /= xze; apply: Px; rewrite /= opprD addrACA subrr addr0.
by move=> z /= xyz; rewrite -[z](addrNK y); apply: Px; rewrite /= opprB addrA.
Qed.

Lemma nbhsDr ( P : set V) x y :
  (\forall z \near (x + y), P z) <-> (\near y, P (x + y)).
Proof.
by rewrite addrC nbhsDl -propeqE; apply: eq_near => ?; rewrite addrC. Qed.

Lemma nbhs0P ( P : set V) x : (\near x, P x) <-> (\forall e \near 0, P (x + e)).
Proof.
by rewrite -nbhsDr addr0. Qed.

End PseudoNormedZmod_numDomainType.
#[global] Hint Resolve normr_ge0 : core.
Arguments cvgr_dist_lt {_ _ _ F FF}.
Arguments cvgr_distC_lt {_ _ _ F FF}.
Arguments cvgr_dist_le {_ _ _ F FF}.
Arguments cvgr_distC_le {_ _ _ F FF}.
Arguments cvgr0_norm_lt {_ _ _ F FF}.
Arguments cvgr0_norm_le {_ _ _ F FF}.

#[global] Hint Extern 0 (is_true (`|_ - ?x| < _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr_dist_lt end : core.
#[global] Hint Extern 0 (is_true (`|?x - _| < _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr_distC_lt end : core.
#[global] Hint Extern 0 (is_true (`|?x| < _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr0_norm_lt end : core.
#[global] Hint Extern 0 (is_true (`|_ - ?x| <= _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr_dist_le end : core.
#[global] Hint Extern 0 (is_true (`|?x - _| <= _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr_distC_le end : core.
#[global] Hint Extern 0 (is_true (`|?x| <= _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr0_norm_le end : core.

#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `cvgrPdist_lt` or a variation instead")]
Notation cvg_distP := fcvgrPdist_lt (only parsing).

Require Rstruct.

Section analysis_struct .

Import Rdefinitions.
Import Rstruct.

Canonical R_pointedType := [pointedType of R for pointed_of_zmodule R_ringType].
Canonical R_filteredType :=
  [filteredType R of R for filtered_of_normedZmod R_normedZmodType].
Canonical R_topologicalType : topologicalType := TopologicalType R
  (topologyOfEntourageMixin
    (uniformityOfBallMixin
      (@nbhs_ball_normE _ R_normedZmodType)
      (pseudoMetric_of_normedDomain R_normedZmodType))).
Canonical R_uniformType : uniformType :=
  UniformType R
  (uniformityOfBallMixin (@nbhs_ball_normE _ R_normedZmodType)
    (pseudoMetric_of_normedDomain R_normedZmodType)).
Canonical R_pseudoMetricType : pseudoMetricType R_numDomainType :=
  PseudoMetricType R (pseudoMetric_of_normedDomain R_normedZmodType).

Lemma continuity_pt_nbhs ( f : R -> R) x :
  Ranalysis1.continuity_pt f x <->
  forall eps : {posnum R}, nbhs x (fun u => `|f u - f x| < eps%:num).
Proof.
split=> [fcont e|fcont _/RltP/posnumP[e]]; last first.
  have [_/posnumP[d] xd_fxe] := fcont e.
  exists d%:num; split; first by apply/RltP; have := [gt0 of d%:num].
  by move=> y [_ /RltP yxd]; apply/RltP/xd_fxe; rewrite /= distrC.
have /RltP egt0 := [gt0 of e%:num].
have [_ [/RltP/posnumP[d] dx_fxe]] := fcont e%:num egt0.
exists d%:num => //= y xyd; case: (eqVneq x y) => [->|xney].
  by rewrite subrr normr0.
apply/RltP/dx_fxe; split; first by split=> //; apply/eqP.
by have /RltP := xyd; rewrite distrC.
Qed.

Lemma continuity_pt_cvg ( f : R -> R) ( x : R) :
  Ranalysis1.continuity_pt f x <-> {for x, continuous f}.
Proof.
eapply iff_trans; first exact: continuity_pt_nbhs.
apply iff_sym.
have FF : Filter (f @ x).
  by typeclasses eauto.
  (*by apply fmap_filter; apply: @filter_filter' (locally_filter _).*)
case: (@fcvg_ballP _ _ (f @ x) FF (f x)) => {FF}H1 H2.
(* TODO: in need for lemmas and/or refactoring of already existing lemmas (ball vs. Rabs) *)
split => [{H2} - /H1 {}H1 eps|{H1} H].
- have {H1} [//|_/posnumP[x0] Hx0] := H1 eps%:num.
  exists x0%:num => //= Hx0' /Hx0 /=.
  by rewrite /= distrC; apply.
- apply H2 => _ /posnumP[eps]; move: (H eps) => {H} [_ /posnumP[x0] Hx0].
  exists x0%:num => //= y /Hx0 /= {}Hx0.
  by rewrite /ball /= distrC.
Qed.

Lemma continuity_ptE ( f : R -> R) ( x : R) :
  Ranalysis1.continuity_pt f x <-> {for x, continuous f}.
Proof.
exact: continuity_pt_cvg. Qed.

Local Open Scope classical_set_scope.

Lemma continuity_pt_cvg' f x :
  Ranalysis1.continuity_pt f x <-> f @ x^' --> f x.
Proof.
by rewrite continuity_ptE continuous_withinNx. Qed.

Lemma continuity_pt_dnbhs f x :
  Ranalysis1.continuity_pt f x <->
  forall eps, 0 < eps -> x^' (fun u => `|f x - f u| < eps).
Proof.
rewrite continuity_pt_cvg' (@cvgrPdist_lt _ [normedModType _ of R^o]).
exact.
Qed.

Lemma nbhs_pt_comp ( P : R -> Prop) ( f : R -> R) ( x : R) :
  nbhs (f x) P -> Ranalysis1.continuity_pt f x -> \near x, P (f x).
Proof.
by move=> Lf /continuity_pt_cvg; apply. Qed.

End analysis_struct.

Section open_closed_sets .
Variable R : realFieldType.

Some open sets of R
Lemma open_lt ( y : R) : open [set x : R| x < y].
Proof.
move=> x /=; rewrite -subr_gt0 => yDx_gt0. exists (y - x) => // z.
by rewrite /= ltr_distlC addrCA subrr addr0 => /andP[].
Qed.
Hint Resolve open_lt : core.

Lemma open_gt ( y : R) : open [set x : R | x > y].
Proof.
move=> x /=; rewrite -subr_gt0 => xDy_gt0; exists (x - y) => // z.
by rewrite /= ltr_distlC opprB addrCA subrr addr0 => /andP[].
Qed.
Hint Resolve open_gt : core.

Lemma open_neq ( y : R) : open [set x : R | x != y].
Proof.
rewrite (_ : mkset _ = [set x | x < y] `|` [set x | x > y]); first exact: openU.
rewrite predeqE => x /=; rewrite eq_le !leNgt negb_and !negbK orbC.
by symmetry; apply (rwP orP).
Qed.

Lemma interval_open a b : ~~ bound_side true a -> ~~ bound_side false b ->
  open [set x : R^o | x \in Interval a b].
Proof.
move: a b => [[]a|[]] [[]b|[]]// _ _.
- have -> : [set x | a < x < b] = [set x | a < x] `&` [set x | x < b].
    by rewrite predeqE => r; rewrite /mkset; split => [/andP[? ?] //|[-> ->]].
  by apply openI; [exact: open_gt | exact: open_lt].
- by under eq_set do rewrite itv_ge// inE.
- by under eq_set do rewrite in_itv andbT/=; exact: open_gt.
- exact: open_lt.
- by rewrite (_ : mkset _ = setT); [exact: openT | rewrite predeqE].
Qed.

Some closed sets of R
Lemma closed_le ( y : R) : closed [set x : R | x <= y].
Proof.
rewrite (_ : mkset _ = ~` [set x | x > y]); first exact: open_closedC.
by rewrite predeqE => x /=; rewrite leNgt; split => /negP.
Qed.

Lemma closed_ge ( y : R) : closed [set x : R | y <= x].
Proof.
rewrite (_ : mkset _ = ~` [set x | x < y]); first exact: open_closedC.
by rewrite predeqE => x /=; rewrite leNgt; split => /negP.
Qed.

Lemma closed_eq ( y : R) : closed [set x : R | x = y].
Proof.
rewrite [X in closed X](_ : (eq^~ _) = ~` (xpredC (eq_op^~ y))).
  by apply: open_closedC; exact: open_neq.
by rewrite predeqE /setC => x /=; rewrite (rwP eqP); case: eqP; split.
Qed.

Lemma interval_closed a b : ~~ bound_side false a -> ~~ bound_side true b ->
  closed [set x : R^o | x \in Interval a b].
Proof.
move: a b => [[]a|[]] [[]b|[]]// _ _;
  do ?by under eq_set do rewrite itv_ge// inE falseE; apply: closed0.
- have -> : `[a, b]%classic = [set x | x >= a] `&` [set x | x <= b].
    by rewrite predeqE => ?; rewrite /= in_itv/=; split=> [/andP[]|[->]].
  by apply closedI; [exact: closed_ge | exact: closed_le].
- by under eq_set do rewrite in_itv andbT/=; exact: closed_ge.
- exact: closed_le.
Qed.

End open_closed_sets.

#[global] Hint Extern 0 (open _) => now apply: open_gt : core.
#[global] Hint Extern 0 (open _) => now apply: open_lt : core.
#[global] Hint Extern 0 (open _) => now apply: open_neq : core.
#[global] Hint Extern 0 (closed _) => now apply: closed_ge : core.
#[global] Hint Extern 0 (closed _) => now apply: closed_le : core.
#[global] Hint Extern 0 (closed _) => now apply: closed_eq : core.

Section at_left_right .
Variable R : numFieldType.

Definition at_left ( x : R) := within (fun u => u < x) (nbhs x).
Definition at_right ( x : R) := within (fun u => x < u) (nbhs x).
Local Notation "x ^'-" := (at_left x) : classical_set_scope.
Local Notation "x ^'+" := (at_right x) : classical_set_scope.

Global Instance at_right_proper_filter ( x : R) : ProperFilter x^'+.
Proof.
apply: Build_ProperFilter' => -[_/posnumP[d] /(_ (x + d%:num / 2))].
apply; last (by rewrite ltr_addl); rewrite /=.
rewrite opprD !addrA subrr add0r normrN normf_div !ger0_norm //.
by rewrite ltr_pdivr_mulr // ltr_pmulr // (_ : 1 = 1%:R) // ltr_nat.
Qed.

Global Instance at_left_proper_filter ( x : R) : ProperFilter x^'-.
Proof.
apply: Build_ProperFilter' => -[_ /posnumP[d] /(_ (x - d%:num / 2))].
apply; last (by rewrite ltr_subl_addl ltr_addr); rewrite /=.
rewrite opprD !addrA subrr add0r opprK normf_div !ger0_norm //.
by rewrite ltr_pdivr_mulr // ltr_pmulr // (_ : 1 = 1%:R) // ltr_nat.
Qed.

Lemma nbhs_right0P x ( P : set R) :
  (\forall y \near x^'+, P y) <-> \forall e \near 0^'+, P (x + e).
Proof.
rewrite !near_withinE !near_simpl nbhs0P -propeqE.
by apply: (@eq_near _ (nbhs (0 : R))) => y; rewrite ltr_addl.
Qed.

Lemma nbhs_left0P x ( P : set R) :
  (\forall y \near x^'-, P y) <-> \forall e \near 0^'+, P (x - e).
Proof.
rewrite !near_withinE !near_simpl nbhs0P; split=> Px.
  rewrite -oppr0 nearN; near=> e; rewrite ltr_opp2 opprK => e_lt0.
  by apply: (near Px) => //; rewrite gtr_addl.
by rewrite -oppr0 nearN; near=> e; rewrite gtr_addl oppr_lt0; apply: (near Px).
Unshelve. all: by end_near. Qed.

Lemma nbhs_right_gt x : \forall y \near x^'+, x < y.
Proof.
by rewrite near_withinE; apply: nearW. Qed.

Lemma nbhs_left_lt x : \forall y \near x^'-, y < x.
Proof.
by rewrite near_withinE; apply: nearW. Qed.

Lemma nbhs_right_neq x : \forall y \near x^'+, y != x.
Proof.
by rewrite near_withinE; apply: nearW => ? /gt_eqF->. Qed.

Lemma nbhs_left_neq x : \forall y \near x^'-, y != x.
Proof.
by rewrite near_withinE; apply: nearW => ? /lt_eqF->. Qed.

Lemma nbhs_right_ge x : \forall y \near x^'+, x <= y.
Proof.
by rewrite near_withinE; apply: nearW; apply/ltW. Qed.

Lemma nbhs_left_le x : \forall y \near x^'-, y <= x.
Proof.
by rewrite near_withinE; apply: nearW => ?; apply/ltW. Qed.

Lemma nbhs_right_lt x z : x < z -> \forall y \near x^'+, y < z.
Proof.
move=> xz; exists (z - x) => //=; first by rewrite subr_gt0.
by move=> y /= + xy; rewrite distrC ?ger0_norm ?subr_ge0 1?ltW// ltr_add2r.
Qed.

Lemma nbhs_right_le x z : x < z -> \forall y \near x^'+, y <= z.
Proof.
by move=> xz; near do apply/ltW; apply: nbhs_right_lt.
Unshelve. all: by end_near. Qed.

Lemma nbhs_left_gt x z : z < x -> \forall y \near x^'-, z < y.
Proof.
move=> xz; rewrite nbhs_left0P; near do rewrite -ltr_opp2 opprB ltr_subl_addl.
by apply: nbhs_right_lt; rewrite subr_gt0.
Unshelve. all: by end_near. Qed.

Lemma nbhs_left_ge x z : z < x -> \forall y \near x^'-, z <= y.
Proof.
by move=> xz; near do apply/ltW; apply: nbhs_left_gt.
Unshelve. all: by end_near. Qed.

Lemma not_near_at_rightP T ( f : R -> T) ( p : R) ( P : pred T) :
  ~ (\forall x \near p^'+, P (f x)) ->
  forall e : {posnum R}, exists2 x, p < x < p + e%:num & ~ P (f x).
Proof.
move=> pPf e; apply: contrapT => /forallPNP pePf; apply: pPf; near=> t.
apply: contrapT; apply: pePf; apply/andP; split.
- by near: t; exact: nbhs_right_gt.
- by near: t; apply: nbhs_right_lt; rewrite ltr_addl.
Unshelve. all: by end_near. Qed.

Lemma withinN ( A : set R) a :
  within A (nbhs (- a)) = - x @[x --> within (-%R @` A) (nbhs a)].
Proof.
rewrite eqEsubset /=; split; move=> E /= [e e0 aeE]; exists e => //.
  move=> r are ra; apply: aeE; last by rewrite memNE opprK.
  by rewrite /= opprK addrC distrC.
move=> r aer ar; rewrite -(opprK r); apply: aeE; last by rewrite -memNE.
by rewrite /= opprK -normrN opprD.
Qed.

Let fun_predC ( T : choiceType) ( f : T -> T) ( p : pred T) : involutive f ->
  [set f x | x in p] = [set x | x in p \o f].
Proof.
by move=> fi; apply/seteqP; split => _/= [y hy <-];
  exists (f y) => //; rewrite fi.
Qed.

Lemma at_rightN a : (- a)^'+ = -%R @ a^'-.
Proof.
rewrite /at_right withinN [X in within X _](_ : _ = [set u | u < a])//.
rewrite (@fun_predC _ -%R)/=; last exact: opprK.
by rewrite image_id; under eq_fun do rewrite ltr_oppl opprK.
Qed.

Lemma at_leftN a : (- a)^'- = -%R @ a^'+.
Proof.
rewrite /at_left withinN [X in within X _](_ : _ = [set u | a < u])//.
rewrite (@fun_predC _ -%R)/=; last exact: opprK.
by rewrite image_id; under eq_fun do rewrite ltr_oppl opprK.
Qed.

End at_left_right.
#[global] Typeclasses Opaque at_left at_right.
Notation "x ^'-" := (at_left x) : classical_set_scope.
Notation "x ^'+" := (at_right x) : classical_set_scope.

#[global] Hint Extern 0 (Filter (nbhs _^'+)) =>
  (apply: at_right_proper_filter) : typeclass_instances.

#[global] Hint Extern 0 (Filter (nbhs _^'-)) =>
  (apply: at_left_proper_filter) : typeclass_instances.

Lemma cvg_at_leftNP {T : topologicalType} {R : numFieldType}
    ( f : R -> T) a ( l : T) :
  f @ a^'- --> l <-> f \o -%R @ (- a)^'+ --> l.
Proof.
by rewrite at_rightN -?fmap_comp; under [_ \o _]eq_fun => ? do rewrite /= opprK.
Qed.

Lemma cvg_at_rightNP {T : topologicalType} {R : numFieldType}
    ( f : R -> T) a ( l : T) :
  f @ a^'+ --> l <-> f \o -%R @ (- a)^'- --> l.
Proof.
by rewrite at_leftN -?fmap_comp; under [_ \o _]eq_fun => ? do rewrite /= opprK.
Qed.

Section open_itv_subset .
Context {R : realType}.
Variables ( A : set R) ( x : R).

Lemma open_itvoo_subset :
  open A -> A x -> \forall r \near 0^'+, `]x - r, x + r[ `<=` A.
Proof.
move=> /[apply] -[] _/posnumP[r] /subset_ball_prop_in_itv xrA.
exists r%:num => //= k; rewrite /= distrC subr0 set_itvoo => /ltr_normlW kr k0.
by apply/(subset_trans _ xrA)/subset_itvW;
  [rewrite ler_sub//; exact: ltW | rewrite ler_add//; exact: ltW].
Qed.

Lemma open_itvcc_subset :
  open A -> A x -> \forall r \near 0^'+, `[x - r, x + r] `<=` A.
Proof.
move=> /[apply] -[] _/posnumP[r].
have -> : r%:num = 2 * (r%:num / 2) by rewrite mulrCA divff// mulr1.
move/subset_ball_prop_in_itvcc => /= xrA; exists (r%:num / 2) => //= k.
rewrite /= distrC subr0 set_itvcc => /ltr_normlW kr k0.
move=> z /andP [xkz zxk]; apply: xrA => //; rewrite in_itv/=; apply/andP; split.
  by rewrite (le_trans _ xkz)// ler_sub// ltW.
by rewrite (le_trans zxk)// ler_add// ltW.
Qed.

End open_itv_subset.

Section at_left_right_topologicalType .
Variables ( R : numFieldType) ( V : topologicalType) ( f : R -> V) ( x : R).

Lemma cvg_at_right_filter : f z @[z --> x] --> f x -> f z @[z --> x^'+] --> f x.
Proof.
exact: (@cvg_within_filter _ _ _ (nbhs x)). Qed.

Lemma cvg_at_left_filter : f z @[z --> x] --> f x -> f z @[z --> x^'-] --> f x.
Proof.
exact: (@cvg_within_filter _ _ _ (nbhs x)). Qed.

Lemma cvg_at_right_within : f x @[x --> x^'+] --> f x ->
  f x @[x --> within (fun u => x <= u) (nbhs x)] --> f x.
Proof.
move=> fxr U Ux; rewrite ?near_simpl ?near_withinE; near=> z; rewrite le_eqVlt.
by move/predU1P => [<-|]; [exact: nbhs_singleton | near: z; exact: fxr].
Unshelve. all: by end_near. Qed.

Lemma cvg_at_left_within : f x @[x --> x^'-] --> f x ->
  f x @[x --> within (fun u => u <= x) (nbhs x)] --> f x.
Proof.
move=> fxr U Ux; rewrite ?near_simpl ?near_withinE; near=> z; rewrite le_eqVlt.
by move/predU1P => [->|]; [exact: nbhs_singleton | near: z; exact: fxr].
Unshelve. all: by end_near. Qed.

End at_left_right_topologicalType.

Section at_left_right_pmNormedZmod .
Variables ( R : numFieldType) ( V : pseudoMetricNormedZmodType R).

Lemma nbhsr0P ( P : set V) x :
  (\forall y \near x, P y) <->
  (\forall e \near 0^'+, forall y, `|x - y| <= e -> P y).
Proof.
rewrite nbhs0P/= near_withinE/= !near_simpl.
split=> /nbhs_norm0P[/= _/posnumP[e] /(_ _) Px]; apply/nbhs_norm0P.
  exists e%:num => //= r /= re yr y xyr; rewrite -[y](addrNK x) addrC.
  by apply: Px; rewrite /= distrC (le_lt_trans _ re)// gtr0_norm.
exists (e%:num / 2) => //= r /= re; apply: (Px (e%:num / 2)) => //=.
   by rewrite gtr0_norm// ltr_pdivr_mulr// ltr_pmulr// ?(ltr_nat _ 1 2).
by rewrite opprD addNKr normrN ltW.
Qed.

Let cvgrP {F : set (set V)} {FF : Filter F} ( y : V) : [<->
  F --> y;
  forall eps, 0 < eps -> \forall t \near F, `|y - t| <= eps;
  \forall eps \near 0^'+, \forall t \near F, `|y - t| <= eps;
  \forall eps \near 0^'+, \forall t \near F, `|y - t| < eps].
Proof.
tfae; first by move=> *; apply: cvgr_dist_le.
- by move=> Fy; near do apply: Fy; apply: nbhs_right_gt.
- move=> Fy; near=> e; near (0:R)^'+ => d; near=> x.
  rewrite (@le_lt_trans _ _ d)//; first by near: x; near: d.
  by near: d; apply: nbhs_right_lt; near: e; apply: nbhs_right_gt.
- move=> Fy; apply/cvgrPdist_lt => e e_gt0; near (0:R)^'+ => d.
  near=> x; rewrite (@lt_le_trans _ _ d)//; first by near: x; near: d.
  by near: d; apply: nbhs_right_le.
Unshelve. all: by end_near. Qed.

Lemma cvgrPdist_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y <-> forall eps, 0 < eps -> \forall t \near F, `|y - f t| <= eps.
Proof.
exact: (cvgrP _ 0 1)%N. Qed.

Lemma cvgrPdist_ltp {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y <-> \forall eps \near 0^'+, \forall t \near F, `|y - f t| < eps.
Proof.
exact: (cvgrP _ 0 3)%N. Qed.

Lemma cvgrPdist_lep {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y <-> \forall eps \near 0^'+, \forall t \near F, `|y - f t| <= eps.
Proof.
exact: (cvgrP _ 0 2)%N. Qed.

Lemma cvgrPdistC_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y <-> forall eps, 0 < eps -> \forall t \near F, `|f t - y| <= eps.
Proof.
rewrite cvgrPdist_le.
by under [X in X <-> _]eq_forall do under eq_near do rewrite distrC.
Qed.

Lemma cvgrPdistC_ltp {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y <-> \forall eps \near 0^'+, \forall t \near F, `|f t - y| < eps.
Proof.
by rewrite cvgrPdist_ltp; under eq_near do under eq_near do rewrite distrC.
Qed.

Lemma cvgrPdistC_lep {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y <-> \forall eps \near 0^'+, \forall t \near F, `|f t - y| <= eps.
Proof.
by rewrite cvgrPdist_lep; under eq_near do under eq_near do rewrite distrC.
Qed.

Lemma cvgr0Pnorm_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) :
  f @ F --> 0 <-> forall eps, 0 < eps -> \forall t \near F, `|f t| <= eps.
Proof.
rewrite cvgrPdistC_le.
by under [X in X <-> _]eq_forall do under eq_near do rewrite subr0.
Qed.

Lemma cvgr0Pnorm_ltp {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) :
  f @ F --> 0 <-> \forall eps \near 0^'+, \forall t \near F, `|f t| < eps.
Proof.
by rewrite cvgrPdistC_ltp; under eq_near do under eq_near do rewrite subr0.
Qed.

Lemma cvgr0Pnorm_lep {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) :
  f @ F --> 0 <-> \forall eps \near 0^'+, \forall t \near F, `|f t| <= eps.
Proof.
by rewrite cvgrPdistC_lep; under eq_near do under eq_near do rewrite subr0.
Qed.

Lemma cvgr_norm_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> forall u, `|y| < u -> \forall t \near F, `|f t| < u.
Proof.
move=> Fy z zy; near (0:R)^'+ => k; near=> x; have : `|f x - y| < k.
  by near: x; apply: cvgr_distC_lt => //; near: k; apply: nbhs_right_gt.
move=> /(le_lt_trans (ler_dist_dist _ _)) /real_ltr_normlW.
rewrite realB// ltr_subl_addl => /(_ _)/lt_le_trans; apply => //.
by rewrite -ler_subr_addl; near: k; apply: nbhs_right_le; rewrite subr_gt0.
Unshelve. all: by end_near. Qed.

Lemma cvgr_norm_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> forall u, `|y| < u -> \forall t \near F, `|f t| <= u.
Proof.
by move=> fy u yu; near do apply/ltW; apply: cvgr_norm_lt yu.
Unshelve. all: by end_near. Qed.

Lemma cvgr_norm_gt {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> forall u, `|y| > u -> \forall t \near F, `|f t| > u.
Proof.
move=> Fy z zy; near (0:R)^'+ => k; near=> x; have: `|f x - y| < k.
  by near: x; apply: cvgr_distC_lt => //; near: k; apply: nbhs_right_gt.
move=> /(le_lt_trans (ler_dist_dist _ _)); rewrite distrC => /real_ltr_normlW.
rewrite realB// ltr_subl_addl -ltr_subl_addr => /(_ isT); apply: le_lt_trans.
rewrite ler_subr_addl -ler_subr_addr; near: k; apply: nbhs_right_le.
by rewrite subr_gt0.
Unshelve. all: by end_near. Qed.

Lemma cvgr_norm_ge {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> forall u, `|y| > u -> \forall t \near F, `|f t| >= u.
Proof.
by move=> fy u yu; near do apply/ltW; apply: cvgr_norm_gt yu.
Unshelve. all: by end_near. Qed.

Lemma cvgr_neq0 {T} {F : set (set T)} {FF : Filter F} ( f : T -> V) ( y : V) :
  f @ F --> y -> y != 0 -> \forall t \near F, f t != 0.
Proof.
move=> Fy z; near do rewrite -normr_gt0.
by apply: (@cvgr_norm_gt _ _ _ _ y); rewrite // normr_gt0.
Unshelve. all: by end_near. Qed.

End at_left_right_pmNormedZmod.
Arguments cvgr_norm_lt {R V T F FF f}.
Arguments cvgr_norm_le {R V T F FF f}.
Arguments cvgr_norm_gt {R V T F FF f}.
Arguments cvgr_norm_ge {R V T F FF f}.
Arguments cvgr_neq0 {R V T F FF f}.

#[global] Hint Extern 0 (is_true (`|_ - ?x| < _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr_dist_lt end : core.
#[global] Hint Extern 0 (is_true (`|?x - _| < _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr_distC_lt end : core.
#[global] Hint Extern 0 (is_true (`|?x| < _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr0_norm_lt end : core.
#[global] Hint Extern 0 (is_true (`|_ - ?x| <= _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr_dist_le end : core.
#[global] Hint Extern 0 (is_true (`|?x - _| <= _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr_distC_le end : core.
#[global] Hint Extern 0 (is_true (`|?x| <= _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: cvgr0_norm_le end : core.

#[global] Hint Extern 0 (is_true (_ < ?x)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_right_gt end : core.
#[global] Hint Extern 0 (is_true (?x < _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_left_lt end : core.
#[global] Hint Extern 0 (is_true (?x != _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_right_neq end : core.
#[global] Hint Extern 0 (is_true (?x != _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_left_neq end : core.
#[global] Hint Extern 0 (is_true (_ < ?x)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_left_gt end : core.
#[global] Hint Extern 0 (is_true (?x < _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_right_lt end : core.
#[global] Hint Extern 0 (is_true (_ <= ?x)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_right_ge end : core.
#[global] Hint Extern 0 (is_true (?x <= _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_left_le end : core.
#[global] Hint Extern 0 (is_true (_ <= ?x)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_right_ge end : core.
#[global] Hint Extern 0 (is_true (?x <= _)) => match goal with
  H : x \is_near _ |- _ => near: x; exact: nbhs_left_le end : core.


#[global] Hint Extern 0 (ProperFilter _^'-) =>
  (apply: at_left_proper_filter) : typeclass_instances.
#[global] Hint Extern 0 (ProperFilter _^'+) =>
  (apply: at_right_proper_filter) : typeclass_instances.

Section at_left_rightR .
Variable ( R : numFieldType).

Lemma real_cvgr_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> R) ( y : R) :
    y \is Num.real -> f @ F --> y ->
  forall z, z > y -> \forall t \near F, f t \is Num.real -> f t < z.
Proof.
move=> yr Fy z zy; near=> x => fxr.
rewrite -(ltr_add2r (- y)) real_ltr_normlW// ?rpredB//.
by near: x; apply: cvgr_distC_lt => //; rewrite subr_gt0.
Unshelve. all: by end_near. Qed.

Lemma real_cvgr_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> R) ( y : R) :
    y \is Num.real -> f @ F --> y ->
  forall z, z > y -> \forall t \near F, f t \is Num.real -> f t <= z.
Proof.
move=> /real_cvgr_lt/[apply] + ? z0 => /(_ _ z0).
by apply: filterS => ? /[apply]/ltW.
Qed.

Lemma real_cvgr_gt {T} {F : set (set T)} {FF : Filter F} ( f : T -> R) ( y : R) :
    y \is Num.real -> f @ F --> y ->
  forall z, y > z -> \forall t \near F, f t \is Num.real -> f t > z.
Proof.
move=> yr Fy z zy; near=> x => fxr.
rewrite -ltr_opp2 -(ltr_add2l y) real_ltr_normlW// ?rpredB//.
by near: x; apply: cvgr_dist_lt => //; rewrite subr_gt0.
Unshelve. all: by end_near. Qed.

Lemma real_cvgr_ge {T} {F : set (set T)} {FF : Filter F} ( f : T -> R) ( y : R) :
    y \is Num.real -> f @ F --> y ->
  forall z, z < y -> \forall t \near F, f t \is Num.real -> f t >= z.
Proof.
move=> /real_cvgr_gt/[apply] + ? z0 => /(_ _ z0).
by apply: filterS => ? /[apply]/ltW.
Qed.

End at_left_rightR.
Arguments real_cvgr_le {R T F FF f}.
Arguments real_cvgr_lt {R T F FF f}.
Arguments real_cvgr_ge {R T F FF f}.
Arguments real_cvgr_gt {R T F FF f}.

Section realFieldType .
Context ( R : realFieldType).

Lemma at_right_in_segment ( x : R) ( P : set R) :
  (\forall e \near 0^'+, {in `[x - e, x + e], forall x, P x}) <-> (\near x, P x).
Proof.
rewrite nbhsr0P -propeqE; apply: eq_near => y /=.
by rewrite -propeqE; apply: eq_forall => z; rewrite ler_distlC.
Qed.

Lemma cvgr_lt {T} {F : set (set T)} {FF : Filter F} ( f : T -> R) ( y : R) :
  f @ F --> y -> forall z, z > y -> \forall t \near F, f t < z.
Proof.
move=> Fy z zy; near=> x; rewrite -(ltr_add2r (- y)) ltr_normlW//.
by near: x; apply: cvgr_distC_lt => //; rewrite subr_gt0.
Unshelve. all: by end_near. Qed.

Lemma cvgr_le {T} {F : set (set T)} {FF : Filter F} ( f : T -> R) ( y : R) :
  f @ F --> y -> forall z, z > y -> \forall t \near F, f t <= z.
Proof.
by move=> /cvgr_lt + ? z0 => /(_ _ z0); apply: filterS => ?; apply/ltW.
Qed.

Lemma cvgr_gt {T} {F : set (set T)} {FF : Filter F} ( f : T -> R) ( y : R) :
  f @ F --> y -> forall z, y > z -> \forall t \near F, f t > z.
Proof.
move=> Fy z zy; near=> x; rewrite -ltr_opp2 -(ltr_add2l y) ltr_normlW//.
by near: x; apply: cvgr_dist_lt => //; rewrite subr_gt0.
Unshelve. all: by end_near. Qed.

Lemma cvgr_ge {T} {F : set (set T)} {FF : Filter F} ( f : T -> R) ( y : R) :
  f @ F --> y -> forall z, z < y -> \forall t \near F, f t >= z.
Proof.
by move=> /cvgr_gt + ? z0 => /(_ _ z0); apply: filterS => ?; apply/ltW.
Qed.

End realFieldType.
Arguments cvgr_le {R T F FF f}.
Arguments cvgr_lt {R T F FF f}.
Arguments cvgr_ge {R T F FF f}.
Arguments cvgr_gt {R T F FF f}.

