Top

Module mathcomp.analysis.sequences

From HB Require Import structures.
From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum matrix.
From mathcomp Require Import interval rat archimedean.
From mathcomp Require Import boolp classical_sets functions.
From mathcomp Require Import set_interval.
Require Import reals ereal signed topology normedtype landau.

Definitions and lemmas about sequences

The purpose of this file is to gather generic definitions and lemmas about sequences. Incidentally, it defines the exponential function.

    nondecreasing_seq u == the sequence u is non-decreasing
    nonincreasing_seq u == the sequence u is non-increasing
       increasing_seq u == the sequence u is (strictly) increasing
       decreasing_seq u == the sequence u is (strictly) decreasing

About sequences of real numbers

       [sequence u_n]_n == the sequence of general element u_n
                 R ^nat == notation for the type of sequences, i.e.,
                           functions of type nat -> R
                seqDU F == sequence F_0, F_1 \ F_0, F_2 \ (F_0 U F_1),...
                 seqD F == the sequence F_0, F_1 \ F_0, F_2 \ F_1,...
              series u_ == the sequence of partial sums of u_
           telescope u_ := [sequence u_ n.+1 - u_ n]_n
               harmonic == harmonic sequence
             arithmetic == arithmetic sequence
              geometric == geometric sequence
                           also arithmetic_mean, harmonic_mean,
                           root_mean_square
         [series u_n]_n == the series of general element u_n
             [normed S] == transforms a series S = [series u_n]_n in its
                           normed series [series `|u_n|]_n] (useful to
                           represent absolute and normed convergence:
                           cvg [norm S_n])
            exp_coeff n == the sequence of coefficients of the real
                           exponential
                 expR x == the exponential function defined on a realType
is_cvg_series_exp_coeff == convergence of \sum_n^+oo x^n / n!
       \sum_<range> F i == lim (fun n => (\sum_<range>) F i)) where
                           <range> can be (i <oo), (i <oo | P i),
                           (m <= i <oo), or (m <= i <oo | P i)

Sections sequences_R_* contain properties of sequences of real numbers. For example:

nonincreasing_cvgn_ge u_ == if u_ is nonincreasing and convergent then
                            forall n, lim u_ <= u_ n
nondecreasing_cvgn_le u_ == if u_ is nondecreasing and convergent then
                            forall n, lim u_ >= u_ n
   nondecreasing_cvgn u_ == if u_ is nondecreasing and bounded then u_
                            is convergent and its limit is sup u_n
   nonincreasing_cvgn u_ == if u_ is nonincreasing u_ and bound by below
                            then u_ is convergent
                adjacent == adjacent sequences lemma
                  cesaro == Cesaro's lemma

About sequences of natural numbers

               nseries u := fun n => \sum_(0 <= k < n) u k
                            where u has type nat^nat

About sequences of extended real numbers

               eseries u := [sequence \sum_(0 <= k < n) u k]_n
                            where u has type (\bar R)^nat
            etelescope u := [sequence u n.+1 - u n]_n

Section sequences_ereal contain properties of sequences of extended real numbers.

Naming convention: lemmas about series of non-negative (resp. non-positive) extended numbers use the string "nneseries" (resp. "npeseries") as part of their identifier

Limit superior and inferior for sequences

             sdrop u n := {u_k | k >= n}
                sups u := [sequence sup (sdrop u n)]_n
                infs u := [sequence inf (sdrop u n)]_n
    limn_sup, limn_inf == limit sup/inferior for a sequence of reals
               esups u := [sequence ereal_sup (sdrop u n)]_n
               einfs u := [sequence ereal_inf (sdrop u n)]_n
limn_esup u, limn_einf == limit sup/inferior for a sequence of
                          of extended reals

Bounded functions

This section proves Baire's Theorem, stating that complete normed spaces are Baire spaces, and Banach-Steinhaus' theorem, stating that between a complete normed vector space and a normed vector spaces, pointwise bounded and uniformly bounded subset of functions correspond.

    bounded_fun_norm f == a function between normed spaces transforms a
                          bounded set into a bounded set
   pointwise_bounded F == F is a set of pointwise bounded functions
                          between normed spaces
     uniform_bounded F == F is a set of uniform bounded functions
                          between normed spaces

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldNormedType.Exports.
From mathcomp Require Import mathcomp_extra.

Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

Reserved Notation "R ^nat" (at level 0).
Reserved Notation "a `^ x" (at level 11).
Reserved Notation "[ 'sequence' E ]_ n"
  (at level 0, E at level 200, n name, format "[ 'sequence' E ]_ n").
Reserved Notation "[ 'series' E ]_ n"
  (at level 0, E at level 0, n name, format "[ 'series' E ]_ n").
Reserved Notation "[ 'normed' E ]" (at level 0, format "[ 'normed' E ]").

Reserved Notation "\big [ op / idx ]_ ( m <= i <oo | P ) F"
  (at level 36, F at level 36, op, idx at level 10, m, i at level 50,
           format "'[' \big [ op / idx ]_ ( m <= i <oo | P ) F ']'").
Reserved Notation "\big [ op / idx ]_ ( m <= i <oo ) F"
  (at level 36, F at level 36, op, idx at level 10, i, m at level 50,
           format "'[' \big [ op / idx ]_ ( m <= i <oo ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <oo | P ) F"
  (at level 36, F at level 36, op, idx at level 10, i at level 50,
           format "'[' \big [ op / idx ]_ ( i <oo | P ) '/ ' F ']'").
Reserved Notation "\big [ op / idx ]_ ( i <oo ) F"
  (at level 36, F at level 36, op, idx at level 10, i at level 50,
           format "'[' \big [ op / idx ]_ ( i <oo ) F ']'").

Reserved Notation "\sum_ ( m <= i '<oo' | P ) F"
  (at level 41, F at level 41, i, m at level 50,
           format "'[' \sum_ ( m <= i <oo | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( m <= i '<oo' ) F"
  (at level 41, F at level 41, i, m at level 50,
           format "'[' \sum_ ( m <= i <oo ) '/ ' F ']'").
Reserved Notation "\sum_ ( i '<oo' | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \sum_ ( i <oo | P ) '/ ' F ']'").
Reserved Notation "\sum_ ( i '<oo' ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \sum_ ( i <oo ) '/ ' F ']'").

Definition sequence R := nat -> R.
Definition mk_sequence R f : sequence R := f.
Arguments mk_sequence R f /.
Notation "[ 'sequence' E ]_ n" := (mk_sequence (fun n => E%E)) : ereal_scope.
Notation "[ 'sequence' E ]_ n" := (mk_sequence (fun n => E)) : ring_scope.
Notation "R ^nat" := (sequence R) : type_scope.

Notation "'nondecreasing_seq' f" := ({homo f : n m / (n <= m)%nat >-> (n <= m)%O})
  (at level 10).
Notation "'nonincreasing_seq' f" := ({homo f : n m / (n <= m)%nat >-> (n >= m)%O})
  (at level 10).
Notation "'increasing_seq' f" := ({mono f : n m / (n <= m)%nat >-> (n <= m)%O})
  (at level 10).
Notation "'decreasing_seq' f" := ({mono f : n m / (n <= m)%nat >-> (n >= m)%O})
  (at level 10).

Lemma nondecreasing_opp (T : numDomainType) (u_ : T ^nat) :
  nondecreasing_seq (- u_) = nonincreasing_seq u_.
Proof.
by rewrite propeqE; split => du x y /du; rewrite lerN2. Qed.

Lemma nonincreasing_opp (T : numDomainType) (u_ : T ^nat) :
  nonincreasing_seq (- u_) = nondecreasing_seq u_.
Proof.
by rewrite propeqE; split => du x y /du; rewrite lerN2. Qed.

Lemma decreasing_opp (T : numDomainType) (u_ : T ^nat) :
  decreasing_seq (- u_) = increasing_seq u_.
Proof.
by rewrite propeqE; split => du x y; rewrite -du lerN2. Qed.

Lemma increasing_opp (T : numDomainType) (u_ : T ^nat) :
  increasing_seq (- u_) = decreasing_seq u_.
Proof.
by rewrite propeqE; split => du x y; rewrite -du lerN2. Qed.

Lemma nondecreasing_seqP d (T : porderType d) (u_ : T ^nat) :
  (forall n, u_ n <= u_ n.+1)%O <-> nondecreasing_seq u_.
Proof.
by split=> [|h n]; [exact: homo_leq le_trans | exact: h]. Qed.

Lemma nonincreasing_seqP d (T : porderType d) (u_ : T ^nat) :
  (forall n, u_ n >= u_ n.+1)%O <-> nonincreasing_seq u_.
Proof.
split; first by apply: homo_leq (fun _ _ _ u v => le_trans v u).
by move=> u_nincr n; exact: u_nincr.
Qed.

Lemma increasing_seqP d (T : porderType d) (u_ : T ^nat) :
  (forall n, u_ n < u_ n.+1)%O <-> increasing_seq u_.
Proof.
split; first by move=> u_nondec; apply: le_mono; apply: homo_ltn lt_trans _.
by move=> u_incr n; rewrite lt_neqAle eq_le !u_incr leqnSn ltnn.
Qed.

Lemma decreasing_seqP d (T : porderType d) (u_ : T ^nat) :
  (forall n, u_ n > u_ n.+1)%O <-> decreasing_seq u_.
Proof.
split.
  move=> u_noninc.
  (* FIXME: add shortcut to order.v *)
  apply: (@total_homo_mono _ T u_ leq ltn _ _ leqnn _ ltn_neqAle
    _ (fun _ _ _ => esym (le_anti _)) leq_total
    (homo_ltn (fun _ _ _ u v => lt_trans v u) u_noninc)) => //.
  by move=> x y; rewrite eq_sym -lt_neqAle.
by move=> u_decr n; rewrite lt_neqAle eq_le !u_decr !leqnSn ltnn.
Qed.

Lemma lef_at (aT : Type) d (T : porderType d) (f : (aT -> T)^nat) x :
  nondecreasing_seq f -> {homo (f^~ x) : n m / (n <= m)%N >-> (n <= m)%O}.
Proof.
by move=> nf m n mn; have /asboolP := nf _ _ mn; exact. Qed.

Lemma nondecreasing_seqD T (R : numDomainType) (f g : (T -> R)^nat) :
  (forall x, nondecreasing_seq (f ^~ x)) ->
  (forall x, nondecreasing_seq (g ^~ x)) ->
  (forall x, nondecreasing_seq ((f \+ g) ^~ x)).
Proof.
by move=> ndf ndg t m n mn; apply: lerD; [exact/ndf|exact/ndg]. Qed.

Local Notation eqolimn := (@eqolim _ _ _ eventually_filter).
Local Notation eqolimPn := (@eqolimP _ _ _ eventually_filter).

Sequences of sets

Section seqDU.
Variables (T : Type).
Implicit Types F : (set T)^nat.

Definition seqDU F n := F n `\` \big[setU/set0]_(k < n) F k.

Lemma trivIset_seqDU F : trivIset setT (seqDU F).
Proof.
move=> i j _ _; wlog ij : i j / (i < j)%N => [/(_ _ _ _) tB|].
  by have [ij /tB->|ij|] := ltngtP i j; rewrite //setIC => /tB ->.
move=> /set0P; apply: contraNeq => _; apply/eqP.
rewrite /seqDU 2!setDE !setIA setIC (bigD1 (Ordinal ij)) //=.
by rewrite setCU setIAC !setIA setICl !set0I.
Qed.

Lemma bigsetU_seqDU F n :
  \big[setU/set0]_(k < n) F k = \big[setU/set0]_(k < n) seqDU F k.
Proof.
elim: n => [|n ih]; first by rewrite 2!big_ord0.
rewrite !big_ord_recr /= predeqE => t; split=> [[Ft|Fnt]|[Ft|[Fnt Ft]]].
- by left; rewrite -ih.
- have [?|?] := pselect ((\big[setU/set0]_(i < n) seqDU F i) t); first by left.
  by right; split => //; rewrite ih.
- by left; rewrite ih.
- by right.
Qed.

Lemma seqDU_bigcup_eq F : \bigcup_k F k = \bigcup_k seqDU F k.
Proof.
rewrite /seqDU predeqE => t; split=> [[n _ Fnt]|[n _]]; last first.
  by rewrite setDE => -[? _]; exists n.
have [UFnt|UFnt] := pselect ((\big[setU/set0]_(k < n) F k) t); last by exists n.
suff [m [Fmt FNmt]] : exists m, F m t /\ forall k, (k < m)%N -> ~ F k t.
  by exists m => //; split => //; rewrite -bigcup_mkord => -[k kj]; exact: FNmt.
move: UFnt; rewrite -bigcup_mkord => -[/= k _ Fkt] {Fnt n}.
have [n kn] := ubnP k; elim: n => // n ih in t k Fkt kn *.
case: k => [|k] in Fkt kn *; first by exists O.
have [?|] := pselect (forall m, (m <= k)%N -> ~ F m t); first by exists k.+1.
move=> /existsNP[i] /not_implyP[ik] /contrapT Fit; apply: (ih t i) => //.
by rewrite (leq_ltn_trans ik).
Qed.

Lemma seqDUIE (S : set T) (F : (set T)^nat) :
  seqDU (fun n => S `&` F n) = (fun n => S `&` F n `\` \bigcup_(i < n) F i).
Proof.
apply/funext => n; rewrite -setIDA; apply/seteqP; split; last first.
  move=> x [Sx [Fnx UFx]]; split=> //; apply: contra_not UFx => /=.
  by rewrite bigcup_mkord -big_distrr/= => -[].
by rewrite /seqDU -setIDA bigcup_mkord -big_distrr/= setDIr setIUr setDIK set0U.
Qed.

End seqDU.
Arguments trivIset_seqDU {T} F.
#[global] Hint Resolve trivIset_seqDU : core.

Section seqD.
Variable T : Type.
Implicit Types F : (set T) ^nat.

Definition seqD F := fun n => if n isn't n'.+1 then F O else F n `\` F n'.

Lemma seqDU_seqD F : nondecreasing_seq F -> seqDU F = seqD F.
Proof.
move=> ndF; rewrite funeqE => -[|n] /=; first by rewrite /seqDU big_ord0 setD0.
rewrite /seqDU big_ord_recr /= setUC; congr (_ `\` _); apply/setUidPl.
by rewrite -bigcup_mkord => + [k /= kn]; exact/subsetPset/ndF/ltnW.
Qed.

Lemma trivIset_seqD F : nondecreasing_seq F -> trivIset setT (seqD F).
Proof.
by move=> ndF; rewrite -seqDU_seqD //; exact: trivIset_seqDU. Qed.

Lemma bigsetU_seqD F n :
  \big[setU/set0]_(i < n) F i = \big[setU/set0]_(i < n) seqD F i.
Proof.
case: n => [|n]; first by rewrite 2!big_ord0.
elim: n => [|n ih]; first by rewrite !big_ord_recl !big_ord0.
rewrite big_ord_recr [in RHS]big_ord_recr /= -{}ih predeqE => x; split.
  move=> [?|?]; first by left.
  have [?|?] := pselect (F n x); last by right.
  by left; rewrite big_ord_recr /=; right.
by move=> [?|[? ?]]; [left | right].
Qed.

Lemma setU_seqD F : nondecreasing_seq F ->
  forall n, F n.+1 = F n `|` seqD F n.+1.
Proof.
move=> ndF n; rewrite /seqD funeqE => x; rewrite propeqE; split.
by move=> ?; have [?|?] := pselect (F n x); [left | right].
by move=> -[|[]//]; move: x; exact/subsetPset/ndF.
Qed.

Lemma nondecreasing_bigsetU_seqD F n : nondecreasing_seq F ->
  \big[setU/set0]_(i < n.+1) seqD F i = F n.
Proof.
move=> ndF; elim: n => [|n ih]; rewrite funeqE => x; rewrite propeqE; split.
- by rewrite big_ord_recl big_ord0 setU0.
- by move=> ?; rewrite big_ord_recl big_ord0; left.
- by rewrite big_ord_recr /= ih => -[|[]//]; move: x; exact/subsetPset/ndF.
- rewrite (setU_seqD ndF) => -[|/= [Fn1x Fnx]].
    by rewrite big_ord_recr /= -ih => Fnx; left.
  by rewrite big_ord_recr /=; right.
Qed.

Lemma eq_bigcup_seqD F : \bigcup_n seqD F n = \bigcup_n F n.
Proof.
apply/seteqP; split => [x []|x []].
  by elim=> [_ /= F0x|n ih _ /= [Fn1x Fnx]]; [exists O | exists n.+1].
elim=> [_ F0x|n ih _ Fn1x]; first by exists O.
have [|Fnx] := pselect (F n x); last by exists n.+1.
by move=> /(ih I)[m _ Fmx]; exists m.
Qed.

Lemma eq_bigcup_seqD_bigsetU F :
  \bigcup_n (seqD (fun n => \big[setU/set0]_(i < n.+1) F i) n) = \bigcup_n F n.
Proof.
rewrite (eq_bigcup_seqD (fun n => \big[setU/set0]_(i < n.+1) F i)).
rewrite eqEsubset; split => [t [i _]|t [i _ Fit]].
  by rewrite -bigcup_seq_cond => -[/= j _ Fjt]; exists j.
by exists i => //; rewrite big_ord_recr /=; right.
Qed.

Lemma bigcup_bigsetU_bigcup F :
  \bigcup_k \big[setU/set0]_(i < k.+1) F i = \bigcup_k F k.
Proof.
apply/seteqP; split=> [x [i _]|x [i _ Fix]].
  by rewrite -bigcup_mkord => -[j _ Fjx]; exists j.
by exists i => //; rewrite big_ord_recr/=; right.
Qed.

End seqD.
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed to `nondecreasing_bigsetU_seqD`")]
Notation eq_bigsetU_seqD := nondecreasing_bigsetU_seqD (only parsing).

Convergence of patched sequences

Section sequences_patched.

Section NatShift.

Variables (N : nat) (V : ptopologicalType).
Implicit Types (f : nat -> V) (u : V ^nat) (l : V).

Lemma cvg_restrict f u_ l :
  ([sequence if (n <= N)%N then f n else u_ n]_n @ \oo --> l) =
  (u_ @ \oo --> l).
Proof.
rewrite propeqE; split; apply: cvg_trans; apply: near_eq_cvg;
by near do [move=> /=; case: ifP => //; rewrite ltn_geF//].
Unshelve. all: by end_near. Qed.

Lemma is_cvg_restrict f u_ :
  cvgn [sequence if (n <= N)%nat then f n else u_ n]_n = cvgn u_.
Proof.
by rewrite propeqE; split;
  [rewrite cvg_restrict|rewrite -(cvg_restrict f)] => /cvgP.
Qed.

Lemma cvg_centern u_ l :
  ([sequence u_ (n - N)%N]_n @ \oo --> l) = (u_ @ \oo --> l).
Proof.
rewrite propeqE; split; last by apply: cvg_comp; apply: cvg_subnr.
gen have cD : u_ l / u_ @ \oo --> l -> (fun n => u_ (n + N)%N) @ \oo --> l.
   by apply: cvg_comp; apply: cvg_addnr.
by move=> /cD /=; under [X in X @ _ --> l]funext => n do rewrite addnK.
Qed.

Lemma cvg_shiftn u_ l :
  ([sequence u_ (n + N)%N]_n @ \oo --> l) = (u_ @ \oo --> l).
Proof.
rewrite propeqE; split; last by apply: cvg_comp; apply: cvg_addnr.
rewrite -[X in X -> _]cvg_centern; apply: cvg_trans => /=.
by apply: near_eq_cvg; near do rewrite subnK; exists N.
Unshelve. all: by end_near. Qed.

End NatShift.

Variables (V : ptopologicalType).

Lemma cvg_shiftS u_ (l : V) :
  ([sequence u_ n.+1]_n @ \oo --> l) = (u_ @ \oo --> l).
Proof.
suff -> : [sequence u_ n.+1]_n = [sequence u_(n + 1)%N]_n by rewrite cvg_shiftn.
by rewrite funeqE => n/=; rewrite addn1.
Qed.

End sequences_patched.

Section sequences_R_lemmas_realFieldType.
Variable R : realFieldType.
Implicit Types u v : R ^nat.

Lemma __deprecated__squeeze T (f g h : T -> R) (a : filter_on T) :
  (\forall x \near a, f x <= g x <= h x) -> forall (l : R),
  f @ a --> l -> h @ a --> l -> g @ a --> l.
Proof.
exact: squeeze_cvgr. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `squeeze_cvgr`")]
Notation squeeze := __deprecated__squeeze (only parsing).

Lemma __deprecated__cvgPpinfty (u_ : R ^nat) :
  u_ @ \oo --> +oo <-> forall A, \forall n \near \oo, A <= u_ n.
Proof.
exact: cvgryPge. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgryPge`, and generalized to any filter")]
Notation cvgPpinfty := __deprecated__cvgPpinfty (only parsing).

Lemma __deprecated__cvgNpinfty u_ : (- u_ @ \oo --> +oo) = (u_ @ \oo --> -oo).
Proof.
exact/propeqP/cvgNry. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `cvgNry` instead")]
Notation cvgNpinfty := __deprecated__cvgNpinfty (only parsing).

Lemma __deprecated__cvgNninfty u_ : (- u_ @ \oo --> -oo) = (u_ @ \oo --> +oo).
Proof.
exact/propeqP/cvgNrNy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `cvgNrNy` instead")]
Notation cvgNninfty := __deprecated__cvgNninfty (only parsing).

Lemma __deprecated__cvgPninfty (u_ : R ^nat) :
  u_ @ \oo --> -oo <-> forall A, \forall n \near \oo, A >= u_ n.
Proof.
exact: cvgrNyPle. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgrNyPle`, and generalized to any filter")]
Notation cvgPninfty := __deprecated__cvgPninfty (only parsing).

Lemma __deprecated__ger_cvg_pinfty u_ v_ : (\forall n \near \oo, u_ n <= v_ n) ->
  u_ @ \oo --> +oo -> v_ @ \oo --> +oo.
Proof.
exact: ger_cvgy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `ger_cvgy`, and generalized to any filter")]
Notation ger_cvg_pinfty := __deprecated__ger_cvg_pinfty (only parsing).

Lemma __deprecated__ler_cvg_ninfty v_ u_ : (\forall n \near \oo, u_ n <= v_ n) ->
  v_ @ \oo --> -oo -> u_ @ \oo --> -oo.
Proof.
exact: ler_cvgNy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `ler_cvgNy`, and generalized to any filter")]
Notation ler_cvg_ninfty := __deprecated__ler_cvg_ninfty (only parsing).

Lemma __deprecated__lim_ge x u : cvg (u @ \oo) ->
  (\forall n \near \oo, x <= u n) -> x <= lim (u @ \oo).
Proof.
exact: limr_ge. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `limr_ge`, and generalized to any proper filter")]
Notation lim_ge := __deprecated__lim_ge (only parsing).

Lemma __deprecated__lim_le x u : cvg (u @ \oo) ->
  (\forall n \near \oo, x >= u n) -> x >= lim (u @ \oo).
Proof.
exact: limr_le. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `limr_le`, and generalized to any proper filter")]
Notation lim_le := __deprecated__lim_le (only parsing).

Lemma lt_lim u (M : R) : nondecreasing_seq u ->
  cvgn u -> M < limn u -> \forall n \near \oo, M <= u n.
Proof.
move=> ndu cu Ml; have [[n Mun]|/forallNP Mu] := pselect (exists n, M <= u n).
  near=> m; suff : u n <= u m by exact: le_trans.
  by near: m; exists n.+1 => // p q; apply/ndu/ltnW.
have {}Mu : forall x, M > u x by move=> x; rewrite ltNge; apply/negP.
have : limn u <= M by apply: limr_le => //; near=> m; apply/ltW/Mu.
by move/(lt_le_trans Ml); rewrite ltxx.
Unshelve. all: by end_near. Qed.

Lemma nonincreasing_cvgn_ge u_ : nonincreasing_seq u_ -> cvgn u_ ->
  forall n, limn u_ <= u_ n.
Proof.
move=> du ul p; rewrite leNgt; apply/negP => up0.
move/cvgrPdist_lt : ul => /(_ `|u_ p - limn u_|%R).
rewrite {1}ltr0_norm ?subr_lt0 // opprB subr_gt0 => /(_ up0) ul.
near \oo => N.
have /du uNp : (p <= N)%nat by near: N; rewrite nearE; exists p.
have : `|limn u_ - u_ N| >= `|u_ p - limn u_|%R.
 rewrite ltr0_norm // ?subr_lt0 // opprB distrC.
 rewrite (@le_trans _ _ (limn u_ - u_ N)) // ?lerB //.
 rewrite (_ : `| _ | = `|u_ N - limn u_|%R) // ler0_norm // ?opprB //.
 by rewrite subr_le0 (le_trans _ (ltW up0)).
rewrite leNgt => /negP; apply; by near: N.
Unshelve. all: by end_near. Qed.

Lemma nondecreasing_cvgn_le u_ : nondecreasing_seq u_ -> cvgn u_ ->
  forall n, u_ n <= limn u_.
Proof.
move=> iu cu n; move: (@nonincreasing_cvgn_ge (- u_)).
rewrite -nondecreasing_opp opprK => /(_ iu); rewrite is_cvgNE => /(_ cu n).
by rewrite limN // lerNl opprK.
Qed.

Lemma cvg_has_ub u_ : cvgn u_ -> has_ubound [set `|u_ n| | n in setT].
Proof.
move=> /cvg_seq_bounded/pinfty_ex_gt0[M M_gt0 /= uM].
by exists M; apply/ubP => x -[n _ <-{x}]; exact: uM.
Qed.

Lemma cvg_has_sup u_ : cvgn u_ -> has_sup (u_ @` setT).
Proof.
move/cvg_has_ub; rewrite -/(_ @` _) -(image_comp u_ normr setT).
by move=> /has_ub_image_norm uM; split => //; exists (u_ 0%N), 0%N.
Qed.

Lemma cvg_has_inf u_ : cvgn u_ -> has_inf (u_ @` setT).
Proof.
by move/is_cvgN/cvg_has_sup; rewrite -has_inf_supN image_comp. Qed.

Lemma __deprecated__cvgPpinfty_lt (u_ : R ^nat) :
  u_ @ \oo --> +oo%R <-> forall A, \forall n \near \oo, (A < u_ n)%R.
Proof.
exact: cvgryPgt. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgryPgt`, and generalized to any proper filter")]
Notation cvgPpinfty_lt := __deprecated__cvgPpinfty_lt (only parsing).

Lemma __deprecated__cvgPninfty_lt (u_ : R ^nat) :
  u_ @ \oo --> -oo%R <-> forall A, \forall n \near \oo, (A > u_ n)%R.
Proof.
exact: cvgrNyPlt. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgrNyPlt`, and generalized to any proper filter")]
Notation cvgPninfty_lt := __deprecated__cvgPninfty_lt (only parsing).