Definition self_sub ( K : numDomainType) ( V W : normedModType K)
  ( f : V -> W) ( x : V * V) : W := f x.1 - f x.2.
Arguments self_sub {K V W} f x /.

Definition fun1 {T : Type} {K : numFieldType} : T -> K := fun=> 1.
Arguments fun1 {T K} x /.

Definition dominated_by {T : Type} {K : numDomainType} {V W : pseudoMetricNormedZmodType K}
  ( h : T -> V) ( k : K) ( f : T -> W) ( F : set (set T)) :=
  F [set x | `|f x| <= k * `|h x|].

Definition strictly_dominated_by {T : Type} {K : numDomainType} {V W : pseudoMetricNormedZmodType K}
  ( h : T -> V) ( k : K) ( f : T -> W) ( F : set (set T)) :=
  F [set x | `|f x| < k * `|h x|].

Lemma sub_dominatedl ( T : Type) ( K : numDomainType) ( V W : pseudoMetricNormedZmodType K)
   ( h : T -> V) ( k : K) ( F G : set (set T)) : F `=>` G ->
  (@dominated_by T K V W h k)^~ G `<=` (dominated_by h k)^~ F.
Proof.
by move=> FG f; exact: FG. Qed.

Lemma sub_dominatedr ( T : Type) ( K : numDomainType) ( V : pseudoMetricNormedZmodType K)
    ( h : T -> V) ( k : K) ( f g : T -> V) ( F : set (set T)) ( FF : Filter F) :
   (\forall x \near F, `|f x| <= `|g x|) ->
   dominated_by h k g F -> dominated_by h k f F.
Proof.
by move=> le_fg; apply: filterS2 le_fg => x; apply: le_trans. Qed.

Lemma dominated_by1 {T : Type} {K : numFieldType} {V : pseudoMetricNormedZmodType K} :
  @dominated_by T K _ V fun1 = fun k f F => F [set x | `|f x| <= k].
Proof.
rewrite funeq3E => k f F.
by congr F; rewrite funeqE => x/=; rewrite normr1 mulr1.
Qed.

Lemma strictly_dominated_by1 {T : Type} {K : numFieldType}
    {V : pseudoMetricNormedZmodType K} :
  @strictly_dominated_by T K _ V fun1 = fun k f F => F [set x | `|f x| < k].
Proof.
rewrite funeq3E => k f F.
by congr F; rewrite funeqE => x/=; rewrite normr1 mulr1.
Qed.

Lemma ex_dom_bound {T : Type} {K : numFieldType} {V W : pseudoMetricNormedZmodType K}
    ( h : T -> V) ( f : T -> W) ( F : set (set T)) {PF : ProperFilter F}:
  (\forall M \near +oo, dominated_by h M f F) <->
  exists M, dominated_by h M f F.
Proof.
rewrite /dominated_by; split => [/pinfty_ex_gt0[M M_gt0]|[M]] FM.
  by exists M.
have [] := pselect (exists x, (h x != 0) && (`|f x| <= M * `|h x|)); last first.
  rewrite -forallNE => Nex; exists 0; split => //.
  move=> k k_gt0; apply: filterS FM => x /= f_le_Mh.
  have /negP := Nex x; rewrite negb_and negbK f_le_Mh orbF => /eqP h_eq0.
  by rewrite h_eq0 normr0 !mulr0 in f_le_Mh *.
case => x0 /andP[hx0_neq0] /(le_trans (normr_ge0 _)) /ger0_real.
rewrite realrM // ?normr_eq0// => M_real.
exists M; split => // k Mk; apply: filterS FM => x /le_trans/= ->//.
by rewrite ler_wpmul2r// ltW.
Qed.

Lemma ex_strict_dom_bound {T : Type} {K : numFieldType}
    {V W : pseudoMetricNormedZmodType K}
    ( h : T -> V) ( f : T -> W) ( F : set (set T)) {PF : ProperFilter F} :
  (\forall x \near F, h x != 0) ->
  (\forall M \near +oo, dominated_by h M f F) <->
   exists M, strictly_dominated_by h M f F.
Proof.
move=> hN0; rewrite ex_dom_bound /dominated_by /strictly_dominated_by.
split => -[] M FM; last by exists M; apply: filterS FM => x /ltW.
exists (M + 1); apply: filterS2 hN0 FM => x hN0 /le_lt_trans/= ->//.
by rewrite ltr_pmul2r ?normr_gt0// ltr_addl.
Qed.

Definition bounded_near {T : Type} {K : numFieldType}
    {V : pseudoMetricNormedZmodType K}
  ( f : T -> V) ( F : set (set T)) :=
  \forall M \near +oo, F [set x | `|f x| <= M].

Lemma boundedE {T : Type} {K : numFieldType} {V : pseudoMetricNormedZmodType K} :
  @bounded_near T K V = fun f F => \forall M \near +oo, dominated_by fun1 M f F.
Proof.
by rewrite dominated_by1. Qed.

Lemma sub_boundedr ( T : Type) ( K : numFieldType) ( V : pseudoMetricNormedZmodType K)
     ( F G : set (set T)) : F `=>` G ->
  (@bounded_near T K V)^~ G `<=` bounded_near^~ F.
Proof.
by move=> FG f; rewrite /bounded_near; apply: filterS=> M; apply: FG. Qed.

Lemma sub_boundedl ( T : Type) ( K : numFieldType) ( V : pseudoMetricNormedZmodType K)
     ( f g : T -> V) ( F : set (set T)) ( FF : Filter F) :
 (\forall x \near F, `|f x| <= `|g x|) -> bounded_near g F -> bounded_near f F.
Proof.
move=> le_fg; rewrite /bounded_near; apply: filterS => M.
by apply: filterS2 le_fg => x; apply: le_trans.
Qed.

Lemma ex_bound {T : Type} {K : numFieldType} {V : pseudoMetricNormedZmodType K}
  ( f : T -> V) ( F : set (set T)) {PF : ProperFilter F}:
  bounded_near f F <-> exists M, F [set x | `|f x| <= M].
Proof.
by rewrite boundedE ex_dom_bound dominated_by1. Qed.

Lemma ex_strict_bound {T : Type} {K : numFieldType} {V : pseudoMetricNormedZmodType K}
  ( f : T -> V) ( F : set (set T)) {PF : ProperFilter F}:
  bounded_near f F <-> exists M, F [set x | `|f x| < M].
Proof.
rewrite boundedE ex_strict_dom_bound ?strictly_dominated_by1//.
by near=> x; rewrite oner_eq0.
Unshelve. all: by end_near. Qed.

Lemma ex_strict_bound_gt0 {T : Type} {K : numFieldType} {V : pseudoMetricNormedZmodType K}
  ( f : T -> V) ( F : set (set T)) {PF : Filter F}:
  bounded_near f F -> exists2 M, M > 0 & F [set x | `|f x| < M].
Proof.
move=> /pinfty_ex_gt0[M M_gt0 FM]; exists (M + 1); rewrite ?addr_gt0//.
by apply: filterS FM => x /le_lt_trans/= ->//; rewrite ltr_addl.
Qed.

Notation "[ 'bounded' E | x 'in' A ]" :=
  (bounded_near (fun x => E) (globally A)).
Notation bounded_set := [set A | [bounded x | x in A]].
Notation bounded_fun := [set f | [bounded f x | x in setT]].

Lemma bounded_fun_has_ubound ( T : Type) ( R : realFieldType) ( a : T -> R) :
  bounded_fun a -> has_ubound (range a).
Proof.
move=> [M [Mreal]]/(_ (`|M| + 1)).
rewrite (le_lt_trans (ler_norm _)) ?ltr_addl// => /(_ erefl) aM.
by exists (`|M| + 1) => _ [n _ <-]; rewrite (le_trans (ler_norm _))// aM.
Qed.

Lemma bounded_funN ( T : Type) ( R : realFieldType) ( a : T -> R) :
  bounded_fun a -> bounded_fun (- a).
Proof.
move=> [M [Mreal aM]]; rewrite /bounded_fun /bounded_near; near=> x => y /= _.
by rewrite normrN; apply: aM.
Unshelve. all: by end_near. Qed.

Lemma bounded_fun_has_lbound ( T : Type) ( R : realFieldType) ( a : T -> R) :
  bounded_fun a -> has_lbound (range a).
Proof.
move=> /bounded_funN/bounded_fun_has_ubound ba; apply/has_lb_ubN.
by apply: subset_has_ubound ba => _ [_ [n _] <- <-]; exists n.
Qed.

Lemma bounded_funD ( T : Type) ( R : realFieldType) ( a b : T -> R) :
  bounded_fun a -> bounded_fun b -> bounded_fun (a \+ b).
Proof.
move=> [M [Mreal Ma]] [N [Nreal Nb]].
rewrite /bounded_fun/bounded_near; near=> x => y /= _.
rewrite (le_trans (ler_norm_add _ _))// [x]splitr.
by rewrite ler_add// (Ma, Nb)// ltr_pdivl_mulr//;
   near: x; apply: nbhs_pinfty_gt; rewrite ?rpredM ?rpred_nat.
Unshelve. all: by end_near. Qed.

Lemma bounded_locally ( T : topologicalType)
    ( R : numFieldType) ( V : normedModType R) ( A : set T) ( f : T -> V) :
  [bounded f x | x in A] -> [locally [bounded f x | x in A]].
Proof.
by move=> /sub_boundedr AB x Ax; apply: AB; apply: within_nbhsW. Qed.

Notation "k .-lipschitz_on f" :=
  (dominated_by (self_sub id) k (self_sub f)) : type_scope.

Definition sub_klipschitz ( K : numFieldType) ( V W : normedModType K) ( k : K)
           ( f : V -> W) ( F G : set (set (V * V))) :
  F `=>` G -> k.-lipschitz_on f G -> k.-lipschitz_on f F.
Proof.
exact. Qed.

Definition lipschitz_on ( K : numFieldType) ( V W : normedModType K)
           ( f : V -> W) ( F : set (set (V * V))) :=
  \forall M \near +oo, M.-lipschitz_on f F.

Definition sub_lipschitz ( K : numFieldType) ( V W : normedModType K)
           ( f : V -> W) ( F G : set (set (V * V))) :
  F `=>` G -> lipschitz_on f G -> lipschitz_on f F.
Proof.
by move=> FG; rewrite /lipschitz_on; apply: filterS => M; apply: FG. Qed.

Lemma klipschitzW ( K : numFieldType) ( V W : normedModType K) ( k : K)
      ( f : V -> W) ( F : set (set (V * V))) {PF : ProperFilter F} :
  k.-lipschitz_on f F -> lipschitz_on f F.
Proof.
by move=> f_lip; apply/ex_dom_bound; exists k. Qed.

Notation "k .-lipschitz_ A f" :=
  (k.-lipschitz_on f (globally (A `*` A))) : type_scope.
Notation "k .-lipschitz f" := (k.-lipschitz_setT f) : type_scope.
Notation "[ 'lipschitz' E | x 'in' A ]" :=
  (lipschitz_on (fun x => E) (globally (A `*` A))) : type_scope.
Notation lipschitz f := [lipschitz f x | x in setT].

Lemma lipschitz_set0 ( K : numFieldType) ( V W : normedModType K)
  ( f : V -> W) : [lipschitz f x | x in set0].
Proof.
by apply: nearW; rewrite setM0 => ?; apply: globally0. Qed.

Lemma lipschitz_set1 ( K : numFieldType) ( V W : normedModType K)
  ( f : V -> W) ( a : V) : [lipschitz f x | x in [set a]].
Proof.
apply: (@klipschitzW _ _ _ `|f a|).
  exact: (@globally_properfilter _ _ (a, a)).
by move=> [x y] /= [] -> ->; rewrite !subrr !normr0 mulr0.
Qed.

Lemma klipschitz_locally ( R : numFieldType) ( V W : normedModType R) ( k : R)
    ( f : V -> W) ( A : set V) :
  k.-lipschitz_A f -> [locally k.-lipschitz_A f].
Proof.
by move=> + x Ax; apply: sub_klipschitz; apply: within_nbhsW. Qed.

Lemma lipschitz_locally ( R : numFieldType) ( V W : normedModType R)
    ( A : set V) ( f : V -> W) :
  [lipschitz f x | x in A] -> [locally [lipschitz f x | x in A]].
Proof.
by move=> + x Ax; apply: sub_lipschitz; apply: within_nbhsW. Qed.

Lemma lipschitz_id ( R : numFieldType) ( V : normedModType R) :
  1.-lipschitz (@id V).
Proof.
by move=> [/= x y] _; rewrite mul1r. Qed.
Arguments lipschitz_id {R V}.

Section contractions .
Context {R : numDomainType} {X Y : normedModType R} {U : set X} {V : set Y}.

Definition contraction ( q : {nonneg R}) ( f : {fun U >-> V}) :=
  q%:num < 1 /\ q%:num.-lipschitz_U f.

Definition is_contraction ( f : {fun U >-> V}) := exists q, contraction q f.

End contractions.

Lemma contraction_fixpoint_unique {R : realDomainType}
    {X : normedModType R} ( U : set X) ( f : {fun U >-> U}) ( x y : X) :
  is_contraction f -> U x -> U y -> x = f x -> y = f y -> x = y.
Proof.
case => q [q1 ctrfq] Ux Uy fixx fixy; apply/subr0_eq/normr0_eq0/eqP.
have [->|xyneq] := eqVneq x y; first by rewrite subrr normr0.
have xypos : 0 < `|x - y| by rewrite normr_gt0 subr_eq0.
suff : `|x - y| <= q%:num * `|x - y| by rewrite ler_pmull // leNgt q1.
by rewrite [in leLHS]fixx [in leLHS]fixy; exact: (ctrfq (_, _)).
Qed.

Section PseudoNormedZMod_numFieldType .
Variables ( R : numFieldType) ( V : pseudoMetricNormedZmodType R).

Local Notation ball_norm := (ball_ (@normr R V)).

Local Notation nbhs_norm := (@nbhs_ball _ V).

Lemma norm_hausdorff : hausdorff_space V.
Proof.
rewrite ball_hausdorff => a b ab.
have ab2 : 0 < `|a - b| / 2 by apply divr_gt0 => //; rewrite normr_gt0 subr_eq0.
set r := PosNum ab2; exists (r, r) => /=.
apply/negPn/negP => /set0P[c] []; rewrite -ball_normE /ball_ => acr bcr.
have r22 : r%:num * 2 = r%:num + r%:num.
  by rewrite (_ : 2 = 1 + 1) // mulrDr mulr1.
move: (ltr_add acr bcr); rewrite -r22 (distrC b c).
move/(le_lt_trans (ler_dist_add c a b)).
by rewrite -mulrA mulVr ?mulr1 ?ltxx // unitfE.
Qed.
Hint Extern 0 (hausdorff_space _) => solve[apply: norm_hausdorff] : core.


Lemma norm_closeE ( x y : V): close x y = (x = y)
Proof.
exact: closeE. Qed.
Lemma norm_close_eq ( x y : V) : close x y -> x = y
Proof.
exact: close_eq. Qed.

Lemma norm_cvg_unique {F} {FF : ProperFilter F} : is_subset1 [set x : V | F --> x].
Proof.
exact: cvg_unique. Qed.

Lemma norm_cvg_eq ( x y : V) : x --> y -> x = y
Proof.
exact: (@cvg_eq V). Qed.
Lemma norm_lim_id ( x : V) : lim x = x
Proof.
exact: lim_id. Qed.

Lemma norm_cvg_lim {F} {FF : ProperFilter F} ( l : V) : F --> l -> lim F = l.
Proof.
exact: (@cvg_lim V). Qed.

Lemma norm_lim_near_cst U {F} {FF : ProperFilter F} ( l : V) ( f : U -> V) :
   (\forall x \near F, f x = l) -> lim (f @ F) = l.
Proof.
exact: lim_near_cst. Qed.

Lemma norm_lim_cst U {F} {FF : ProperFilter F} ( k : V) :
   lim ((fun _ : U => k) @ F) = k.
Proof.
exact: lim_cst. Qed.

Lemma norm_cvgi_unique {U : Type} {F} {FF : ProperFilter F} ( f : U -> set V) :
  {near F, is_fun f} -> is_subset1 [set x : V | f `@ F --> x].
Proof.
exact: cvgi_unique. Qed.

Lemma norm_cvgi_lim {U} {F} {FF : ProperFilter F} ( f : U -> V -> Prop) ( l : V) :
  F (fun x : U => is_subset1 (f x)) ->
  f `@ F --> l -> lim (f `@ F) = l.
Proof.
exact: cvgi_lim. Qed.

Lemma distm_lt_split ( z x y : V) ( e : R) :
  `|x - z| < e / 2 -> `|z - y| < e / 2 -> `|x - y| < e.
Proof.
by have := @ball_split _ _ z x y e; rewrite -ball_normE. Qed.

Lemma distm_lt_splitr ( z x y : V) ( e : R) :
  `|z - x| < e / 2 -> `|z - y| < e / 2 -> `|x - y| < e.
Proof.
by have := @ball_splitr _ _ z x y e; rewrite -ball_normE. Qed.

Lemma distm_lt_splitl ( z x y : V) ( e : R) :
  `|x - z| < e / 2 -> `|y - z| < e / 2 -> `|x - y| < e.
Proof.
by have := @ball_splitl _ _ z x y e; rewrite -ball_normE. Qed.

Lemma normm_leW ( x : V) ( e : R) : e > 0 -> `|x| <= e / 2 -> `|x| < e.
Proof.
by move=> /posnumP[{}e] /le_lt_trans ->//; rewrite [ltRHS]splitr ltr_spaddl.
Qed.

Lemma normm_lt_split ( x y : V) ( e : R) :
  `|x| < e / 2 -> `|y| < e / 2 -> `|x + y| < e.
Proof.
by move=> xlt ylt; rewrite -[y]opprK (@distm_lt_split 0) ?subr0 ?opprK ?add0r.
Qed.

Lemma __deprecated__cvg_distW {F : set (set V)} {FF : Filter F} ( y : V) :
  (forall eps, 0 < eps -> \forall y' \near F, `|y - y'| <= eps) ->
  F --> y.
Proof.
by move=> /cvgrPdist_le. Qed.

End PseudoNormedZMod_numFieldType.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `cvgrPdist_le` or a variation instead")]
Notation cvg_distW := __deprecated__cvg_distW (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `norm_cvgi_lim`")]
Notation norm_cvgi_map_lim := norm_cvgi_lim (only parsing).

Section NormedModule_numFieldType .
Variables ( R : numFieldType) ( V : normedModType R).

Section cvgr_norm_infty .
Variables ( I : Type) ( F : set (set I)) ( FF : Filter F) ( f : I -> V) ( y : V).

Lemma cvgr_norm_lty :
  f @ F --> y -> \forall M \near +oo, \forall y' \near F, `|f y'| < M.
Proof.
by move=> Fy; near do exact: (cvgr_norm_lt y).
Unshelve. all: by end_near. Qed.

Lemma cvgr_norm_ley :
  f @ F --> y -> \forall M \near +oo, \forall y' \near F, `|f y'| <= M.
Proof.
by move=> Fy; near do exact: (cvgr_norm_le y).
Unshelve. all: by end_near. Qed.

Lemma cvgr_norm_gtNy :
  f @ F --> y -> \forall M \near -oo, \forall y' \near F, `|f y'| > M.
Proof.
by move=> Fy; near do exact: (cvgr_norm_gt y).
Unshelve. all: by end_near. Qed.

Lemma cvgr_norm_geNy :
  f @ F --> y -> \forall M \near -oo, \forall y' \near F, `|f y'| >= M.
Proof.
by move=> Fy; near do exact: (cvgr_norm_ge y).
Unshelve. all: by end_near. Qed.

End cvgr_norm_infty.

Lemma __deprecated__cvg_bounded_real {F : set (set V)} {FF : Filter F} ( y : V) :
  F --> y -> \forall M \near +oo, \forall y' \near F, `|y'| < M.
Proof.
exact: cvgr_norm_lty. Qed.

Lemma cvg_bounded {I} {F : set (set I)} {FF : Filter F} ( f : I -> V) ( y : V) :
  f @ F --> y -> bounded_near f F.
Proof.
exact: cvgr_norm_ley. Qed.

End NormedModule_numFieldType.
Arguments cvgr_norm_lty {R V I F FF}.
Arguments cvgr_norm_ley {R V I F FF}.
Arguments cvgr_norm_gtNy {R V I F FF}.
Arguments cvgr_norm_geNy {R V I F FF}.
Arguments cvg_bounded {R V I F FF}.
#[global]
Hint Extern 0 (hausdorff_space _) => solve[apply: norm_hausdorff] : core.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `cvgr_norm_lty` or a variation instead")]
Notation cvg_bounded_real := __deprecated__cvg_bounded_real (only parsing).

Module Export NbhsNorm .
Definition nbhs_simpl := (nbhs_simpl,@nbhs_nbhs_norm,@filter_from_norm_nbhs).
End NbhsNorm.

Lemma cvg_at_rightE ( R : numFieldType) ( V : normedModType R) ( f : R -> V) x :
  cvg (f @ x^') -> lim (f @ x^') = lim (f @ x^'+).
Proof.
move=> cvfx; apply/Logic.eq_sym.
apply: (@cvg_lim _ _ _ (at_right _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A].
by exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _]; apply: xe_A.
Qed.
Arguments cvg_at_rightE {R V} f x.

Lemma cvg_at_leftE ( R : numFieldType) ( V : normedModType R) ( f : R -> V) x :
  cvg (f @ x^') -> lim (f @ x^') = lim (f @ x^'-).
Proof.
move=> cvfx; apply/Logic.eq_sym.
apply: (@cvg_lim _ _ _ (at_left _)) => // A /cvfx /nbhs_ballP [_ /posnumP[e] xe_A].
exists e%:num => //= y xe_y; rewrite lt_def => /andP [xney _].
by apply: xe_A => //; rewrite eq_sym.
Qed.
Arguments cvg_at_leftE {R V} f x.

Section hausdorff .

Lemma pseudoMetricNormedZModType_hausdorff ( R : realFieldType)
    ( V : pseudoMetricNormedZmodType R) :
  hausdorff_space V.
Proof.
move=> p q clp_q; apply/subr0_eq/normr0_eq0/Rhausdorff => A B pq_A.
rewrite -(@normr0 _ V) -(subrr p) => pp_B.
suff loc_preim r C : nbhs`|p - r| C ->
    nbhs r ((fun r => `|p - r|) @^-1` C).
  have [r []] := clp_q _ _ (loc_preim _ _ pp_B) (loc_preim _ _ pq_A).
  by exists `|p - r|.
move=> [e egt0 pre_C]; apply: nbhs_le_nbhs_norm; exists e => //= s /= rse.
apply: pre_C; apply: le_lt_trans (ler_dist_dist _ _) _.
by rewrite opprB addrC subrKA distrC.
Qed.

End hausdorff.

Module Export NearNorm .
Definition near_simpl := (@near_simpl, @nbhs_normE, @filter_from_normE,
  @near_nbhs_norm).
Ltac near_simpl := rewrite ?near_simpl.
End NearNorm.

Lemma __deprecated__continuous_cvg_dist {R : numFieldType}
  ( V W : pseudoMetricNormedZmodType R) ( f : V -> W) x l :
  continuous f -> x --> l -> forall e : {posnum R}, `|f l - f x| < e%:num.
Proof.
by move=> cf /cvg_eq->// e; rewrite subrr normr0. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="simply use the fact that `(x --> l) -> (x = l)`")]
Notation continuous_cvg_dist := __deprecated__continuous_cvg_dist (only parsing).

Matrices:
Section mx_norm .
Variables ( K : numDomainType) ( m n : nat).
Implicit Types x y : 'M[K]_(m, n).

Definition mx_norm x : K := (\big[maxr/0%:nng]_i `|x i.1 i.2|%:nng)%:num.

Lemma mx_normE x : mx_norm x = (\big[maxr/0%:nng]_i `|x i.1 i.2|%:nng)%:num.
Proof.
by []. Qed.

Lemma ler_mx_norm_add x y : mx_norm (x + y) <= mx_norm x + mx_norm y.
Proof.
rewrite !mx_normE [_ <= _%:num]num_le; apply/bigmax_leP.
split=> [|ij _]; first exact: addr_ge0.
rewrite mxE; apply: le_trans (ler_norm_add _ _) _.
by rewrite ler_add// -[leLHS]nngE num_le; exact: le_bigmax.
Qed.

Lemma mx_norm_eq0 x : mx_norm x = 0 -> x = 0.
Proof.
move/eqP; rewrite eq_le -[0]nngE mx_normE num_le => /andP[/bigmax_leP[_ x0] _].
apply/matrixP => i j; rewrite mxE; apply/eqP.
by rewrite -num_abs_eq0 eq_le (x0 (i, j))//= -num_le/=.
Qed.

Lemma mx_norm0 : mx_norm 0 = 0.
Proof.
rewrite /mx_norm (eq_bigr (fun=> 0%R%:nng)) /=.
  by elim/big_ind : _ => // a b; rewrite num_max => -> ->; rewrite maxxx.
by move=> i _; apply val_inj => /=; rewrite mxE normr0.
Qed.

Lemma mx_norm_neq0 x : mx_norm x != 0 -> exists i, mx_norm x = `|x i.1 i.2|.
Proof.
rewrite /mx_norm.
elim/big_ind : _ => [|a b Ha Hb H|/= i _ _]; [by rewrite eqxx| |by exists i].
case: (leP a b) => ab.
+ suff /Hb[i xi] : b%:num != 0 by exists i.
  by apply: contra H => b0; rewrite max_r.
+ suff /Ha[i xi] : a%:num != 0 by exists i.
  by apply: contra H => a0; rewrite max_l // ltW.
Qed.

Lemma mx_norm_natmul x k : mx_norm (x *+ k) = (mx_norm x) *+ k.
Proof.
rewrite [in RHS]/mx_norm; elim: k => [|k ih]; first by rewrite !mulr0n mx_norm0.
rewrite !mulrS; apply/eqP; rewrite eq_le; apply/andP; split.
  by rewrite -ih; exact/ler_mx_norm_add.
have [/mx_norm_eq0->|x0] := eqVneq (mx_norm x) 0.
  by rewrite -/(mx_norm 0) -/(mx_norm 0) !(mul0rn,addr0,mx_norm0).
rewrite -/(mx_norm x) -num_abs_le; last by rewrite mx_normE.
apply/bigmax_geP; right => /=.
have [i Hi] := mx_norm_neq0 x0.
exists i => //; rewrite Hi -!mulrS -normrMn mulmxnE.
by rewrite le_eqVlt; apply/orP; left; apply/eqP/val_inj => /=; rewrite normr_id.
Qed.

Lemma mx_normN x : mx_norm (- x) = mx_norm x.
Proof.
congr (_%:nngnum).
by apply eq_bigr => /= ? _; apply/eqP; rewrite mxE -num_eq //= normrN.
Qed.

End mx_norm.

Lemma mx_normrE ( K : realDomainType) ( m n : nat) ( x : 'M[K]_(m, n)) :
  mx_norm x = \big[maxr/0]_ij `|x ij.1 ij.2|.
Proof.
rewrite /mx_norm; apply/esym.
elim/big_ind2 : _ => //= a a' b b' ->{a'} ->{b'}.
by have [ab|ab] := leP a b; [rewrite max_r | rewrite max_l // ltW].
Qed.

Definition matrix_normedZmodMixin ( K : numDomainType) ( m n : nat) :=
  @Num.NormedMixin _ _ _ (@mx_norm K m.+1 n.+1) (@ler_mx_norm_add _ _ _)
    (@mx_norm_eq0 _ _ _) (@mx_norm_natmul _ _ _) (@mx_normN _ _ _).

Canonical matrix_normedZmodType ( K : numDomainType) ( m n : nat) :=
  NormedZmodType K 'M[K]_(m.+1, n.+1) (matrix_normedZmodMixin K m n).

Section matrix_NormedModule .
Variables ( K : numFieldType) ( m n : nat).

Local Lemma ball_gt0 ( x y : 'M[K]_(m.+1, n.+1)) e : ball x e y -> 0 < e.
Proof.
by move/(_ ord0 ord0); apply: le_lt_trans. Qed.

Lemma mx_norm_ball :
  @ball _ [pseudoMetricType K of 'M[K]_(m.+1, n.+1)] = ball_ (fun x => `| x |).
Proof.
rewrite /normr /ball_ predeq3E => x e y /=; rewrite mx_normE; split => xey.
- have e_gt0 : 0 < e := ball_gt0 xey.
  move: e_gt0 (e_gt0) xey => /ltW/nonnegP[{}e] e_gt0 xey.
  rewrite num_lt; apply/bigmax_ltP => /=.
  by rewrite -num_lt /=; split => // -[? ?] _; rewrite !mxE; exact: xey.
- have e_gt0 : 0 < e by rewrite (le_lt_trans _ xey).
  move: e_gt0 (e_gt0) xey => /ltW/nonnegP[{}e] e_gt0.
  move=> /(bigmax_ltP _ _ _ (fun _ => _%:sgn)) /= [e0 xey] i j.
  by move: (xey (i, j)); rewrite !mxE; exact.
Qed.

Definition matrix_PseudoMetricNormedZmodMixin :=
  PseudoMetricNormedZmodule.Mixin mx_norm_ball.
Canonical matrix_pseudoMetricNormedZmodType :=
  PseudoMetricNormedZmodType K 'M[K]_(m.+1, n.+1) matrix_PseudoMetricNormedZmodMixin.

Lemma mx_normZ ( l : K) ( x : 'M[K]_(m.+1, n.+1)) : `| l *: x | = `| l | * `| x |.
Proof.
rewrite {1 3}/normr /= !mx_normE
 (eq_bigr (fun i => (`|l| * `|x i.1 i.2|)%:nng)); last first.
  by move=> i _; rewrite mxE //=; apply/eqP; rewrite -num_eq /= normrM.
elim/big_ind2 : _ => // [|a b c d bE dE]; first by rewrite mulr0.
by rewrite !num_max bE dE maxr_pmulr.
Qed.

Definition matrix_NormedModMixin := NormedModMixin mx_normZ.
Canonical matrix_normedModType :=
  NormedModType K 'M[K]_(m.+1, n.+1) matrix_NormedModMixin.

End matrix_NormedModule.

Pairs:
Section prod_PseudoMetricNormedZmodule .
Context {K : numDomainType} {U V : pseudoMetricNormedZmodType K}.

Lemma ball_prod_normE : ball = ball_ (fun x => `| x : U * V |).
Proof.
rewrite funeq2E => - [xu xv] e; rewrite predeqE => - [yu yv].
rewrite /ball /= /prod_ball -!ball_normE /ball_ /=.
by rewrite comparable_lt_maxl// ?real_comparable//; split=> /andP.
Qed.

Lemma prod_norm_ball : @ball _ [pseudoMetricType K of U * V] = ball_ (fun x => `|x|).
Proof.
by rewrite /= - ball_prod_normE. Qed.

Definition prod_pseudoMetricNormedZmodMixin :=
  PseudoMetricNormedZmodule.Mixin prod_norm_ball.
Canonical prod_pseudoMetricNormedZmodType :=
  PseudoMetricNormedZmodType K (U * V) prod_pseudoMetricNormedZmodMixin.

End prod_PseudoMetricNormedZmodule.

Section prod_NormedModule .
Context {K : numDomainType} {U V : normedModType K}.

Lemma prod_norm_scale ( l : K) ( x : U * V) : `| l *: x | = `|l| * `| x |.
Proof.
by rewrite prod_normE /= !normrZ maxr_pmulr. Qed.

Definition prod_NormedModMixin := NormedModMixin prod_norm_scale.
Canonical prod_normedModType :=
  NormedModType K (U * V) prod_NormedModMixin.

End prod_NormedModule.

Section example_of_sharing .
Variables ( K : numDomainType).

Example matrix_triangke m n ( M N : 'M[K]_(m.+1, n.+1)) :
  `|M + N| <= `|M| + `|N|.
Proof.
apply ler_norm_add. Qed.

Example pair_triangle ( x y : K * K) : `|x + y| <= `|x| + `|y|.
Proof.
apply ler_norm_add. Qed.

End example_of_sharing.

Section prod_NormedModule_lemmas .

Context {T : Type} {K : numDomainType} {U V : normedModType K}.

Lemma fcvgr2dist_ltP {F : set (set U)} {G : set (set V)}
  {FF : Filter F} {FG : Filter G} ( y : U) ( z : V) :
  (F, G) --> (y, z) <->
  forall eps, 0 < eps ->
   \forall y' \near F & z' \near G, `| (y, z) - (y', z') | < eps.
Proof.
exact: fcvgrPdist_lt. Qed.

Lemma cvgr2dist_ltP {I J} {F : set (set I)} {G : set (set J)}
  {FF : Filter F} {FG : Filter G} ( f : I -> U) ( g : J -> V) ( y : U) ( z : V) :
  (f @ F, g @ G) --> (y, z) <->
  forall eps, 0 < eps ->
   \forall i \near F & j \near G, `| (y, z) - (f i, g j) | < eps.
Proof.
rewrite fcvgr2dist_ltP; split=> + e e0 => /(_ e e0);
  by rewrite !near_simpl// => ?; rewrite !near_simpl.
Qed.

Lemma cvgr2dist_lt {I J} {F : set (set I)} {G : set (set J)}
  {FF : Filter F} {FG : Filter G} ( f : I -> U) ( g : J -> V) ( y : U) ( z : V) :
  (f @ F, g @ G) --> (y, z) ->
  forall eps, 0 < eps ->
   \forall i \near F & j \near G, `| (y, z) - (f i, g j) | < eps.
Proof.
by rewrite cvgr2dist_ltP. Qed.

Lemma __deprecated__cvg_dist2 {F : set (set U)} {G : set (set V)}
  {FF : Filter F} {FG : Filter G} ( y : U) ( z : V):
  (F, G) --> (y, z) ->
  forall eps, 0 < eps ->
   \forall y' \near F & z' \near G, `|(y, z) - (y', z')| < eps.
Proof.
exact: cvgr2dist_lt. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
note="use `cvgr2dist_lt` or a variant instead")]
Notation cvg_dist2 := __deprecated__cvg_dist2 (only parsing).

End prod_NormedModule_lemmas.
Arguments cvgr2dist_ltP {_ _ _ _ _ F G FF FG}.
Arguments cvgr2dist_lt {_ _ _ _ _ F G FF FG}.

#[deprecated(since="mathcomp-analysis 0.6.0",
note="use `fcvgr2dist_ltP` or a variant instead")]
Notation cvg_dist2P := fcvgr2dist_ltP (only parsing).

Normed vector spaces have some continuous functions that are in fact continuous on pseudoMetricNormedZmodType
Section NVS_continuity_pseudoMetricNormedZmodType .
Context {K : numFieldType} {V : pseudoMetricNormedZmodType K}.

Lemma opp_continuous : continuous (@GRing.opp V).
Proof.
move=> x; apply/cvgrPdist_lt=> e e0; near do rewrite -opprD normrN.
exact: cvgr_dist_lt.
Unshelve. all: by end_near. Qed.

Lemma add_continuous : continuous (fun z : V * V => z.1 + z.2).
Proof.
move=> [/= x y]; apply/cvgrPdist_lt=> _/posnumP[e]; near=> a b => /=.
by rewrite opprD addrACA normm_lt_split.
Unshelve. all: by end_near. Qed.

Lemma natmul_continuous n : continuous (fun x : V => x *+ n).
Proof.
case: n => [|n] x; first exact: cvg_cst.
apply/cvgrPdist_lt=> _/posnumP[e]; near=> a.
by rewrite -mulrnBl normrMn -mulr_natr -ltr_pdivl_mulr.
Unshelve. all: by end_near. Qed.

Lemma norm_continuous : continuous (normr : V -> K).
Proof.
move=> x; apply/cvgrPdist_lt => e e0; apply/nbhs_normP; exists e => //= y.
exact/le_lt_trans/ler_dist_dist.
Qed.

End NVS_continuity_pseudoMetricNormedZmodType.

Section NVS_continuity_normedModType .
Context {K : numFieldType} {V : normedModType K}.

Lemma scale_continuous : continuous (fun z : K * V => z.1 *: z.2).
Proof.
move=> [/= k x]; apply/cvgrPdist_lt => _/posnumP[e]; near +oo_K => M.
near=> l z => /=; have M0 : 0 < M by [].
rewrite (@distm_lt_split _ _ (k *: z)) // -?(scalerBr, scalerBl) normrZ.
  rewrite (@le_lt_trans _ _ (M * `|x - z|)) ?ler_wpmul2r -?ltr_pdivl_mull//.
  by near: z; apply: cvgr_dist_lt; rewrite // mulr_gt0 ?invr_gt0.
rewrite (@le_lt_trans _ _ (`|k - l| * M)) ?ler_wpmul2l -?ltr_pdivl_mulr//.
  by near: z; near: M; apply: cvg_bounded (@cvg_refl _ _).
by near: l; apply: cvgr_dist_lt; rewrite // divr_gt0.
Unshelve. all: by end_near. Qed.

Arguments scale_continuous _ _ : clear implicits.

Lemma scaler_continuous k : continuous (fun x : V => k *: x).
Proof.
by move=> x; apply: (cvg_comp2 (cvg_cst _) cvg_id (scale_continuous (_, _))).
Qed.

Lemma scalel_continuous ( x : V) : continuous (fun k : K => k *: x).
Proof.
by move=> k; apply: (cvg_comp2 cvg_id (cvg_cst _) (scale_continuous (_, _))).
Qed.

Continuity of norm
End NVS_continuity_normedModType.

Section NVS_continuity_mul .

Context {K : numFieldType}.

Lemma mul_continuous : continuous (fun z : K * K => z.1 * z.2).
Proof.
exact: scale_continuous. Qed.

Lemma mulrl_continuous ( x : K) : continuous ( *%R x).
Proof.
exact: scaler_continuous. Qed.

Lemma mulrr_continuous ( y : K) : continuous ( *%R^~ y).
Proof.
exact: scalel_continuous. Qed.

Lemma inv_continuous ( x : K) : x != 0 -> {for x, continuous GRing.inv}.
Proof.
move=> x_neq0; have nx_gt0 : `|x| > 0 by rewrite normr_gt0.
apply/(@cvgrPdist_ltp _ _ _ (nbhs x)); near (0 : K)^'+ => d. near=> e.
near=> y; have y_neq0 : y != 0 by near: y; apply: (cvgr_neq0 x).
rewrite /= -div1r -[y^-1]div1r -mulNr addf_div// mul1r mulN1r normrM normfV.
rewrite ltr_pdivr_mulr ?normr_gt0 ?mulf_neq0// (@lt_le_trans _ _ (e * d))//.
  by near: y; apply: cvgr_distC_lt => //; rewrite mulr_gt0.
rewrite ler_pmul2l => //=; rewrite normrM -ler_pdivr_mull//.
near: y; apply: (cvgr_norm_ge x) => //; rewrite ltr_pdivr_mull//.
by near: d; apply: nbhs_right_lt; rewrite mulr_gt0.
Unshelve. all: by end_near. Qed.

End NVS_continuity_mul.

Section cvg_composition_pseudometric .

Context {K : numFieldType} {V : pseudoMetricNormedZmodType K} {T : Type}.
Context ( F : set (set T)) {FF : Filter F}.
Implicit Types (f g : T -> V) (s : T -> K) (k : K) (x : T) (a b : V).

Lemma cvgN f a : f @ F --> a -> - f @ F --> - a.
Proof.
by move=> ?; apply: continuous_cvg => //; exact: opp_continuous. Qed.

Lemma cvgNP f a : - f @ F --> - a <-> f @ F --> a.
Proof.
by split=> /cvgN//; rewrite !opprK. Qed.

Lemma is_cvgN f : cvg (f @ F) -> cvg (- f @ F).
Proof.
by move=> /cvgN /cvgP. Qed.

Lemma is_cvgNE f : cvg ((- f) @ F) = cvg (f @ F).
Proof.
by rewrite propeqE; split=> /cvgN; rewrite ?opprK => /cvgP. Qed.

Lemma cvgMn f n a : f @ F --> a -> ((@GRing.natmul _)^~n \o f) @ F --> a *+ n.
Proof.
by move=> ?; apply: continuous_cvg => //; exact: natmul_continuous. Qed.

Lemma is_cvgMn f n : cvg (f @ F) -> cvg (((@GRing.natmul _)^~n \o f) @ F).
Proof.
by move=> /cvgMn /cvgP. Qed.

Lemma cvgD f g a b : f @ F --> a -> g @ F --> b -> (f + g) @ F --> a + b.
Proof.
by move=> ? ?; apply: continuous2_cvg => //; exact: add_continuous. Qed.

Lemma is_cvgD f g : cvg (f @ F) -> cvg (g @ F) -> cvg (f + g @ F).
Proof.
by have := cvgP _ (cvgD _ _); apply. Qed.

Lemma cvgB f g a b : f @ F --> a -> g @ F --> b -> (f - g) @ F --> a - b.
Proof.
by move=> ? ?; apply: cvgD => //; apply: cvgN. Qed.

Lemma is_cvgB f g : cvg (f @ F) -> cvg (g @ F) -> cvg (f - g @ F).
Proof.
by have := cvgP _ (cvgB _ _); apply. Qed.

Lemma is_cvgDlE f g : cvg (g @ F) -> cvg ((f + g) @ F) = cvg (f @ F).
Proof.
move=> g_cvg; rewrite propeqE; split; last by move=> /is_cvgD; apply.
by move=> /is_cvgB /(_ g_cvg); rewrite addrK.
Qed.

Lemma is_cvgDrE f g : cvg (f @ F) -> cvg ((f + g) @ F) = cvg (g @ F).
Proof.
by rewrite addrC; apply: is_cvgDlE. Qed.

Lemma cvg_sub0 f g a : (f - g) @ F --> (0 : V) -> g @ F --> a -> f @ F --> a.
Proof.
by move=> Cfg Cg; have := cvgD Cfg Cg; rewrite subrK add0r; apply.
Qed.

Lemma cvg_zero f a : (f - cst a) @ F --> (0 : V) -> f @ F --> a.
Proof.
by move=> Cfa; apply: cvg_sub0 Cfa (cvg_cst _). Qed.

Lemma cvg_norm f a : f @ F --> a -> `|f x| @[x --> F] --> (`|a| : K).
Proof.
by apply: continuous_cvg; apply: norm_continuous. Qed.

Lemma is_cvg_norm f : cvg (f @ F) -> cvg ((Num.norm \o f : T -> K) @ F).
Proof.
by have := cvgP _ (cvg_norm _); apply. Qed.

Lemma norm_cvg0P f : `|f x| @[x --> F] --> 0 <-> f @ F --> 0.
Proof.
split; last by move=> /cvg_norm; rewrite normr0.
move=> f0; apply/cvgr0Pnorm_lt => e e_gt0.
by near do rewrite -normr_id; apply: cvgr0_norm_lt.
Unshelve. all: by end_near. Qed.

Lemma norm_cvg0 f : `|f x| @[x --> F] --> 0 -> f @ F --> 0.
Proof.
by rewrite norm_cvg0P. Qed.

End cvg_composition_pseudometric.

Lemma __deprecated__cvg_dist0 {U} {K : numFieldType} {V : normedModType K}
  {F : set (set U)} {FF : Filter F} ( f : U -> V) :
  (fun x => `|f x|) @ F --> (0 : K)
  -> f @ F --> (0 : V).
Proof.
exact: norm_cvg0. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
 note="renamed to `norm_cvg0` and generalized to `pseudoMetricNormedZmodType`")]
Notation cvg_dist0 := __deprecated__cvg_dist0 (only parsing).

Section cvg_composition_normed .
Context {K : numFieldType} {V : normedModType K} {T : Type}.
Context ( F : set (set T)) {FF : Filter F}.
Implicit Types (f g : T -> V) (s : T -> K) (k : K) (x : T) (a b : V).

Lemma cvgZ s f k a : s @ F --> k -> f @ F --> a ->
                     s x *: f x @[x --> F] --> k *: a.
Proof.
move=> ? ?; apply: continuous2_cvg => //; exact: scale_continuous. Qed.

Lemma is_cvgZ s f : cvg (s @ F) ->
  cvg (f @ F) -> cvg ((fun x => s x *: f x) @ F).
Proof.
by have := cvgP _ (cvgZ _ _); apply. Qed.

Lemma cvgZl s k a : s @ F --> k -> s x *: a @[x --> F] --> k *: a.
Proof.
by move=> ?; apply: cvgZ => //; exact: cvg_cst. Qed.

Lemma is_cvgZl s a : cvg (s @ F) -> cvg ((fun x => s x *: a) @ F).
Proof.
by have := cvgP _ (cvgZl _); apply. Qed.

Lemma cvgZr k f a : f @ F --> a -> k \*: f @ F --> k *: a.
Proof.
apply: cvgZ => //; exact: cvg_cst. Qed.

Lemma is_cvgZr k f : cvg (f @ F) -> cvg (k *: f @ F).
Proof.
by have := cvgP _ (cvgZr _); apply. Qed.

Lemma is_cvgZrE k f : k != 0 -> cvg (k *: f @ F) = cvg (f @ F).
Proof.
move=> k_neq0; rewrite propeqE; split => [/(@cvgZr k^-1)|/(@cvgZr k)/cvgP//].
by under [_ \*: _]funext => x /= do rewrite scalerK//; apply: cvgP.
Qed.

End cvg_composition_normed.

Section cvg_composition_field .
Context {K : numFieldType} {T : Type}.
Context ( F : set (set T)) {FF : Filter F}.
Implicit Types (f g : T -> K) (a b : K).

Lemma cvgV f a : a != 0 -> f @ F --> a -> f\^-1 @ F --> a^-1.
Proof.
by move=> k_neq0 f_cvg; apply: continuous_cvg => //; apply: inv_continuous.
Qed.

Lemma cvgVP f a : a != 0 -> f\^-1 @ F --> a^-1 <-> f @ F --> a.
Proof.
move=> aN0; split=> /(cvgV _); last exact.
by rewrite invrK invr_eq0 inv_funK; apply.
Qed.

Lemma is_cvgV f : lim (f @ F) != 0 -> cvg (f @ F) -> cvg (f\^-1 @ F).
Proof.
by move=> /cvgV cvf /cvf /cvgP. Qed.

Lemma cvgM f g a b : f @ F --> a -> g @ F --> b -> (f \* g) @ F --> a * b.
Proof.
exact: cvgZ. Qed.

Lemma cvgMl f a b : f @ F --> a -> (f x * b) @[x --> F] --> a * b.
Proof.
exact: cvgZl. Qed.

Lemma cvgMr g a b : g @ F --> b -> (a * g x) @[x --> F] --> a * b.
Proof.
exact: cvgZr. Qed.

Lemma is_cvgM f g : cvg (f @ F) -> cvg (g @ F) -> cvg (f \* g @ F).
Proof.
exact: is_cvgZ. Qed.

Lemma is_cvgMr g a ( f := fun=> a) : cvg (g @ F) -> cvg (f \* g @ F).
Proof.
exact: is_cvgZr. Qed.

Lemma is_cvgMrE g a ( f := fun=> a) : a != 0 -> cvg (f \* g @ F) = cvg (g @ F).
Proof.
exact: is_cvgZrE. Qed.

Lemma is_cvgMl f a ( g := fun=> a) : cvg (f @ F) -> cvg (f \* g @ F).
Proof.
move=> f_cvg; have -> : f \* g = g \* f by apply/funeqP=> x; rewrite /= mulrC.
exact: is_cvgMr.
Qed.

Lemma is_cvgMlE f a ( g := fun=> a) : a != 0 -> cvg (f \* g @ F) = cvg (f @ F).
Proof.
move=> a_neq0; have -> : f \* g = g \* f by apply/funeqP=> x; rewrite /= mulrC.
exact: is_cvgMrE.
Qed.

End cvg_composition_field.

Section limit_composition_pseudometric .

Context {K : numFieldType} {V : pseudoMetricNormedZmodType K} {T : Type}.
Context ( F : set (set T)) {FF : ProperFilter F}.
Implicit Types (f g : T -> V) (s : T -> K) (k : K) (x : T) (a : V).

Lemma limN f : cvg (f @ F) -> lim (- f @ F) = - lim (f @ F).
Proof.
by move=> ?; apply: cvg_lim => //; apply: cvgN. Qed.

Lemma limD f g : cvg (f @ F) -> cvg (g @ F) ->
   lim (f + g @ F) = lim (f @ F) + lim (g @ F).
Proof.
by move=> ? ?; apply: cvg_lim => //; apply: cvgD. Qed.

Lemma limB f g : cvg (f @ F) -> cvg (g @ F) ->
   lim (f - g @ F) = lim (f @ F) - lim (g @ F).
Proof.
by move=> ? ?; apply: cvg_lim => //; apply: cvgB. Qed.

Lemma lim_norm f : cvg (f @ F) -> lim ((fun x => `|f x| : K) @ F) = `|lim (f @ F)|.
Proof.
by move=> ?; apply: cvg_lim => //; apply: cvg_norm. Qed.

End limit_composition_pseudometric.

Section limit_composition_normed .

Context {K : numFieldType} {V : normedModType K} {T : Type}.
Context ( F : set (set T)) {FF : ProperFilter F}.
Implicit Types (f g : T -> V) (s : T -> K) (k : K) (x : T) (a : V).

Lemma limZ s f : cvg (s @ F) -> cvg (f @ F) ->
   lim ((fun x => s x *: f x) @ F) = lim (s @ F) *: lim (f @ F).
Proof.
by move=> ? ?; apply: cvg_lim => //; apply: cvgZ. Qed.

Lemma limZl s a : cvg (s @ F) ->
   lim ((fun x => s x *: a) @ F) = lim (s @ F) *: a.
Proof.
by move=> ?; apply: cvg_lim => //; apply: cvgZl. Qed.

Lemma limZr k f : cvg (f @ F) -> lim (k *: f @ F) = k *: lim (f @ F).
Proof.
by move=> ?; apply: cvg_lim => //; apply: cvgZr. Qed.

End limit_composition_normed.

Section limit_composition_field .

Context {K : numFieldType} {T : Type}.
Context ( F : set (set T)) {FF : ProperFilter F}.
Implicit Types (f g : T -> K).

Lemma limM f g : cvg (f @ F) -> cvg (g @ F) ->
   lim (f \* g @ F) = lim (f @ F) * lim (g @ F).
Proof.
by move=> ? ?; apply: cvg_lim => //; apply: cvgM. Qed.

End limit_composition_field.

Section cvg_composition_field_proper .

Context {K : numFieldType} {T : Type}.
Context ( F : set (set T)) {FF : ProperFilter F}.
Implicit Types (f g : T -> K) (a b : K).

Lemma limV f : lim (f @ F) != 0 -> lim (f\^-1 @ F) = (lim (f @ F))^-1.
Proof.
by move=> ?; apply: cvg_lim => //; apply: cvgV => //; apply: cvgNpoint.
Qed.

Lemma is_cvgVE f : lim (f @ F) != 0 -> cvg (f\^-1 @ F) = cvg (f @ F).
Proof.
move=> ?; apply/propeqP; split=> /is_cvgV; last exact.
by rewrite inv_funK; apply; rewrite limV ?invr_eq0//.
Qed.

End cvg_composition_field_proper.

Section ProperFilterRealType .
Context {T : Type} {F : set (set T)} {FF : ProperFilter F} {R : realFieldType}.
Implicit Types (f g h : T -> R) (a b : R).

Lemma cvgr_to_ge f a b : f @ F --> a -> (\near F, b <= f F) -> b <= a.
Proof.
by move=> /[swap]/(closed_cvg _ (@closed_ge _ b))/[apply]. Qed.

Lemma cvgr_to_le f a b : f @ F --> a -> (\near F, f F <= b) -> a <= b.
Proof.
by move=> /[swap]/(closed_cvg _ (@closed_le _ b))/[apply]. Qed.

Lemma limr_ge x f : cvg (f @ F) -> (\near F, x <= f F) -> x <= lim (f @ F).
Proof.
exact: cvgr_to_ge. Qed.

Lemma limr_le x f : cvg (f @ F) -> (\near F, x >= f F) -> x >= lim (f @ F).
Proof.
exact: cvgr_to_le. Qed.

Lemma __deprecated__cvg_gt_ge ( u : T -> R) a b :
  u @ F --> b -> a < b -> \forall n \near F, a <= u n.
Proof.
by move=> ?; apply: cvgr_ge. Qed.

Lemma __deprecated__cvg_lt_le ( u : T -> R) c b :
  u @ F --> b -> b < c -> \forall n \near F, u n <= c.
Proof.
by move=> ?; apply: cvgr_le. Qed.

End ProperFilterRealType.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgr_ge` and generalized to a `Filter`")]
Notation cvg_gt_ge := __deprecated__cvg_gt_ge (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgr_le` and generalized to a `Filter`")]
Notation cvg_lt_le_:= __deprecated__cvg_lt_le (only parsing).

Section local_continuity .

Context {K : numFieldType} {V : normedModType K} {T : topologicalType}.
Implicit Types (f g : T -> V) (s t : T -> K) (x : T) (k : K) (a : V).

Lemma continuousN ( f : T -> V) x :
  {for x, continuous f} -> {for x, continuous (fun x => - f x)}.
Proof.
by move=> ?; apply: cvgN. Qed.

Lemma continuousD f g x :
  {for x, continuous f} -> {for x, continuous g} ->
  {for x, continuous (f + g)}.
Proof.
by move=> f_cont g_cont; apply: cvgD. Qed.

Lemma continuousB f g x :
  {for x, continuous f} -> {for x, continuous g} ->
  {for x, continuous (f - g)}.
Proof.
by move=> f_cont g_cont; apply: cvgB. Qed.

Lemma continuousZ s f x :
  {for x, continuous s} -> {for x, continuous f} ->
  {for x, continuous (fun x => s x *: f x)}.
Proof.
by move=> ? ?; apply: cvgZ. Qed.

Lemma continuousZr f k x :
  {for x, continuous f} -> {for x, continuous (k \*: f)}.
Proof.
by move=> ?; apply: cvgZr. Qed.

Lemma continuousZl s a x :
  {for x, continuous s} -> {for x, continuous (fun z => s z *: a)}.
Proof.
by move=> ?; apply: cvgZl. Qed.

Lemma continuousM s t x :
  {for x, continuous s} -> {for x, continuous t} ->
  {for x, continuous (s * t)}.
Proof.
by move=> f_cont g_cont; apply: cvgM. Qed.

Lemma continuousV s x : s x != 0 ->
  {for x, continuous s} -> {for x, continuous (fun x => (s x)^-1%R)}.
Proof.
by move=> ?; apply: cvgV. Qed.

End local_continuity.

Section nbhs_ereal .
Context {R : numFieldType} ( P : \bar R -> Prop).

Lemma nbhs_EFin ( x : R) : (\forall y \near x%:E, P y) <-> \near x, P x%:E.
Proof.
done. Qed.

Lemma nbhs_ereal_pinfty :
  (\forall x \near +oo%E, P x) <-> [/\ P +oo%E & \forall x \near +oo, P x%:E].
Proof.
split=> [|[Py]] [x [xr Px]]; last by exists x; split=> // -[y||]//; apply: Px.
by split; [|exists x; split=> // y xy]; apply: Px.
Qed.

Lemma nbhs_ereal_ninfty :
  (\forall x \near -oo%E, P x) <-> [/\ P -oo%E & \forall x \near -oo, P x%:E].
Proof.
split=> [|[Py]] [x [xr Px]]; last by exists x; split=> // -[y||]//; apply: Px.
by split; [|exists x; split=> // y xy]; apply: Px.
Qed.
End nbhs_ereal.

Section cvg_fin .
Context {R : numFieldType}.

Section filter .
Context {F : set (set \bar R)} {FF : Filter F}.

Lemma fine_fcvg a : F --> a%:E -> fine @ F --> a.
Proof.
move=> /(_ _)/= Fa; apply/cvgrPdist_lt=> // _/posnumP[e]; rewrite near_simpl.
by apply: Fa; apply/nbhs_EFin => /=; apply: (@cvgr_dist_lt _ _ _ (nbhs a)).
(* BUG: using cvgr_dist_lt without (nbhs _) expands the definition of nbhs, *)
(*    so that it is not recognized as a filter anymore *)
Qed.

Lemma fcvg_is_fine a : F --> a%:E -> \near F, F \is a fin_num.
Proof.
by apply; apply/nbhs_EFin; near=> x. Unshelve. all: by end_near. Qed.

End filter.

Section limit .
Context {I : Type} {F : set (set I)} {FF : Filter F} ( f : I -> \bar R).

Lemma fine_cvg a : f @ F --> a%:E -> fine \o f @ F --> a.
Proof.
exact: fine_fcvg. Qed.

Lemma cvg_is_fine a : f @ F --> a%:E -> \near F, f F \is a fin_num.
Proof.
exact: fcvg_is_fine. Qed.

Lemma cvg_EFin a : (\near F, f F \is a fin_num) -> fine \o f @ F --> a ->
  f @ F --> a%:E.
Proof.
move=> Ffin Fa P/= /nbhs_EFin /Fa; rewrite !near_simpl.
by apply: filterS2 Ffin => x /fineK->.
Qed.

Lemma fine_cvgP a :
   f @ F --> a%:E <-> (\near F, f F \is a fin_num) /\ fine \o f @ F --> a.
Proof.
by split;[split;[exact: (@cvg_is_fine a)|exact: fine_cvg]|case; apply: cvg_EFin].
Qed.

Lemma neq0_fine_cvgP a : a != 0 -> f @ F --> a%:E <-> fine \o f @ F --> a.
Proof.
move=> a_neq0; split=> [|Fa]; first exact: fine_cvg.
apply: cvg_EFin=> //; near (0 : R)^'+ => e.
have lea : e <= `|a| by near: e; apply: nbhs_right_le; rewrite normr_gt0.
near=> x; have : `|a - fine (f x)| < e by near: x; apply: cvgr_dist_lt.
by case: f=> //=; rewrite subr0; apply: contra_ltT.
Unshelve. all: by end_near. Qed.

End limit.

End cvg_fin.

Lemma eq_cvg ( T T' : Type) ( F : set (set T)) ( f g : T -> T') ( x : set (set T')) :
  f =1 g -> (f @ F --> x) = (g @ F --> x).
Proof.
by move=> /funext->. Qed.

Lemma eq_is_cvg ( T T' : Type) ( fT : filteredType T') ( F : set (set T)) ( f g : T -> T') :
  f =1 g -> [cvg (f @ F) in fT] = [cvg (g @ F) in fT].
Proof.
by move=> /funext->. Qed.

Section ecvg_realFieldType .
Context {I} {F : set (set I)} {FF : Filter F} {R : realFieldType}.
Implicit Types f g u v : I -> \bar R.
Local Open Scope ereal_scope.

Lemma cvgeD f g a b :
  a +? b -> f @ F --> a -> g @ F --> b -> f \+ g @ F --> a + b.
Proof.
have yE u v x : u @ F --> +oo -> v @ F --> x%:E -> u \+ v @ F --> +oo.
  move=> /cvgeyPge/= foo /fine_cvgP[Fg gb]; apply/cvgeyPgey.
  near=> A; near=> n; have /(_ _)/wrap[//|Fgn] := near Fg n.
  rewrite -lee_subl_addr// (@le_trans _ _ (A - (x - 1))%:E)//; last by near: n.
  rewrite ?EFinB lee_sub// lee_subl_addr// -[v n]fineK// -EFinD lee_fin.
  by rewrite ler_distl_addr// ltW//; near: n; apply: cvgr_dist_lt.
have NyE u v x : u @ F --> -oo -> v @ F --> x%:E -> u \+ v @ F --> -oo.
  move=> /cvgeNyPle/= foo /fine_cvgP -[Fg gb]; apply/cvgeNyPleNy.
  near=> A; near=> n; have /(_ _)/wrap[//|Fgn] := near Fg n.
  rewrite -lee_subr_addr// (@le_trans _ _ (A - (x + 1))%:E)//; first by near: n.
  rewrite ?EFinB ?EFinD lee_sub// -[v n]fineK// -EFinD lee_fin.
  by rewrite ler_distlC_addr// ltW//; near: n; apply: cvgr_dist_lt.
have yyE u v : u @ F --> +oo -> v @ F --> +oo -> u \+ v @ F --> +oo.
  move=> /cvgeyPge foo /cvgeyPge goo; apply/cvgeyPge => A; near=> y.
  by rewrite -[leLHS]adde0 lee_add//; near: y; [apply: foo|apply: goo].
have NyNyE u v : u @ F --> -oo -> v @ F --> -oo -> u \+ v @ F --> -oo.
  move=> /cvgeNyPle foo /cvgeNyPle goo; apply/cvgeNyPle => A; near=> y.
  by rewrite -[leRHS]adde0 lee_add//; near: y; [apply: foo|apply: goo].
have addfC u v : u \+ v = v \+ u.
  by apply/funeqP => x; rewrite /= addeC.
move: a b => [a| |] [b| |] //= _; rewrite ?(addey, addye, addeNy, addNye)//=;
  do ?by [apply: yE|apply: NyE|apply: yyE|apply: NyNyE].
- move=> /fine_cvgP[Ff fa] /fine_cvgP[Fg ga]; rewrite -EFinD.
  apply/fine_cvgP; split.
    by near do [rewrite fin_numD; apply/andP; split].
  apply: (@cvg_trans _ ((fine \o f) \+ (fine \o g) @ F))%R; last exact: cvgD.
  by apply: near_eq_cvg; near do rewrite /= fineD//.
- by move=> /[swap]; rewrite addfC; apply: yE.
- by move=> /[swap]; rewrite addfC; apply: NyE.
Unshelve. all: by end_near. Qed.

Lemma cvgeN f x : f @ F --> x -> - f x @[x --> F] --> - x.
Proof.
by move=> ?; apply: continuous_cvg => //; exact: oppe_continuous. Qed.

Lemma cvgeNP f a : - f x @[x --> F] --> - a <-> f @ F --> a.
Proof.
by split=> /cvgeN//; rewrite oppeK//; under eq_cvg do rewrite /= oppeK.
Qed.

Lemma cvgeB f g a b :
  a +? - b -> f @ F --> a -> g @ F --> b -> f \- g @ F --> a - b.
Proof.
by move=> ab fa gb; apply: cvgeD => //; exact: cvgeN. Qed.

Lemma cvge_sub0 f ( k : \bar R) :
  k \is a fin_num -> (fun x => f x - k) @ F --> 0 <-> f @ F --> k.
Proof.
move=> kfin; split.
  move=> /cvgeD-/(_ (cst k) _ isT (cvg_cst _)).
  by rewrite add0e; under eq_fun => x do rewrite subeK//.
move: k kfin => [k _ fk| |]//; rewrite -(@subee _ k%:E)//.
by apply: cvgeB => //; exact: cvg_cst.
Qed.

Lemma abse_continuous : continuous (@abse R).
Proof.
case=> [r|A /= [r [rreal rA]]|A /= [r [rreal rA]]]/=.
- exact/(cvg_comp (@norm_continuous _ [normedModType R of R^o] r)).
- by exists r; split => // y ry; apply: rA; rewrite (lt_le_trans ry)// lee_abs.
- exists (- r)%R; rewrite realN; split => // y; rewrite EFinN -lte_oppr => yr.
  by apply: rA; rewrite (lt_le_trans yr)// -abseN lee_abs.
Qed.

Lemma cvg_abse f ( a : \bar R) : f @ F --> a -> `|f x|%E @[x --> F] --> `|a|%E.
Proof.
by apply: continuous_cvg => //; apply: abse_continuous. Qed.

Lemma is_cvg_abse ( f : I -> \bar R) : cvg (f @ F) -> cvg (`|f x|%E @[x --> F]).
Proof.
by move/cvg_abse/cvgP. Qed.

Lemma is_cvgeN f : cvg (f @ F) -> cvg (\- f @ F).
Proof.
by move=> /cvg_ex[l fl]; apply: (cvgP (- l)); exact: cvgeN. Qed.

Lemma is_cvgeNE f : cvg (\- f @ F) = cvg (f @ F).
Proof.
rewrite propeqE; split=> /cvgeNP/cvgP//.
by under eq_is_cvg do rewrite oppeK.
Qed.

Lemma mule_continuous ( r : R) : continuous (mule r%:E).
Proof.
wlog r0 : r / (r > 0)%R => [hwlog|].
  have [r0|r0|->] := ltrgtP r 0; do ?exact: hwlog; last first.
    by move=> x; rewrite mul0e; apply: cvg_near_cst; near=> y; rewrite mul0e.
  have -> : *%E r%:E = \- ( *%E (- r)%:E ).
    by apply/funeqP=> x /=; rewrite EFinN mulNe oppeK.
  move=> x; apply: (continuous_comp (hwlog (- r)%R _ _)); rewrite ?oppr_gt0//.
  exact: oppe_continuous.
move=> [s||]/=.
- rewrite -EFinM; apply: cvg_EFin => /=.
    by apply/nbhs_EFin; near do rewrite fin_numM//.
  move=> P /= Prs; apply/nbhs_EFin=> //=.
  by apply: near_fun => //=; apply: continuousM => //=; apply: cvg_cst.
- rewrite muleC /mule/= eqe gt_eqF// lte_fin r0 => A [u [realu uA]].
  exists (r^-1 * u)%R; split; first by rewrite realM// realV realE ltW.
  by move=> x rux; apply: uA; move: rux; rewrite EFinM lte_pdivr_mull.
- rewrite muleC /mule/= eqe gt_eqF// lte_fin r0 => A [u [realu uA]].
  exists (r^-1 * u)%R; split; first by rewrite realM// realV realE ltW.
  by move=> x xru; apply: uA; move: xru; rewrite EFinM lte_pdivl_mull.
Unshelve. all: by end_near. Qed.