Lemma __deprecated__cvgPpinfty_near (u_ : R ^nat) :
  u_ @ \oo --> +oo%R <-> \forall A \near +oo, \forall n \near \oo, (A <= u_ n)%R.
Proof.
exact: cvgryPgey. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgryPgey`, and generalized to any proper filter")]
Notation cvgPpinfty_near := __deprecated__cvgPpinfty_near (only parsing).

Lemma __deprecated__cvgPninfty_near (u_ : R ^nat) :
  u_ @ \oo --> -oo%R <-> \forall A \near -oo, \forall n \near \oo, (A >= u_ n)%R.
Proof.
exact: cvgrNyPleNy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgrNyPleNy`, and generalized to any proper filter")]
Notation cvgPninfty_near := __deprecated__cvgPninfty_near (only parsing).

Lemma __deprecated__cvgPpinfty_lt_near (u_ : R ^nat) :
  u_ @ \oo --> +oo%R <-> \forall A \near +oo, \forall n \near \oo, (A < u_ n)%R.
Proof.
exact: cvgryPgty. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgryPgty`, and generalized to any proper filter")]
Notation cvgPpinfty_lt_near := __deprecated__cvgPpinfty_lt_near (only parsing).

Lemma __deprecated__cvgPninfty_lt_near (u_ : R ^nat) :
  u_ @ \oo --> -oo%R <-> \forall A \near -oo, \forall n \near \oo, (A > u_ n)%R.
Proof.
exact: cvgrNyPltNy. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgrNyPltNy`, and generalized to any proper filter")]
Notation cvgPninfty_lt_near := __deprecated__cvgPninfty_lt_near (only parsing).

End sequences_R_lemmas_realFieldType.
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `nonincreasing_cvgn_ge`")]
Notation nonincreasing_cvg_ge := nonincreasing_cvgn_ge (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `nondecreasing_cvgn_le`")]
Notation nondecreasing_cvg_le := nondecreasing_cvgn_le (only parsing).

Lemma __deprecated__invr_cvg0 (R : realFieldType) (u : R^nat) :
  (forall i, 0 < u i) -> ((u i)^-1 @[i --> \oo] --> 0) <-> (u @ \oo --> +oo).
Proof.
by move=> ?; rewrite gtr0_cvgV0//; apply: nearW. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `gtr0_cvgV0` and generalized")]
Notation invr_cvg0 := __deprecated__invr_cvg0 (only parsing).

Lemma __deprecated__invr_cvg_pinfty (R : realFieldType) (u : R^nat) :
  (forall i, 0 < u i) -> ((u i)^-1 @[i --> \oo] --> +oo) <-> (u @ \oo--> 0).
Proof.
by move=> ?; rewrite cvgrVy//; apply: nearW. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgrVy` and generalized")]
Notation invr_cvg_pinfty := __deprecated__invr_cvg_pinfty (only parsing).

Section partial_sum.
Variables (V : zmodType) (u_ : V ^nat).

Definition series : V ^nat := [sequence \sum_(0 <= k < n) u_ k]_n.
Definition telescope : V ^nat := [sequence u_ n.+1 - u_ n]_n.

Lemma seriesEnat : series = [sequence \sum_(0 <= k < n) u_ k]_n.
Proof.
by []. Qed.

Lemma seriesEord : series = [sequence \sum_(k < n) u_ k]_n.
Proof.
by rewrite funeqE => n; rewrite /series/= big_mkord. Qed.

Lemma seriesSr n : series n.+1 = series n + u_ n.
Proof.
by rewrite !seriesEord/= big_ord_recr. Qed.

Lemma seriesS n : series n.+1 = u_ n + series n.
Proof.
by rewrite addrC seriesSr. Qed.

Lemma seriesSB (n : nat) : series n.+1 - series n = u_ n.
Proof.
by rewrite seriesS addrK. Qed.

Lemma series_addn m n : series (n + m)%N = series m + \sum_(m <= k < n + m) u_ k.
Proof.
by rewrite seriesEnat/= -big_cat_nat// leq_addl. Qed.

Lemma sub_series_geq m n : (m <= n)%N ->
  series n - series m = \sum_(m <= k < n) u_ k.
Proof.
by move=> /subnK<-; rewrite series_addn addrAC subrr add0r. Qed.

Lemma sub_series m n :
  series n - series m = if (m <= n)%N then \sum_(m <= k < n) u_ k
                        else - \sum_(n <= k < m) u_ k.
Proof.
by have [mn|/ltnW mn] := leqP m n; rewrite -sub_series_geq// opprB. Qed.

Lemma sub_double_series n : series n.*2 - series n = \sum_(n <= k < n.*2) u_ k.
Proof.
by rewrite sub_series_geq// -addnn leq_addl. Qed.

End partial_sum.

Arguments series {V} u_ n : simpl never.
Arguments telescope {V} u_ n : simpl never.
Notation "[ 'series' E ]_ n" := (series [sequence E]_n) : ring_scope.

Lemma seriesN (V : zmodType) (f : V ^nat) : series (- f) = - series f.
Proof.
by rewrite funeqE => n; rewrite /series /= sumrN. Qed.

Lemma seriesD (V : zmodType) (f g : V ^nat) : series (f + g) = series f + series g.
Proof.
by rewrite /series /= funeqE => n; rewrite big_split. Qed.

Lemma seriesZ (R : ringType) (V : lmodType R) (f : V ^nat) k :
  series (k *: f) = k *: series f.
Proof.
by rewrite funeqE => n; rewrite /series /= -scaler_sumr. Qed.

Section partial_sum_numFieldType.
Variables V : numFieldType.
Implicit Types f g : V ^nat.

Lemma is_cvg_seriesN f : cvgn (series (- f)) = cvgn (series f).
Proof.
by rewrite seriesN is_cvgNE. Qed.

Lemma lim_seriesN f : cvg (series f @ \oo) ->
  limn (series (- f)) = - limn (series f).
Proof.
by move=> cf; rewrite seriesN limN. Qed.

Lemma is_cvg_seriesZ f k : cvgn (series f) -> cvgn (series (k *: f)).
Proof.
by move=> cf; rewrite seriesZ; exact: is_cvgZr. Qed.

Lemma lim_seriesZ f k : cvgn (series f) ->
  limn (series (k *: f)) = k *: limn (series f).
Proof.
by move=> cf; rewrite seriesZ limZr. Qed.

Lemma is_cvg_seriesD f g :
  cvgn (series f) -> cvgn (series g) -> cvgn (series (f + g)).
Proof.
by move=> cf cg; rewrite seriesD; exact: is_cvgD. Qed.

Lemma lim_seriesD f g : cvgn (series f) -> cvgn (series g) ->
  limn (series (f + g)) = limn (series f) + limn (series g).
Proof.
by move=> cf cg; rewrite seriesD limD. Qed.

Lemma is_cvg_seriesB f g :
  cvgn (series f) -> cvgn (series g) -> cvgn (series (f - g)).
Proof.
by move=> cf cg; apply: is_cvg_seriesD; rewrite ?is_cvg_seriesN. Qed.

Lemma lim_seriesB f g : cvg (series f @ \oo) -> cvg (series g @ \oo) ->
  limn (series (f - g)) = limn (series f) - limn (series g).
Proof.
by move=> Cf Cg; rewrite lim_seriesD ?is_cvg_seriesN// lim_seriesN. Qed.

End partial_sum_numFieldType.

Lemma lim_series_le (V : realFieldType) (f g : V ^nat) :
  cvgn (series f) -> cvgn (series g) -> (forall n, f n <= g n) ->
  limn (series f) <= limn (series g).
Proof.
by move=> cf cg fg; apply: (ler_lim cf cg); near=> x; rewrite ler_sum.
Unshelve. all: by end_near. Qed.

Lemma telescopeK (V : zmodType) (u_ : V ^nat) :
  series (telescope u_) = [sequence u_ n - u_ 0%N]_n.
Proof.
by rewrite funeqE => n; rewrite seriesEnat/= telescope_sumr. Qed.

Lemma seriesK (V : zmodType) : cancel (@series V) telescope.
Proof.
move=> ?; exact/funext/seriesSB. Qed.

Lemma eq_sum_telescope (V : zmodType) (u_ : V ^nat) n :
  u_ n = u_ 0%N + series (telescope u_) n.
Proof.
by rewrite telescopeK/= addrC addrNK. Qed.

Section series_patched.
Variables (N : nat) (K : numFieldType) (V : normedModType K).
Implicit Types (f : nat -> V) (u : V ^nat) (l : V).

Lemma is_cvg_series_restrict u_ :
  cvgn [sequence \sum_(N <= k < n) u_ k]_n = cvgn (series u_).
Proof.
suff -> : (fun n => \sum_(N <= k < n) u_ k) =
          fun n => if (n <= N)%N then \sum_(N <= k < n) u_ k
                   else series u_ n - \sum_(0 <= k < N) u_ k.
  by rewrite is_cvg_restrict/= is_cvgDlE//; apply: is_cvg_cst.
rewrite funeqE => n; case: leqP => // ltNn; apply: (canRL (addrK _)).
by rewrite seriesEnat addrC -big_cat_nat// ltnW.
Qed.

End series_patched.

Section sequences_R_lemmas.
Variable R : realType.

Lemma nondecreasing_cvgn (u_ : R ^nat) :
    nondecreasing_seq u_ -> has_ubound (range u_) ->
  u_ @ \oo --> sup (range u_).
Proof.
move=> leu u_ub; set M := sup (range u_).
have su_ : has_sup (range u_) by split => //; exists (u_ 0%N), 0%N.
apply/cvgrPdist_le => _/posnumP[e].
have [p Mu_p] : exists p, M - e%:num <= u_ p.
  have [_ -[p _] <- /ltW Mu_p] := sup_adherent (gt0 e) su_.
  by exists p; rewrite Mu_p.
near=> n; have pn : (p <= n)%N by near: n; exact: nbhs_infty_ge.
rewrite ler_distlC (le_trans Mu_p (leu _ _ _))//= (@le_trans _ _ M) ?lerDl//.
by have /ubP := sup_upper_bound su_; apply; exists n.
Unshelve. all: by end_near. Qed.

Lemma nondecreasing_is_cvgn (u_ : R ^nat) :
  nondecreasing_seq u_ -> has_ubound (range u_) -> cvgn u_.
Proof.
by move=> u_nd u_ub; apply: cvgP; exact: nondecreasing_cvgn. Qed.

Lemma nondecreasing_dvgn_lt (u_ : R ^nat) :
  nondecreasing_seq u_ -> ~ cvgn u_ -> u_ @ \oo --> +oo.
Proof.
move=> nu du; apply: contrapT => /cvgryPge/existsNP[l lu]; apply: du.
apply: nondecreasing_is_cvgn => //; exists l => _ [n _ <-].
rewrite leNgt; apply/negP => lun; apply: lu; near=> m.
by rewrite (le_trans (ltW lun)) //; apply: nu; near: m; exists n.
Unshelve. all: by end_near. Qed.

Lemma near_nondecreasing_is_cvgn (u_ : R ^nat) (M : R) :
    {near \oo, nondecreasing_seq u_} -> (\forall n \near \oo, u_ n <= M) ->
  cvgn u_.
Proof.
move=> [k _ u_nd] [k' _ u_M].
suff : cvgn [sequence u_ (n + maxn k k')%N]_n.
  by case/cvg_ex => /= l; rewrite cvg_shiftn => ul; apply/cvg_ex; exists l.
apply: nondecreasing_is_cvgn; [move=> /= m n mn|exists M => _ [n _ <-]].
  by rewrite u_nd ?leq_add2r//= (leq_trans (leq_maxl _ _) (leq_addl _ _)).
by rewrite u_M //= (leq_trans (leq_maxr _ _) (leq_addl _ _)).
Qed.

Lemma nonincreasing_cvgn (u_ : R ^nat) :
    nonincreasing_seq u_ -> has_lbound (range u_) ->
  u_ @ \oo --> inf (u_ @` setT).
Proof.
rewrite -nondecreasing_opp => u_nd u_lb; rewrite -[X in X @ _ --> _](opprK u_).
apply: cvgN; rewrite image_comp; apply: nondecreasing_cvgn => //.
by move/has_lb_ubN : u_lb; rewrite image_comp.
Qed.

Lemma nonincreasing_is_cvgn (u_ : R ^nat) :
  nonincreasing_seq u_ -> has_lbound (range u_) -> cvgn u_.
Proof.
by move=> u_decr u_bnd; apply: cvgP; exact: nonincreasing_cvgn. Qed.

Lemma near_nonincreasing_is_cvgn (u_ : R ^nat) (m : R) :
    {near \oo, nonincreasing_seq u_} -> (\forall n \near \oo, m <= u_ n) ->
  cvgn u_.
Proof.
move=> u_ni u_m.
rewrite -(opprK u_); apply: is_cvgN; apply/(@near_nondecreasing_is_cvgn _ (- m)).
- by apply: filterS u_ni => x u_x y xy; rewrite lerNl opprK u_x.
- by apply: filterS u_m => x u_x; rewrite lerNl opprK.
Qed.

Lemma adjacent (u_ v_ : R ^nat) : nondecreasing_seq u_ -> nonincreasing_seq v_ ->
  v_ - u_ @ \oo --> (0 : R) ->
  [/\ limn v_ = limn u_, cvgn u_ & cvgn v_].
Proof.
set w_ := v_ - u_ => iu dv w0; have vu n : v_ n >= u_ n.
  suff : limn w_ <= w_ n by rewrite (cvg_lim _ w0)// subr_ge0.
  apply: (nonincreasing_cvgn_ge _ (cvgP _ w0)) => m p mp.
  by rewrite lerB; rewrite ?iu ?dv.
have cu : cvgn u_.
  apply: nondecreasing_is_cvgn => //; exists (v_ 0%N) => _ [n _ <-].
  by rewrite (le_trans (vu _)) // dv.
have cv : cvgn v_.
  apply: nonincreasing_is_cvgn => //; exists (u_ 0%N) => _ [n _ <-].
  by rewrite (le_trans _ (vu _)) // iu.
by split=> //; apply/eqP; rewrite -subr_eq0 -limB //; exact/eqP/cvg_lim.
Qed.

End sequences_R_lemmas.
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `nonincreasing_cvgn`")]
Notation nonincreasing_cvg := nonincreasing_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `nondecreasing_cvgn`")]
Notation nondecreasing_cvg := nondecreasing_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `nonincreasing_is_cvgn`")]
Notation nonincreasing_is_cvg := nonincreasing_is_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `nondecreasing_is_cvgn`")]
Notation nondecreasing_is_cvg := nondecreasing_is_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `nondecreasing_dvgn_lt`")]
Notation nondecreasing_dvg_lt := nondecreasing_dvgn_lt (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `near_nondecreasing_is_cvgn`")]
Notation near_nondecreasing_is_cvg := near_nondecreasing_is_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `near_nonincreasing_is_cvgn`")]
Notation near_nonincreasing_is_cvg := near_nonincreasing_is_cvgn (only parsing).

Definition harmonic {R : fieldType} : R ^nat := [sequence n.+1%:R^-1]_n.
Arguments harmonic {R} n /.

Lemma harmonic_gt0 {R : numFieldType} i : 0 < harmonic i :> R.
Proof.
by rewrite /=. Qed.

Lemma harmonic_ge0 {R : numFieldType} i : 0 <= harmonic i :> R.
Proof.
exact/ltW/harmonic_gt0. Qed.

Lemma cvg_harmonic {R : archiFieldType} : @harmonic R @ \oo --> 0.
Proof.
apply/cvgrPdist_le => _/posnumP[e]; near=> i.
rewrite distrC subr0 ger0_norm//= -lef_pV2 ?qualifE//= invrK.
rewrite (le_trans (ltW (archi_boundP _)))// ler_nat -add1n -leq_subLR.
by near: i; apply: nbhs_infty_ge.
Unshelve. all: by end_near. Qed.

Lemma cvge_harmonic {R : archiFieldType} : (EFin \o @harmonic R) @ \oo --> 0%E.
Proof.
by apply: cvg_EFin; [exact: nearW | exact: cvg_harmonic]. Qed.

Lemma dvg_harmonic (R : numFieldType) : ~ cvgn (series (@harmonic R)).
Proof.
have ge_half n : (0 < n)%N -> 2^-1 <= \sum_(n <= i < n.*2) harmonic i.
  case: n => // n _.
  rewrite (@le_trans _ _ (\sum_(n.+1 <= i < n.+1.*2) n.+1.*2%:R^-1)) //=.
    rewrite sumr_const_nat -addnn addnK addnn -mul2n natrM invfM.
    by rewrite -[_ *+ n.+1]mulr_natr divfK.
  by apply: ler_sum_nat => i /andP[? ?]; rewrite lef_pV2 ?qualifE/= ?ler_nat.
move/cvg_cauchy/cauchy_ballP => /(_ _ [gt0 of 2^-1 : R]); rewrite !near_map2.
rewrite -ball_normE => /nearP_dep hcvg; near \oo => n; near \oo => m.
have: `|series harmonic n - series harmonic m| < 2^-1 :> R by near: m; near: n.
rewrite le_gtF// distrC -[X in X - _](addrNK (series harmonic n.*2)).
rewrite sub_series_geq; last by near: m; apply: nbhs_infty_ge.
rewrite -addrA sub_series_geq -addnn ?leq_addr// addnn.
have sh_ge0 i j : 0 <= \sum_(i <= k < j) harmonic k :> R.
  by rewrite ?sumr_ge0//; move=> k _; apply: harmonic_ge0.
by rewrite ger0_norm// ler_wpDl// ge_half//; near: n.
Unshelve. all: by end_near. Qed.

Definition arithmetic_mean (R : numDomainType) (u_ : R ^nat) : R ^nat :=
  [sequence n.+1%:R^-1 * (series u_ n.+1)]_n.

Definition harmonic_mean (R : numDomainType) (u_ : R ^nat) : R ^nat :=
  let v := [sequence (u_ n)^-1]_n in
  [sequence (n.+1%:R / series v n.+1)]_n.

Definition root_mean_square (R : realType) (u_ : R ^nat) : R ^nat :=
  let v_ := [sequence (u_ k)^+2]_k in
  [sequence Num.sqrt (n.+1%:R^-1 * series v_ n.+1)]_n.

Section cesaro.
Variable R : archiFieldType.

Theorem cesaro (u_ : R ^nat) (l : R) : u_ @ \oo --> l ->
  arithmetic_mean u_ @ \oo --> l.
Proof.
move=> u0_cvg; have ssplit v_ m n : (m <= n)%N -> `|n%:R^-1 * series v_ n| <=
    n%:R^-1 * `|series v_ m| + n%:R^-1 * `|\sum_(m <= i < n) v_ i|.
  move=> /subnK<-; rewrite series_addn mulrDr (le_trans (ler_normD _ _))//.
  by rewrite !normrM ger0_norm.
apply/cvgrPdist_lt=> _/posnumP[e]; near \oo => m; near=> n.
have {}/ssplit -/(_ _ [sequence l - u_ n]_n) : (m.+1 <= n.+1)%nat.
  by near: n; exists m.
rewrite !seriesEnat /= big_split/=.
rewrite sumrN mulrBr sumr_const_nat -(mulr_natl l) mulKf//.
move=> /le_lt_trans->//; rewrite [e%:num]splitr ltrD//.
  have [->|neq0] := eqVneq (\sum_(0 <= k < m.+1) (l - u_ k)) 0.
    by rewrite normr0 mulr0.
  rewrite -ltr_pdivlMr ?normr_gt0//.
  rewrite -ltf_pV2 ?qualifE//= ?mulr_gt0 ?invr_gt0 ?normr_gt0// invrK.
  rewrite (lt_le_trans (archi_boundP _))// ler_nat leqW//.
  by near: n; apply: nbhs_infty_ge.
rewrite ltr_pdivrMl ?ltr0n // (le_lt_trans (ler_norm_sum _ _ _)) //.
rewrite (le_lt_trans (@ler_sum_nat _ _ _ _ (fun i => e%:num / 2) _))//; last first.
  by rewrite sumr_const_nat mulr_natl ltr_pMn2l// ltn_subrL.
move=> i /andP[mi _]; move: i mi; near: m.
have : \forall x \near \oo, `|l - u_ x| < e%:num / 2.
  by move/cvgrPdist_lt : u0_cvg; apply.
move=> -[N _ Nu]; exists N => // k Nk i ki.
by rewrite ltW// Nu//= (leq_trans Nk)// ltnW.
Unshelve. all: by end_near. Qed.

End cesaro.

Section cesaro_converse.
Variable R : archiFieldType.

Let cesaro_converse_off_by_one (u_ : R ^nat) :
    [sequence n.+1%:R^-1 * series u_ n.+1]_n @ \oo --> (0 : R) ->
  [sequence n.+1%:R^-1 * series u_ n]_n @ \oo --> (0 : R).
Proof.
move=> H; apply/cvgrPdist_lt => _/posnumP[e].
move/cvgrPdist_lt : H => /(_ _ (gt0 e)) -[m _ mu].
near=> n; rewrite sub0r normrN /=.
have /andP[n0] : ((0 < n) && (m <= n.-1))%N.
  near: n; exists m.+1 => // k mk; rewrite (leq_trans _ mk) //=.
  by rewrite -(leq_add2r 1%N) !addn1 prednK // (leq_trans _ mk).
move/mu => {mu}; rewrite sub0r normrN /= prednK //; apply: le_lt_trans.
rewrite !normrM ler_wpM2r // ger0_norm // ger0_norm //.
by rewrite lef_pV2 // ?ler_nat // posrE // ltr0n.
Unshelve. all: by end_near. Qed.

Lemma cesaro_converse (u_ : R ^nat) (l : R) :
    telescope u_ =o_\oo @harmonic R ->
  arithmetic_mean u_ @ \oo --> l -> u_ @ \oo --> l.
Proof.
pose a_ := telescope u_ => a_o u_l.
suff abel : forall n,
    u_ n - arithmetic_mean u_ n = \sum_(1 <= k < n.+1) k%:R / n.+1%:R * a_ k.-1.
  suff K : u_ - arithmetic_mean u_ @ \oo --> (0 : R).
    rewrite -(add0r l).
    rewrite (_ : u_ = u_ - arithmetic_mean u_ + arithmetic_mean u_); last first.
      by rewrite funeqE => n; rewrite subrK.
    exact: cvgD.
  rewrite (_ : _ - arithmetic_mean u_ =
      (fun n => \sum_(1 <= k < n.+1) k%:R / n.+1%:R * a_ k.-1)); last first.
    by rewrite funeqE.
  rewrite {abel} /= (_ : (fun _ => _) =
      fun n => n.+1%:R^-1 * \sum_(0 <= k < n) k.+1%:R * a_ k); last first.
    rewrite funeqE => n; rewrite big_add1 /= /= big_distrr /=.
    by apply eq_bigr => i _; rewrite mulrCA mulrA.
  have {}a_o : [sequence n.+1%:R * telescope u_ n]_n @ \oo --> (0 : R).
    apply: (@eqolim0 _ _ _ eventually_filterType).
    rewrite a_o.
    set h := 'o_\oo (@harmonic R).
    apply/eqoP => _/posnumP[e] /=.
    near=> n; rewrite normr1 mulr1 normrM -ler_pdivlMl// ?normr_gt0//.
    rewrite mulrC -normrV ?unitfE //.
    near: n.
    by case: (eqoP eventually_filterType (@harmonic R) h) => Hh _; apply Hh.
  move: (cesaro a_o); rewrite /arithmetic_mean /series /= -/a_.
  exact: (@cesaro_converse_off_by_one (fun k => k.+1%:R * a_ k)).
case => [|n].
  rewrite /arithmetic_mean/= invr1 mul1r !seriesEnat/=.
  by rewrite big_nat1 subrr big_geq.
rewrite /arithmetic_mean /= seriesEnat /= big_nat_recl //=.
under eq_bigr do rewrite eq_sum_telescope.
rewrite big_split /= big_const_nat iter_addr addr0 addrA -mulrS mulrDr.
rewrite -(mulr_natl (u_ O)) mulrA mulVr ?unitfE ?pnatr_eq0 // mul1r opprD addrA.
rewrite eq_sum_telescope (addrC (u_ O)) addrK.
rewrite [X in _ - _ * X](_ : _ =
    \sum_(0 <= i < n.+1) \sum_(0 <= k < n.+1 | (k < i.+1)%N) a_ k); last first.
  rewrite !big_mkord; apply: eq_bigr => i _.
  by rewrite seriesEord/= big_mkord -big_ord_widen.
rewrite (exchange_big_dep_nat xpredT) //=.
rewrite [X in _ - _ * X](_ : _ =
    \sum_(0 <= i < n.+1) \sum_(i <= j < n.+1) a_ i ); last first.
  apply: congr_big_nat => //= i ni.
  rewrite big_const_nat iter_addr addr0 -big_filter.
  rewrite big_const_seq iter_addr addr0; congr (_ *+ _).
  rewrite /index_iota subn0 -[in LHS](subnKC (ltnW ni)) iotaD filter_cat.
  rewrite count_cat (_ : [seq _ <- _ | _] = [::]); last first.
    rewrite -(filter_pred0 (iota 0 i)); apply: eq_in_filter => j.
    by rewrite mem_iota leq0n andTb add0n => ji; rewrite ltnNge ji.
  rewrite 2!add0n (_ : [seq _ <- _ | _] = iota i (n.+1 - i)); last first.
    rewrite -[RHS]filter_predT; apply: eq_in_filter => j.
    rewrite mem_iota => /andP[ij]; rewrite subnKC; last exact/ltnW.
    by move=> jn; rewrite ltnS ij.
  by rewrite count_predT size_iota.
rewrite [X in _ - _ * X](_ : _ =
    \sum_(0 <= i < n.+1) a_ i * (n.+1 - i)%:R); last first.
  by apply: eq_bigr => i _; rewrite big_const_nat iter_addr addr0 mulr_natr.
rewrite big_distrr /= big_mkord (big_morph _ (@opprD _) (@oppr0 _)).
rewrite seriesEord -big_split /= big_add1 /= big_mkord; apply: eq_bigr => i _.
rewrite mulrCA -[X in X - _]mulr1 -mulrBr [RHS]mulrC; congr (_ * _).
rewrite -[X in X - _](@divrr _ (n.+2)%:R) ?unitfE ?pnatr_eq0 //.
rewrite [in X in _ - X]mulrC -mulrBl; congr (_ / _).
rewrite -natrB; last by rewrite (@leq_trans n.+1) // leq_subr.
rewrite subnBA; by [rewrite addSnnS addnC addnK | rewrite ltnW].
Unshelve. all: by end_near. Qed.