Lemma cvgeMl f x y : y \is a fin_num ->
  f @ F --> x -> (fun n => y * f n) @ F --> y * x.
Proof.
by move: y => [r| |]// _ /cvg_comp; apply; exact: mule_continuous. Qed.

Lemma is_cvgeMl f y : y \is a fin_num ->
  cvg (f @ F) -> cvg ((fun n => y * f n) @ F).
Proof.
by move=> fy /(cvgeMl fy)/cvgP. Qed.

Lemma cvgeMr f x y : y \is a fin_num ->
  f @ F --> x -> (fun n => f n * y) @ F --> x * y.
Proof.
by move=> ? ?; rewrite muleC; under eq_fun do rewrite muleC; exact: cvgeMl.
Qed.

Lemma is_cvgeMr f y : y \is a fin_num ->
  cvg (f @ F) -> cvg ((fun n => f n * y) @ F).
Proof.
by move=> fy /(cvgeMr fy)/cvgP. Qed.

Lemma cvg_abse0P f : abse \o f @ F --> 0 <-> f @ F --> 0.
Proof.
split; last by move=> /cvg_abse; rewrite abse0.
move=> /cvg_ballP f0; apply/cvg_ballP => _/posnumP[e].
have := !! f0 _ (gt0 e); rewrite !near_simpl => absf0; rewrite near_simpl.
apply: filterS absf0 => x /=; rewrite /ball/= /ereal_ball !contract0 !sub0r !normrN.
have [fx0|fx0] := leP 0 (f x); first by rewrite gee0_abs.
by rewrite (lte0_abs fx0) contractN normrN.
Qed.

Let cvgeM_gt0_pinfty f g b :
  (0 < b)%R -> f @ F --> +oo -> g @ F --> b%:E -> f \* g @ F --> +oo.
Proof.
move=> b_gt0 /cvgeyPge foo /fine_cvgP[gfin gb]; apply/cvgeyPgey.
near (0%R : R)^'+ => e; near=> A; near=> n.
rewrite (@le_trans _ _ (f n * e%:E))// ?lee_pmul// ?lee_fin//.
- by rewrite -lee_pdivr_mulr ?divr_gt0//; near: n; apply: foo.
- by rewrite (@le_trans _ _ 1) ?lee_fin//; near: n; apply: foo.
rewrite -(@fineK _ (g n)) ?lee_fin; last by near: n; exact: gfin.
by near: n; apply: (cvgr_ge b).
Unshelve. all: end_near. Qed.

Let cvgeM_lt0_pinfty f g b :
  (b < 0)%R -> f @ F --> +oo -> g @ F --> b%:E -> f \* g @ F --> -oo.
Proof.
move=> b0 /cvgeyPge foo /fine_cvgP -[gfin gb]; apply/cvgeNyPleNy.
near (0%R : R)^'+ => e; near=> A; near=> n.
rewrite -leeN2 -muleN (@le_trans _ _ (f n * e%:E))//.
  by rewrite -lee_pdivr_mulr ?mulr_gt0 ?oppr_gt0//; near: n; apply: foo.
rewrite lee_pmul ?lee_fin//.
  by rewrite (@le_trans _ _ 1) ?lee_fin//; near: n; apply: foo.
rewrite -(@fineK _ (g n)) ?lee_fin; last by near: n; exact: gfin.
near: n; apply: (cvgr_ge (- b)); rewrite 1?cvgNP//.
by near: e; apply: nbhs_right_lt; rewrite oppr_gt0.
Unshelve. all: end_near. Qed.

Let cvgeM_gt0_ninfty f g b :
  (0 < b)%R -> f @ F --> -oo -> g @ F --> b%:E -> f \* g @ F --> -oo.
Proof.
move=> b0 foo gb; under eq_fun do rewrite -muleNN.
apply: (@cvgeM_lt0_pinfty _ _ (- b)%R); first by rewrite oppr_lt0.
- by rewrite -(oppeK +oo); apply: cvgeN.
- by rewrite EFinN; apply: cvgeN.
Qed.

Let cvgeM_lt0_ninfty f g b :
  (b < 0)%R -> f @ F --> -oo -> g @ F --> b%:E -> f \* g @ F --> +oo.
Proof.
move=> b0 foo gb; under eq_fun do rewrite -muleNN.
apply: (@cvgeM_gt0_pinfty _ _ (- b)%R); first by rewrite oppr_gt0.
- by rewrite -(oppeK +oo); apply: cvgeN.
- by rewrite EFinN; apply: cvgeN.
Qed.

Lemma cvgeM f g ( a b : \bar R) :
 a *? b -> f @ F --> a -> g @ F --> b -> f \* g @ F --> a * b.
Proof.
move=> [:apoo] [:bnoo] [:poopoo] [:poonoo]; move: a b => [a| |] [b| |] //.
- move=> _ /fine_cvgP[finf fa] /fine_cvgP[fing gb].
  apply/fine_cvgP; split.
    by near do apply: fin_numM; [apply: finf | apply: fing].
  apply: (@cvg_trans _ (((fine \o f) \* (fine \o g)) @ F)%R).
    apply: near_eq_cvg; near=> n => //=.
    rewrite -[in RHS](@fineK _ (f n)); last by near: n; exact: finf.
    by rewrite -[in RHS](@fineK _ (g n)) //; near: n; exact: fing.
  exact: cvgM.
- move: f g a; abstract: apoo.
  move=> {}f {}g {}a + fa goo; have [a0 _|a0 _|->] := ltgtP a 0%R.
  + rewrite mulry ltr0_sg// ?mulN1e.
    by under eq_fun do rewrite muleC; exact: (cvgeM_lt0_pinfty a0).
  + rewrite mulry gtr0_sg// ?mul1e.
    by under eq_fun do rewrite muleC; exact: (cvgeM_gt0_pinfty a0).
  + by rewrite /mule_def eqxx.
- move: f g a; abstract: bnoo.
  move=> {}f {}g {}a + fa goo; have [a0 _|a0 _|->] := ltgtP a 0%R.
  + rewrite mulrNy ltr0_sg// ?mulN1e.
    by under eq_fun do rewrite muleC; exact: (cvgeM_lt0_ninfty a0).
  + rewrite mulrNy gtr0_sg// ?mul1e.
    by under eq_fun do rewrite muleC; exact: (cvgeM_gt0_ninfty a0).
  + by rewrite /mule_def eqxx.
- rewrite mule_defC => ? foo gb; rewrite muleC.
  by under eq_fun do rewrite muleC; exact: apoo.
- move=> _; move: f g; abstract: poopoo.
  move=> {}f {}g /cvgeyPge foo /cvgeyPge goo.
  rewrite mulyy; apply/cvgeyPgey; near=> A; near=> n.
  have A_gt0 : (0 <= A)%R by [].
  by rewrite -[leLHS]mule1 lee_pmul//=; near: n; [apply: foo|apply: goo].
- move=> _; move: f g; abstract: poonoo.
  move=> {}f {}g /cvgeyPge foo /cvgeNyPle goo.
  rewrite mulyNy; apply/cvgeNyPle => A; near=> n.
  rewrite (@le_trans _ _ (g n))//; last by near: n; exact: goo.
  apply: lee_nemull; last by near: n; apply: foo.
  by rewrite (@le_trans _ _ (- 1)%:E)//; near: n; apply: goo; rewrite ltrN10.
- rewrite mule_defC => ? foo gb; rewrite muleC.
  by under eq_fun do rewrite muleC; exact: bnoo.
- move=> _ foo goo.
  by under eq_fun do rewrite muleC; exact: poonoo.
- move=> _ foo goo; rewrite mulNyNy -mulyy.
  by under eq_fun do rewrite -muleNN; apply: poopoo;
    rewrite -/(- -oo); apply: cvgeN.
Unshelve. all: end_near. Qed.

End ecvg_realFieldType.

Section max_cts .
Context {R : realType} {T : topologicalType}.

Lemma continuous_min ( f g : T -> R^o) x :
  {for x, continuous f} -> {for x, continuous g} ->
  {for x, continuous (f \min g)}.
Proof.
move=> ctsf ctsg.
under [_ \min _]eq_fun => ? do rewrite minr_absE.
apply: cvgM; [|exact: cvg_cst]; apply:cvgD; first exact: cvgD.
by apply: cvgN; apply: cvg_norm; apply: cvgB.
Qed.

Lemma continuous_max ( f g : T -> R^o) x :
  {for x, continuous f} -> {for x, continuous g} ->
  {for x, continuous (f \max g)}.
Proof.
move=> ctsf ctsg.
under [_ \max _]eq_fun => ? do rewrite maxr_absE.
apply: cvgM; [|exact: cvg_cst]; apply:cvgD; first exact: cvgD.
by apply: cvg_norm; apply: cvgB.
Qed.

End max_cts.

#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to cvgeN, and generalized to filter in Type")]
Notation ereal_cvgN := cvgeN (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to is_cvgeN, and generalized to filter in Type")]
Notation ereal_is_cvgN := is_cvgeN (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to cvgeMl, and generalized to filter in Type")]
Notation ereal_cvgrM := cvgeMl (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to is_cvgeMl, and generalized to filter in Type")]
Notation ereal_is_cvgrM := is_cvgeMl (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to cvgeMr, and generalized to filter in Type")]
Notation ereal_cvgMr := cvgeMr (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to is_cvgeMr, and generalized to filter in Type")]
Notation ereal_is_cvgMr := is_cvgeMr (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to cvgeM, and generalized to a realFieldType")]
Notation ereal_cvgM := cvgeM (only parsing).

Section pseudoMetricDist .
Context {R : realType} {X : pseudoMetricType R}.
Implicit Types r : R.

Definition edist ( xy : X * X) : \bar R :=
  ereal_inf (EFin @` [set r | 0 < r /\ ball xy.1 r xy.2]).

Lemma edist_ge0 ( xy : X * X) : (0 <= edist xy)%E.
Proof.
by apply: lb_ereal_inf => z [+ []] => _/posnumP[r] _ <-; rewrite lee_fin.
Qed.
Hint Resolve edist_ge0 : core.

Lemma edist_neqNy ( xy : X * X) : (edist xy != -oo)%E.
Proof.
by rewrite -lteNye (@lt_le_trans _ _ 0%E). Qed.
Hint Resolve edist_neqNy : core.

Lemma edist_lt_ball r ( xy : X * X) : (edist xy < r%:E)%E -> ball xy.1 r xy.2.
Proof.
case/ereal_inf_lt => ? [+ []] => _/posnumP[eps] bxye <-; rewrite lte_fin.
by move/ltW/le_ball; exact.
Qed.

Lemma edist_fin r ( xy : X * X) :
  0 < r -> ball xy.1 r xy.2 -> (edist xy <= r%:E)%E.
Proof.
move: r => _/posnumP[r] => ?; rewrite -(ereal_inf1 r%:num%:E) le_ereal_inf //.
by move=> ? -> /=; exists r%:num; split.
Qed.

Lemma edist_pinftyP ( xy : X * X) :
  (edist xy = +oo)%E <-> (forall r, 0 < r -> ~ ball xy.1 r xy.2).
Proof.
split.
  move/ereal_inf_pinfty => xrb r rpos rb; move: (ltry r); rewrite ltey => /eqP.
  by apply; apply: xrb; exists r.
rewrite /edist=> nrb; suff -> : [set r | 0 < r /\ ball xy.1 r xy.2] = set0.
  by rewrite image_set0 ereal_inf0.
by rewrite -subset0 => r [?] rb; apply: nrb; last exact: rb.
Qed.

Lemma edist_finP ( xy : X * X) :
  (edist xy \is a fin_num)%E <-> exists2 r, 0 < r & ball xy.1 r xy.2.
Proof.
rewrite ge0_fin_numE ?edist_ge0// ltey.
rewrite -(rwP (negPP eqP)); apply/iff_not2; rewrite notE.
apply: (iff_trans (edist_pinftyP _)); apply: (iff_trans _ (forall2NP _ _)).
by under eq_forall => ? do rewrite implyE.
Qed.

Lemma edist_fin_open : open [set xy : X * X | edist xy \is a fin_num].
Proof.
move=> z /= /edist_finP [] _/posnumP[r] bzr.
exists (ball z.1 r%:num, ball z.2 r%:num); first by split; exact: nbhsx_ballx.
case=> a b [bza bzb]; apply/edist_finP; exists (r%:num + r%:num + r%:num) => //.
exact/(ball_triangle _ bzb)/(ball_triangle _ bzr)/ball_sym.
Qed.

Lemma edist_fin_closed : closed [set xy : X * X | edist xy \is a fin_num].
Proof.
move=> z /= /(_ (ball z 1)) []; first exact: nbhsx_ballx.
move=> w [/edist_finP [] _/posnumP[r] babr [bz1w1 bz2w2]]; apply/edist_finP.
exists (1 + (r%:num + 1)) => //.
exact/(ball_triangle bz1w1)/(ball_triangle babr)/ball_sym.
Qed.

Lemma edist_pinfty_open : open [set xy : X * X | edist xy = +oo]%E.
Proof.
rewrite -closedC; have := edist_fin_closed; congr (_ _).
by rewrite eqEsubset; split => z; rewrite /= ?ge0_fin_numE// ltey => /eqP.
Qed.

Lemma edist_sym ( x y : X) : edist (x, y) = edist (y, x).
Proof.
by rewrite /edist /=; under eq_fun do rewrite ball_symE. Qed.

Lemma edist_triangle ( x y z : X) :
  (edist (x, z) <= edist (x, y) + edist (y, z))%E.
Proof.
have [->|] := eqVneq (edist (x, y)) +oo%E; first by rewrite addye ?leey.
have [->|] := eqVneq (edist (y, z)) +oo%E; first by rewrite addey ?leey.
rewrite -?ltey -?ge0_fin_numE//.
move=> /edist_finP [_/posnumP[r2] /= yz] /edist_finP [_/posnumP[r1] /= xy].
have [|] := eqVneq (edist (x, z)) +oo%E.
  move/edist_pinftyP /(_ (r1%:num + r2%:num) _) => -[//|].
  exact: (ball_triangle xy).
rewrite -ltey -ge0_fin_numE// => /[dup] xzfin.
move/edist_finP => [_/posnumP[del] /= xz].
rewrite /edist /= ?ereal_inf_EFin; first last.
- by exists (r1%:num + r2%:num); split => //; apply: (ball_triangle xy).
- by exists 0 => ? /= [/ltW].
- by exists r1%:num; split.
- by exists 0 => ? /= [/ltW].
- by exists r2%:num; split.
- by exists 0 => ? /= [/ltW].
rewrite -EFinD lee_fin -inf_sumE //; first last.
- by split; [exists r2%:num; split| exists 0 => ? /= [/ltW]].
- by split; [exists r1%:num; split| exists 0 => ? /= [/ltW]].
apply: lb_le_inf.
  by exists (r1%:num + r2%:num); exists r1%:num => //; exists r2%:num.
move=> ? [+ []] => _/posnumP[p] xpy [+ []] => _/posnumP[q] yqz <-.
apply: inf_lb; first by exists 0 => ? /= [/ltW].
by split => //; apply: (ball_triangle xpy).
Qed.

Lemma edist_continuous : continuous edist.
Proof.
move=> [x y]; have [pE U /= Upinf|] := eqVneq (edist (x, y)) +oo%E.
  rewrite nbhs_simpl /=; apply (@filterS _ _ _ [set xy | edist xy = +oo]%E).
    by move=> z /= ->; apply: nbhs_singleton; move: pE Upinf => ->.
  by apply: open_nbhs_nbhs; split => //; exact: edist_pinfty_open.
rewrite -ltey -ge0_fin_numE// => efin.
rewrite -[edist (x, y)]fineK//; apply: cvg_EFin.
  by have := edist_fin_open efin; apply: filter_app; near=> w.
apply/cvgrPdist_le => _/posnumP[eps].
suff: \forall t \near (nbhs x, nbhs y),
   `|fine (edist (x, y)) - fine (edist t)| <= eps%:num by [].
rewrite -near2_pair; near=> a b => /=.
have abxy : (edist (a, b) <= edist (x, a) + edist (x, y) + edist (y, b))%E.
  rewrite (edist_sym x a) -addeA.
  by rewrite (le_trans (@edist_triangle _ x _)) ?lee_add ?edist_triangle.
have xyab : (edist (x, y) <= edist (x, a) + edist (a, b) + edist (y, b))%E.
  rewrite (edist_sym y b) -addeA.
  by rewrite (le_trans (@edist_triangle _ a _))// ?lee_add// ?edist_triangle.
have xafin : edist (x, a) \is a fin_num.
  by apply/edist_finP; exists 1 =>//; near: a; apply: (nbhsx_ballx _ 1%:pos).
have ybfin : edist (y, b) \is a fin_num.
  by apply/edist_finP; exists 1 =>//; near: b; apply: (nbhsx_ballx _ 1%:pos).
have abfin : edist (a, b) \is a fin_num.
  by rewrite ge0_fin_numE// (le_lt_trans abxy) ?lte_add_pinfty// -ge0_fin_numE.
have xyabfin: (edist (x, y) - edist (a, b))%E \is a fin_num
  by rewrite fin_numB abfin efin.
rewrite -fineB// -fine_abse// -lee_fin fineK ?abse_fin_num//.
rewrite (@le_trans _ _ (edist (x, a) + edist (y, b))%E)//; last first.
  by rewrite [eps%:num]splitr/= EFinD lee_add//; apply: edist_fin => //=;
       [near: a | near: b]; apply: (nbhsx_ballx _ (_ / _)%:pos).
have [ab_le_xy|/ltW xy_le_ab] := leP (edist (a, b)) (edist (x, y)).
  by rewrite gee0_abs ?subre_ge0// lee_subl_addr// addeAC.
rewrite lee0_abs ?sube_le0// oppeB ?fin_num_adde_defr//.
by rewrite addeC lee_subl_addr// addeAC.
Unshelve. all: end_near. Qed.

Lemma edist_closeP x y : close x y <-> edist (x, y) = 0%E.
Proof.
rewrite ball_close; split=> [bxy|edist0 eps]; first last.
  by apply: (@edist_lt_ball _ (x, y)); rewrite edist0.
case: ltgtP (edist_ge0 (x, y)) => // dpos _.
have xxfin : edist (x, y) \is a fin_num.
  by rewrite ge0_fin_numE// (@le_lt_trans _ _ 1%:E) ?ltey// edist_fin.
have dpose : fine (edist (x, y)) > 0 by rewrite -lte_fin fineK.
pose eps := PosNum dpose.
have : (edist (x, y) <= (eps%:num / 2)%:E)%E.
  apply: ereal_inf_lb; exists (eps%:num / 2) => //; split => //.
  exact: (bxy (eps%:num / 2)%:pos).
apply: contra_leP => _.
by rewrite /= EFinM fineK// lte_pdivr_mulr// lte_pmulr// lte1n.
Qed.

Lemma edist_refl x : edist (x, x) = 0%E
Proof.
exact/edist_closeP. Qed.

Lemma edist_closel x y z : close x y -> edist (x, z) = edist (y, z).
Proof.
move=> /edist_closeP xy0; apply: le_anti; apply/andP; split.
  by rewrite -[edist (y, z)]add0e -xy0 edist_triangle.
by rewrite -[edist (x, z)]add0e -xy0 [edist (x, y)]edist_sym edist_triangle.
Qed.

End pseudoMetricDist.
#[global]
Hint Extern 0 (is_true (0 <= edist _)%E) => solve [apply: edist_ge0] : core.
#[global]
Hint Extern 0 (is_true (edist _ != -oo%E)) => solve [apply: edist_neqNy] : core.

Section edist_inf .
Context {R : realType} {T : pseudoMetricType R} ( A : set T).

Definition edist_inf z := ereal_inf [set edist (z, a) | a in A].

Lemma edist_inf_ge0 w : (0 <= edist_inf w)%E.
Proof.
by apply: lb_ereal_inf => ? /= [? ? <-]; exact: edist_ge0. Qed.
Hint Resolve edist_inf_ge0 : core.

Lemma edist_inf_neqNy w : (edist_inf w != -oo)%E.
Proof.
by rewrite -lteNye (@lt_le_trans _ _ 0%E). Qed.
Hint Resolve edist_inf_neqNy : core.

Lemma edist_inf_triangle x y : (edist_inf x <= edist (x, y) + edist_inf y)%E.
Proof.
have [A0|/set0P[a0 Aa0]] := eqVneq A set0.
  by rewrite /edist_inf A0 ?image_set0 ?ereal_inf0 addey.
have [fyn|] := boolP (edist_inf y \is a fin_num); first last.
  by rewrite ge0_fin_numE// ?ltey// negbK => /eqP->; rewrite addey ?leey.
have [xyfin|] := boolP (edist (x, y) \is a fin_num); first last.
  by rewrite ge0_fin_numE// ?ltey // negbK => /eqP->; rewrite addye ?leey.
apply/lee_addgt0Pr => _/posnumP[eps].
have [//|? [a Aa <-] yaeps] := @lb_ereal_inf_adherent R _ eps%:num _ fyn.
apply: le_trans; first by apply: (@ereal_inf_lb _ _ (edist (x, a))); exists a.
apply: le_trans; first exact: (@edist_triangle _ _ _ y).
by rewrite -addeA lee_add2lE // ltW.
Qed.

Lemma edist_inf_continuous : continuous edist_inf.
Proof.
move=> z; have [A0|/= /set0P[a0 Aa0]] := eqVneq A set0.
  rewrite /edist_inf A0 image_set0 ereal_inf0.
  by under eq_fun => ? do rewrite image_set0 ereal_inf0; apply: cvg_cst.
have [] := eqVneq (edist_inf z) +oo%E.
  move=> /[dup] fzp /ereal_inf_pinfty => zAp U /= Ufz.
  have : nbhs z (ball z 1) by exact: nbhsx_ballx.
  apply: filter_app; near_simpl; near=> w => bz1w.
  suff /= -> : (edist_inf w) = +oo%E by apply: nbhs_singleton; rewrite -fzp.
  apply/ereal_inf_pinfty => r [a Aa] war; apply/zAp; exists a => //.
  have /gee0P[|[r' r'pos war']] := edist_ge0 (w, a).
    by rewrite war => ->; apply: zAp; exists a.
  have := @edist_triangle _ _ z w a; rewrite war'; apply: contra_leP => _.
  rewrite (@le_lt_trans _ _ (1 + r'%:E)%E) ?lee_add2r ?edist_fin//.
  by rewrite -EFinD [edist (z, a)]zAp ?ltey //; exists a.
rewrite -ltey -ge0_fin_numE ?edist_inf_ge0 // => fz_fin.
rewrite // -[edist_inf z]fineK //; apply/fine_cvgP.
have fwfin : \forall w \near z, edist_inf w \is a fin_num.
  (have : nbhs z (ball z 1) by exact: nbhsx_ballx); apply: filter_app.
  near=> t => bz1; rewrite ge0_fin_numE ?edist_inf_ge0 //.
  rewrite (le_lt_trans (edist_inf_triangle _ z))//.
  rewrite -ge0_fin_numE ?adde_ge0 ?edist_inf_ge0 //.
  rewrite fin_numD fz_fin andbT; apply/edist_finP; exists 1 => //.
  exact/ball_sym.
split => //; apply/cvgrPdist_le => _/posnumP[eps].
have : nbhs z (ball z eps%:num) by apply: nbhsx_ballx.
apply: filter_app; near_simpl; move: fwfin; apply: filter_app.
near=> t => tfin /= /[dup] ?.
have ztfin : edist (z, t) \is a fin_num by apply/edist_finP; exists eps%:num.
move=> /(@edist_fin _ _ _ (z, t)) - /(_ trivial).
rewrite -[edist (z, t)]fineK ?lee_fin //; apply: le_trans.
rewrite ler_norml; apply/andP; split.
  rewrite ler_subr_addr addrC ler_subl_addr addrC -fineD //.
  rewrite -lee_fin ?fineK // ?fin_numD ?ztfin ?fz_fin // edist_sym.
  exact: edist_inf_triangle.
rewrite ler_subl_addr -fineD // -lee_fin ?fineK // ?fin_numD ?tfin ?ztfin //.
exact: edist_inf_triangle.
Unshelve. all: by end_near. Qed.

Lemma edist_inf0 a : A a -> edist_inf a = 0%E.
Proof.
move=> Aa; apply: le_anti; apply/andP; split; last exact: edist_inf_ge0.
by apply: ereal_inf_lb; exists a => //; exact: edist_refl.
Qed.

End edist_inf.
#[global]
Hint Extern 0 (is_true (0 <= edist_inf _ _)%E) =>
  solve [apply: edist_inf_ge0] : core.
#[global]
Hint Extern 0 (is_true (edist_inf _ _ != -oo%E)) =>
  solve [apply: edist_inf_neqNy] : core.

Section urysohn_separator .
Context {T : uniformType} {R : realType}.
Context ( A B : set T) ( E : set (T * T)).
Hypothesis entE : entourage E.
Hypothesis AB0 : A `*` B `&` E = set0.

Local Notation T' := (@gauge_pseudoMetricType _ _ entE R).

Local Lemma urysohn_separation : exists ( f : T -> R),
  [/\ continuous f, range f `<=` `[0, 1],
      f @` A `<=` [set 0] & f @` B `<=` [set 1] ].
Proof.
have [eps exy] : exists ( eps : {posnum R}),
    forall ( x y : T'), A x -> B y -> ~ ball x eps%:num y.
  have : @entourage T' E by exists O => /=.
  rewrite -entourage_ballE; case=> _/posnumP[eps] epsdiv; exists eps.
  move=> x y Ax By bxy; have divxy := epsdiv (x, y) bxy.
  by have : set0 (x, y) by rewrite -AB0; split.
have [->|/set0P[a A0]] := eqVneq A set0.
  exists (fun=> 1); split; first by move => ?; exact: cvg_cst.
  - by move=> ? [? _ <-]; rewrite /= in_itv /=; apply/andP; split => //.
  - by rewrite image_set0.
  - by move=> ? [? ? <-].
have dfin x : @edist_inf R T' A x \is a fin_num.
  rewrite ge0_fin_numE ?edist_inf_ge0 //; apply: le_lt_trans.
    by apply: ereal_inf_lb; exists a.
  rewrite -ge0_fin_numE ?edist_ge0 //; apply/edist_finP => /=; exists 2 => //.
  exact: countable_uniform_bounded.
pose f' := (fun z => fine (@edist_inf R T' A z)) \min (fun=> eps%:num).
pose f z := (f' z)/eps%:num; exists f; split.
- move=> x; rewrite /f; apply: (@cvgM R T (nbhs x)); last exact: cvg_cst.
  suff : {for x, continuous (f' : T' -> R)}.
    move=> Q U; rewrite nbhs_simpl /= => f'U.
    have [J /(gauge_ent entE) entJ/filterS] := Q _ f'U; apply.
    by rewrite nbhs_simpl /= -nbhs_entourageE /=; exists J.
  apply: continuous_min; last by apply: cvg_cst; exact: nbhs_filter.
  apply: fine_cvg; first exact: nbhs_filter.
  rewrite fineK //; first exact: edist_inf_continuous.
- move=> _ [x _ <-]; rewrite set_itvE /=; apply/andP; split.
    by rewrite /f divr_ge0 // /f' /= /minr; case: ltP; rewrite ?fine_ge0.
  by rewrite /f ler_pdivr_mulr // mul1r /f' /= /minr; case: ltP => // /ltW.
- by move=> ? [z Az] <-; rewrite /f/f' /= edist_inf0 // /minr fine0 ifT ?mul0r.
- move=> ? [b Bb] <-; rewrite /f /f'/= /minr/=.
  case: ltP => //; rewrite ?divrr // ?unitf_gt0 // -lte_fin fineK//.
  move => /ereal_inf_lt [_ [z Az <-]] ebz; have [] := exy _ _ Az Bb.
  exact/ball_sym/(@edist_lt_ball R T' _ (b, z)).
Qed.

End urysohn_separator.

Section topological_urysohn_separator .
Context {T : topologicalType} {R : realType}.

Definition uniform_separator ( A B : set T) :=
  exists ( uT : @Uniform.class_of T^o) ( E : set (T * T)),
    let UT := Uniform.Pack uT in [/\
      @entourage UT E, A `*` B `&` E = set0 &
      (forall x, @nbhs UT UT x `<=` @nbhs T T x)].

Local Lemma Urysohn' ( A B : set T) : exists ( f : T -> R),
    [/\ continuous f,
    range f `<=` `[0, 1]
    & uniform_separator A B ->
    f @` A `<=` [set 0] /\ f @` B `<=` [set 1]].
Proof.
have [[? [E [entE ABE0 coarseT]]]|nP] := pselect (uniform_separator A B).
  have [f] := @urysohn_separation _ R _ _ _ entE ABE0.
  by case=> ctsf ? ? ?; exists f; split => // ? ? /= ?; apply/coarseT/ctsf.
exists (fun=>1); split => //; first by move=> ?; exact: cvg_cst.
by move=> ? [? _ <-]; rewrite /= in_itv /=; apply/andP; split => //.
Qed.

Definition Urysohn ( A B : set T) : T -> R := projT1 (cid (Urysohn' A B)).

Section urysohn_facts .

Lemma Urysohn_continuous ( A B : set T) : continuous (Urysohn A B).
Proof.
by have [] := projT2 (cid (@Urysohn' A B)). Qed.

Lemma Urysohn_range ( A B : set T) : range (Urysohn A B) `<=` `[0, 1].
Proof.
by have [] := projT2 (cid (@Urysohn' A B)). Qed.

Lemma Urysohn_sub0 ( A B : set T) :
  uniform_separator A B -> Urysohn A B @` A `<=` [set 0].
Proof.
by move=> eE; have [_ _ /(_ eE)[]] := projT2 (cid (@Urysohn' A B)). Qed.

Lemma Urysohn_sub1 ( A B : set T) :
  uniform_separator A B -> Urysohn A B @` B `<=` [set 1].
Proof.
by move=> eE; have [_ _ /(_ eE)[]] := projT2 (cid (@Urysohn' A B)). Qed.

Lemma Urysohn_eq0 ( A B : set T) :
  uniform_separator A B -> A !=set0 -> Urysohn A B @` A = [set 0].
Proof.
move=> eE Aa; have [_ _ /(_ eE)[As0 _]] := projT2 (cid (@Urysohn' A B)).
rewrite eqEsubset; split => // ? ->; case: Aa => a ?; exists a => //.
by apply: As0; exists a.
Qed.

Lemma Urysohn_eq1 ( A B : set T) :
  uniform_separator A B -> (B !=set0) -> (Urysohn A B) @` B = [set 1].
Proof.
move=> eE Bb; have [_ _ /(_ eE)[_ Bs0]] := projT2 (cid (@Urysohn' A B)).
rewrite eqEsubset; split => // ? ->; case: Bb => b ?; exists b => //.
by apply: Bs0; exists b.
Qed.

End urysohn_facts.
End topological_urysohn_separator.

Lemma uniform_separatorW {T : uniformType} ( A B : set T) :
    (exists2 E, entourage E & A `*` B `&` E = set0) ->
  uniform_separator A B.
Proof.
by case=> E entE AB0; exists (Uniform.class T), E; split => // ?. Qed.

Section Urysohn .
Context {T : topologicalType} .
Hypothesis normalT : normal_space T.
Section normal_uniform_separators .
Context ( A : set T).

Local Notation "A ^-1" := [set xy | A (xy.2, xy.1)] : classical_set_scope.

Local Notation "'to_set' A x" := [set y | A (x, y)]
  (at level 0, A at level 0) : classical_set_scope.


Let apxU ( UV : set T * set T) : set (T * T) :=
  (UV.2 `*` UV.2) `|` (~` closure UV.1 `*` ~` closure UV.1).

Let nested ( UV : set T * set T) :=
  [/\ open UV.1, open UV.2, A `<=` UV.1 & closure UV.1 `<=`UV.2].

Let ury_base := [set apxU UV | UV in nested].

Local Lemma ury_base_refl E :
  ury_base E -> [set fg | fg.1 = fg.2] `<=` E.
Proof.
case; case=> L R [_ _ _ /= LR] <- [? x /= ->].
case: (pselect (R x)); first by left.
by move/subsetC: LR => /[apply] => ?; right.
Qed.

Local Lemma ury_base_inv E : ury_base E -> ury_base (E^-1)%classic.
Proof.
case; case=> L R ? <-; exists (L, R) => //.
by rewrite eqEsubset; split => //; (case=> x y [] [? ?]; [left| right]).
Qed.

Local Lemma ury_base_split E : ury_base E ->
  exists E1 E2, [/\ ury_base E1, ury_base E2 &
                    (E1 `&` E2) \; (E1 `&` E2) `<=` E].
Proof.
case; case => L R [/= oL oR AL cLR <-].
have [R' []] : exists R', [/\ open R', closure L `<=` R' & closure R' `<=` R].
  have := @normalT (closure L) (@closed_closure T L).
  case/(_ R); first by move=> x /cLR ?; apply: open_nbhs_nbhs.
  move=> V /set_nbhsP [U] [? ? ? cVR]; exists U; split => //.
  by apply: (subset_trans _ cVR); exact: closure_subset.
move=> oR' cLR' cR'R; exists (apxU (L, R')), (apxU (R', R)).
split; first by exists (L, R').
  exists (R', R) => //; split => //; apply: (subset_trans AL).
  by apply: (subset_trans _ cLR'); exact: subset_closure.
case=> x z /= [y [+ +] []].
(do 4 (case; case=> /= ? ?)); try (by left); try (by right);
  match goal with nG : (~ closure ?S ?y), G : ?S ?y |- _ =>
    by move/subset_closure: G
  end.
Qed.

Let ury_unif := smallest Filter ury_base.

Instance ury_unif_filter : Filter ury_unif.
Proof.
exact: smallest_filter_filter. Qed.

Local Lemma ury_unif_refl E : ury_unif E -> [set fg | fg.1 = fg.2] `<=` E.
Proof.
move/(_ (globally [set fg | fg.1 = fg.2])); apply; split.
  exact: globally_filter.
exact: ury_base_refl.
Qed.

Local Lemma set_prod_invK ( K : set (T * T)) : (K^-1^-1)%classic = K.
Proof.
by rewrite eqEsubset; split; case. Qed.

Local Lemma ury_unif_inv E : ury_unif E -> ury_unif (E^-1)%classic.
Proof.
move=> ufE F [/filter_inv FF urF]; have [] := ufE [set (V^-1)%classic | V in F].
  split => // K /ury_base_inv/urF /= ?; exists (K^-1)%classic => //.
  by rewrite set_prod_invK.
by move=> R FR <-; rewrite set_prod_invK.
Qed.

Local Lemma ury_unif_split_iter E n :
  filterI_iter ury_base n E -> exists2 K : set (T * T),
    filterI_iter ury_base n.+1 K & K\;K `<=` E.
Proof.
elim: n E; first move=> E [].
- move=> ->; exists setT => //; exists setT; first by left.
  by exists setT; rewrite ?setIT; first by left.
- move=> /[dup] /ury_base_split [E1 [E2] [? ? ? ?]]; exists (E1 `&` E2) => //.
  by (exists E1; first by right); exists E2; first by right.
move=> n IH E /= [E1 /IH [F1 F1n1 F1E1]] [E2 /IH [F2 F2n1 F2E2]] E12E.
exists (F1 `&` F2); first by exists F1 => //; exists F2.
move=> /= [x z ] [y /= [K1xy K2xy] [K1yz K2yz]]; rewrite -E12E; split.
  by apply: F1E1; exists y.
by apply: F2E2; exists y.
Qed.

Local Lemma ury_unif_split E : ury_unif E ->
  exists2 K, ury_unif K & K \; K `<=` E.
Proof.
rewrite /ury_unif filterI_iterE; case=> G [n _] /ury_unif_split_iter [].
move=> K SnK KG GE; exists K; first by exists K => //; exists n.+1.
exact: (subset_trans _ GE).
Qed.

Local Lemma ury_unif_covA E : ury_unif E -> A `*` A `<=` E.
Proof.
rewrite /ury_unif filterI_iterE; case=> G [n _] sG /(subset_trans _); apply.
elim: n G sG.
  move=> g [-> //| [[P Q]]] [/= _ _ AP cPQ <-] [x y] [/= /AP ? ?].
  by left; split => //=; apply/cPQ/subset_closure => //; exact: AP.
by move=> n IH G [R] /IH AAR [M] /IH AAM <- z; split; [exact: AAR | exact: AAM].
Qed.

Let urysohn_uniformType_mixin :=
  UniformMixin ury_unif_filter ury_unif_refl ury_unif_inv ury_unif_split erefl.

Let urysohn_topologicalTypeMixin :=
  topologyOfEntourageMixin urysohn_uniformType_mixin.

Let urysohn_filtered := FilteredType T T (nbhs_ ury_unif).
Let urysohn_topologicalType :=
  TopologicalType urysohn_filtered urysohn_topologicalTypeMixin.
Let urysohn_uniformType := UniformType
  urysohn_topologicalType urysohn_uniformType_mixin.

Lemma normal_uniform_separator ( B : set T) :
  closed A -> closed B -> A `&` B = set0 -> uniform_separator A B.
Proof.
move=> clA clB AB0; have /(_ (~`B))[x Ax|] := normalT clA.
  apply: open_nbhs_nbhs; split => //.
  - exact/closed_openC.
  - by move: x Ax; apply/ disjoints_subset.
move=> V /set_nbhsP [U [oU AU UV]] cVcb.
exists (Uniform.class urysohn_uniformType), (apxU (U, ~` B)); split => //.
- move=> ?; apply:sub_gen_smallest; exists (U, ~`B) => //; split => //=.
    exact/closed_openC.
  by move: UV => /closure_subset/subset_trans; apply.
- rewrite eqEsubset; split; case=> // a b [/=[Aa Bb] [[//]|]].
  by have /subset_closure ? := AU _ Aa; case.
move=> x ? [E gE] /(@filterS T); apply; move: gE.
rewrite /ury_unif filterI_iterE; case => K /= [i _] /= uiK KE.
suff : @nbhs T T x to_set K (x) by apply: filterS => y /KE.
elim: i K uiK {E KE}; last by move=> ? H ? [N] /H ? [M] /H ? <-; apply: filterI.
move=> K [->|]; first exact: filterT.
move=> [[/= P Q] [/= oP oQ AP cPQ <-]]; rewrite /apxU /=.
set M := [set y | _ \/ _].
have [Qx|nQx] := pselect (Q x); first last.
  suff -> : M = ~` closure P.
    apply: open_nbhs_nbhs; split; first exact/closed_openC/closed_closure.
    by move/cPQ.
  rewrite eqEsubset /M; split => z; first by do 2!case.
  by move=> ?; right; split => // /cPQ.
have [nPx|cPx] := pselect (closure P x).
  suff -> : M = Q by apply: open_nbhs_nbhs; split.
  rewrite eqEsubset /M; split => z; first by do 2!case.
  by move=> ?; left; split.
suff -> : M = setT by exact: filterT.
rewrite eqEsubset; split => // z _.
by have [Qz|/(subsetC cPQ)] := pselect (Q z); constructor.
Qed.

End normal_uniform_separators.
End Urysohn.
Lemma uniform_separatorP {T : topologicalType} {R : realType} ( A B : set T) :
  uniform_separator A B <->
  exists ( f : T -> R), [/\ continuous f, range f `<=` `[0, 1],
                           f @` A `<=` [set 0] & f @` B `<=` [set 1]].
Proof.
split; first do [move=> ?; exists (Urysohn A B); split].
- exact: Urysohn_continuous.
- exact: Urysohn_range.
- exact: Urysohn_sub0.
- exact: Urysohn_sub1.
case=> f [ctsf f01 fA0 fB1]; pose T' := weak_pseudoMetricType f.
exists (Uniform.class T'), ([set xy | ball (f xy.1) 1 (f xy.2)]); split.
- exists [set xy | ball xy.1 1 xy.2]; last by case.
  by rewrite -entourage_ballE; exists 1 => //=.
- rewrite -subset0 => -[a b [[/= Aa Bb]]].
  by rewrite (imsub1 fA0)// (imsub1 fB1)// /ball/= sub0r normrN normr1 ltxx.
- move=> x U [V [[W oW <- /=]]] ? /filterS; apply; apply: ctsf.
  exact: open_nbhs_nbhs.
Qed.

Section normalP .
Context {T : topologicalType}.

Let normal_spaceP : [<->
normal_space T;
forall ( A B : set T), closed A -> closed B -> A `&` B = set0 ->
    uniform_separator A B;
forall ( A B : set T), closed A -> closed B -> A `&` B = set0 ->
    exists U V, [/\ open U, open V, A `<=` U, B `<=` V & U `&` V = set0] ].
Proof.
pose R := Rstruct.real_realType.
tfae; first by move=> ?; exact: normal_uniform_separator.
- move=> + A B clA clB AB0 => /(_ _ _ clA clB AB0) /(@uniform_separatorP _ R).
  case=> f [cf f01 /imsub1P/subset_trans fa0 /imsub1P/subset_trans fb1].
  exists (f@^-1` `]-1, 1/2[), (f @^-1` `]1/2, 2[); split.
  + by apply: open_comp; [|exact: interval_open].
  + by apply: open_comp; [|exact: interval_open].
  + by apply: fa0 => x/= ->; rewrite (@in_itv _ R)/=; apply/andP; split.
  + apply: fb1 => x/= ->; rewrite (@in_itv _ R)/= ltr_pdivr_mulr// mul1r.
    by rewrite ltr1n.
  + rewrite -preimage_setI ?set_itvoo -subset0 => t [] /andP [_ +] /andP [+ _].
    by move=> /lt_trans /[apply]; rewrite ltxx.
move=> + A clA B /set_nbhsP [C [oC AC CB]].
have AC0 : A `&` ~` C = set0 by apply/disjoints_subset; rewrite setCK.
case/(_ _ _ clA (open_closedC oC) AC0) => U [V] [oU oV AU nCV UV0].
exists (~` closure V).
  apply/set_nbhsP; exists U; split => //.
  apply/subsetCr; have := open_closedC oU; rewrite closure_id => ->.
  by apply/closure_subset/disjoints_subset; rewrite setIC.
apply/(subset_trans _ CB)/subsetCP; apply: (subset_trans nCV).
apply/subsetCr; have := open_closedC oV; rewrite closure_id => ->.
exact/closure_subset/subsetC/subset_closure.
Qed.

Lemma normal_openP : normal_space T <->
  forall ( A B : set T), closed A -> closed B -> A `&` B = set0 ->
  exists U V, [/\ open U, open V, A `<=` U, B `<=` V & U `&` V = set0].
Proof.
exact: (normal_spaceP 0%N 2%N). Qed.

Lemma normal_separatorP : normal_space T <->
  forall ( A B : set T), closed A -> closed B -> A `&` B = set0 ->
  uniform_separator A B.
Proof.
exact: (normal_spaceP 0%N 1%N). Qed.

End normalP.

Section pseudometric_normal .

Lemma uniform_regular {X : uniformType} : @regular_space X.
Proof.
move=> x A; rewrite /= -nbhs_entourageE => -[E entE].
move/(subset_trans (ent_closure entE)) => ExA.
by exists [set y | split_ent E (x, y)]; first by exists (split_ent E).
Qed.

Lemma regular_openP {T : topologicalType} ( x : T) :
  {for x, @regular_space T} <-> forall A, closed A -> ~ A x ->
  exists U V : set T, [/\ open U, open V, U x, A `<=` V & U `&` V = set0].
Proof.
split.
  move=> + A clA nAx => /(_ (~` A)) [].
    by apply: open_nbhs_nbhs; split => //; exact: closed_openC.
  move=> U Ux /subsetC; rewrite setCK => AclU; exists (interior U).
  exists (~` closure U) ; split => //; first exact: open_interior.
    exact/closed_openC/closed_closure.
  apply/disjoints_subset; rewrite setCK.
  exact: (subset_trans (@interior_subset _ _) (@subset_closure _ _)).
move=> + A Ax => /(_ (~` interior A)) []; [|exact|].
  exact/open_closedC/open_interior.
move=> U [V] [oU oV Ux /subsetC cAV /disjoints_subset UV]; exists U.
  exact/open_nbhs_nbhs.
apply: (subset_trans (closure_subset UV)).
move/open_closedC/closure_id : oV => <-.
by apply: (subset_trans cAV); rewrite setCK; exact: interior_subset.
Qed.

Lemma pseudometric_normal {R : realType} {X : pseudoMetricType R} :
  normal_space X.
Proof.
apply/normal_openP => A B clA clB AB0.
have eps' ( D : set X) : closed D -> forall x, exists eps : {posnum R}, ~ D x ->
    ball x eps%:num `&` D = set0.
  move=> clD x; have [nDx|?] := pselect (~ D x); last by exists 1%:pos.
  have /regular_openP/(_ _ clD) [//|] := @uniform_regular X x.
  move=> U [V] [+ oV] Ux /subsetC BV /disjoints_subset UV0.
  rewrite openE /interior => /(_ _ Ux); rewrite -nbhs_ballE => -[].
  move => _/posnumP[eps] beU; exists eps => _; apply/disjoints_subset.
  exact: (subset_trans beU (subset_trans UV0 _)).
pose epsA x := projT1 (cid (eps' _ clB x)).
pose epsB x := projT1 (cid (eps' _ clA x)).
exists (\bigcup_( x in A) interior (ball x ((epsA x)%:num / 2)%:pos%:num)).
exists (\bigcup_( x in B) interior (ball x ((epsB x)%:num / 2)%:pos%:num)).
split.
- by apply: bigcup_open => ? ?; exact: open_interior.
- by apply: bigcup_open => ? ?; exact: open_interior.
- by move=> x ?; exists x => //; exact: nbhsx_ballx.
- by move=> y ?; exists y => //; exact: nbhsx_ballx.
- apply/eqP/negPn/negP/set0P => -[z [[x Ax /interior_subset Axe]]].
  case=> y By /interior_subset Bye; have nAy : ~ A y.
    by move: AB0; rewrite setIC => /disjoints_subset; exact.
  have nBx : ~ B x by move/disjoints_subset: AB0; exact.
  have [|/ltW] := leP ((epsA x)%:num / 2) ((epsB y)%:num / 2).
    move/ball_sym: Axe => /[swap] /le_ball /[apply] /(ball_triangle Bye).
    rewrite -splitr => byx; have := projT2 (cid (eps' _ clA y)) nAy.
    by rewrite -subset0; apply; split; [exact: byx|].
  move/ball_sym: Bye =>/[swap] /le_ball /[apply] /(ball_triangle Axe).
  rewrite -splitr => byx; have := projT2 (cid (eps' _ clB x)) nBx.
  by rewrite -subset0; apply; split; [exact: byx|].
Qed.

End pseudometric_normal.

Section open_closed_sets_ereal .
Variable R : realFieldType .
Local Open Scope ereal_scope.
Implicit Types x y : \bar R.
Implicit Types r : R.

Lemma open_ereal_lt y : open [set r : R | r%:E < y].
Proof.
case: y => [y||] /=; first exact: open_lt.
- rewrite (_ : [set _ | _] = setT); first exact: openT.
  by rewrite funeqE => ? /=; rewrite ltry trueE.
- rewrite (_ : [set _ | _] = set0); first exact: open0.
  by rewrite funeqE => ? /=; rewrite falseE.
Qed.

Lemma open_ereal_gt y : open [set r : R | y < r%:E].
Proof.
case: y => [y||] /=; first exact: open_gt.
- rewrite (_ : [set _ | _] = set0); first exact: open0.
  by rewrite funeqE => ? /=; rewrite falseE.
- rewrite (_ : [set _ | _] = setT); first exact: openT.
  by rewrite funeqE => ? /=; rewrite ltNyr trueE.
Qed.

Lemma open_ereal_lt' x y : x < y -> ereal_nbhs x (fun u => u < y).
Proof.
case: x => [x|//|] xy; first exact: open_ereal_lt.
- case: y => [y||//] /= in xy *; last by exists 0%R.
  by exists y; rewrite num_real; split => //= x ?.
- case: y => [y||//] /= in xy *.
  + by exists y; rewrite num_real; split => //= x ?.
  + by exists 0%R; split => // x /lt_le_trans; apply; rewrite leey.
Qed.

Lemma open_ereal_gt' x y : y < x -> ereal_nbhs x (fun u => y < u).
Proof.
case: x => [x||] //=; do ?[exact: open_ereal_gt];
  case: y => [y||] //=; do ?by exists 0.
- by exists y; rewrite num_real.
- by move=> _; exists 0%R; split => // x; apply/le_lt_trans; rewrite leNye.
Qed.

Lemma open_ereal_lt_ereal x : open [set y | y < x].
Proof.
have openr r : open [set x | x < r%:E].
  case => [? | // | ?]; [rewrite /= lte_fin => xy | by exists r].
  by move: (@open_ereal_lt r%:E); rewrite openE; apply; rewrite /= lte_fin.
case: x => [ // | | [] // ].
suff -> : [set y | y < +oo] = \bigcup_r [set y : \bar R | y < r%:E].
  exact: bigcup_open.
rewrite predeqE => -[r | | ]/=.
- rewrite ltry; split => // _.
  by exists (r + 1)%R => //=; rewrite lte_fin ltr_addl.
- by rewrite ltxx; split => // -[] x /=; rewrite ltNge leey.
- by split => // _; exists 0%R => //=.
Qed.

Lemma open_ereal_gt_ereal x : open [set y | x < y].
Proof.
have openr r : open [set x | r%:E < x].
  case => [? | ? | //]; [rewrite /= lte_fin => xy | by exists r].
  by move: (@open_ereal_gt r%:E); rewrite openE; apply; rewrite /= lte_fin.
case: x => [ // | [] // | ].
suff -> : [set y | -oo < y] = \bigcup_r [set y : \bar R | r%:E < y].
  exact: bigcup_open.
rewrite predeqE => -[r | | ]/=.
- rewrite ltNyr; split => // _.
  by exists (r - 1)%R => //=; rewrite lte_fin ltr_subl_addr ltr_addl.
- by split => // _; exists 0%R => //=.
- by rewrite ltxx; split => // -[] x _ /=; rewrite ltNge leNye.
Qed.

Lemma closed_ereal_le_ereal y : closed [set x | y <= x].
Proof.
rewrite (_ : [set x | y <= x] = ~` [set x | y > x]); last first.
  by rewrite predeqE=> x; split=> [rx|/negP]; [apply/negP|]; rewrite -leNgt.
exact/open_closedC/open_ereal_lt_ereal.
Qed.

Lemma closed_ereal_ge_ereal y : closed [set x | y >= x].
Proof.
rewrite (_ : [set x | y >= x] = ~` [set x | y < x]); last first.
  by rewrite predeqE=> x; split=> [rx|/negP]; [apply/negP|]; rewrite -leNgt.
exact/open_closedC/open_ereal_gt_ereal.
Qed.

End open_closed_sets_ereal.

Section closure_left_right_open .
Variable R : realFieldType.
Implicit Types z : R.

Lemma closure_gt z : closure ([set x | z < x] : set R) = [set x | z <= x].
Proof.
rewrite eqEsubset; split.
  by rewrite closureE; apply: smallest_sub => // ? /ltW.
move=> v; rewrite /mkset le_eqVlt => /predU1P[<-{v}|]; last first.
  by move=> ?; exact: subset_closure.
move=> B [e /= e0 zB]; near (0 : R)^'+ => d.
exists (z + d); split; rewrite /= ?ltr_addl//; apply: zB => /=.
by rewrite opprD addNKr normrN gtr0_norm//.
Unshelve. all: by end_near. Qed.

Lemma closure_lt z : closure ([set x : R | x < z]) = [set x | x <= z].
Proof.
rewrite eqEsubset; split.
  by rewrite closureE; apply: smallest_sub => // ? /ltW.
move=> v; rewrite /mkset le_eqVlt => /predU1P[<-{z}|]; last first.
  by move=> ?; exact: subset_closure.
move=> B [e /= e0 vB]; near (0 : R)^'+ => d.
exists (v - d); split; rewrite /= ?gtr_addl ?oppr_lt0//; apply: vB => /=.
by rewrite opprB addrC addrNK gtr0_norm//; near: d.
Unshelve. all: by end_near. Qed.

End closure_left_right_open.

Complete Normed Modules


Module CompleteNormedModule .

Section ClassDef .

Variable K : numFieldType.

Record class_of ( T : Type) := Class {
   base : NormedModule.class_of K T ;
   mixin : Complete.axiom (PseudoMetric.Pack base)
}.
Local Coercion base : class_of >-> NormedModule.class_of.
Definition base2 T ( cT : class_of T) : CompletePseudoMetric.class_of K T :=
  @CompletePseudoMetric.Class _ _ (@base T cT) (@mixin T cT).
Local Coercion base2 : class_of >-> CompletePseudoMetric.class_of.

Structure type ( phK : phant K) := Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.

Variables ( phK : phant K) ( cT : type phK) ( T : Type).

Definition class := let: Pack _ c := cT return class_of cT in c.

Definition pack :=
  fun bT ( b : NormedModule.class_of K T) & phant_id (@NormedModule.class K phK bT) b =>
  fun mT m & phant_id (@Complete.class mT) (@Complete.Class T b m) =>
    Pack phK (@Class T b m).
Let xT := let: Pack T _ := cT in T.
Notation xclass := (class : class_of xT).

Definition eqType := @Equality.Pack cT xclass.
Definition choiceType := @Choice.Pack cT xclass.
Definition zmodType := @GRing.Zmodule.Pack cT xclass.
Definition normedZmodType := @Num.NormedZmodule.Pack K phK cT xclass.
Definition lmodType := @GRing.Lmodule.Pack K phK cT xclass.
Definition pointedType := @Pointed.Pack cT xclass.
Definition filteredType := @Filtered.Pack cT cT xclass.
Definition topologicalType := @Topological.Pack cT xclass.
Definition uniformType := @Uniform.Pack cT xclass.
Definition pseudoMetricType := @PseudoMetric.Pack K cT xclass.
Definition pseudoMetricNormedZmodType :=
  @PseudoMetricNormedZmodule.Pack K phK cT xclass.
Definition normedModType := @NormedModule.Pack K phK cT xclass.
Definition completeType := @Complete.Pack cT xclass.
Definition completePseudoMetricType := @CompletePseudoMetric.Pack K cT xclass.
Definition complete_zmodType := @GRing.Zmodule.Pack completeType xclass.
Definition complete_lmodType := @GRing.Lmodule.Pack K phK completeType xclass.
Definition complete_normedZmodType := @Num.NormedZmodule.Pack K phK completeType xclass.
Definition complete_pseudoMetricNormedZmodType :=
  @PseudoMetricNormedZmodule.Pack K phK completeType xclass.
Definition complete_normedModType := @NormedModule.Pack K phK completeType xclass.
Definition completePseudoMetric_lmodType : GRing.Lmodule.type phK :=
  @GRing.Lmodule.Pack K phK (CompletePseudoMetric.sort completePseudoMetricType)
  xclass.
Definition completePseudoMetric_zmodType : GRing.Zmodule.type :=
  @GRing.Zmodule.Pack (CompletePseudoMetric.sort completePseudoMetricType)
  xclass.
Definition completePseudoMetric_normedModType : NormedModule.type phK :=
  @NormedModule.Pack K phK (CompletePseudoMetric.sort completePseudoMetricType)
  xclass.
Definition completePseudoMetric_normedZmodType : Num.NormedZmodule.type phK :=
  @Num.NormedZmodule.Pack K phK
  (CompletePseudoMetric.sort completePseudoMetricType) xclass.
Definition completePseudoMetric_pseudoMetricNormedZmodType :
  PseudoMetricNormedZmodule.type phK :=
  @PseudoMetricNormedZmodule.Pack K phK
  (CompletePseudoMetric.sort completePseudoMetricType) xclass.
End ClassDef.

Module Exports .

Coercion base : class_of >-> NormedModule.class_of.
Coercion base2 : class_of >-> CompletePseudoMetric.class_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion zmodType : type >-> GRing.Zmodule.type.
Canonical zmodType.
Coercion pseudoMetricNormedZmodType : type >-> PseudoMetricNormedZmodule.type.
Canonical pseudoMetricNormedZmodType.
Coercion normedZmodType : type >-> Num.NormedZmodule.type.
Canonical normedZmodType.
Coercion lmodType : type >-> GRing.Lmodule.type.
Canonical lmodType.
Coercion pointedType : type >-> Pointed.type.
Canonical pointedType.
Coercion filteredType : type >-> Filtered.type.
Canonical filteredType.
Coercion topologicalType : type >-> Topological.type.
Canonical topologicalType.
Coercion uniformType : type >-> Uniform.type.
Canonical uniformType.
Coercion pseudoMetricType : type >-> PseudoMetric.type.
Canonical pseudoMetricType.
Coercion normedModType : type >-> NormedModule.type.
Canonical normedModType.
Coercion completeType : type >-> Complete.type.
Canonical completeType.
Coercion completePseudoMetricType : type >-> CompletePseudoMetric.type.
Canonical completePseudoMetricType.
Canonical complete_zmodType.
Canonical complete_lmodType.
Canonical complete_normedZmodType.
Canonical complete_pseudoMetricNormedZmodType.
Canonical complete_normedModType.
Canonical completePseudoMetric_lmodType.
Canonical completePseudoMetric_zmodType.
Canonical completePseudoMetric_normedModType.
Canonical completePseudoMetric_normedZmodType.
Canonical completePseudoMetric_pseudoMetricNormedZmodType.
Notation completeNormedModType K := (type (Phant K)).
Notation "[ 'completeNormedModType' K 'of' T ]" := (@pack _ (Phant K) T _ _ idfun _ _ idfun)
  (at level 0, format "[ 'completeNormedModType'  K  'of'  T ]") : form_scope.
End Exports.

End CompleteNormedModule.

Export CompleteNormedModule.Exports.

The topology on real numbers

Lemma R_complete ( R : realType) ( F : set (set R)) : ProperFilter F -> cauchy F -> cvg F.
Proof.
move=> FF /cauchy_ballP F_cauchy; apply/cvg_ex.
pose D := \bigcap_( A in F) (down A).
have /cauchy_ballP /cauchyP /(_ 1) [//|x0 x01] := F_cauchy.
have D_has_sup : has_sup D; first split.
- exists (x0 - 1) => A FA.
  near F => x.
  apply/downP; exists x; first by near: x.
  by rewrite ler_distl_subl // ltW //; near: x.
- exists (x0 + 1); apply/ubP => x /(_ _ x01) /downP [y].
  rewrite -[ball _ _ _]/(_ (_ < _)) ltr_distl ltr_subl_addr => /andP[/ltW].
  by move=> /(le_trans _) yx01 _ /yx01.
exists (sup D).
apply/cvgrPdist_le => /= _ /posnumP[eps]; near=> x.
rewrite ler_distl; move/ubP: (sup_upper_bound D_has_sup) => -> //=.
  apply: sup_le_ub => //; first by case: D_has_sup.
  have Fxeps : F (ball_ [eta normr] x eps%:num).
    by near: x; apply: nearP_dep; apply: F_cauchy.
  apply/ubP => y /(_ _ Fxeps) /downP[z].
  rewrite /ball_/= ltr_distl ltr_subl_addr.
  by move=> /andP [/ltW /(le_trans _) le_xeps _ /le_xeps].
rewrite /D /= => A FA; near F => y.
apply/downP; exists y.
by near: y.
rewrite ler_subl_addl -ler_subl_addr ltW //.
suff: `|x - y| < eps%:num by rewrite ltr_norml => /andP[_].
by near: y; near: x; apply: nearP_dep; apply: F_cauchy.
Unshelve. all: by end_near. Qed.

Canonical R_regular_completeType ( R : realType) :=
  CompleteType R^o (@R_complete R).
Canonical R_regular_CompleteNormedModule ( R : realType) :=
  [completeNormedModType R of R^o].

Canonical R_completeType ( R : realType) :=
  [completeType of R for [completeType of R^o]].
Canonical R_CompleteNormedModule ( R : realType) :=
  [completeNormedModType R of R].

Section cvg_seq_bounded .
Context {K : numFieldType}.
Local Notation "'+oo'" := (@pinfty_nbhs K).

Lemma cvg_seq_bounded {V : normedModType K} ( a : nat -> V) :
  cvg a -> bounded_fun a.
Proof.
move=> /cvg_bounded/ex_bound => -[/= Moo] => -[N _ /(_ _) aM].
have Moo_real : Moo \is Num.real by rewrite ger0_real ?(le_trans _ (aM N _))/=.
rewrite /bounded_near /=; near=> M => n _.
have [nN|nN]/= := leqP N n; first by apply: (le_trans (aM _ _)).
move: n nN; suff /(_ (Ordinal _)) : forall n : 'I_N, `|a n| <= M by [].
by near: M; apply: filter_forall => i; apply: nbhs_pinfty_ge.
Unshelve. all: by end_near. Qed.

End cvg_seq_bounded.

Lemma closure_sup ( R : realType) ( A : set R) :
  A !=set0 -> has_ubound A -> closure A (sup A).
Proof.
move=> A0 ?; have [|AsupA] := pselect (A (sup A)); first exact: subset_closure.
rewrite closure_limit_point; right => U /nbhs_ballP[_ /posnumP[e]] supAeU.
suff [x [Ax /andP[sAex xsA]]] : exists x, A x /\ sup A - e%:num < x < sup A.
  exists x; split => //; first by rewrite lt_eqF.
  apply supAeU; rewrite /ball /= ltr_distl (addrC x e%:num) -ltr_subl_addl sAex.
  by rewrite andbT (le_lt_trans _ xsA) // ler_subl_addl ler_addr.
apply: contrapT => /forallNP Ax.
suff /(sup_le_ub A0) : ubound A (sup A - e%:num).
  by rewrite leNgt => /negP; apply; rewrite ltr_subl_addl ltr_addr.
move=> y Ay; have /not_andP[//|/negP] := Ax y.
rewrite negb_and leNgt => /orP[//|]; apply: contra => sAey.
rewrite lt_neqAle sup_upper_bound // andbT.
by apply: contra_not_neq AsupA => <-.
Qed.

Lemma near_infty_natSinv_lt ( R : archiFieldType) ( e : {posnum R}) :
  \forall n \near \oo, n.+1%:R^-1 < e%:num.
Proof.
near=> n; rewrite -(@ltr_pmul2r _ n.+1%:R) // mulVr ?unitfE //.
rewrite -(@ltr_pmul2l _ e%:num^-1) // mulr1 mulrA mulVr ?unitfE // mul1r.
rewrite (lt_trans (archi_boundP _)) // ltr_nat.
by near: n; exists (Num.bound e%:num^-1).
Unshelve. all: by end_near. Qed.

Lemma near_infty_natSinv_expn_lt ( R : archiFieldType) ( e : {posnum R}) :
  \forall n \near \oo, 1 / 2 ^+ n < e%:num.
Proof.
near=> n.
rewrite -(@ltr_pmul2r _ (2 ^+ n)) // -?natrX ?ltr0n ?expn_gt0//.
rewrite mul1r mulVr ?unitfE ?gt_eqF// ?ltr0n ?expn_gt0//.
rewrite -(@ltr_pmul2l _ e%:num^-1) // mulr1 mulrA mulVr ?unitfE // mul1r.
rewrite (lt_trans (archi_boundP _)) // natrX upper_nthrootP //.
near: n; eexists; last by move=> m; exact.
by [].
Unshelve. all: by end_near. Qed.

Lemma limit_pointP ( T : archiFieldType) ( A : set T) ( x : T) :
  limit_point A x <-> exists a_ : nat -> T,
    [/\ a_ @` setT `<=` A, forall n, a_ n != x & a_ --> x].
Proof.
split=> [Ax|[a_ [aTA a_x] ax]]; last first.
  move=> U /ax[m _ a_U]; near \oo => n; exists (a_ n); split => //.
  by apply aTA; exists n.
  by apply a_U; near: n; exists m.
pose U := fun n : nat => [set z : T | `|x - z| < n.+1%:R^-1].
suff /(_ _)/cid-/all_sig[a_ anx] : forall n, exists a, a != x /\ (U n `&` A) a.
  exists a_; split.
  - by move=> a [n _ <-]; have [? []] := anx n.
  - by move=> n; have [] := anx n.
  - apply/cvgrPdist_lt => _/posnumP[e]; near=> n; have [? [] Uan Aan] := anx n.
    by rewrite (lt_le_trans Uan)// ltW//; near: n; exact: near_infty_natSinv_lt.
move=> n; have : nbhs (x : T) (U n).
  by apply/(nbhs_ballP (x:T) (U n)); rewrite nbhs_ballE; exists n.+1%:R^-1 => //=.
by move/Ax/cid => [/= an [anx Aan Uan]]; exists an.
Unshelve. all: by end_near. Qed.