End cesaro_converse.

Section series_convergence.

Lemma cvg_series_cvg_0 (K : numFieldType) (V : normedModType K) (u_ : V ^nat) :
  cvgn (series u_) -> u_ @ \oo --> (0 : V).
Proof.
move=> cvg_series.
rewrite (_ : u_ = fun n => series u_ n.+1 - series u_ n); last first.
  by rewrite funeqE => i; rewrite seriesSB.
rewrite -(subrr (limn (series u_))).
by apply: cvgB => //; rewrite ?cvg_shiftS.
Qed.

Lemma nondecreasing_series (R : numFieldType) (u_ : R ^nat) (P : pred nat) :
  (forall n, P n -> 0 <= u_ n)%R ->
  nondecreasing_seq (fun n=> \sum_(0 <= k < n | P k) u_ k)%R.
Proof.
move=> u_ge0; apply/nondecreasing_seqP => n.
rewrite [in leRHS]big_mkcond [in leRHS]big_nat_recr//=.
by rewrite -[in leRHS]big_mkcond/= lerDl; case: ifPn => //; exact: u_ge0.
Qed.

Lemma increasing_series (R : numFieldType) (u_ : R ^nat) :
  (forall n, 0 < u_ n) -> increasing_seq (series u_).
Proof.
move=> u_ge0; apply/increasing_seqP => n.
by rewrite !seriesEord/= big_ord_recr ltrDl.
Qed.

End series_convergence.

Definition arithmetic (R : zmodType) a z : R ^nat := [sequence a + z *+ n]_n.
Arguments arithmetic {R} a z n /.

Lemma mulrn_arithmetic (R : zmodType) : @GRing.natmul R = arithmetic 0.
Proof.
by rewrite funeq2E => z n /=; rewrite add0r. Qed.

Definition geometric (R : fieldType) a z : R ^nat := [sequence a * z ^+ n]_n.
Arguments geometric {R} a z n /.

Lemma exprn_geometric (R : fieldType) : (@GRing.exp R) = geometric 1.
Proof.
by rewrite funeq2E => z n /=; rewrite mul1r. Qed.

Lemma cvg_arithmetic (R : archiFieldType) a (z : R) :
  z > 0 -> arithmetic a z @ \oo --> +oo.
Proof.
move=> z_gt0; apply/cvgryPge => A; near=> n => /=.
rewrite -lerBlDl -mulr_natl -ler_pdivrMr//.
rewrite ler_normlW// ltW// (lt_le_trans (archi_boundP _))// ler_nat.
by near: n; apply: nbhs_infty_ge.
Unshelve. all: by end_near. Qed.

Lemma cvg_expr (R : archiFieldType) (z : R) :
  `|z| < 1 -> (GRing.exp z : R ^nat) @ \oo --> (0 : R).
Proof.
move=> Nz_lt1; apply/norm_cvg0P; pose t := (1 - `|z|).
apply: (@squeeze_cvgr _ _ _ _ (cst 0) (t^-1 *: @harmonic R)); last 2 first.
- exact: cvg_cst.
- by rewrite -(scaler0 _ t^-1); exact: (cvgZr cvg_harmonic).
near=> n; rewrite normr_ge0 normrX/= ler_pdivlMl ?subr_gt0//.
rewrite -(@ler_pM2l _ n.+1%:R)// mulfV// [t * _]mulrC mulr_natl.
have -> : 1 = (`|z| + t) ^+ n.+1 by rewrite addrC addrNK expr1n.
rewrite exprDn (bigD1 (inord 1)) ?inordK// subn1 expr1 bin1 lerDl sumr_ge0//.
by move=> i; rewrite ?(mulrn_wge0, mulr_ge0, exprn_ge0, subr_ge0)// ltW.
Unshelve. all: by end_near. Qed.

Lemma geometric_seriesE (R : numFieldType) (a z : R) : z != 1 ->
  series (geometric a z) = [sequence a * (1 - z ^+ n) / (1 - z)]_n.
Proof.
rewrite funeqE => z_neq1 n.
apply: (@mulIf _ (1 - z)); rewrite ?mulfVK ?subr_eq0 1?eq_sym//.
rewrite seriesEnat !mulrBr [in LHS]mulr1 mulr_suml -opprB -sumrB.
by under eq_bigr do rewrite -mulrA -exprSr; rewrite telescope_sumr// opprB.
Qed.

Lemma cvg_geometric_series (R : archiFieldType) (a z : R) : `|z| < 1 ->
  series (geometric a z) @ \oo --> (a * (1 - z)^-1).
Proof.
move=> Nz_lt1; rewrite geometric_seriesE ?lt_eqF 1?ltr_normlW//.
have -> : a / (1 - z) = (a * (1 - 0)) / (1 - z) by rewrite subr0 mulr1.
by apply: cvgMl; apply: cvgMr; apply: cvgB; [apply: cvg_cst|apply: cvg_expr].
Qed.

Lemma cvg_geometric_series_half (R : archiFieldType) (r : R) n :
  series (fun k => r / (2 ^ (k + n.+1))%:R : R^o) @ \oo --> (r / 2 ^+ n : R^o).
Proof.
rewrite (_ : series _ = series (geometric (r / (2 ^ n.+1)%:R) 2^-1%R)); last first.
  rewrite funeqE => m; rewrite /series /=; apply: eq_bigr => k _.
  by rewrite expnD natrM (mulrC (2 ^ k)%:R) invfM exprVn (natrX _ 2 k) mulrA.
apply: cvg_trans.
  apply: cvg_geometric_series.
  by rewrite ger0_norm // invr_lt1 // ?ltr1n // unitfE.
rewrite [X in (X - _)%R](splitr 1) div1r addrK.
by rewrite -mulrA -invfM expnSr natrM -mulrA divff// mulr1 natrX.
Qed.
Arguments cvg_geometric_series_half {R} _ _.

Lemma geometric_partial_tail {R : fieldType} (n m : nat) (x : R) :
  \sum_(m <= i < m + n) x ^+ i = series (geometric (x ^+ m) x) n.
Proof.
by rewrite (big_addn 0 _ m) addnC addnK; under eq_bigr do rewrite exprD mulrC.
Qed.

Lemma cvg_geometric (R : archiFieldType) (a z : R) : `|z| < 1 ->
  geometric a z @ \oo --> (0 : R).
Proof.

Lemma is_cvg_geometric_series (R : archiFieldType) (a z : R) : `|z| < 1 ->
  cvgn (series (geometric a z)).
Proof.
by move=> /cvg_geometric_series/cvgP; apply. Qed.

Definition normed_series_of (K : numDomainType) (V : normedModType K)
    (u_ : V ^nat) of phantom V^nat (series u_) : K ^nat :=
  [series `|u_ n|]_n.
Notation "[ 'normed' s_ ]" := (@normed_series_of _ _ _ (Phantom _ s_)) : ring_scope.
Arguments normed_series_of {K V} u_ _ n /.

Lemma ger0_normed {K : numFieldType} (u_ : K ^nat) :
  (forall n, 0 <= u_ n) -> [normed series u_] = series u_.
Proof.
by move=> u_gt0; rewrite funeqE => n /=; apply: eq_bigr => k; rewrite ger0_norm.
Qed.

Lemma cauchy_seriesP {R : numFieldType} (V : normedModType R) (u_ : V ^nat) :
  cauchy (series u_ @ \oo) <->
  forall e : R, e > 0 ->
    \forall n \near (\oo, \oo), `|\sum_(n.1 <= k < n.2) u_ k| < e.
Proof.
rewrite -cauchy_ballP; split=> su_cv _/posnumP[e];
have {}su_cv := !! su_cv _ (gt0 e);
rewrite -near2_pair -ball_normE !near_simpl/= in su_cv *.
  apply: filterS su_cv => -[/= m n]; rewrite distrC sub_series.
  by have [|/ltnW]:= leqP m n => mn//; rewrite (big_geq mn) ?normr0.
have := su_cv; rewrite near_swap => su_cvC; near=> m => /=; rewrite sub_series.
by have [|/ltnW]:= leqP m.2 m.1 => m12; rewrite ?normrN; near: m.
Unshelve. all: by end_near. Qed.

Lemma series_le_cvg (R : realType) (u_ v_ : R ^nat) :
  (forall n, 0 <= u_ n) -> (forall n, 0 <= v_ n) ->
  (forall n, u_ n <= v_ n) ->
  cvgn (series v_) -> cvgn (series u_).
Proof.
move=> u_ge0 v_ge0 le_uv /cvg_seq_bounded/bounded_fun_has_ubound[M v_M].
apply: nondecreasing_is_cvgn; first exact: nondecreasing_series.
exists M => _ [n _ <-].
by apply: le_trans (v_M (series v_ n) _); [apply: ler_sum | exists n].
Qed.

Lemma normed_cvg {R : realType} (V : completeNormedModType R) (u_ : V ^nat) :
  cvgn [normed series u_] -> cvgn (series u_).
Proof.
move=> /cauchy_cvgP/cauchy_seriesP u_ncvg.
apply/cauchy_cvgP/cauchy_seriesP => e /u_ncvg.
apply: filterS => n /=; rewrite ger0_norm ?sumr_ge0//.
by apply: le_lt_trans; apply: ler_norm_sum.
Qed.

Lemma lim_series_norm {R : realType} (V : completeNormedModType R) (f : V ^nat) :
    cvgn [normed series f] ->
  `|limn (series f)| <= limn [normed series f].
Proof.
move=> cnf; have cf := normed_cvg cnf.
rewrite -lim_norm // (ler_lim (is_cvg_norm cf) cnf) //.
by near=> x; rewrite ler_norm_sum.
Unshelve. all: by end_near. Qed.

Section series_linear.

Lemma cvg_series_bounded (R : realFieldType) (f : R ^nat) :
  cvgn (series f) -> bounded_fun f.
Proof.
by move/cvg_series_cvg_0 => f0; apply/cvg_seq_bounded/cvg_ex; exists 0.
Qed.

Lemma cvg_to_0_linear (R : realFieldType) (f : R -> R) K (k : R) :
  0 < k -> (forall r, 0 < `| r | < k -> `|f r| <= K * `| r |) ->
    f x @[x --> 0^'] --> 0.
Proof.
move=> k0 kfK; have [K0|K0] := lerP K 0.
- apply/cvgrPdist_lt => _/posnumP[e]; near=> x.
  rewrite distrC subr0 (le_lt_trans (kfK _ _)) //; last first.
    by rewrite (@le_lt_trans _ _ 0)// mulr_le0_ge0.
  near: x; exists (k / 2); first by rewrite /mkset divr_gt0.
  move=> t /=; rewrite distrC subr0 => tk2 t0.
  by rewrite normr_gt0 t0 (lt_trans tk2) // -[in ltLHS](add0r k) midf_lt.
- apply/(@eqolim0 _ _ R (0^'))/eqoP => _/posnumP[e]; near=> x.
  rewrite (le_trans (kfK _ _)) //=.
  + near: x; exists (k / 2); first by rewrite /mkset divr_gt0.
    move=> t /=; rewrite distrC subr0 => tk2 t0.
    by rewrite normr_gt0 t0 (lt_trans tk2) // -[in ltLHS](add0r k) midf_lt.
  + rewrite normr1 mulr1 mulrC -ler_pdivlMr //.
    near: x; exists (e%:num / K); first by rewrite /mkset divr_gt0.
    by move=> t /=; rewrite distrC subr0 => /ltW.
Unshelve. all: by end_near. Qed.

Lemma lim_cvg_to_0_linear (R : realType) (f : nat -> R) (g : R -> nat -> R) k :
  0 < k -> cvgn (series f) ->
  (forall r, 0 < `|r| < k -> forall n, `|g r n| <= f n * `| r |) ->
  limn (series (g x)) @[x --> 0^'] --> 0.
Proof.
move=> k_gt0 Cf Hg.
apply: (@cvg_to_0_linear _ _ (limn (series f)) k) => // h hLk; rewrite mulrC.
have Ckf : cvgn (series (`|h| *: f)) := @is_cvg_seriesZ _ _ `|h| Cf.
have Cng : cvgn [normed series (g h)].
  apply: series_le_cvg (Hg _ hLk) _ => [//|?|].
    exact: le_trans (Hg _ hLk _).
  by under eq_fun do rewrite mulrC.
apply: (le_trans (lim_series_norm Cng)).
rewrite -[_ * _](lim_seriesZ _ Cf) (lim_series_le Cng Ckf) // => n.
by rewrite [leRHS]mulrC; apply: Hg.
Qed.

End series_linear.

Section exponential_series.

Variable R : realType.
Implicit Types x : R.

Definition exp_coeff x := [sequence x ^+ n / n`!%:R]_n.

Local Notation exp := exp_coeff.

Lemma exp_coeff_ge0 x n : 0 <= x -> 0 <= exp x n.
Proof.
by move=> x0; rewrite /exp divr_ge0 // exprn_ge0. Qed.

Lemma series_exp_coeff0 n : series (exp 0) n.+1 = 1.
Proof.
rewrite /series /= big_mkord big_ord_recl /= /exp /= expr0n divr1.
by rewrite big1 ?addr0 // => i _; rewrite expr0n mul0r.
Qed.

Section exponential_series_cvg.

Variable x : R.
Hypothesis x0 : 0 < x.

Let S0 N n := (N ^ N)%:R * \sum_(N.+1 <= i < n) (x / N%:R) ^+ i.