Section interval .
Variable R : numDomainType.

Definition is_interval ( E : set R) :=
  forall x y, E x -> E y -> forall z, x <= z <= y -> E z.

Lemma is_intervalPlt ( E : set R) :
  is_interval E <-> forall x y, E x -> E y -> forall z, x < z < y -> E z.
Proof.
split=> iE x y Ex Ey z /andP[].
  by move=> xz zy; apply: (iE x y); rewrite ?ltW.
rewrite !le_eqVlt => /predU1P[<-//|xz] /predU1P[->//|zy].
by apply: (iE x y); rewrite ?xz.
Qed.

Lemma interval_is_interval ( i : interval R) : is_interval [set` i].
Proof.
by case: i => -[[]a|[]] [[]b|[]] // x y /=; do ?[by rewrite ?itv_ge//];
  move=> xi yi z; rewrite -[x <= z <= y]/(z \in `[x, y]); apply/subitvP;
  rewrite subitvE /Order.le/= ?(itvP xi, itvP yi).
Qed.

End interval.

Section ereal_is_hausdorff .
Variable R : realFieldType.
Implicit Types r : R.

Lemma nbhs_image_EFin ( x : R) ( X : set R) :
  nbhs x X -> nbhs x%:E ((fun r => r%:E) @` X).
Proof.
case => _/posnumP[e] xeX; exists e%:num => //= r xer.
by exists r => //; apply xeX.
Qed.

Lemma nbhs_open_ereal_lt r ( f : R -> R) : r < f r ->
  nbhs r%:E [set y | y < (f r)%:E]%E.
Proof.
move=> xfx; rewrite nbhsE /=; eexists; last by move=> y; exact.
by split; [apply open_ereal_lt_ereal | rewrite /= lte_fin].
Qed.

Lemma nbhs_open_ereal_gt r ( f : R -> R) : f r < r ->
  nbhs r%:E [set y | (f r)%:E < y]%E.
Proof.
move=> xfx; rewrite nbhsE /=; eexists; last by move=> y; exact.
by split; [apply open_ereal_gt_ereal | rewrite /= lte_fin].
Qed.

Lemma nbhs_open_ereal_pinfty r : (nbhs +oo [set y | r%:E < y])%E.
Proof.
rewrite nbhsE /=; eexists; last by move=> y; exact.
by split; [apply open_ereal_gt_ereal | rewrite /= ltry].
Qed.

Lemma nbhs_open_ereal_ninfty r : (nbhs -oo [set y | y < r%:E])%E.
Proof.
rewrite nbhsE /=; eexists; last by move=> y; exact.
by split; [apply open_ereal_lt_ereal | rewrite /= ltNyr].
Qed.

Lemma ereal_hausdorff : hausdorff_space (ereal_topologicalType R).
Proof.
move=> -[r| |] // [r' | |] //=.
- move=> rr'; congr (_%:E); apply Rhausdorff => /= A B rA r'B.
  have [/= z [[r0 ? r0z] [r1 ?]]] :=
    rr' _ _ (nbhs_image_EFin rA) (nbhs_image_EFin r'B).
  by rewrite -r0z => -[r1r0]; exists r0; split => //; rewrite -r1r0.
- have /(@nbhs_open_ereal_lt _ (fun x => x + 1)) loc_r : r < r + 1.
    by rewrite ltr_addl.
  move/(_ _ _ loc_r (nbhs_open_ereal_pinfty (r + 1))) => -[z [zr rz]].
  by move: (lt_trans rz zr); rewrite lte_fin ltxx.
- have /(@nbhs_open_ereal_gt _ (fun x => x - 1)) loc_r : r - 1 < r.
    by rewrite ltr_subl_addr ltr_addl.
  move/(_ _ _ loc_r (nbhs_open_ereal_ninfty (r - 1))) => -[z [rz zr]].
  by move: (lt_trans zr rz); rewrite ltxx.
- have /(@nbhs_open_ereal_lt _ (fun x => x + 1)) loc_r' : r' < r' + 1.
    by rewrite ltr_addl.
  move/(_ _ _ (nbhs_open_ereal_pinfty (r' + 1)) loc_r') => -[z [r'z zr']].
  by move: (lt_trans zr' r'z); rewrite ltxx.
- move/(_ _ _ (nbhs_open_ereal_pinfty 0) (nbhs_open_ereal_ninfty 0)).
  by move=> -[z [zx xz]]; move: (lt_trans xz zx); rewrite ltxx.
- have /(@nbhs_open_ereal_gt _ (fun x => x - 1)) yB : r' - 1 < r'.
    by rewrite ltr_subl_addr ltr_addl.
  move/(_ _ _ (nbhs_open_ereal_ninfty (r' - 1)) yB) => -[z [zr' r'z]].
  by move: (lt_trans r'z zr'); rewrite ltxx.
- move/(_ _ _ (nbhs_open_ereal_ninfty 0) (nbhs_open_ereal_pinfty 0)).
  by move=> -[z [zO Oz]]; move: (lt_trans Oz zO); rewrite ltxx.
Qed.

End ereal_is_hausdorff.

#[global]
Hint Extern 0 (hausdorff_space _) => solve[apply: ereal_hausdorff] : core.

#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `nbhs_image_EFin`")]
Notation nbhs_image_ERFin := nbhs_image_EFin (only parsing).

Lemma EFin_lim ( R : realFieldType) ( f : nat -> R) : cvg f ->
  lim (EFin \o f) = (lim f)%:E.
Proof.
move=> cf; apply: cvg_lim => //; move/cvg_ex : cf => [l fl].
by apply: (cvg_comp fl); rewrite (cvg_lim _ fl).
Qed.

Section ProperFilterERealType .
Context {T : Type} {a : set (set T)} {Fa : ProperFilter a} {R : realFieldType}.
Local Open Scope ereal_scope.
Implicit Types f g h : T -> \bar R.

Lemma cvge_to_ge f b c : f @ a --> c -> (\near a, b <= f a) -> b <= c.
Proof.
by move=> /[swap]/(closed_cvg _ (@closed_ereal_le_ereal _ b)) /[apply].
Qed.

Lemma cvge_to_le f b c : f @ a --> c -> (\near a, f a <= b) -> c <= b.
Proof.
by move=> /[swap]/(closed_cvg _ (@closed_ereal_ge_ereal _ b))/[apply].
Qed.

Lemma lime_ge x f : cvg (f @ a) -> (\near a, x <= f a) -> x <= lim (f @ a).
Proof.
exact: cvge_to_ge. Qed.

Lemma lime_le x f : cvg (f @ a) -> (\near a, x >= f a) -> x >= lim (f @ a).
Proof.
exact: cvge_to_le. Qed.

End ProperFilterERealType.

Section ecvg_realFieldType_proper .
Context {I} {F : set (set I)} {FF : ProperFilter F} {R : realFieldType}.
Implicit Types (f g : I -> \bar R) (u v : I -> R) (x : \bar R) (r : R).
Local Open Scope ereal_scope.

Lemma is_cvgeD f g :
  lim (f @ F) +? lim (g @ F) -> cvg (f @ F) -> cvg (g @ F) -> cvg (f \+ g @ F).
Proof.
by move=> fg fc gc; have /(_ _)/cvgP := cvgeD fg fc gc. Qed.

Lemma limeD f g :
  cvg (f @ F) -> cvg (g @ F) -> lim (f @ F) +? lim (g @ F) ->
  lim (f \+ g @ F) = lim (f @ F) + lim (g @ F).
Proof.
by move=> cf cg fg; apply/cvg_lim => //; exact: cvgeD. Qed.

Lemma limeMl f y : y \is a fin_num -> cvg (f @ F) ->
  lim ((fun n => y * f n) @ F) = y * lim (f @ F).
Proof.
by move=> yfn cf; apply/cvg_lim => //; exact: cvgeMl. Qed.

Lemma limeMr f y : y \is a fin_num -> cvg (f @ F) ->
  lim ((fun n => f n * y) @ F) = lim (f @ F) * y.
Proof.
by move=> yfn cf; apply/cvg_lim => //; apply: cvgeMr. Qed.

Lemma is_cvgeM f g :
  lim (f @ F) *? lim (g @ F) -> cvg (f @ F) -> cvg (g @ F) -> cvg (f \* g @ F).
Proof.
by move=> fg fc gc; have /(_ _)/cvgP := cvgeM fg fc gc. Qed.

Lemma limeM f g :
  cvg (f @ F) -> cvg (g @ F) -> lim (f @ F) *? lim (g @ F) ->
  lim (f \* g @ F) = lim (f @ F) * lim (g @ F).
Proof.
by move=> cf cg fg; apply/cvg_lim => //; exact: cvgeM. Qed.

Lemma limeN f : cvg (f @ F) -> lim (\- f @ F) = - lim (f @ F).
Proof.
by move=> cf; apply/cvg_lim => //; apply: cvgeN. Qed.

Lemma cvge_ge f a b : (\forall x \near F, b <= f x) -> f @ F --> a -> b <= a.
Proof.
by move=> ? fa; rewrite -(cvg_lim _ fa) ?lime_ge//=; apply: cvgP fa. Qed.

Lemma cvge_le f a b : (\forall x \near F, b >= f x) -> f @ F --> a -> b >= a.
Proof.
by move=> ? fa; rewrite -(cvg_lim _ fa) ?lime_le//=; apply: cvgP fa. Qed.

Lemma cvg_nnesum ( J : Type) ( r : seq J) ( f : J -> I -> \bar R)
   ( l : J -> \bar R) ( P : pred J) :
  (forall j, P j -> \near F, 0 <= f j F) ->
  (forall j, P j -> f j @ F --> l j) ->
  \sum_( j <- r | P j) f j i @[i --> F] --> \sum_( j <- r | P j) l j.
Proof.
pose bigsimp := (big_nil, big_cons);
elim: r => [|x r IHr]/= f0 fl; rewrite bigsimp; under eq_fun do rewrite bigsimp.
  exact: cvg_cst.
case: ifPn => [Px|Pnx]; last exact: IHr.
apply: cvgeD; [|exact: fl|exact: IHr].
by rewrite ge0_adde_def ?inE// ?sume_ge0// => [|j Pj];
   rewrite (cvge_ge _ (fl _ _))//; apply: f0.
Qed.

Lemma lim_nnesum ( J : Type) ( r : seq J) ( f : J -> I -> \bar R)
   ( l : J -> \bar R) ( P : pred J) :
  (forall j, P j -> \near F, 0 <= f j F) ->
  (forall j, P j -> cvg (f j @ F)) ->
  lim (\sum_( j <- r | P j) f j i @[i --> F]) = \sum_( j <- r | P j) (lim (f j @ F)).
Proof.
by move=> ? ?; apply/cvg_lim => //; apply: cvg_nnesum. Qed.

End ecvg_realFieldType_proper.

#[deprecated(since="mathcomp-analysis 0.6.0", note="generalized to `limeMl`")]
Notation ereal_limrM := limeMl (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="generalized to `limeMr`")]
Notation ereal_limMr := limeMr (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="generalized to `limeN`")]
Notation ereal_limN := limeN (only parsing).

Section cvg_0_pinfty .
Context {R : realFieldType} {I : Type} {a : set (set I)} {FF : Filter a}.
Implicit Types f : I -> R.

Lemma gtr0_cvgV0 f : (\near a, 0 < f a) -> f\^-1 @ a --> 0 <-> f @ a --> +oo.
Proof.
move=> f_gt0; split; last first.
  move=> /cvgryPgt cvg_f_oo; apply/cvgr0Pnorm_lt => _/posnumP[e].
  near=> i; rewrite gtr0_norm ?invr_gt0//; last by near: i.
  by rewrite -ltf_pinv ?qualifE ?invr_gt0 ?invrK//=; near: i.
move=> /cvgr0Pnorm_lt uB; apply/cvgryPgty.
near=> M; near=> i; suff: `|(f i)^-1| < M^-1.
  by rewrite gtr0_norm ?ltf_pinv ?qualifE ?invr_gt0//; near: i.
by near: i; apply: uB; rewrite ?invr_gt0.
Unshelve. all: by end_near. Qed.

Lemma cvgrVy f : (\near a, 0 < f a) -> f\^-1 @ a --> +oo <-> f @ a --> 0.
Proof.
by move=> f_gt0; rewrite -gtr0_cvgV0 ?inv_funK//; near do rewrite invr_gt0.
Unshelve. all: by end_near. Qed.

Lemma ltr0_cvgV0 f : (\near a, 0 > f a) -> f\^-1 @ a --> 0 <-> f @ a --> -oo.
Proof.
move=> fL0; rewrite -cvgNP oppr0 (_ : - f\^-1 = (- f)\^-1); last first.
   by apply/funeqP => i; rewrite opprfctE/= invrN.
by rewrite gtr0_cvgV0 ?cvgNry//; near do rewrite oppr_gt0.
Unshelve. all: by end_near. Qed.

Lemma cvgrVNy f : (\near a, 0 > f a) -> f\^-1 @ a --> -oo <-> f @ a --> 0.
Proof.
by move=> f_lt0; rewrite -ltr0_cvgV0 ?inv_funK//; near do rewrite invr_lt0.
Unshelve. all: by end_near. Qed.

End cvg_0_pinfty.

Section FilterRealType .
Context {T : Type} {a : set (set T)} {Fa : Filter a} {R : realFieldType}.
Implicit Types f g h : T -> R.

Lemma squeeze_cvgr f h g : (\near a, f a <= g a <= h a) ->
  forall ( l : R), f @ a --> l -> h @ a --> l -> g @ a --> l.
Proof.
move=> fgh l lfa lga; apply/cvgrPdist_lt => e e_gt0.
near=> x; have /(_ _)/andP[//|fg gh] := near fgh x.
rewrite distrC ltr_distl (lt_le_trans _ fg) ?(le_lt_trans gh)//=.
  by near: x; apply: (cvgr_lt l); rewrite // ltr_addl.
by near: x; apply: (cvgr_gt l); rewrite // gtr_addl oppr_lt0.
Unshelve. all: end_near. Qed.

Lemma ger_cvgy f g : (\near a, f a <= g a) ->
  f @ a --> +oo -> g @ a --> +oo.
Proof.
move=> uv /cvgryPge ucvg; apply/cvgryPge => A.
by near=> x do rewrite (le_trans _ (near uv x _))//.
Unshelve. all: end_near. Qed.

Lemma ler_cvgNy f g : (\near a, f a >= g a) ->
  f @ a --> -oo -> g @ a --> -oo.
Proof.
move=> uv /cvgrNyPle ucvg; apply/cvgrNyPle => A.
by near=> x do rewrite (le_trans (near uv x _))//.
Unshelve. all: end_near. Qed.

End FilterRealType.

Section TopoProperFilterRealType .
Context {T : topologicalType} {a : set (set T)} {Fa : ProperFilter a}.
Context {R : realFieldType}.
Implicit Types f g h : T -> R.

Lemma ler_cvg_to f g l l' : f @ a --> l -> g @ a --> l' ->
  (\near a, f a <= g a) -> l <= l'.
Proof.
move=> fl gl; under eq_near do rewrite -subr_ge0; rewrite -subr_ge0.
by apply: cvgr_to_ge; apply: cvgB.
Qed.

Lemma ler_lim f g : cvg (f @ a) -> cvg (g @ a) ->
  (\near a, f a <= g a) -> lim (f @ a) <= lim (g @ a).
Proof.
exact: ler_cvg_to. Qed.

End TopoProperFilterRealType.

Section FilterERealType .
Context {T : Type} {a : set (set T)} {Fa : Filter a} {R : realFieldType}.
Local Open Scope ereal_scope.
Implicit Types f g h : T -> \bar R.

Lemma gee_cvgy f g : (\near a, f a <= g a) ->
  f @ a --> +oo -> g @ a --> +oo.
Proof.
move=> uv /cvgeyPge uecvg; apply/cvgeyPge => A.
by near=> x do rewrite (le_trans _ (near uv x _))//.
Unshelve. all: end_near. Qed.

Lemma lee_cvgNy f g : (\near a, f a >= g a) ->
  f @ a --> -oo -> g @ a --> -oo.
Proof.
move=> uv /cvgeNyPle uecvg; apply/cvgeNyPle => A.
by near=> x do rewrite (le_trans (near uv x _))//.
Unshelve. all: end_near. Qed.

Lemma squeeze_fin f g h : (\near a, f a <= g a <= h a) ->
    (\near a, f a \is a fin_num) -> (\near a, h a \is a fin_num) ->
  (\near a, g a \is a fin_num).
Proof.
apply: filterS3 => x /andP[fg gh].
rewrite !fin_numElt => /andP[oof _] /andP[_ hoo].
by rewrite (lt_le_trans oof) ?(le_lt_trans gh).
Qed.

Lemma squeeze_cvge f g h : (\near a, f a <= g a <= h a) ->
  forall ( l : \bar R), f @ a --> l -> h @ a --> l -> g @ a --> l.
Proof.
move=> fgh [l||]; last 2 first.
- by move=> + _; apply: gee_cvgy; apply: filterS fgh => ? /andP[].
- by move=> _; apply: lee_cvgNy; apply: filterS fgh => ? /andP[].
move=> /fine_cvgP[Ff fl] /fine_cvgP[Fh hl]; apply/fine_cvgP.
have Fg := squeeze_fin fgh Ff Fh; split=> //.
apply: squeeze_cvgr fl hl; near=> x => /=.
by have /(_ _)/andP[//|fg gh] := near fgh x; rewrite !fine_le//=; near: x.
Unshelve. all: end_near. Qed.

End FilterERealType.

Section TopoProperFilterERealType .
Context {T : topologicalType} {a : set (set T)} {Fa : ProperFilter a}.
Context {R : realFieldType}.
Local Open Scope ereal_scope.
Implicit Types f g h : T -> \bar R.

Lemma lee_cvg_to f g l l' : f @ a --> l -> g @ a --> l' ->
  (\near a, f a <= g a) -> l <= l'.
Proof.
move=> + + fg; move: l' l.
move=> /= [l'||] [l||]//=; rewrite ?leNye ?leey//=; first 1 last.
- by move=> /(gee_cvgy fg) /cvg_lim<-// /cvg_lim<-.
- by move=> /cvg_lim <-// /(lee_cvgNy fg) /cvg_lim<-.
- by move=> /(gee_cvgy fg) /cvg_lim<-// /cvg_lim<-.
move=> /fine_cvgP[Ff fl] /fine_cvgP[Fg gl].
rewrite lee_fin -(cvg_lim _ fl)// -(cvg_lim _ gl)//.
by apply: ler_lim; [apply: cvgP fl|apply: cvgP gl|near do apply: fine_le].
Unshelve. all: end_near. Qed.

Lemma lee_lim f g : cvg (f @ a) -> cvg (g @ a) ->
  (\near a, f a <= g a) -> lim (f @ a) <= lim (g @ a).
Proof.
exact: lee_cvg_to. Qed.

End TopoProperFilterERealType.

Section open_union_rat .
Variable R : realType.
Implicit Types A U : set R.

Let ointsub A U := [/\ open A, is_interval A & A `<=` U].

Let ointsub_rat U q := [set A | ointsub A U /\ A (ratr q)].

Let ointsub_rat0 q : ointsub_rat set0 q = set0.
Proof.
by apply/seteqP; split => // A [[_ _]]; rewrite subset0 => ->. Qed.

Definition bigcup_ointsub U q := \bigcup_( A in ointsub_rat U q) A.

Lemma bigcup_ointsub0 q : bigcup_ointsub set0 q = set0.
Proof.
by rewrite /bigcup_ointsub ointsub_rat0 bigcup_set0. Qed.

Lemma open_bigcup_ointsub U q : open (bigcup_ointsub U q).
Proof.
by apply: bigcup_open => i [[]]. Qed.

Lemma is_interval_bigcup_ointsub U q : is_interval (bigcup_ointsub U q).
Proof.
move=> /= a b [A [[oA iA AU] Aq] Aa] [B [[oB iB BU] Bq] Bb] c /andP[ac cb].
have [cq|cq|->] := ltgtP c (ratr q); last by exists A.
- by exists A => //; apply: (iA a (ratr q)) => //; rewrite ac (ltW cq).
- by exists B => //; apply: (iB (ratr q) b) => //; rewrite cb (ltW cq).
Qed.

Lemma bigcup_ointsub_sub U q : bigcup_ointsub U q `<=` U.
Proof.
by move=> y [A [[oA _ +] _ Ay]]; exact. Qed.

Lemma open_bigcup_rat U : open U ->
  U = \bigcup_( q in [set q | ratr q \in U]) bigcup_ointsub U q.
Proof.
move=> oU; have [->|U0] := eqVneq U set0.
  by rewrite bigcup0// => q _; rewrite bigcup_ointsub0.
apply/seteqP; split=> [x Ux|x [p _ Ipx]]; last exact: bigcup_ointsub_sub Ipx.
suff [q Iqx] : exists q, bigcup_ointsub U q x.
  by exists q => //=; rewrite in_setE; case: Iqx => A [[_ _ +] ? _]; exact.
have : nbhs x U by rewrite nbhsE /=; exists U.
rewrite -nbhs_ballE /nbhs_ball /nbhs_ball_ => -[_/posnumP[r] xrU].
have /rat_in_itvoo[q qxxr] : (x - r%:num < x + r%:num)%R.
  by rewrite ltr_subl_addr -addrA ltr_addl.
exists q, `](x - r%:num)%R, (x + r%:num)%R[%classic; last first.
  by rewrite /= in_itv/= ltr_subl_addl ltr_addr// ltr_addl//; apply/andP.
split=> //; split; [exact: interval_open|exact: interval_is_interval|].
move=> y /=; rewrite in_itv/= => /andP[xy yxr]; apply xrU => /=.
rewrite /ball /= /ball_ /= in xrU *; have [yx|yx] := leP x y.
  by rewrite ler0_norm ?subr_le0// opprB ltr_subl_addl.
by rewrite gtr0_norm ?subr_gt0// ltr_subl_addr -ltr_subl_addl.
Qed.

End open_union_rat.

Lemma right_bounded_interior ( R : realType) ( X : set R) :
  has_ubound X -> X^° `<=` [set r | r < sup X].
Proof.
move=> uX r Xr; rewrite /mkset ltNge; apply/negP.
rewrite le_eqVlt => /orP[/eqP supXr|]; last first.
  by apply/negP; rewrite -leNgt sup_ub //; exact: interior_subset.
suff : ~ X^° (sup X) by rewrite supXr.
case/nbhs_ballP => _/posnumP[e] supXeX.
have [f XsupXf] : exists f : {posnum R}, X (sup X + f%:num).
  exists (e%:num / 2)%:pos; apply supXeX; rewrite /ball /= opprD addrA subrr.
  by rewrite sub0r normrN gtr0_norm // ltr_pdivr_mulr // ltr_pmulr // ltr1n.
have : sup X + f%:num <= sup X by apply sup_ub.
by apply/negP; rewrite -ltNge; rewrite ltr_addl.
Qed.

Lemma left_bounded_interior ( R : realType) ( X : set R) :
  has_lbound X -> X^° `<=` [set r | inf X < r].
Proof.
move=> lX r Xr; rewrite /mkset ltNge; apply/negP.
rewrite le_eqVlt => /orP[/eqP rinfX|]; last first.
  by apply/negP; rewrite -leNgt inf_lb //; exact: interior_subset.
suff : ~ X^° (inf X) by rewrite -rinfX.
case/nbhs_ballP => _/posnumP[e] supXeX.
have [f XsupXf] : exists f : {posnum R}, X (inf X - f%:num).
  exists (e%:num / 2)%:pos; apply supXeX; rewrite /ball /= opprB addrCA subrr.
  by rewrite addr0 gtr0_norm // ltr_pdivr_mulr // ltr_pmulr // ltr1n.
have : inf X <= inf X - f%:num by apply inf_lb.
by apply/negP; rewrite -ltNge; rewrite ltr_subl_addr ltr_addl.
Qed.

Section interval_realType .
Variable R : realType.

Lemma interval_unbounded_setT ( X : set R) : is_interval X ->
  ~ has_lbound X -> ~ has_ubound X -> X = setT.
Proof.
move=> iX lX uX; rewrite predeqE => x; split => // _.
move/has_lbPn : lX => /(_ x) [y Xy xy].
move/has_ubPn : uX => /(_ x) [z Xz xz].
by apply: (iX y z); rewrite ?ltW.
Qed.

Lemma interval_left_unbounded_interior ( X : set R) : is_interval X ->
  ~ has_lbound X -> has_ubound X -> X^° = [set r | r < sup X].
Proof.
move=> iX lX uX; rewrite eqEsubset; split; first exact: right_bounded_interior.
rewrite -(open_subsetE _ (@open_lt _ _)) => r rsupX.
move/has_lbPn : lX => /(_ r)[y Xy yr].
have hsX : has_sup X by split => //; exists y.
have /sup_adherent/(_ hsX)[e Xe] : 0 < sup X - r by rewrite subr_gt0.
by rewrite opprB addrCA subrr addr0 => re; apply: (iX y e); rewrite ?ltW.
Qed.

Lemma interval_right_unbounded_interior ( X : set R) : is_interval X ->
  has_lbound X -> ~ has_ubound X -> X^° = [set r | inf X < r].
Proof.
move=> iX lX uX; rewrite eqEsubset; split; first exact: left_bounded_interior.
rewrite -(open_subsetE _ (@open_gt _ _)) => r infXr.
move/has_ubPn : uX => /(_ r)[y Xy yr].
have hiX : has_inf X by split => //; exists y.
have /inf_adherent/(_ hiX)[e Xe] : 0 < r - inf X by rewrite subr_gt0.
by rewrite addrCA subrr addr0 => er; apply: (iX e y); rewrite ?ltW.
Qed.

Lemma interval_bounded_interior ( X : set R) : is_interval X ->
  has_lbound X -> has_ubound X -> X^° = [set r | inf X < r < sup X].
Proof.
move=> iX bX aX; rewrite eqEsubset; split=> [r Xr|].
  apply/andP; split;
    [exact: left_bounded_interior|exact: right_bounded_interior].
rewrite -open_subsetE; last exact: (@interval_open _ (BRight _) (BLeft _)).
move=> r /andP[iXr rsX].
have [X0|/set0P X0] := eqVneq X set0.
  by move: (lt_trans iXr rsX); rewrite X0 inf_out ?sup_out ?ltxx // => - [[]].
have hiX : has_inf X by split.
have /inf_adherent/(_ hiX)[e Xe] : 0 < r - inf X by rewrite subr_gt0.
rewrite addrCA subrr addr0 => er.
have hsX : has_sup X by split.
have /sup_adherent/(_ hsX)[f Xf] : 0 < sup X - r by rewrite subr_gt0.
by rewrite opprB addrCA subrr addr0 => rf; apply: (iX e f); rewrite ?ltW.
Qed.

Definition Rhull ( X : set R) : interval R := Interval
  (if `[< has_lbound X >] then BSide `[< X (inf X) >] (inf X)
                          else BInfty _ true)
  (if `[< has_ubound X >] then BSide (~~ `[< X (sup X) >]) (sup X)
                          else BInfty _ false).

Lemma Rhull0 : Rhull set0 = `]0, 0[ :> interval R.
Proof.
rewrite /Rhull (asboolT (has_lbound0 R)) (asboolT (has_ubound0 R)) asboolF //.
by rewrite sup0 inf0.
Qed.

Lemma sub_Rhull ( X : set R) : X `<=` [set x | x \in Rhull X].
Proof.
move=> x Xx/=; rewrite in_itv/=.
case: (asboolP (has_lbound _)) => ?; case: (asboolP (has_ubound _)) => ? //=.
+ by case: asboolP => ?; case: asboolP => ? //=;
     rewrite !(lteifF, lteifT, sup_ub, inf_lb, sup_ub_strict, inf_lb_strict).
+ by case: asboolP => XinfX; rewrite !(lteifF, lteifT);
     [rewrite inf_lb | rewrite inf_lb_strict].
+ by case: asboolP => XsupX; rewrite !(lteifF, lteifT);
     [rewrite sup_ub | rewrite sup_ub_strict].
Qed.

Lemma is_intervalP ( X : set R) : is_interval X <-> X = [set x | x \in Rhull X].
Proof.
split=> [iX|->]; last exact: interval_is_interval.
rewrite predeqE => x /=; split; [exact: sub_Rhull | rewrite in_itv/=].
case: (asboolP (has_lbound _)) => ?; case: (asboolP (has_ubound _)) => ? //=.
- case: asboolP => XinfX; case: asboolP => XsupX;
    rewrite !(lteifF, lteifT).
  + move=> /andP[]; rewrite le_eqVlt => /orP[/eqP <- //|infXx].
    rewrite le_eqVlt => /orP[/eqP -> //|xsupX].
    apply: (@interior_subset R).
    by rewrite interval_bounded_interior // /mkset infXx.
  + move=> /andP[]; rewrite le_eqVlt => /orP[/eqP <- //|infXx supXx].
    apply: (@interior_subset R).
    by rewrite interval_bounded_interior // /mkset infXx.
  + move=> /andP[infXx]; rewrite le_eqVlt => /orP[/eqP -> //|xsupX].
    apply: (@interior_subset R).
    by rewrite interval_bounded_interior // /mkset infXx.
  + move=> ?; apply: (@interior_subset R).
    by rewrite interval_bounded_interior // /mkset infXx.
- case: asboolP => XinfX; rewrite !(lteifF, lteifT, andbT).
  + rewrite le_eqVlt => /orP[/eqP<-//|infXx].
    apply: (@interior_subset R).
    by rewrite interval_right_unbounded_interior.
  + move=> infXx; apply: (@interior_subset R).
    by rewrite interval_right_unbounded_interior.
- case: asboolP => XsupX /=.
  + rewrite le_eqVlt => /orP[/eqP->//|xsupX].
    apply: (@interior_subset R).
    by rewrite interval_left_unbounded_interior.
  + move=> xsupX; apply: (@interior_subset R).
    by rewrite interval_left_unbounded_interior.
- by move=> _; rewrite (interval_unbounded_setT iX).
Qed.

Lemma connected_intervalP ( E : set R) : connected E <-> is_interval E.
Proof.
split => [cE x y Ex Ey z /andP[xz zy]|].
- apply: contrapT => Ez.
  pose Az := E `&` [set x | x < z]; pose Bz := E `&` [set x | z < x].
  apply/connectedPn : cE; exists (fun b => if b then Az else Bz); split.
  + move: xz zy Ez.
    rewrite !le_eqVlt => /predU1P[<-//|xz] /predU1P[->//|zy] Ez.
    by case; [exists x | exists y].
  + rewrite /Az /Bz -setIUr; apply/esym/setIidPl => u Eu.
    by apply/orP; rewrite -neq_lt; apply/negP; apply: contraPnot Eu => /eqP <-.
  + split; [|rewrite setIC].
    + apply/disjoints_subset => /= u /closureI[_]; rewrite closure_gt => zu.
      by rewrite /Az setCI; right; apply/negP; rewrite -leNgt.
    + apply/disjoints_subset => /= u /closureI[_]; rewrite closure_lt => zu.
      by rewrite /Bz setCI; right; apply/negP; rewrite -leNgt.
- apply: contraPP => /connectedPn[A [A0 EU sepA]] intE.
  have [/= x A0x] := A0 false; have [/= y A1y] := A0 true.
  wlog xy : A A0 EU sepA x A0x y A1y / x < y.
    move=> /= wlog_hypo; have [xy|yx|{wlog_hypo}yx] := ltgtP x y.
    + exact: (wlog_hypo _ _ _ _ _ A0x _ A1y).
    + apply: (wlog_hypo (A \o negb) _ _ _ y _ x) => //=;
      by [rewrite setUC | rewrite separatedC].
    + move/separated_disjoint : sepA; rewrite predeqE => /(_ x)[] + _; apply.
      by split => //; rewrite yx.
  pose z := sup (A false `&` [set z | x <= z <= y]).
  have A1z : ~ (A true) z.
    have cA0z : closure (A false) z.
      suff : closure (A false `&` [set z | x <= z <= y]) z by case/closureI.
      apply: closure_sup; last by exists y => u [_] /andP[].
      by exists x; split => //; rewrite /mkset lexx /= (ltW xy).
    by move: sepA; rewrite /separated => -[] /disjoints_subset + _; apply.
  have /andP[xz zy] : x <= z < y.
    rewrite sup_ub //=; [|by exists y => u [_] /andP[]|].
    + rewrite lt_neqAle sup_le_ub ?andbT; last by move=> u [_] /andP[].
      * by apply/negP; apply: contraPnot A1y => /eqP <-.
      * by exists x; split => //; rewrite /mkset /= lexx /= (ltW xy).
    + by split=> //; rewrite /mkset lexx (ltW xy).
  have [A0z|A0z] := pselect ((A false) z); last first.
  have {}xzy : x <= z <= y by rewrite xz ltW.
    have : ~ E z by rewrite EU => -[].
    by apply; apply (intE x y) => //; rewrite EU; [left|right].
  suff [z1 [/andP[zz1 z1y] Ez1]] : exists z1 : R, z <= z1 <= y /\ ~ E z1.
    apply Ez1; apply (intE x y) => //; rewrite ?EU; [by left|by right|].
    by rewrite z1y (le_trans _ zz1).
  have [r zcA1] : {r:{posnum R}| ball z r%:num `<=` ~` closure (A true)}.
    have ? : ~ closure (A true) z.
      by move: sepA; rewrite /separated => -[] _ /disjoints_subset; apply.
    have ? : open (~` closure (A true)) by exact/closed_openC/closed_closure.
    exact/nbhsC_ball/open_nbhs_nbhs.
  pose z1 : R := z + r%:num / 2; exists z1.
  have z1y : z1 <= y.
    rewrite leNgt; apply/negP => yz1.
    suff : (~` closure (A true)) y by apply; exact: subset_closure.
    apply zcA1; rewrite /ball /= ltr_distl (lt_le_trans zy) // ?ler_addl //.
    rewrite andbT ltr_subl_addl addrC (lt_trans yz1) // ltr_add2l.
    by rewrite ltr_pdivr_mulr // ltr_pmulr // ltr1n.
  rewrite z1y andbT ler_addl; split => //.
  have ncA1z1 : (~` closure (A true)) z1.
    apply zcA1; rewrite /ball /= /z1 opprD addrA subrr add0r normrN.
    by rewrite ger0_norm // ltr_pdivr_mulr // ltr_pmulr // ltr1n.
  have nA0z1 : ~ (A false) z1.
    move=> A0z1; have : z < z1 by rewrite /z1 ltr_addl.
    apply/negP; rewrite -leNgt.
     apply: sup_ub; first by exists y => u [_] /andP[].
    by split => //; rewrite /mkset /z1 (le_trans xz) /= ?ler_addl // (ltW z1y).
  by rewrite EU => -[//|]; apply: contra_not ncA1z1; exact: subset_closure.
Qed.
End interval_realType.

Section segment .
Variable R : realType.

properties of segments in R

Lemma segment_connected ( a b : R) : connected `[a, b].
Proof.
exact/connected_intervalP/interval_is_interval. Qed.

Lemma segment_compact ( a b : R) : compact `[a, b].
Proof.
have [leab|ltba] := lerP a b; last first.
  by move=> F FF /filter_ex [x abx]; move: ltba; rewrite (itvP abx).
rewrite compact_cover => I D f fop sabUf.
set B := [set x | exists2 E : {fset I}, {subset E <= D} &
  `[a, x] `<=` \bigcup_( i in [set` E]) f i /\ (\bigcup_( i in [set` E]) f i) x].
set A := `[a, b] `&` B.
suff Aeab : A = `[a, b]%classic.
  suff [_ [E ? []]] : A b by exists E.
  by rewrite Aeab/= inE/=; apply/andP.
apply: segment_connected.
- have aba : a \in `[a, b] by rewrite in_itv /= lexx.
  exists a; split=> //; have /sabUf [i /= Di fia] := aba.
  exists [fset i]%fset; first by move=> ?; rewrite inE inE => /eqP->.
  split; last by exists i => //=; rewrite inE.
  move=> x /= aex; exists i; [by rewrite /= inE|suff /eqP-> : x == a by []].
  by rewrite eq_le !(itvP aex).
- exists B => //; rewrite openE => x [E sD [saxUf [i Di fx]]].
  have : open (f i) by have /sD := Di; rewrite inE => /fop.
  rewrite openE => /(_ _ fx) [e egt0 xe_fi]; exists e => // y xe_y.
  exists E => //; split; last by exists i => //; apply/xe_fi.
  move=> z /= ayz; have [lezx|ltxz] := lerP z x.
    by apply/saxUf; rewrite /= in_itv/= (itvP ayz) lezx.
  exists i => //; apply/xe_fi; rewrite /ball_/= distrC ger0_norm.
    have lezy : z <= y by rewrite (itvP ayz).
    rewrite ltr_subl_addl; apply: le_lt_trans lezy _; rewrite -ltr_subl_addr.
    by have := xe_y; rewrite /ball_ => /ltr_distlC_subl.
  by rewrite subr_ge0; apply/ltW.
exists A; last by rewrite predeqE => x; split=> [[] | []].
move=> x clAx; have abx : x \in `[a, b].
  by apply: interval_closed; have /closureI [] := clAx.
split=> //; have /sabUf [i Di fx] := abx.
have /fop := Di; rewrite openE => /(_ _ fx) [_ /posnumP[e] xe_fi].
have /clAx [y [[aby [E sD [sayUf _]]] xe_y]] := nbhsx_ballx x e.
exists (i |` E)%fset; first by move=> j /fset1UP[->|/sD] //; rewrite inE.
split=> [z axz|]; last first.
  exists i; first by rewrite /= !inE eq_refl.
  by apply/xe_fi; rewrite /ball_/= subrr normr0.
have [lezy|ltyz] := lerP z y.
  have /sayUf [j Dj fjz] : z \in `[a, y] by rewrite in_itv /= (itvP axz) lezy.
  by exists j => //=; rewrite inE orbC Dj.
exists i; first by rewrite /= !inE eq_refl.
apply/xe_fi; rewrite /ball_/= ger0_norm; last by rewrite subr_ge0 (itvP axz).
rewrite ltr_subl_addl -ltr_subl_addr; apply: lt_trans ltyz.
by apply: ltr_distlC_subl; rewrite distrC.
Qed.

End segment.

Lemma __deprecated__ler0_addgt0P ( R : numFieldType) ( x : R) :
  reflect (forall e, e > 0 -> x <= e) (x <= 0).
Proof.
exact: ler_gtP. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `ler_gtP` instead which generalizes it to any upper bound.")]
Notation ler0_addgt0P := __deprecated__ler0_addgt0P (only parsing).

Lemma IVT ( R : realType) ( f : R -> R) ( a b v : R) :
  a <= b -> {within `[a, b], continuous f} ->
  minr (f a) (f b) <= v <= maxr (f a) (f b) ->
  exists2 c, c \in `[a, b] & f c = v.
Proof.
move=> leab fcont; gen have ivt : f v fcont / f a <= v <= f b ->
    exists2 c, c \in `[a, b] & f c = v; last first.
  case: (leP (f a) (f b)) => [] _ fabv; first exact: ivt.
  have [| |c cab /oppr_inj] := ivt (- f) (- v); last by exists c.
  - by move=> x; apply: continuousN; apply: fcont.
  - by rewrite ler_oppr opprK ler_oppr opprK andbC.
move=> favfb; suff: is_interval (f @` `[a, b]).
  apply; last exact: favfb.
  - by exists a => //=; rewrite in_itv/= lexx.
  - by exists b => //=; rewrite in_itv/= leab lexx.
apply/connected_intervalP/connected_continuous_connected => //.
exact: segment_connected.
Qed.









Lemma compact_bounded ( K : realType) ( V : normedModType K) ( A : set V) :
  compact A -> bounded_set A.
Proof.
rewrite compact_cover => Aco.
have covA : A `<=` \bigcup_( n : int) [set p | `|p| < n%:~R].
  by move=> p _; exists (floor `|p| + 1) => //; rewrite rmorphD/= lt_succ_floor.
have /Aco [] := covA.
  move=> n _; rewrite openE => p; rewrite /= -subr_gt0 => ltpn.
  apply/nbhs_ballP; exists (n%:~R - `|p|) => // q.
  rewrite -ball_normE /= ltr_subr_addr distrC; apply: le_lt_trans.
  by rewrite -{1}(subrK p q) ler_norm_add.
move=> D _ DcovA.
exists (\big[maxr/0]_( i : D) (fsval i)%:~R).
rewrite bigmax_real//; last by move=> ? _; rewrite realz.
split => // x ltmaxx p /DcovA [n Dn /lt_trans /(_ _)/ltW].
apply; apply: le_lt_trans ltmaxx.
have : n \in enum_fset D by [].
by rewrite enum_fsetE => /mapP[/= i iD ->]; exact/le_bigmax.
Qed.

Lemma rV_compact ( T : topologicalType) n ( A : 'I_n.+1 -> set T) :
  (forall i, compact (A i)) ->
  compact [ set v : 'rV[T]_n.+1 | forall i, A i (v ord0 i)].
Proof.
move=> Aico.
have : @compact (product_topologicalType _) [set f | forall i, A i (f i)].
  by apply: tychonoff.
move=> Aco F FF FA.
set G := [set [set f : 'I_n.+1 -> T | B (\row_j f j)] | B in F].
have row_simpl ( v : 'rV[T]_n.+1) : \row_j (v ord0 j) = v.
  by apply/rowP => ?; rewrite mxE.
have row_simpl' ( f : 'I_n.+1 -> T) : (\row_j f j) ord0 = f.
  by rewrite funeqE=> ?; rewrite mxE.
have [f [Af clGf]] : [set f | forall i, A i (f i)] `&`
  @cluster (product_topologicalType _) G !=set0.
  suff GF : ProperFilter G.
    apply: Aco; exists [set v : 'rV[T]_n.+1 | forall i, A i (v ord0 i)] => //.
    by rewrite predeqE => f; split => Af i; [have := Af i|]; rewrite row_simpl'.
  apply Build_ProperFilter.
    move=> _ [C FC <-]; have /filter_ex [v Cv] := FC.
    by exists (v ord0); rewrite /= row_simpl.
  split.
  - by exists setT => //; apply: filterT.
  - by move=> _ _ [C FC <-] [D FD <-]; exists (C `&` D) => //; apply: filterI.
  move=> C D sCD [E FE EeqC]; exists [set v : 'rV[T]_n.+1 | D (v ord0)].
    by apply: filterS FE => v Ev; apply/sCD; rewrite -EeqC/= row_simpl.
  by rewrite predeqE => ? /=; rewrite row_simpl'.
exists (\row_j f j); split; first by move=> i; rewrite mxE; apply: Af.
move=> C D FC f_D; have {}f_D :
  nbhs (f : product_topologicalType _) [set g | D (\row_j g j)].
  have [E f_E sED] := f_D; rewrite nbhsE.
  set Pj := fun j Bj => open_nbhs (f j) Bj /\ Bj `<=` E ord0 j.
  have exPj : forall j, exists Bj, open_nbhs (f j) Bj /\ Bj `<=` E ord0 j.
    move=> j; have := f_E ord0 j; rewrite nbhsE => - [Bj].
    by rewrite row_simpl'; exists Bj.
  exists [set g | forall j, (get (Pj j)) (g j)]; last first.
    move=> g Pg; apply: sED => i j; rewrite ord1 row_simpl'.
    by have /getPex [_ /(_ _ (Pg j))] := exPj j.
  split; last by move=> j; have /getPex [[]] := exPj j.
  exists [set [set g | forall j, get (Pj j) (g j)] | k in [set x | 'I_n.+1 x]];
    last first.
    rewrite predeqE => g; split; first by move=> [_ [_ _ <-]].
    move=> Pg; exists [set g | forall j, get (Pj j) (g j)] => //.
    by exists ord0.
  move=> _ [_ _ <-]; set s := [seq (@^~ j) @^-1` (get (Pj j)) | j : 'I_n.+1].
  exists [fset x in s]%fset.
    move=> B'; rewrite in_fset => /mapP [j _ ->]; rewrite inE.
    exists j => //; exists (get (Pj j)) => //.
    by have /getPex [[]] := exPj j.
  rewrite predeqE => g; split=> [Ig j|Ig B'].
    apply: (Ig ((@^~ j) @^-1` (get (Pj j)))).
    by rewrite /= in_fset; apply/mapP; exists j => //; rewrite mem_enum.
  by rewrite /= in_fset => /mapP [j _ ->]; apply: Ig.
have GC : G [set g | C (\row_j g j)] by exists C.
by have [g []] := clGf _ _ GC f_D; exists (\row_j (g j : T)).
Qed.

Lemma bounded_closed_compact ( R : realType) n ( A : set 'rV[R]_n.+1) :
  bounded_set A -> closed A -> compact A.
Proof.
move=> [M [Mreal normAltM]] Acl.
have Mnco : compact
  [set v : 'rV[R]_n.+1 | forall i, v ord0 i \in `[(- (M + 1)), (M + 1)]].
  apply: (@rV_compact _ _ (fun _ => `[(- (M + 1)), (M + 1)]%classic)).
  by move=> _; apply: segment_compact.
apply: subclosed_compact Acl Mnco _ => v /normAltM normvleM i.
suff : `|v ord0 i : R| <= M + 1 by rewrite ler_norml.
apply: le_trans (normvleM _ _); last by rewrite ltr_addl.
have /mapP[j Hj ->] : `|v ord0 i| \in [seq `|v x.1 x.2| | x : 'I_1 * 'I_n.+1].
  by apply/mapP; exists (ord0, i) => //=; rewrite mem_enum.
by rewrite [leRHS]/normr /= mx_normrE; apply/bigmax_geP; right => /=; exists j.
Qed.

Some limits on real functions

Section Shift .

Context {R : zmodType} {T : Type}.

Definition shift ( x y : R) := y + x.
Notation center c := (shift (- c)).
Arguments shift x / y.

Lemma comp_shiftK ( x : R) ( f : R -> T) : (f \o shift x) \o center x = f.
Proof.
by rewrite funeqE => y /=; rewrite addrNK. Qed.

Lemma comp_centerK ( x : R) ( f : R -> T) : (f \o center x) \o shift x = f.
Proof.
by rewrite funeqE => y /=; rewrite addrK. Qed.

Lemma shift0 : shift 0 = id.
Proof.
by rewrite funeqE => x /=; rewrite addr0. Qed.

Lemma center0 : center 0 = id.
Proof.
by rewrite oppr0 shift0. Qed.

End Shift.
Arguments shift {R} x / y.
Notation center c := (shift (- c)).

Lemma near_shift {K : numDomainType} {R : normedModType K}
   ( y x : R) ( P : set R) :
   (\near x, P x) = (\forall z \near y, (P \o shift (x - y)) z).
Proof.
rewrite propeqE nbhs0P [X in _ <-> X]nbhs0P/= -propeqE.
by apply: eq_near => e; rewrite ![_ + e]addrC addrACA subrr addr0.
Qed.

Lemma cvg_comp_shift {T : Type} {K : numDomainType} {R : normedModType K}
  ( x y : R) ( f : R -> T) :
  (f \o shift x) @ y = f @ (y + x).
Proof.
rewrite funeqE => A; rewrite /= !near_simpl (near_shift (y + x)).
by rewrite (_ : _ \o _ = A \o f) // funeqE=> z; rewrite /= opprD addNKr addrNK.
Qed.

Section continuous .
Variables ( K : numFieldType) ( U V : normedModType K).

Lemma continuous_shift ( f : U -> V) u :
  {for u, continuous f} = {for 0, continuous (f \o shift u)}.
Proof.
by rewrite [in RHS]forE /= add0r cvg_comp_shift add0r. Qed.

Lemma continuous_withinNshiftx ( f : U -> V) u :
  f \o shift u @ 0^' --> f u <-> {for u, continuous f}.
Proof.
rewrite continuous_shift; split=> [cfu|].
  by apply/(continuous_withinNx _ _).2/(cvg_trans cfu); rewrite /= add0r.
by move/(continuous_withinNx _ _).1/cvg_trans; apply; rewrite /= add0r.
Qed.

End continuous.

Section ball_realFieldType .
Variables ( R : realFieldType).

Lemma ball0 ( a r : R) : ball a r = set0 <-> r <= 0.
Proof.
split.
  move=> /seteqP[+ _] => H; rewrite leNgt; apply/negP => r0.
  by have /(_ (ballxx _ r0)) := H a.
move=> r0; apply/seteqP; split => // y; rewrite /ball/=.
by move/lt_le_trans => /(_ _ r0); rewrite normr_lt0.
Qed.

Lemma ball_itv ( x r : R) : (ball x r = `]x - r, x + r[%classic)%R.
Proof.
by apply/seteqP; split => y; rewrite /ball/= in_itv/= ltr_distlC.
Qed.

End ball_realFieldType.

Section Closed_Ball .

Lemma ball_open ( R : numDomainType) ( V : normedModType R) ( x : V) ( r : R) :
  0 < r -> open (ball x r).
Proof.
rewrite openE -ball_normE /interior => r0 y /= Bxy; near=> z.
rewrite /= (le_lt_trans (ler_dist_add y _ _)) // addrC -ltr_subr_addr.
by near: z; apply: cvgr_dist_lt; rewrite // subr_gt0.
Unshelve. all: by end_near. Qed.

Definition closed_ball_ ( R : numDomainType) ( V : zmodType) ( norm : V -> R)
  ( x : V) ( e : R) := [set y | norm (x - y) <= e].

Lemma closed_closed_ball_ ( R : realFieldType) ( V : normedModType R)
  ( x : V) ( e : R) : closed (closed_ball_ normr x e).
Proof.
rewrite /closed_ball_ -/((normr \o (fun y => x - y)) @^-1` [set x | x <= e]).
apply: (closed_comp _ (@closed_le _ _)) => y _.
apply: (continuous_comp _ (@norm_continuous _ _ _)).
exact: (continuousB (@cst_continuous _ _ _ _)).
Qed.

Definition closed_ball ( R : numDomainType) ( V : pseudoMetricType R)
  ( x : V) ( e : R) := closure (ball x e).

Lemma closed_ball0 ( R : realFieldType) ( a r : R) :
  r <= 0 -> closed_ball a r = set0.
Proof.
move=> /ball0 r0; apply/seteqP; split => // y.
by rewrite /closed_ball r0 closure0.
Qed.

Lemma closed_ballxx ( R : numDomainType) ( V : pseudoMetricType R) ( x : V)
  ( e : R) : 0 < e -> closed_ball x e x.
Proof.
by move=> ?; exact/subset_closure/ballxx. Qed.

Lemma closed_ballE ( R : realFieldType) ( V : normedModType R) ( x : V)
  ( r : R) : 0 < r -> closed_ball x r = closed_ball_ normr x r.
Proof.
move=> /posnumP[e]; rewrite eqEsubset; split => y.
  rewrite /closed_ball closureE; apply; split; first exact: closed_closed_ball_.
  by move=> z; rewrite -ball_normE; exact: ltW.
have [-> _|xy] := eqVneq x y; first exact: closed_ballxx.
rewrite /closed_ball closureE -ball_normE.
rewrite /closed_ball_ /= le_eqVlt.
move => /orP[/eqP xye B [Bc Be]|xye _ [_ /(_ _ xye)]//].
apply: Bc => B0 /nbhs_ballP[s s0] B0y.
have [es|se] := leP s e%:num; last first.
  exists x; split; first by apply: Be; rewrite ball_normE; apply: ballxx.
  by apply: B0y; rewrite -ball_normE /ball_ /= distrC xye.
exists (y + (s / 2) *: (`|x - y|^-1 *: (x - y))); split; [apply: Be|apply: B0y].
  rewrite /= opprD addrA -[X in `|X - _|](scale1r (x - y)) scalerA -scalerBl.
  rewrite -[X in X - _](@divrr _ `|x - y|) ?unitfE ?normr_eq0 ?subr_eq0//.
  rewrite -mulrBl -scalerA normrZ normfZV ?subr_eq0// mulr1.
  rewrite gtr0_norm; first by rewrite ltr_subl_addl xye ltr_addr mulr_gt0.
  by rewrite subr_gt0 xye ltr_pdivr_mulr // mulr_natr mulr2n ltr_spaddl.
rewrite -ball_normE /ball_ /= opprD addrA addrN add0r normrN normrZ.
rewrite normfZV ?subr_eq0// mulr1 normrM (gtr0_norm s0) gtr0_norm //.
by rewrite ltr_pdivr_mulr // ltr_pmulr // ltr1n.
Qed.

Lemma closed_ball_closed ( R : realFieldType) ( V : pseudoMetricType R) ( x : V)
  ( r : R) : closed (closed_ball x r).
Proof.
exact: closed_closure. Qed.

Lemma closed_ball_itv ( R : realFieldType) ( x r : R) : 0 < r ->
  (closed_ball x r = `[x - r, x + r]%classic)%R.
Proof.
by move=> r0; apply/seteqP; split => y;
  rewrite closed_ballE// /closed_ball_ /= in_itv/= ler_distlC.
Qed.

Lemma closed_ballR_compact ( R : realType) ( x e : R) : 0 < e ->
  compact (closed_ball x e).
Proof.
move=> e_gt0; have : compact `[x - e, x + e] by apply: segment_compact.
by rewrite closed_ballE//; under eq_set do rewrite in_itv -ler_distlC.
Qed.

Lemma closed_ball_subset ( R : realFieldType) ( M : normedModType R) ( x : M)
  ( r0 r1 : R) : 0 < r0 -> r0 < r1 -> closed_ball x r0 `<=` ball x r1.
Proof.
move=> r00 r01; rewrite (_ : r0 = (PosNum r00)%:num) // closed_ballE //.
by move=> m xm; rewrite -ball_normE /ball_ /= (le_lt_trans _ r01).
Qed.

Lemma nbhs_closedballP ( R : realFieldType) ( M : normedModType R) ( B : set M)
  ( x : M) : nbhs x B <-> exists ( r : {posnum R}), closed_ball x r%:num `<=` B.
Proof.
split=> [/nbhs_ballP[_/posnumP[r] xrB]|[e xeB]]; last first.
  apply/nbhs_ballP; exists e%:num => //=.
  exact: (subset_trans (@subset_closure _ _) xeB).
exists (r%:num / 2)%:sgn.
apply: (subset_trans (closed_ball_subset _ _) xrB) => //=.
by rewrite lter_pdivr_mulr // ltr_pmulr // ltr1n.
Qed.

Lemma subset_closed_ball ( R : realFieldType) ( V : pseudoMetricType R) ( x : V)
  ( r : R) : ball x r `<=` closed_ball x r.
Proof.
exact: subset_closure. Qed.

Lemma open_subball {R : realFieldType} {M : normedModType R} ( A : set M)
    ( x : M) : open A -> A x -> \forall e \near 0^'+, ball x e `<=` A.
Proof.
move=> aA Ax.
have /(@nbhs_closedballP R M _ x)[r xrA]: nbhs x A by rewrite nbhsE/=; exists A.
near=> e.
apply/(subset_trans _ xrA)/(subset_trans _ (@subset_closed_ball _ _ _ _)) => //.
by apply: le_ball; near: e; apply: nbhs_right_le.
Unshelve. all: by end_near. Qed.

Lemma closed_disjoint_closed_ball {R : realFieldType} {M : normedModType R}
    ( K : set M) z : closed K -> ~ K z ->
  \forall d \near 0^'+, closed_ball z d `&` K = set0.
Proof.
rewrite -openC => /open_subball /[apply]; move=> [e /= e0].
move=> /(_ (e / 2)) /= ; rewrite sub0r normrN gtr0_norm ?divr_gt0//.
rewrite ltr_pdivr_mulr// ltr_pmulr// ltr1n => /(_ erefl isT).
move/subsets_disjoint; rewrite setCK => ze2K0.
exists (e / 2); first by rewrite /= divr_gt0.
move=> x /= + x0; rewrite sub0r normrN gtr0_norm// => xe.
by move: ze2K0; apply: subsetI_eq0 => //=; exact: closed_ball_subset.
Qed.

Lemma locally_compactR ( R : realType) : locally_compact [set: R].
Proof.
move=> x _; rewrite withinET; exists (closed_ball x 1).
  by apply/nbhs_closedballP; exists 1%:pos.
by split; [apply: closed_ballR_compact | apply: closed_ball_closed].
Qed.

Lemma subset_closure_half ( R : realFieldType) ( V : pseudoMetricType R) ( x : V)
  ( r : R) : 0 < r -> closed_ball x (r / 2) `<=` ball x r.
Proof.
move:r => _/posnumP[r] z /(_ (ball z ((r%:num/2)%:pos)%:num)) [].
  exact: nbhsx_ballx.
by move=> y [+/ball_sym]; rewrite [t in ball x t z]splitr; apply: ball_triangle.
Qed.


Lemma interior_closed_ballE ( R : realType) ( V : normedModType R) ( x : V)
  ( r : R) : 0 < r -> (closed_ball x r)^° = ball x r.
Proof.
move=> r0; rewrite eqEsubset; split; last first.
  by rewrite -open_subsetE; [exact: subset_closure | exact: ball_open].
move=> /= t; rewrite closed_ballE // /interior /= -nbhs_ballE => [[]] s s0.
have [-> _|nxt] := eqVneq t x; first exact: ballxx.
near ((0 : R^o)^') => e; rewrite -ball_normE /closed_ball_ => tsxr.
pose z := t + `|e| *: (t - x); have /tsxr /= : `|t - z| < s.
  rewrite distrC addrAC subrr add0r normrZ normr_id.
  rewrite -ltr_pdivl_mulr ?(normr_gt0, subr_eq0) //.
  by near: e; apply/dnbhs0_lt; rewrite divr_gt0 // normr_gt0 subr_eq0.
rewrite /z opprD addrA -scalerN -{1}(scale1r (x - t)) opprB -scalerDl normrZ.
apply lt_le_trans; rewrite ltr_pmull; last by rewrite normr_gt0 subr_eq0 eq_sym.
by rewrite ger0_norm // ltr_addl normr_gt0; near: e; exists 1 => /=.
Unshelve. all: by end_near. Qed.

Lemma open_nbhs_closed_ball ( R : realType) ( V : normedModType R) ( x : V)
  ( r : R) : 0 < r -> open_nbhs x (closed_ball x r)^°.
Proof.
move=> r0; split; first exact: open_interior.
by rewrite interior_closed_ballE //; exact: ballxx.
Qed.

End Closed_Ball.

Lemma bound_itvE ( R : numDomainType) ( a b : R) :
  ((a \in `[a, b]) = (a <= b)) *
  ((b \in `[a, b]) = (a <= b)) *
  ((a \in `[a, b[) = (a < b)) *
  ((b \in `]a, b]) = (a < b)) *
  (a \in `[a, +oo[) *
  (a \in `]-oo, a]).
Proof.
by rewrite !(boundr_in_itv, boundl_in_itv). Qed.

Lemma near_in_itv {R : realFieldType} ( a b : R) :
  {in `]a, b[, forall y, \forall z \near y, z \in `]a, b[}.
Proof.
exact: interval_open. Qed.

Notation "f @`[ a , b ]" :=
  (`[minr (f a) (f b), maxr (f a) (f b)]) : ring_scope.
Notation "f @`[ a , b ]" :=
  (`[minr (f a) (f b), maxr (f a) (f b)]%classic) : classical_set_scope.
Notation "f @`] a , b [" :=
  (`](minr (f a) (f b)), (maxr (f a) (f b))[) : ring_scope.
Notation "f @`] a , b [" :=
  (`](minr (f a) (f b)), (maxr (f a) (f b))[%classic) : classical_set_scope.

Section image_interval .
Variable R : realDomainType.
Implicit Types (a b : R) (f : R -> R).

Lemma mono_mem_image_segment a b f : monotonous `[a, b] f ->
  {homo f : x / x \in `[a, b] >-> x \in f @`[a, b]}.
Proof.
move=> [fle|fge] x xab; have leab : a <= b by rewrite (itvP xab).
  have: f a <= f b by rewrite fle ?bound_itvE.
  by case: leP => // fafb _; rewrite in_itv/= !fle ?(itvP xab).
have: f a >= f b by rewrite fge ?bound_itvE.
by case: leP => // fafb _; rewrite in_itv/= !fge ?(itvP xab).
Qed.

Lemma mono_mem_image_itvoo a b f : monotonous `[a, b] f ->
  {homo f : x / x \in `]a, b[ >-> x \in f @`]a, b[}.
Proof.
move=> []/[dup] => [/leW_mono_in|/leW_nmono_in] flt fle x xab;
    have ltab : a < b by rewrite (itvP xab).
  have: f a <= f b by rewrite ?fle ?bound_itvE ?ltW.
  by case: leP => // fafb _; rewrite in_itv/= ?flt ?in_itv/= ?(itvP xab, lexx).
have: f a >= f b by rewrite fle ?bound_itvE ?ltW.
by case: leP => // fafb _; rewrite in_itv/= ?flt ?in_itv/= ?(itvP xab, lexx).
Qed.

Lemma mono_surj_image_segment a b f : a <= b ->
    monotonous `[a, b] f -> set_surj `[a, b] (f @`[a, b]) f ->
  f @` `[a, b] = f @`[a, b]%classic.
Proof.
move=> leab fmono; apply: surj_image_eq => _ /= [x xab <-];
exact: mono_mem_image_segment.
Qed.

Lemma inc_segment_image a b f : f a <= f b -> f @`[a, b] = `[f a, f b].
Proof.
by case: ltrP. Qed.

Lemma dec_segment_image a b f : f b <= f a -> f @`[a, b] = `[f b, f a].
Proof.
by case: ltrP. Qed.

Lemma inc_surj_image_segment a b f : a <= b ->
    {in `[a, b] &, {mono f : x y / x <= y}} ->
    set_surj `[a, b] `[f a, f b] f ->
  f @` `[a, b] = `[f a, f b]%classic.
Proof.
move=> leab fle f_surj; have fafb : f a <= f b by rewrite fle ?bound_itvE.
by rewrite mono_surj_image_segment ?inc_segment_image//; left.
Qed.

Lemma dec_surj_image_segment a b f : a <= b ->
    {in `[a, b] &, {mono f : x y /~ x <= y}} ->
    set_surj `[a, b] `[f b, f a] f ->
  f @` `[a, b] = `[f b, f a]%classic.
Proof.
move=> leab fge f_surj; have fafb : f b <= f a by rewrite fge ?bound_itvE.
by rewrite mono_surj_image_segment ?dec_segment_image//; right.
Qed.

Lemma inc_surj_image_segmentP a b f : a <= b ->
    {in `[a, b] &, {mono f : x y / x <= y}} ->
    set_surj `[a, b] `[f a, f b] f ->
  forall y, reflect (exists2 x, x \in `[a, b] & f x = y) (y \in `[f a, f b]).
Proof.
move=> /inc_surj_image_segment/[apply]/[apply]/predeqP + y => /(_ y) fab.
by apply/(equivP idP); symmetry.
Qed.

Lemma dec_surj_image_segmentP a b f : a <= b ->
    {in `[a, b] &, {mono f : x y /~ x <= y}} ->
    set_surj `[a, b] `[f b, f a] f ->
  forall y, reflect (exists2 x, x \in `[a, b] & f x = y) (y \in `[f b, f a]).
Proof.
move=> /dec_surj_image_segment/[apply]/[apply]/predeqP + y => /(_ y) fab.
by apply/(equivP idP); symmetry.
Qed.

Lemma mono_surj_image_segmentP a b f : a <= b ->
    monotonous `[a, b] f -> set_surj `[a, b] (f @`[a, b]) f ->
  forall y, reflect (exists2 x, x \in `[a, b] & f x = y) (y \in f @`[a, b]).
Proof.
move=> /mono_surj_image_segment/[apply]/[apply]/predeqP + y => /(_ y) fab.
by apply/(equivP idP); symmetry.
Qed.

End image_interval.

Section LinearContinuousBounded .

Variables ( R : numFieldType) ( V W : normedModType R).

Lemma linear_boundedP ( f : {linear V -> W}) : bounded_near f (nbhs 0) <->
  \forall r \near +oo, forall x, `|f x| <= r * `|x|.
Proof.
split=> [|/pinfty_ex_gt0 [r r0 Bf]]; last first.
  apply/ex_bound; exists r; apply/nbhs_norm0P; exists 1 => //= x /=.
  by rewrite -(gtr_pmulr _ r0) => /ltW; exact/le_trans/Bf.
rewrite /bounded_near => /pinfty_ex_gt0 [M M0 /nbhs_norm0P [_/posnumP[e] efM]].
near (0 : R)^'+ => d; near=> r => x.
have[->|x0] := eqVneq x 0; first by rewrite raddf0 !normr0 mulr0.
have nd0 : d / `|x| > 0 by rewrite divr_gt0 ?normr_gt0.
have: `|f (d / `|x| *: x)| <= M.
  by apply: efM => /=; rewrite normrZ gtr0_norm// divfK ?normr_eq0//.
rewrite linearZ/= normrZ gtr0_norm// -ler_pdivl_mull//; move/le_trans; apply.
rewrite invfM invrK mulrAC ler_wpmul2r//; near: r; apply: nbhs_pinfty_ge.
by rewrite rpredM// ?rpredV ?gtr0_real.
Unshelve. all: by end_near. Qed.