Let is_cvg_S0 N : x < N%:R -> cvgn (S0 N).
Proof.
move=> xN; apply: is_cvgZr; rewrite is_cvg_series_restrict exprn_geometric.
apply/is_cvg_geometric_series; rewrite normrM normfV.
by rewrite ltr_pdivrMr ?mul1r !ger0_norm // 1?ltW // (lt_trans x0).
Qed.

Let S0_ge0 N n : 0 <= S0 N n.
Proof.
rewrite mulr_ge0 // ?ler0n //; apply: sumr_ge0 => i _.
by rewrite exprn_ge0 // divr_ge0 // ltW.
Qed.

Let S0_sup N n : x < N%:R -> S0 N n <= sup (range (S0 N)).
Proof.
move=> xN; apply/sup_upper_bound; [split; [by exists (S0 N n), n|]|by exists n].
rewrite (_ : (range _) = [set `|S0 N n0| | n0 in setT]).
  by apply: cvg_has_ub (is_cvg_S0 xN).
by rewrite predeqE=> y; split=> -[z _ <-]; exists z; rewrite ?ger0_norm ?S0_ge0.
Qed.

Let S1 N n := \sum_(N.+1 <= i < n) exp x i.

Lemma incr_S1 N : nondecreasing_seq (S1 N).
Proof.
apply/nondecreasing_seqP => n; rewrite /S1.
have [nN|Nn] := leqP n N; first by rewrite !big_geq // (leq_trans nN).
by rewrite big_nat_recr//= lerDl exp_coeff_ge0 // ltW.
Qed.

Let S1_sup N : x < N%:R -> ubound (range (S1 N)) (sup (range (S0 N))).
Proof.
move=> xN _ [n _ <-]; rewrite (le_trans _ (S0_sup n xN)) // /S0 big_distrr /=.
have N_gt0 := lt_trans x0 xN; apply: ler_sum => i _.
have [Ni|iN] := ltnP N i; last first.
  rewrite expr_div_n mulrCA ler_pM2l ?exprn_gt0// (@le_trans _ _ 1) //.
    by rewrite invf_le1// ?ler1n ?ltr0n // fact_gt0.
  rewrite natrX -expfB_cond ?(negPf (lt0r_neq0 N_gt0))//.
  by rewrite exprn_ege1 // ler1n; case: (N) xN x0; case: ltrgt0P.
rewrite /exp expr_div_n /= (fact_split Ni) mulrCA ler_pM2l ?exprn_gt0// natrX.
rewrite -invf_div -expfB // lef_pV2 ?qualifE/= ?exprn_gt0//; last first.
  rewrite ltr0n muln_gt0 fact_gt0/= big_seq big_mkcond/= prodn_gt0// => j.
  by case: ifPn=>//; rewrite mem_index_iota => /andP[+ _]; exact: leq_ltn_trans.
rewrite big_nat_rev/= -natrX ler_nat -prod_nat_const_nat big_add1 /= big_ltn //.
rewrite leq_mul//; first by rewrite (leq_trans (fact_geq _))// leq_pmull.
under [in X in (_ <= X)%N]eq_bigr do rewrite 2!addSn 2!subSS.
rewrite !big_seq/=; elim/big_ind2 : _ => //; first by move=> *; exact: leq_mul.
move=> j; rewrite mem_index_iota => /andP[_ ji].
by rewrite -addnBA// ?leq_addr// ltnW// ltnW.
Qed.

Lemma is_cvg_series_exp_coeff_pos : cvgn (series (exp x)).
Proof.
rewrite /series; near \oo => N; have xN : x < N%:R; last first.
  rewrite -(@is_cvg_series_restrict N.+1).
  by apply: (nondecreasing_is_cvgn (incr_S1 N)); eexists; apply: S1_sup.
near: N; exists `|floor x|.+1 => // m; rewrite /mkset -(@ler_nat R).
move/lt_le_trans => -> //; rewrite (lt_le_trans (lt_succ_floor x))//.
by rewrite -intrD1 -natr1 lerD2r -(@gez0_abs (floor x)) ?floor_ge0// ltW.
Unshelve. all: by end_near. Qed.

End exponential_series_cvg.

Lemma normed_series_exp_coeff x : [normed series (exp x)] = series (exp `|x|).
Proof.
rewrite funeqE => n /=; apply: eq_bigr => k _.
by rewrite /exp normrM normfV normrX [`|_%:R|]@ger0_norm.
Qed.

Lemma is_cvg_series_exp_coeff x : cvgn (series (exp x)).
Proof.
have [->|x0] := eqVneq x 0.
  apply/cvg_ex; exists 1; apply/cvgrPdist_lt => // => _/posnumP[e].
  near=> n; have [m ->] : exists m, n = m.+1.
    by exists n.-1; rewrite prednK //; near: n; exists 1%N.
  by rewrite series_exp_coeff0 subrr normr0.
apply: normed_cvg; rewrite normed_series_exp_coeff.
by apply: is_cvg_series_exp_coeff_pos; rewrite normr_gt0.
Unshelve. all: by end_near. Qed.

Lemma cvg_exp_coeff x : exp x @ \oo --> (0 : R).
Proof.

End exponential_series.

Definition expR {R : realType} (x : R) : R := limn (series (exp_coeff x)).

Sequences of natural numbers

Lemma __deprecated__nat_dvg_real (R : realType) (u_ : nat ^nat) :
  u_ @ \oo --> \oo -> ([sequence (u_ n)%:R : R^o]_n @ \oo --> +oo)%R.
Proof.
by move=> ?; apply/cvgrnyP. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgrnyP` and generalized")]
Notation nat_dvg_real := __deprecated__nat_dvg_real (only parsing).

Lemma __deprecated__nat_cvgPpinfty (u : nat^nat) :
  u @ \oo --> \oo <-> forall A, \forall n \near \oo, (A <= u n)%N.
Proof.
exact: cvgnyPge. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0",
      note="renamed to `cvgnyPge` and generalized")]
Notation nat_cvgPpinfty:= __deprecated__nat_cvgPpinfty (only parsing).

Lemma nat_nondecreasing_is_cvg (u_ : nat^nat) :
  nondecreasing_seq u_ -> has_ubound (range u_) -> cvgn u_.
Proof.
move=> u_nd [l ul].
suff [N Nu] : exists N, forall n, (n >= N)%N -> u_ n = u_ N.
  apply/cvg_ex; exists (u_ N); rewrite -(cvg_shiftn N).
  rewrite [X in X @ \oo --> _](_ : _ = cst (u_ N))//; first exact: cvg_cst.
  by apply/funext => n /=; rewrite Nu// leq_addl.
apply/not_existsP => hu.
have {hu}/choice[f Hf] : forall x, (exists n, x <= n /\ u_ n > u_ x)%N.
  move=> x; have /existsNP[N /not_implyP[xN Nx]] := hu x.
  exists N; split => //; move/eqP : Nx; rewrite neq_lt => /orP[|//].
  by move/u_nd : xN; rewrite le_eqVlt => /predU1P[->|//].
have uf : forall x, (x < u_ (iter x.+1 f O))%N.
  elim=> /= [|i ih]; first by have := Hf O => -[_]; exact: leq_trans.
  by have := Hf (f (iter i f O)) => -[_]; exact: leq_trans.
have /ul : range u_ (u_ (iter l.+1 f O)) by exists (iter l.+1 f O).
by rewrite leNgt => /negP; apply; rewrite ltEnat //=; exact: uf.
Qed.

Definition nseries (u : nat^nat) := (fun n => \sum_(0 <= k < n) u k)%N.

Lemma le_nseries (u : nat^nat) : {homo nseries u : a b / a <= b}%N.
Proof.
move=> a b ab; rewrite /nseries [in X in (_ <= X)%N]/index_iota subn0.
rewrite -[in X in (_ <= X)%N](subnKC ab) iotaD big_cat/= add0n.
by rewrite /index_iota subn0 leq_addr.
Qed.

Lemma cvg_nseries_near (u : nat^nat) : cvgn (nseries u) ->
  \forall n \near \oo, u n = 0%N.
Proof.
move=> /cvg_ex[l ul]; have /ul[a _ aul] : nbhs l [set l].
  by exists [set l]; split=> //; exists [set l] => //; rewrite bigcup_set1.
have /ul[b _ bul] : nbhs l [set l.-1; l].
  by exists [set l]; split => //; exists [set l] => //; rewrite bigcup_set1.
exists (maxn a b) => // n /= abn.
rewrite (_ : u = fun n => nseries u n.+1 - nseries u n)%N; last first.
  by rewrite funeqE => i; rewrite /nseries big_nat_recr//= addnC addnK.
have /aul -> : (a <= n)%N by rewrite (leq_trans _ abn) // leq_max leqnn.
have /bul[->|->] : (b <= n.+1)%N by rewrite leqW// (leq_trans _ abn)// leq_maxr.
- by apply/eqP; rewrite subn_eq0// leq_pred.
- by rewrite subnn.
Qed.

Lemma dvg_nseries (u : nat^nat) : ~ cvgn (nseries u) ->
  nseries u @ \oo --> \oo.
Proof.
move=> du; apply: contrapT => /cvgnyPgt/existsNP[l lu]; apply: du.
apply: nat_nondecreasing_is_cvg => //; first exact: le_nseries.
exists l => _ [n _ <-]; rewrite leNgt; apply/negP => lun; apply: lu.
by near do rewrite (leq_trans lun) ?le_nseries//; apply: nbhs_infty_ge.
Unshelve. all: by end_near. Qed.

Sequences of extended real numbers

Notation "\big [ op / idx ]_ ( m <= i <oo | P ) F" :=
  (limn (fun n => (\big[ op / idx ]_(m <= i < n | P) F))) : big_scope.
Notation "\big [ op / idx ]_ ( m <= i <oo ) F" :=
  (limn (fun n => (\big[ op / idx ]_(m <= i < n) F))) : big_scope.
Notation "\big [ op / idx ]_ ( i <oo | P ) F" :=
  (limn (fun n => (\big[ op / idx ]_(i < n | P) F))) : big_scope.
Notation "\big [ op / idx ]_ ( i <oo ) F" :=
  (limn (fun n => (\big[ op / idx ]_(i < n) F))) : big_scope.

Notation "\sum_ ( m <= i <oo | P ) F" :=
  (\big[+%E/0%E]_(m <= i <oo | P%B) F%E) : ereal_scope.
Notation "\sum_ ( m <= i <oo ) F" :=
  (\big[+%E/0%E]_(m <= i <oo) F%E) : ereal_scope.
Notation "\sum_ ( i <oo | P ) F" :=
  (\big[+%E/0%E]_(0 <= i <oo | P%B) F%E) : ereal_scope.
Notation "\sum_ ( i <oo ) F" :=
  (\big[+%E/0%E]_(0 <= i <oo) F%E) : ereal_scope.

Section partial_esum.
Local Open Scope ereal_scope.

Variables (R : numDomainType) (u_ : (\bar R)^nat).

Definition eseries : (\bar R)^nat := [sequence \sum_(0 <= k < n) u_ k]_n.
Definition etelescope : (\bar R)^nat := [sequence u_ n.+1 - u_ n]_n.

Lemma eseriesEnat : eseries = [sequence \sum_(0 <= k < n) u_ k]_n.
Proof.
by []. Qed.

Lemma eseriesEord : eseries = [sequence \sum_(k < n) u_ k]_n.
Proof.
by rewrite funeqE => n; rewrite /eseries/= big_mkord. Qed.

Lemma eseriesSr n : eseries n.+1 = eseries n + u_ n.
Proof.
by rewrite !eseriesEord/= big_ord_recr. Qed.

Lemma eseriesS n : eseries n.+1 = u_ n + eseries n.
Proof.
by rewrite addeC eseriesSr. Qed.

Lemma eseriesSB (n : nat) :
  eseries n \is a fin_num -> eseries n.+1 - eseries n = u_ n.
Proof.
by move=> enfin; rewrite eseriesS addeK//=. Qed.

Lemma eseries_addn m n : eseries (n + m)%N = eseries m + \sum_(m <= k < n + m) u_ k.
Proof.
by rewrite eseriesEnat/= -big_cat_nat// leq_addl. Qed.

Lemma sub_eseries_geq m n : (m <= n)%N -> eseries m \is a fin_num ->
  eseries n - eseries m = \sum_(m <= k < n) u_ k.
Proof.
by move=> /subnK<- emfin; rewrite eseries_addn addeAC subee// add0e. Qed.

Lemma sub_eseries m n : eseries m \is a fin_num -> eseries n \is a fin_num ->
  eseries n - eseries m = if (m <= n)%N then \sum_(m <= k < n) u_ k
                        else - \sum_(n <= k < m) u_ k.
Proof.
move=> ? ?; have [mn|/ltnW mn] := leqP m n; rewrite -sub_eseries_geq//.
by rewrite fin_num_oppeD ?fin_numN// oppeK addeC.
Qed.

Lemma sub_double_eseries n : eseries n \is a fin_num ->
  eseries n.*2 - eseries n = \sum_(n <= k < n.*2) u_ k.
Proof.
by move=> enfin; rewrite sub_eseries_geq// -addnn leq_addl. Qed.

End partial_esum.

Arguments eseries {R} u_ n : simpl never.
Arguments etelescope {R} u_ n : simpl never.
Notation "[ 'series' E ]_ n" := (eseries [sequence E%E]_n) : ereal_scope.