Lemma continuous_linear_bounded ( x : V) ( f : {linear V -> W}) :
  {for 0, continuous f} -> bounded_near f (nbhs x).
Proof.
rewrite /prop_for linear0 /bounded_near => f0; near=> M; apply/nbhs0P.
near do rewrite /= linearD (le_trans (ler_norm_add _ _))// -ler_subr_addl.
by apply: cvgr0_norm_le; rewrite // subr_gt0.
Unshelve. all: by end_near. Qed.

Lemma __deprecated__linear_continuous0 ( f : {linear V -> W}) :
  {for 0, continuous f} -> bounded_near f (nbhs (0 : V)).
Proof.
exact: continuous_linear_bounded. Qed.

Lemma bounded_linear_continuous ( f : {linear V -> W}) :
  bounded_near f (nbhs (0 : V)) -> continuous f.
Proof.
move=> /linear_boundedP [y [yreal fr]] x; near +oo_R => r.
apply/(@cvgrPdist_lt _ _ _ (nbhs x)) => e e_gt0; near=> z; rewrite -linearB.
rewrite (le_lt_trans (fr r _ _))// -?ltr_pdivl_mull//.
by near: z; apply: cvgr_dist_lt => //; rewrite mulrC divr_gt0.
Unshelve. all: by end_near. Qed.

Lemma __deprecated__linear_bounded0 ( f : {linear V -> W}) :
  bounded_near f (nbhs (0 : V)) -> {for 0, continuous f}.
Proof.
by move=> ? ?; exact: bounded_linear_continuous. Qed.

Lemma continuousfor0_continuous ( f : {linear V -> W}) :
  {for 0, continuous f} -> continuous f.
Proof.
by move=> /continuous_linear_bounded/bounded_linear_continuous. Qed.

Lemma linear_bounded_continuous ( f : {linear V -> W}) :
  bounded_near f (nbhs 0) <-> continuous f.
Proof.
split; first exact: bounded_linear_continuous.
by move=> /(_ 0); apply: continuous_linear_bounded.
Qed.

Lemma bounded_funP ( f : {linear V -> W}) :
  (forall r, exists M, forall x, `|x| <= r -> `|f x| <= M) <->
  bounded_near f (nbhs (0 : V)).
Proof.
split => [/(_ 1) [M Bf]|/linear_boundedP fr y].
  apply/ex_bound; exists M; apply/nbhs_normP => /=; exists 1 => //= x /=.
  by rewrite sub0r normrN => x1; exact/Bf/ltW.
near +oo_R => r; exists (r * y) => x xe.
rewrite (@le_trans _ _ (r * `|x|)) //; first by move: {xe} x; near: r.
by rewrite ler_pmul //.
Unshelve. all: by end_near. Qed.

End LinearContinuousBounded.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="generalized to `continuous_linear_bounded`")]
Notation linear_continuous0 := __deprecated__linear_continuous0 (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="generalized to `bounded_linear_continuous`")]
Notation linear_bounded0 := __deprecated__linear_bounded0 (only parsing).

Section center_radius .
Context {R : numDomainType} {M : pseudoMetricType R}.
Implicit Types A : set M.

Definition cpoint A := get [set c | exists r, A = ball c r].

Definition radius A : {nonneg R} :=
  xget 0%:nng [set r | A = ball (cpoint A) r%:num].

Definition is_ball A := A == ball (cpoint A) (radius A)%:num.

Definition scale_ball ( k : R) A :=
  if is_ball A then ball (cpoint A) (k * (radius A)%:num) else set0.

Local Notation "k *` B" := (scale_ball k B).

Lemma sub_scale_ball A k l : k <= l -> k *` A `<=` l *` A.
Proof.
move=> kl; rewrite /scale_ball; case: ifPn=> [Aball|_]; last exact: subset_refl.
by apply: le_ball; rewrite ler_wpmul2r.
Qed.

Lemma scale_ball1 A : is_ball A -> 1 *` A = A.
Proof.
by move=> Aball; rewrite /scale_ball Aball mul1r; move/eqP in Aball. Qed.

Lemma sub1_scale_ball A l : is_ball A -> A `<=` l.+1%:R *` A.
Proof.
by move/scale_ball1 => {1}<-; apply: sub_scale_ball; rewrite ler1n. Qed.

End center_radius.
Notation "k *` B" := (scale_ball k B) : classical_set_scope.

Lemma scale_ball0 {R : realFieldType} ( A : set R) r : (r <= 0)%R ->
  r *` A = set0.
Proof.
move=> r0; apply/seteqP; split => // x.
rewrite /scale_ball; case: ifPn => // ballA.
by rewrite ((ball0 _ _).2 _)// mulr_le0_ge0.
Qed.

Section center_radius_realFieldType .
Context {R : realFieldType}.
Implicit Types x y r s : R.

Let ball_inj_radius_gt0 x y r s : 0 < r -> ball x r = ball y s -> 0 < s.
Proof.
move=> r0 xrys; rewrite ltNge; apply/negP => /ball0 s0; move: xrys.
by rewrite s0 => /seteqP[+ _] => /(_ x); apply; exact: ballxx.
Qed.

Let ball_inj_center x y r s : 0 < r -> ball x r = ball y s -> x = y.
Proof.
move=> r0 xrys; have s0 := ball_inj_radius_gt0 r0 xrys.
apply/eqP/negPn/negP => xy.
wlog : x y r s xrys r0 s0 xy / x < y.
  move: xy; rewrite neq_lt => /orP[xy|yx].
    by move/(_ _ _ _ _ xrys); apply => //; rewrite lt_eqF.
  by move/esym : xrys => /[swap] /[apply]; apply => //; rewrite lt_eqF.
move=> {}xy; have [rs|sr] := ltP r s.
- suff : ~ ball x r (y + r).
    by apply; rewrite xrys /ball/= ltr_distlC !ltr_add2l -ltr_norml gtr0_norm.
  by rewrite /ball/= ltr_distlC ltr_add2r (ltNge y) (ltW xy) andbF.
- suff : ~ ball y s (x - r + minr ((y - x) / 2) r).
    apply; rewrite -xrys /ball/= ltr_distlC ltr_addl lt_minr r0 andbT.
    rewrite divr_gt0 ?subr_gt0//= addrAC ltr_subl_addl addrCA ler_lt_add//.
    by rewrite lt_minl ltr_addl r0 orbT.
  have [yx2r|ryx2] := ltP ((y - x) / 2) r.
    rewrite /ball/= ltr_distlC => /andP[+ _]; rewrite -(@ltr_pmul2l _ 2)//.
    rewrite !mulrDr mulrCA divff// mulr1 ltNge => /negP; apply.
    rewrite addrAC !addrA (addrC _ y) mulr_natl mulr2n addrA addrK.
    rewrite (mulr_natl y) mulr2n -!addrA ler_add2l (ler_add (ltW _))//.
    by rewrite ler_wpmul2l// ler_oppl opprK.
  rewrite subrK /ball/= ltr_distlC => /andP[].
  rewrite ltr_subl_addl addrC -ltr_subl_addl -(@ltr_pmul2r _ (2^-1))//.
  move=> /le_lt_trans => /(_ _ ryx2) /le_lt_trans => /(_ _ sr).
  by rewrite ltr_pmulr// invf_gt1// ltNge ler1n.
Qed.

Let ball_inj_radius x y r s : 0 < r -> ball x r = ball y s -> r = s.
Proof.
move=> r0 xrys; have s0 := ball_inj_radius_gt0 r0 xrys.
move: (xrys); rewrite (ball_inj_center r0 xrys) => {}xrys.
apply/eqP/negPn/negP; rewrite neq_lt => /orP[rs|sr].
- suff : ball y s (y + r) by rewrite -xrys /ball/= ltr_distlC ltxx andbF.
  rewrite /ball/= ltr_distlC !ltr_add2l rs andbT (lt_trans _ r0)//.
  by rewrite ltr_oppl oppr0 (lt_trans r0).
- suff : ball y r (y + s) by rewrite xrys /ball/= ltr_distlC ltxx andbF.
  rewrite /ball/= ltr_distlC !ltr_add2l sr andbT (lt_trans _ s0)//.
  by rewrite ltr_oppl oppr0 (lt_trans s0).
Qed.

Lemma ball_inj x y r s : 0 < r -> ball x r = ball y s -> x = y /\ r = s.
Proof.
by move=> r0 xrys; split; [exact: (ball_inj_center r0 xrys)|
                           exact: (ball_inj_radius r0 xrys)].
Qed.

Lemma radius0 : radius (@set0 R) = 0%:nng :> {nonneg R}.
Proof.
rewrite /radius/=; case: xgetP => [r _ /= /esym/ball0 r0|]/=.
  by apply/val_inj/eqP; rewrite /= eq_le r0/=.
by move=> /(_ 0%:nng) /nesym /ball0.
Qed.

Lemma is_ball0 : is_ball (@set0 R).
Proof.
rewrite /is_ball; apply/eqP/seteqP; split => // x; rewrite radius0/=.
by rewrite (ball0 _ _).2.
Qed.

Lemma cpoint_ball x r : 0 < r -> cpoint (ball x r) = x.
Proof.
move=> r0; rewrite /cpoint; case: xgetP => [y _ [s] /(ball_inj r0)[]//|].
by move=> /(_ x)/forallNP/(_ r).
Qed.

Lemma radius_ball_num x r : 0 <= r -> (radius (ball x r))%:num = r.
Proof.
rewrite le_eqVlt => /orP[/eqP <-|r0]; first by rewrite (ball0 _ _).2// radius0.
rewrite /radius; case: xgetP => [y _ /(ball_inj r0)[]//|].
by move=> /(_ (NngNum (ltW r0)))/=; rewrite cpoint_ball.
Qed.

Lemma radius_ball x r ( r0 : 0 <= r) : radius (ball x r) = NngNum r0.
Proof.
by apply/val_inj => //=; rewrite radius_ball_num. Qed.

Lemma is_ballP ( A : set R) x : is_ball A ->
  A x -> `|cpoint A - x| < (radius A)%:num.
Proof.
by rewrite /is_ball => /eqP {1}-> /lt_le_trans; exact. Qed.

Lemma is_ball_ball x r : is_ball (ball x r).
Proof.
have [r0|/ball0 ->] := ltP 0 r; last exact: is_ball0.
by apply/eqP; rewrite cpoint_ball// (radius_ball _ (ltW r0)).
Qed.

Lemma scale_ball_set0 ( k : R) : k *` set0 = set0 :> set R.
Proof.
by rewrite /scale_ball is_ball0// radius0/= mulr0 ball0. Qed.

Lemma ballE ( A : set R) : is_ball A -> A = ball (cpoint A) (radius A)%:num.
Proof.
move=> ballA; apply/seteqP; split => [x /is_ballP|x Ax]; first exact.
by move: ballA => /eqP ->.
Qed.

Lemma is_ball_closureP ( A : set R) x : is_ball A ->
  closure A x -> `|cpoint A - x| <= (radius A)%:num.
Proof.
move=> ballP cAx.
have : closed_ball (cpoint A) (radius A)%:num x by rewrite /closed_ball -ballE.
by have [r0|r0] := ltP 0 (radius A)%:num; [rewrite closed_ballE|
                                           rewrite closed_ball0].
Qed.

Lemma is_ball_closure ( A : set R) : is_ball A ->
  closure A = closed_ball (cpoint A) (radius A)%:num.
Proof.
by move=> ballA; rewrite /closed_ball -ballE. Qed.

Lemma closure_ball ( c r : R) : closure (ball c r) = closed_ball c r.
Proof.
have [r0|r0] := leP r 0.
  by rewrite closed_ball0// ((ball0 _ _).2 r0) closure0.
by rewrite (is_ball_closure (is_ball_ball _ _)) cpoint_ball// radius_ball ?ltW.
Qed.

Lemma scale_ballE k x r : 0 <= k -> k *` ball x r = ball x (k * r).
Proof.
move=> k0; have [r0|r0] := ltP 0 r.
  apply/seteqP; split => y.
    rewrite /scale_ball is_ball_ball//= cpoint_ball//.
    by rewrite (radius_ball_num _ (ltW _)).
  by rewrite /scale_ball is_ball_ball cpoint_ball// radius_ball_num// ltW.
rewrite ((ball0 _ _).2 r0) scale_ball_set0; apply/esym/ball0.
by rewrite mulr_ge0_le0.
Qed.

Lemma cpoint_scale_ball A ( k : R) : 0 < k -> is_ball A -> 0 < (radius A)%:num ->
  cpoint (k *` A) = cpoint A :> R.
Proof.
move=> k0 ballA r0.
rewrite [in LHS](ballE ballA) (scale_ballE _ _ (ltW k0))// cpoint_ball//.
by rewrite mulr_gt0.
Qed.

Lemma radius_scale_ball ( A : set R) ( k : R) : 0 <= k -> is_ball A ->
  (radius (k *` A))%:num = k * (radius A)%:num.
Proof.
move=> k0 ballA.
by rewrite [in LHS](ballE ballA) (scale_ballE _ _ k0)// radius_ball// mulr_ge0.
Qed.

Lemma is_scale_ball ( A : set R) ( k : R) : is_ball A -> is_ball (k *` A).
Proof.
move=> Aball.
have [k0|k0] := leP 0 k.
  by rewrite (ballE Aball) (scale_ballE _ _ k0); exact: is_ball_ball.
rewrite (_ : _ *` _ = set0); first exact: is_ball0.
apply/seteqP; split => // x.
by rewrite /scale_ball Aball (ball0 _ _).2// nmulr_rle0.
Qed.

End center_radius_realFieldType.

Section vitali_lemma_finite .
Context {R : realType} {I : eqType}.
Variable ( B : I -> set R).
Hypothesis is_ballB : forall i, is_ball (B i).
Hypothesis B_set0 : forall i, B i !=set0.

Lemma vitali_lemma_finite ( s : seq I) :
  { D : seq I | [/\ uniq D,
    {subset D <= s}, trivIset [set` D] B &
    forall i, i \in s -> exists j, [/\ j \in D,
      B i `&` B j !=set0,
      radius (B j) >= radius (B i) &
      B i `<=` 3%:R *` B j] ] }.
Proof.
pose LE x y := radius (B x) <= radius (B y).
have LE_trans : transitive LE by move=> x y z; exact: le_trans.
wlog : s / sorted LE s.
  have : sorted LE (sort LE s) by apply: sort_sorted => x y; exact: le_total.
  move=> /[swap] /[apply] -[D [uD Ds trivIset_DB H]]; exists D; split => //.
  - by move=> x /Ds; rewrite mem_sort.
  - by move=> i; rewrite -(mem_sort LE) => /H.
elim: s => [_|i [/= _ _|j t]]; first by exists nil.
  exists [:: i]; split => //; first by rewrite set_cons1; exact: trivIset1.
  move=> _ /[1!inE] /eqP ->; exists i; split => //; first by rewrite mem_head.
  - by rewrite setIid; exact: B_set0.
  - exact: sub1_scale_ball.
rewrite /= => + /andP[ij jt] => /(_ jt)[u [uu ujt trivIset_uB H]].
have [K|] := pselect (forall j, j \in u -> B j `&` B i = set0).
  have [iu|iu] := boolP (i \in u).
    exists u; split => //.
    - by move=> x /ujt xjt; rewrite inE xjt orbT.
    - move=> k /[1!inE] /predU1P[->{k}|].
        exists i; split; [by []| |exact: lexx|].
          by rewrite setIid; exact: B_set0.
        exact: sub1_scale_ball.
      by move/H => [l [lu lk0 kl k3l]]; exists l; split => //; rewrite inE lu orbT.
  exists (i :: u); split => //.
  - by rewrite /= iu.
  - move=> x /[1!inE] /predU1P[->|]; first by rewrite mem_head.
    by move/ujt => xjt; rewrite in_cons xjt orbT.
  - move=> k l /= /[1!inE] /predU1P[->{k}|ku].
      by move=> /predU1P[->{j}//|js] /set0P; rewrite setIC K// eqxx.
    by move=> /predU1P[->{l} /set0P|lu]; [rewrite K// eqxx|exact: trivIset_uB].
  - move=> k /[1!inE] /predU1P[->{k}|].
      exists i; split; [by rewrite mem_head| |exact: lexx|].
        by rewrite setIid; exact: B_set0.
      exact: sub1_scale_ball.
    by move/H => [l [lu lk0 kl k3l]]; exists l; split => //; rewrite inE lu orbT.
move/existsNP/cid => [k /not_implyP[ku /eqP/set0P ki0]].
exists u; split => //.
  by move=> l /ujt /[!inE] /predU1P[->|->]; rewrite ?eqxx ?orbT.
move=> _ /[1!inE] /predU1P[->|/H//]; exists k; split; [exact: ku| | |].
- by rewrite setIC.
- apply: (le_trans ij); move/ujt : ku => /[1!inE] /predU1P[<-|kt].
    exact: lexx.
  by have /allP := order_path_min LE_trans jt; apply; exact: kt.
- case: ki0 => x [Bkx Bix] y => iy.
  rewrite (ballE (is_ballB k)) scale_ballE// /ball/=.
  rewrite -(subrK x y) -(addrC x) opprD addrA opprB.
  rewrite (le_lt_trans (ler_norm_add _ _))// -nat1r mulrDl mul1r mulr_natl.
  rewrite (ltr_add (is_ballP (is_ballB k) _))// -(subrK (cpoint (B i)) y).
  rewrite -(addrC (cpoint (B i))) opprD addrA opprB.
  rewrite (le_lt_trans (ler_norm_add _ _))//.
  apply (@lt_le_trans _ _ ((radius (B j))%:num *+ 2)); last first.
    apply: ler_wmuln2r; move/ujt : ku; rewrite inE => /predU1P[<-|kt].
      exact: lexx.
    by have /allP := order_path_min LE_trans jt; apply; exact: kt.
  rewrite mulr2n ltr_add//.
    by rewrite distrC (lt_le_trans (is_ballP (is_ballB i) _)).
  by rewrite (lt_le_trans (is_ballP (is_ballB i) _)).
Qed.

Lemma vitali_lemma_finite_cover ( s : seq I) :
  { D : seq I | [/\ uniq D, {subset D <= s},
    trivIset [set` D] B &
    cover [set` s] B `<=` cover [set` D] (scale_ball 3%:R \o B)] }.
Proof.
have [D [uD DV tD maxD]] := vitali_lemma_finite s.
exists D; split => // x [i Vi] cBix/=.
by have [j [Dj BiBj ij]] := maxD i Vi; move/(_ _ cBix) => ?; exists j.
Qed.

End vitali_lemma_finite.

Section vitali_collection_partition .
Context {R : realType} {I : eqType}.
Variables ( B : I -> set R) ( V : set I) ( r : R).
Hypothesis is_ballB : forall i, is_ball (B i).
Hypothesis B_set0 : forall i, 0 < (radius (B i))%:num.

Definition vitali_collection_partition n :=
  [set i | V i /\ r / (2 ^ n.+1)%:R < (radius (B i))%:num <= r / (2 ^ n)%:R].

Hypothesis VBr : forall i, V i -> (radius (B i))%:num <= r.

Lemma vitali_collection_partition_ub_gt0 i : V i -> 0 < r.
Proof.
by move=> Vi; rewrite (lt_le_trans _ (VBr Vi)). Qed.

Notation r_gt0 := vitali_collection_partition_ub_gt0.

Lemma ex_vitali_collection_partition i :
  V i -> exists n, vitali_collection_partition n i.
Proof.
move=> Vi; pose f := floor (r / (radius (B i))%:num).
have f_ge0 : 0 <= f by rewrite floor_ge0// divr_ge0// ltW// (r_gt0 Vi).
have [m /andP[mf fm]] := leq_ltn_expn `|f|.-1.
exists m; split => //; apply/andP; split => [{mf}|{fm}].
  rewrite -(@ler_nat R) in fm.
  rewrite ltr_pdivr_mulr// mulrC -ltr_pdivr_mulr//.
  rewrite (lt_le_trans _ fm)// (lt_le_trans (lt_succ_floor _))//= -/f.
  rewrite -natr1 ler_add2r//.
  have [<-|f0] := eqVneq 0 f; first by rewrite /= ler0n.
  rewrite prednK//; last by rewrite absz_gt0 eq_sym.
  by rewrite natr_absz// ger0_norm.
move: m => [|m] in mf *; first by rewrite expn0 divr1 VBr.
rewrite -(@ler_nat R) in mf.
rewrite ler_pdivl_mulr// mulrC -ler_pdivl_mulr//.
have [f0|f0] := eqVneq 0 f.
  by move: mf; rewrite -f0 absz0 leNgt expnS ltr_nat leq_pmulr// expn_gt0.
rewrite (le_trans mf)// prednK//; last by rewrite absz_gt0 eq_sym.
by rewrite natr_absz// ger0_norm// floor_le.
Qed.

Lemma cover_vitali_collection_partition :
  V = \bigcup_n vitali_collection_partition n.
Proof.
apply/seteqP; split => [|i [n _] []//].
by move=> i Vi; have [n Hn] := ex_vitali_collection_partition Vi; exists n.
Qed.

Lemma disjoint_vitali_collection_partition n m : n != m ->
  vitali_collection_partition n `&`
  vitali_collection_partition m = set0.
Proof.
move=> nm; wlog : n m nm / (n < m)%N.
  move=> wlg; move: nm; rewrite neq_lt => /orP[nm|mn].
    by rewrite wlg// lt_eqF.
  by rewrite setIC wlg// lt_eqF.
move=> {}nm; apply/seteqP; split => // i [] [Vi] /andP[rnB _] [_ /andP[_]].
move/(lt_le_trans rnB); rewrite ltr_pmul2l//; last by rewrite (r_gt0 Vi).
rewrite ltf_pinv ?posrE ?ltr0n ?expn_gt0// ltr_nat.
by move/ltn_pexp2l => /(_ isT); rewrite ltnNge => /negP; apply.
Qed.

End vitali_collection_partition.

Lemma separated_closed_ball_countable
    {R : realType} ( I : Type) ( B : I -> set R) ( D : set I) :
  (forall i, (radius (B i))%:num > 0) ->
  trivIset D (fun i => closed_ball (cpoint (B i)) (radius (B i))%:num) -> countable D.
Proof.
move=> B0 tD.
have : trivIset D (fun i => ball (cpoint (B i)) (radius (B i))%:num).
  move=> i j Di Dj BiBj; apply: tD => //.
  by apply: subsetI_neq0 BiBj => //; exact: subset_closed_ball.
apply: separated_open_countable => //; first by move=> i; exact: ball_open.
by move=> i; eexists; exact: ballxx.
Qed.

Section vitali_lemma_infinite .
Context {R : realType} {I : eqType}.
Variables ( B : I -> set R) ( V : set I) ( r : R).
Hypothesis is_ballB : forall i, is_ball (B i).
Hypothesis Bset0 : forall i, (radius (B i))%:num > 0.
Hypothesis VBr : forall i, V i -> (radius (B i))%:num <= r.

Let B_ := vitali_collection_partition B V r.

Let H_ n ( U : set I) := [set i | B_ n i /\
  forall j, U j -> i != j -> closure (B i) `&` closure (B j) = set0].

Let elt_prop ( x : set I * nat * set I) :=
  x.1.1 `<=` V /\
  maximal_disjoint_subcollection (closure \o B) x.1.1 (H_ x.1.2 x.2).

Let elt_type := {x | elt_prop x}.

Let Rel ( x y : elt_type) :=
  (sval y).2 = (sval x).2 `|` (sval x).1.1 /\ (sval x).1.2.+1 = (sval y).1.2.

Lemma vitali_lemma_infinite : { D : set I | [/\ countable D,
  D `<=` V, trivIset D (closure \o B) &
  forall i, V i -> exists j, [/\ D j,
    closure (B i) `&` closure (B j) !=set0,
    (radius (B j))%:num >= (radius (B i))%:num / 2 &
    closure (B i) `<=` closure (5%:R *` B j)] ] }.
Proof.
have [D0 [D0B0 tD0 maxD0]] :=
  ex_maximal_disjoint_subcollection (closure \o B) (B_ O).
have H0 : elt_prop (D0, 0%N, set0).
  split; first by move=> i /D0B0[].
  split => //=.
  - move=> x /= D0x; split; first exact: D0B0.
    by move=> s D0s xs; move/trivIsetP : tD0; exact.
  - by move=> F D0F FH0; apply: maxD0 => // i Fi; exact: (FH0 _ Fi).1.
have [v [Hv0 HvRel]] : {v : nat -> elt_type |
    v 0%N = exist _ _ H0 /\ forall n, Rel (v n) (v n.+1)}.
  apply: dependent_choice_Type => -[[[Dn n] Un] Hn].
  pose Hn1 := H_ n.+1 (Un `|` Dn).
  have [Dn1 maxDn1] :=
    ex_maximal_disjoint_subcollection (closure\o B) Hn1.
  suff: elt_prop (Dn1, n.+1, Un `|` Dn) by move=> H; exists (exist _ _ H).
  by split => //=; case: maxDn1 => + _ _ => /subset_trans; apply => i [[]].
pose D i := (sval (v i)).1.1.
pose U i := (sval (v i)).2.
have UE n : U n = \bigcup_( i < n) D i.
  elim: n => [|n ih]; first by rewrite bigcup_mkord big_ord0 /U /sval /D Hv0.
  by rewrite /U /sval/= (HvRel n).1 bigcup_mkord big_ord_recr -bigcup_mkord -ih.
pose v_ i := (sval (v i)).1.2.
have v_E n : v_ n = n.
  elim: n => /= [|n]; first by rewrite /v_ /sval/= Hv0.
  by move: (HvRel n).2; rewrite -!/(v_ _) => <- ->.
have maxD m : maximal_disjoint_subcollection (closure\o B) (D m)
    (H_ m (\bigcup_( i < m) D i)).
  by rewrite -(UE m) -[m in H_ m _]v_E /v_ /U /D; move: (v m) => [x []].
have DH m : D m `<=` H_ m (\bigcup_( i < m) D i) by have [] := maxD m.
exists (\bigcup_k D k); split.
- apply: bigcup_countable => // n _.
  apply: (@separated_closed_ball_countable R _ B) => //.
  have [_ + _] := maxD n; move=> DB i j Dni Dnj.
  by rewrite -!is_ball_closure//; exact: DB.
- by move=> i [n _ Dni]; have [+ _ _] := maxD n; move/(_ _ Dni) => [[]].
- apply: trivIset_bigcup => m; first by have [] := maxD m.
  move=> n i j mn Dmi Dnj.
  wlog : i j n m mn Dmi Dnj / (m < n)%N.
    move=> wlg ij.
    move: mn; rewrite neq_lt => /orP[mn|nm].
      by rewrite (wlg i j n m)// ?lt_eqF.
    by rewrite (wlg j i m n)// ?lt_eqF// setIC.
  move=> {}mn.
  have [_ {}H] := DH _ _ Dnj.
  move=> /set0P/eqP; apply: contra_notP => /eqP.
  by rewrite eq_sym setIC; apply: H => //; exists m.
move=> i Vi.
have [n Bni] := ex_vitali_collection_partition Bset0 VBr Vi.
have [[j Dj BiBj]|] :=
    pselect (exists2 j, (\bigcup_( i < n.+1) D i) j &
             closure (B i) `&` closure (B j) !=set0); last first.
  move/forall2NP => H.
  have {}H j : (\bigcup_( i < n.+1) D i) j ->
               closure (B i) `&` closure (B j) = set0.
    by have [//|/set0P/negP/negPn/eqP] := H j.
  have H_i : (H_ n (\bigcup_( i < n) D i)) i.
    split => // s Hs si; apply: H => //.
    by move: Hs => [m /= nm Dms]; exists m => //=; rewrite (ltn_trans nm).
  have Dn_Bi j : D n j -> closure (B i) `&` closure (B j) = set0.
    by move=> Dnj; apply: H; exists n => //=.
  have [Dni|Dni] := pselect (D n i).
    have := Dn_Bi _ Dni.
      rewrite setIid => /closure_eq0 Bi0.
      by have := Bset0 i; rewrite Bi0 radius0/= ltxx.
  have not_tB : ~ trivIset (D n `|` [set i]) (closure \o B).
    have [_ _] := maxD n.
    apply.
      split; first exact: subsetUl.
      by move=> x; apply/Dni; apply: x; right.
    by rewrite subUset; split; [exact: DH|]; rewrite sub1set inE.
  have [p [q [pq Dnpi Dnqi pq0]]] : exists p q, [/\ p != q,
      D n p \/ p = i, D n q \/ q = i &
      closure (B p) `&` closure (B q) !=set0].
    move/trivIsetP : not_tB => /existsNP[p not_tB]; exists p.
    move/existsNP : not_tB => [q not_tB]; exists q.
    move/not_implyP : not_tB => [Dnip] /not_implyP[Dni1] /not_implyP[pq pq0].
    by split => //; exact/set0P/eqP.
  case: Dnpi => [Dnp|pi].
  - case: Dnqi => [Dnq|qi].
    + case: (maxD n) => _ + _.
      move/trivIsetP => /(_ _ _ Dnp Dnq pq).
      by move/set0P : pq0 => /eqP.
    + have := Dn_Bi _ Dnp.
      by rewrite setIC -qi; move/set0P : pq0 => /eqP.
  - case: Dnqi => [Dnq|qi].
    + have := Dn_Bi _ Dnq.
      by rewrite -pi; move/set0P : pq0 => /eqP.
    + by move: pq; rewrite pi qi eqxx.
have Birn : (radius (B i))%:num <= r / (2 ^ n)%:R.
  by move: Bni; by rewrite /B_ /= => -[_] /andP[].
have Bjrn : (radius (B j))%:num > r / (2 ^ n.+1)%:R.
  have : \bigcup_( i < n.+1) D i `<=` \bigcup_( i < n.+1) (B_ i).
    move=> k [m/= mn] Dmk.
    have [+ _ _] := maxD m.
    by move/(_ _ Dmk) => -[Bmk] _; exists m.
  move/(_ _ Dj) => [m/= mn1] [_] /andP[+ _].
  apply: le_lt_trans.
  rewrite ler_pmul2l ?(vitali_collection_partition_ub_gt0 Bset0 VBr Vi)//.
  by rewrite lef_pinv// ?posrE ?ltr0n ?expn_gt0// ler_nat leq_pexp2l.
exists j; split => //.
- by case: Dj => m /= mn Dm; exists m.
- rewrite (le_trans _ (ltW Bjrn))// ler_pdivr_mulr// expnSr natrM.
  by rewrite invrM ?unitfE// mulrAC -mulrA (mulrA 2) divff// div1r.
- move=> x Bix.
  rewrite is_ball_closure//; last first.
    by rewrite (ballE (is_ballB j)) scale_ballE; [exact: is_ball_ball|].
  rewrite closed_ballE; last first.
    rewrite (ballE (is_ballB j)) scale_ballE; last by [].
    by rewrite radius_ball_num ?mulr_ge0// mulr_gt0.
  rewrite /closed_ball_ /= cpoint_scale_ball; [|by []..].
  rewrite radius_scale_ball//.
  apply: (@le_trans _ _ (2 * (radius (B i))%:num + (radius (B j))%:num)).
    case: BiBj => y [Biy Bjy].
    rewrite (le_trans (ler_dist_add y _ _))// [in leRHS]addrC ler_add//.
      exact: is_ball_closureP.
    rewrite (le_trans (ler_dist_add (cpoint (B i)) _ _))//.
    rewrite (_ : 2 = 1 + 1); last by [].
    rewrite mulrDl !mul1r// ler_add; [by []| |exact: is_ball_closureP].
    by rewrite distrC; exact: is_ball_closureP.
  rewrite -ler_subr_addr// -(@natr1 _ 4).
  rewrite (mulrDl 4%:R) mul1r addrK (natrM _ 2 2) -mulrA ler_pmul2l//.
  rewrite (le_trans Birn)// [in leRHS]mulrC -ler_pdivr_mulr//.
  by rewrite -mulrA -invfM -natrM-expnSr ltW.
Qed.

Lemma vitali_lemma_infinite_cover : { D : set I | [/\ countable D,
  D `<=` V, trivIset D (closure\o B) &
  cover V (closure\o B) `<=` cover D (closure \o scale_ball 5%:R \o B)] }.
Proof.
have [D [cD DV tD maxD]] := vitali_lemma_infinite.
exists D; split => // x [i Vi] cBix/=.
by have [j [Dj BiBj ij]] := maxD i Vi; move/(_ _ cBix) => ?; exists j.
Qed.

End vitali_lemma_infinite.