Lemma cvg_geometric_eseries_half {R : archiFieldType} (r : R) (n : nat) :
  eseries (fun k => (r / (2 ^ (k + n.+1))%:R)%:E) @ \oo --> (r / 2 ^+ n)%:E.
Proof.
apply: cvg_EFin => //.
  by apply: nearW => //= x; rewrite /eseries/= sumEFin.
rewrite [X in X @ _ --> _](_ : _ = series (fun k => r / (2 ^ (k + n.+1))%:R)); last first.
  by apply/funext => x; rewrite /= /eseries/= sumEFin.
exact: cvg_geometric_series_half.
Qed.

Section eseries_ops.
Variable (R : numDomainType).
Local Open Scope ereal_scope.

Lemma eseriesD (f g : (\bar R)^nat) : eseries (f \+ g) = eseries f \+ eseries g.
Proof.
by rewrite /eseries /= funeqE => n; rewrite big_split. Qed.

End eseries_ops.

Section sequences_ereal_realDomainType.
Local Open Scope ereal_scope.
Variable T : realDomainType.
Implicit Types u : (\bar T)^nat.

Lemma ereal_nondecreasing_oppn u_ :
  nondecreasing_seq (-%E \o u_) = nonincreasing_seq u_.
Proof.
rewrite propeqE; split => ni_u m n mn; last by rewrite leeNr oppeK ni_u.
by rewrite -(oppeK (u_ m)) -leeNr ni_u.
Qed.

End sequences_ereal_realDomainType.
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `ereal_nondecreasing_oppn`")]
Notation ereal_nondecreasing_opp := ereal_nondecreasing_oppn (only parsing).

Section sequences_ereal.
Local Open Scope ereal_scope.

Lemma __deprecated__ereal_cvg_abs0 (R : realFieldType) (f : (\bar R)^nat) :
  abse \o f @ \oo --> 0 -> f @ \oo --> 0.
Proof.
by move/cvg_abse0P. Qed.

Lemma __deprecated__ereal_cvg_ge0 (R : realFieldType) (f : (\bar R)^nat) (a : \bar R) :
  (forall n, 0 <= f n) -> f @ \oo --> a -> 0 <= a.
Proof.
by move=> f_ge0; apply: cvge_ge; apply: nearW. Qed.

Lemma __deprecated__ereal_lim_ge (R : realFieldType) x (u_ : (\bar R)^nat) :
  cvgn u_ -> (\forall n \near \oo, x <= u_ n) -> x <= limn u_.
Proof.
exact: lime_ge. Qed.

Lemma __deprecated__ereal_lim_le (R : realFieldType) x (u_ : (\bar R)^nat) :
  cvgn u_ -> (\forall n \near \oo, u_ n <= x) -> limn u_ <= x.
Proof.
exact: lime_le. Qed.

Lemma __deprecated__dvg_ereal_cvg (R : realFieldType) (u_ : R ^nat) :
  u_ @ \oo --> +oo%R -> [sequence (u_ n)%:E]_n @ \oo --> +oo.
Proof.
by rewrite cvgeryP. Qed.

Lemma __deprecated__ereal_cvg_real (R : realFieldType) (f : (\bar R)^nat) a :
  {near \oo, forall x, f x \is a fin_num} /\
  (fine \o f @ \oo --> a) <-> f @ \oo --> a%:E.
Proof.
by rewrite fine_cvgP. Qed.

Lemma ereal_nondecreasing_cvgn (R : realType) (u_ : (\bar R)^nat) :
  nondecreasing_seq u_ -> u_ @ \oo --> ereal_sup (range u_).
Proof.
move=> nd_u_; set S := u_ @` setT; set l := ereal_sup S.
have [Spoo|Spoo] := pselect (S +oo).
  have [N Nu] : exists N, forall n, (n >= N)%nat -> u_ n = +oo.
    case: Spoo => N _ uNoo; exists N => n Nn.
    by move: (nd_u_ _ _ Nn); rewrite uNoo leye_eq => /eqP.
  have -> : l = +oo by rewrite /l /ereal_sup; exact: supremum_pinfty.
  rewrite -(cvg_shiftn N); set f := (X in X @ \oo --> _).
  rewrite (_ : f = cst +oo); first exact: cvg_cst.
  by rewrite funeqE => n; rewrite /f /= Nu // leq_addl.
have [/funext Snoo|Snoo] := pselect (forall n, u_ n = -oo).
  rewrite /l (_ : S = [set -oo]).
    by rewrite ereal_sup1 Snoo; exact: cvg_cst.
  apply/seteqP; split => [_ [n _] <- /[!Snoo]//|_ ->].
  by rewrite /S Snoo; exists 0%N.
have [/ereal_sup_ninfty loo|lnoo] := eqVneq l -oo.
  by exfalso; apply: Snoo => n; rewrite (loo (u_ n))//; exists n.
have {Snoo}[N Snoo] : exists N, forall n, (n >= N)%N -> u_ n != -oo.
  move/existsNP : Snoo => [m /eqP].
  rewrite neq_lt => /orP[|umoo]; first by rewrite ltNge leNye.
  by exists m => k mk; rewrite gt_eqF// (lt_le_trans umoo)// nd_u_.
have u_fin_num n : (n >= N)%N -> u_ n \is a fin_num.
  move=> Nn; rewrite fin_numE Snoo//=; apply: contra_notN Spoo => /eqP unpoo.
  by exists n.
have [{lnoo}loo|lpoo] := eqVneq l +oo.
  rewrite loo; apply/cvgeyPge => M.
  have /ereal_sup_gt[_ [n _] <- Mun] : M%:E < l by rewrite loo// ltry.
  by exists n => // m /= nm; rewrite (le_trans (ltW Mun))// nd_u_.
have l_fin_num : l \is a fin_num by rewrite fin_numE lpoo lnoo.
rewrite -(@fineK _ l)//; apply/fine_cvgP; split.
  near=> n; rewrite fin_numE Snoo/=; last by near: n; exists N.
  by apply: contra_notN Spoo => /eqP unpoo; exists n.
rewrite -(cvg_shiftn N); set v_ := [sequence _]_ _.
have <- : sup (range v_) = fine l.
  apply: EFin_inj; rewrite -ereal_sup_EFin//; last 2 first.
    - exists (fine l) => /= _ [m _ <-]; rewrite /v_ /= fine_le//.
        by rewrite u_fin_num// leq_addl.
      by apply: ereal_sup_ubound; exists (m + N)%N.
    - by exists (v_ 0%N), 0%N.
  rewrite fineK//; apply/eqP; rewrite eq_le; apply/andP; split.
    apply: le_ereal_sup => _ /= [_ [m _] <-] <-.
    by exists (m + N)%N => //; rewrite /v_/= fineK// u_fin_num// leq_addl.
  apply: ub_ereal_sup => /= _ [m _] <-.
  rewrite (@le_trans _ _ (u_ (m + N)%N))//; first by rewrite nd_u_// leq_addr.
  apply: ereal_sup_ubound => /=; exists (fine (u_ (m + N))); first by exists m.
  by rewrite fineK// u_fin_num// leq_addl.
apply: nondecreasing_cvgn.
- move=> m n mn /=; rewrite /v_ /= fine_le ?u_fin_num ?leq_addl//.
  by rewrite nd_u_// leq_add2r.
- exists (fine l) => /= _ [m _ <-]; rewrite /v_ /= fine_le//.
    by rewrite u_fin_num// leq_addl.
  by apply: ereal_sup_ubound; exists (m + N).
Unshelve. all: by end_near. Qed.

Lemma ereal_nondecreasing_is_cvgn (R : realType) (u_ : (\bar R) ^nat) :
  nondecreasing_seq u_ -> cvgn u_.
Proof.
by move=> ?; apply/cvg_ex; eexists; exact: ereal_nondecreasing_cvgn. Qed.

Lemma ereal_nonincreasing_cvgn (R : realType) (u_ : (\bar R)^nat) :
  nonincreasing_seq u_ -> u_ @ \oo --> ereal_inf (u_ @` setT).
Proof.
move=> ni_u; rewrite [X in X @ \oo --> _](_ : _ = -%E \o -%E \o u_); last first.
  by rewrite funeqE => n; rewrite /= oppeK.
apply: cvgeN.
rewrite [X in _ --> X](_ : _ = ereal_sup (range (-%E \o u_))); last first.
  congr ereal_sup; rewrite predeqE => x; split=> [[_ [n _ <-]] <-|[n _] <-];
    by [exists n | exists (u_ n) => //; exists n].
by apply: ereal_nondecreasing_cvgn; rewrite ereal_nondecreasing_oppn.
Qed.

Lemma ereal_nonincreasing_is_cvgn (R : realType) (u_ : (\bar R) ^nat) :
  nonincreasing_seq u_ -> cvgn u_.
Proof.
by move=> ?; apply/cvg_ex; eexists; apply: ereal_nonincreasing_cvgn. Qed.

Lemma ereal_nondecreasing_series (R : realDomainType) (u_ : (\bar R)^nat)
  (P : pred nat) : (forall n, P n -> 0 <= u_ n) ->
  nondecreasing_seq (fun n => \sum_(0 <= i < n | P i) u_ i).
Proof.
by move=> u_ge0 n m nm; rewrite lee_sum_nneg_natr// => k _ /u_ge0. Qed.

Lemma congr_lim (R : numFieldType) (f g : nat -> \bar R) :
  f = g -> limn f = limn g.
Proof.
by move=> ->. Qed.

Lemma eseries_cond {R : numFieldType} (f : (\bar R)^nat) P N :
  \sum_(N <= i <oo | P i) f i = \sum_(i <oo | P i && (N <= i)%N) f i.
Proof.
by apply/congr_lim/eq_fun => n /=; apply: big_nat_widenl. Qed.

Lemma eseries_mkcondl {R : numFieldType} (f : (\bar R)^nat) P Q :
  \sum_(i <oo | P i && Q i) f i = \sum_(i <oo | Q i) if P i then f i else 0.
Proof.
by apply/congr_lim/funext => n; rewrite big_mkcondl. Qed.

Lemma eseries_mkcondr {R : numFieldType} (f : (\bar R)^nat) P Q :
  \sum_(i <oo | P i && Q i) f i = \sum_(i <oo | P i) if Q i then f i else 0.
Proof.
by apply/congr_lim/funext => n; rewrite big_mkcondr. Qed.

Lemma eq_eseriesr (R : numFieldType) (f g : (\bar R)^nat) (P : pred nat) {N} :
  (forall i, P i -> f i = g i) ->
  \sum_(N <= i <oo | P i) f i = \sum_(N <= i <oo | P i) g i.
Proof.
by move=> efg; apply/congr_lim/funext => n; exact: eq_bigr. Qed.

Lemma eq_eseriesl (R : realFieldType) (P Q : pred nat) (f : (\bar R)^nat) :
  P =1 Q -> \sum_(i <oo | P i) f i = \sum_(i <oo | Q i) f i.
Proof.
by move=> efg; apply/congr_lim/funext => n; apply: eq_bigl. Qed.
Arguments eq_eseriesl {R P} Q.

Lemma lim_mkord (R : realFieldType) (P : {pred nat}) (f : (\bar R)^nat) :
  limn (fun n => \sum_(k < n | P k) f k)%E = \sum_(k <oo | P k) f k.
Proof.
by under eq_fun do rewrite -big_mkord. Qed.

Section ereal_series.
Variables (R : realFieldType) (f : (\bar R)^nat).
Implicit Types P : pred nat.

Lemma ereal_series_cond k P :
  \sum_(k <= i <oo | P i) f i = \sum_(i <oo | (k <= i)%N && P i) f i.
Proof.
apply/congr_lim/funext => n.
rewrite big_nat_cond (big_nat_widenl k 0%N)//= 2!big_mkord.
by apply: eq_big => //= i; rewrite andbAC ltn_ord andbT andbb.
Qed.

Lemma ereal_series k : \sum_(k <= i <oo) f i = \sum_(i <oo | (k <= i)%N) f i.
Proof.
rewrite ereal_series_cond; congr (limn _); apply/funext => n.
by apply: eq_big => // i; rewrite andbT.
Qed.

Lemma eseries0 N P : (forall i, (N <= i)%N -> P i -> f i = 0) ->
  \sum_(N <= i <oo | P i) f i = 0.
Proof.
move=> f0; apply/cvg_lim => //.
under eq_fun.
  move=> n.
  rewrite big_nat_cond big1; last by move=> k /andP[/andP[+ _]]; exact: f0.
  over.
exact: cvg_cst.
Qed.

Lemma eseries_pred0 P : P =1 xpred0 -> \sum_(i <oo | P i) f i = 0.
Proof.
move=> P0; rewrite (_ : (fun _ => _) = fun=> 0) ?lim_cst// funeqE => n.
by rewrite big1 // => i; rewrite P0.
Qed.

End ereal_series.

Lemma nneseries_lim_ge (R : realType) (u_ : (\bar R)^nat) (P : pred nat) k :
  (forall n, P n -> 0 <= u_ n) ->
  \sum_(0 <= i < k | P i) u_ i <= \sum_(i <oo | P i) u_ i.
Proof.

Lemma eseries_pinfty (R : realFieldType) (u_ : (\bar R)^nat)
    (P : pred nat) k : (forall n, P n -> u_ n != -oo) -> P k ->
  u_ k = +oo -> \sum_(i <oo | P i) u_ i = +oo.
Proof.
move=> uNy Pk uky; apply: lim_near_cst => //; near=> n.
apply/eqP; rewrite big_mkord esum_eqy; last first.
  by move=> /= i Pi; rewrite uNy.
apply/existsP.
have kn : (k < n)%N by near: n; exists k.+1.
by exists (Ordinal kn) => /=; rewrite uky eqxx andbT.
Unshelve. all: by end_near. Qed.

Section cvg_eseries.
Variable (R : realType) (u_ : (\bar R)^nat).
Implicit Type P : pred nat.

Lemma is_cvg_ereal_nneg_natsum_cond m P :
    (forall n, (m <= n)%N -> P n -> 0 <= u_ n) ->
  cvgn (fun n => \sum_(m <= i < n | P i) u_ i).
Proof.
by move/lee_sum_nneg_natr/ereal_nondecreasing_cvgn => cu; apply: cvgP; exact: cu.
Qed.

Lemma is_cvg_ereal_npos_natsum_cond m P :
    (forall n, (m <= n)%N -> P n -> u_ n <= 0) ->
  cvgn (fun n => \sum_(m <= i < n | P i) u_ i).
Proof.
by move/lee_sum_npos_natr/ereal_nonincreasing_cvgn => cu; apply: cvgP; exact: cu.
Qed.

Lemma is_cvg_ereal_nneg_natsum m : (forall n, (m <= n)%N -> 0 <= u_ n) ->
  cvgn (fun n => \sum_(m <= i < n) u_ i).
Proof.
by move=> u_ge0; apply: is_cvg_ereal_nneg_natsum_cond => n /u_ge0. Qed.

Lemma is_cvg_ereal_npos_natsum m : (forall n, (m <= n)%N -> u_ n <= 0) ->
  cvgn (fun n => \sum_(m <= i < n) u_ i).
Proof.
by move=> u_le0; apply: is_cvg_ereal_npos_natsum_cond => n /u_le0. Qed.

Lemma is_cvg_nneseries_cond P N : (forall n, P n -> 0 <= u_ n) ->
  cvgn (fun n => \sum_(N <= i < n | P i) u_ i).
Proof.
by move=> u_ge0; apply: is_cvg_ereal_nneg_natsum_cond => n _; exact: u_ge0.
Qed.

Lemma is_cvg_npeseries_cond P N : (forall n, P n -> u_ n <= 0) ->
  cvgn (fun n => \sum_(N <= i < n | P i) u_ i).
Proof.
by move=> u_le0; apply: is_cvg_ereal_npos_natsum_cond => n _ /u_le0. Qed.

Lemma is_cvg_nneseries P N : (forall n, P n -> 0 <= u_ n) ->
  cvgn (fun n => \sum_(N <= i < n | P i) u_ i).
Proof.
by move=> ?; exact: is_cvg_nneseries_cond. Qed.

Lemma is_cvg_npeseries P N : (forall n, P n -> u_ n <= 0) ->
  cvgn (fun n => \sum_(N <= i < n | P i) u_ i).
Proof.
by move=> ?; exact: is_cvg_npeseries_cond. Qed.

Lemma nneseries_ge0 P N : (forall n, P n -> 0 <= u_ n) ->
  0 <= \sum_(N <= i <oo | P i) u_ i.
Proof.
move=> u0; apply: (lime_ge (is_cvg_nneseries u0)).
by apply: nearW => k; rewrite sume_ge0.
Qed.

Lemma npeseries_le0 P N : (forall n : nat, P n -> u_ n <= 0) ->
  \sum_(N <= i <oo | P i) u_ i <= 0.
Proof.
move=> u0; apply: (lime_le (is_cvg_npeseries u0)).
by apply: nearW => k; rewrite sume_le0.
Qed.

End cvg_eseries.
Arguments is_cvg_nneseries {R}.
Arguments nneseries_ge0 {R u_ P} N.

Lemma nnseries_is_cvg {R : realType} (u : nat -> R) :
    (forall i, 0 <= u i)%R -> \sum_(k <oo) (u k)%:E < +oo ->
  cvgn (series u).
Proof.
move=> ? ?; apply: nondecreasing_is_cvgn.
  move=> m n mn; rewrite /series/=.
  rewrite -(subnKC mn) {2}/index_iota subn0 iotaD big_cat/=.
  by rewrite add0n -{2}(subn0 m) -/(index_iota _ _) lerDl sumr_ge0.
exists (fine (\sum_(k <oo) (u k)%:E)).
rewrite /ubound/= => _ [n _ <-]; rewrite -lee_fin fineK//; last first.
  rewrite fin_num_abs gee0_abs//; apply: nneseries_ge0 => // i _.
  by rewrite lee_fin.
by rewrite -sumEFin; apply: nneseries_lim_ge => i _; rewrite lee_fin.
Qed.

Lemma nneseriesZl (R : realType) (f : nat -> \bar R) (P : pred nat) x N :
  (forall i, P i -> 0 <= f i) ->
  (\sum_(N <= i <oo | P i) (x%:E * f i) = x%:E * \sum_(N <= i <oo | P i) f i).
Proof.
move=> f0; rewrite -limeMl//; last exact: is_cvg_nneseries.
by apply/congr_lim/funext => /= n; rewrite ge0_sume_distrr.
Qed.

Lemma adde_def_nneseries (R : realType) (f g : (\bar R)^nat)
    (P Q : pred nat) :
  (forall n, P n -> 0 <= f n) -> (forall n, Q n -> 0 <= g n) ->
  (\sum_(i <oo | P i) f i) +? (\sum_(i <oo | Q i) g i).
Proof.
move=> f0 g0; rewrite /adde_def !negb_and; apply/andP; split; apply/orP.
- by right; apply/eqP => Qg; have := nneseries_ge0 0 g0; rewrite Qg.
- by left; apply/eqP => Pf; have := nneseries_ge0 0 f0; rewrite Pf.
Qed.

Lemma __deprecated__ereal_cvgPpinfty (R : realFieldType) (u_ : (\bar R)^nat) :
  u_ @ \oo --> +oo <-> (forall A, (0 < A)%R -> \forall n \near \oo, A%:E <= u_ n).
Proof.
by split=> [/cvgeyPge//|u_ge]; apply/cvgeyPgey; near=> x; apply: u_ge.
Unshelve. all: by end_near. Qed.

Lemma __deprecated__ereal_cvgPninfty (R : realFieldType) (u_ : (\bar R)^nat) :
  u_ @ \oo --> -oo <-> (forall A, (A < 0)%R -> \forall n \near \oo, u_ n <= A%:E).
Proof.
by split=> [/cvgeNyPle//|u_ge]; apply/cvgeNyPleNy; near=> x; apply: u_ge.
Unshelve. all: by end_near. Qed.

Lemma __deprecated__ereal_squeeze (R : realType) (f g h : (\bar R)^nat) :
  (\forall x \near \oo, f x <= g x <= h x) -> forall (l : \bar R),
  f @ \oo --> l -> h @ \oo --> l -> g @ \oo --> l.
Proof.
by move=> ? ?; apply: squeeze_cvge. Qed.

Lemma nneseries_pinfty (R : realType) (u_ : (\bar R)^nat)
  (P : pred nat) k : (forall n, P n -> 0 <= u_ n) -> P k ->
  u_ k = +oo -> \sum_(i <oo | P i) u_ i = +oo.
Proof.
move=> u_ge0 Pk ukoo; apply: (eseries_pinfty _ Pk ukoo) => // n Pn.
by rewrite gt_eqF// (lt_le_trans _ (u_ge0 _ Pn)).
Qed.

Lemma lee_nneseries (R : realType) (u v : (\bar R)^nat) (P : pred nat) N :
  (forall i, P i -> 0 <= u i) ->
  (forall n, P n -> u n <= v n) ->
  \sum_(N <= i <oo | P i) u i <= \sum_(N <= i <oo | P i) v i.
Proof.
move=> u0 Puv; apply: lee_lim.
- by apply: is_cvg_ereal_nneg_natsum_cond => n ? /u0; exact.
- apply: is_cvg_ereal_nneg_natsum_cond => n _ Pn.
  by rewrite (le_trans _ (Puv _ Pn))// u0.
- by near=> n; apply: lee_sum => k; exact: Puv.
Unshelve. all: by end_near. Qed.

Lemma lee_npeseries (R : realType) (u v : (\bar R)^nat) (P : pred nat) :
  (forall i, P i -> u i <= 0) -> (forall n, P n -> v n <= u n) ->
  \sum_(i <oo | P i) v i <= \sum_(i <oo | P i) u i.
Proof.
move=> u0 Puv; apply: lee_lim.
- apply: is_cvg_ereal_npos_natsum_cond => n _ /[dup] Pn /Puv/le_trans; apply.
  exact/u0.
- by apply: is_cvg_ereal_npos_natsum_cond => n _ Pn; exact/u0.
- by near=> n; exact: lee_sum.
Unshelve. all: by end_near. Qed.

Lemma __deprecated__ereal_cvgD_pinfty_fin (R : realFieldType) (f g : (\bar R)^nat) b :
  f @ \oo --> +oo -> g @ \oo --> b%:E -> f \+ g @ \oo --> +oo.
Proof.
exact: cvgeD. Qed.

Lemma __deprecated__ereal_cvgD_ninfty_fin (R : realFieldType) (f g : (\bar R)^nat) b :
  f @ \oo --> -oo -> g @ \oo --> b%:E -> f \+ g @ \oo --> -oo.
Proof.
exact: cvgeD. Qed.

Lemma __deprecated__ereal_cvgD_pinfty_pinfty (R : realFieldType) (f g : (\bar R)^nat) :
  f @ \oo --> +oo -> g @ \oo --> +oo -> f \+ g @ \oo --> +oo.
Proof.
exact: cvgeD. Qed.

Lemma __deprecated__ereal_cvgD_ninfty_ninfty (R : realFieldType) (f g : (\bar R)^nat) :
  f @ \oo --> -oo -> g @ \oo --> -oo -> f \+ g @ \oo --> -oo.
Proof.
exact: cvgeD. Qed.
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvgeD` instead")]
Notation ereal_cvgD_ninfty_ninfty := __deprecated__ereal_cvgD_ninfty_ninfty (only parsing).

Lemma __deprecated__ereal_cvgD (R : realFieldType) (f g : (\bar R)^nat) a b :
  a +? b -> f @ \oo --> a -> g @ \oo --> b -> f \+ g @ \oo --> a + b.
Proof.
exact: cvgeD. Qed.

Lemma __deprecated__ereal_cvgB (R : realFieldType) (f g : (\bar R)^nat) a b :
  a +? - b -> f @ \oo --> a -> g @ \oo --> b -> f \- g @ \oo --> a - b.
Proof.
exact: cvgeB. Qed.

Lemma __deprecated__ereal_is_cvgD (R : realFieldType) (u v : (\bar R)^nat) :
    limn u +? limn v -> cvgn u -> cvgn v -> cvgn (u \+ v).
Proof.
exact: is_cvgeD. Qed.

Lemma __deprecated__ereal_cvg_sub0 (R : realFieldType) (f : (\bar R)^nat) (k : \bar R) :
  k \is a fin_num -> (fun x => f x - k) @ \oo --> 0 <-> f @ \oo --> k.
Proof.
exact: cvge_sub0. Qed.

Lemma __deprecated__ereal_limD (R : realFieldType) (f g : (\bar R)^nat) :
  cvgn f -> cvgn g -> limn f +? limn g ->
  limn (f \+ g) = limn f + limn g.
Proof.
exact: limeD. Qed.

Lemma __deprecated__ereal_cvgM_gt0_pinfty (R : realFieldType) (f g : (\bar R)^nat) b :
  (0 < b)%R -> f @ \oo --> +oo -> g @ \oo --> b%:E -> f \* g @ \oo --> +oo.
Proof.
move=> b_lt0 fl gl; have /= := cvgeM _ fl gl; rewrite gt0_mulye//; apply.
by rewrite mule_def_infty_neq0// gt_eqF.
Qed.

Lemma __deprecated__ereal_cvgM_lt0_pinfty (R : realFieldType) (f g : (\bar R)^nat) b :
  (b < 0)%R -> f @ \oo --> +oo -> g @ \oo --> b%:E -> f \* g @ \oo --> -oo.
Proof.
move=> b_lt0 fl gl; have /= := cvgeM _ fl gl; rewrite lt0_mulye//; apply.
by rewrite mule_def_infty_neq0// lt_eqF.
Qed.

Lemma __deprecated__ereal_cvgM_gt0_ninfty (R : realFieldType) (f g : (\bar R)^nat) b :
  (0 < b)%R -> f @ \oo --> -oo -> g @ \oo --> b%:E -> f \* g @ \oo --> -oo.
Proof.
move=> b_lt0 fl gl; have /= := cvgeM _ fl gl; rewrite gt0_mulNye//; apply.
by rewrite mule_def_infty_neq0// gt_eqF.
Qed.

Lemma __deprecated__ereal_cvgM_lt0_ninfty (R : realFieldType) (f g : (\bar R)^nat) b :
  (b < 0)%R -> f @ \oo --> -oo -> g @ \oo --> b%:E -> f \* g @ \oo --> +oo.
Proof.
move=> b_lt0 fl gl; have /= := cvgeM _ fl gl; rewrite lt0_mulNye//; apply.
by rewrite mule_def_infty_neq0// lt_eqF.
Qed.

Lemma __deprecated__ereal_cvgM (R : realType) (f g : (\bar R) ^nat) (a b : \bar R) :
 a *? b -> f @ \oo --> a -> g @ \oo --> b -> f \* g @ \oo --> a * b.
Proof.
exact: cvgeM. Qed.

Lemma __deprecated__ereal_lim_sum (R : realFieldType) (I : Type) (r : seq I)
    (f : I -> (\bar R)^nat) (l : I -> \bar R) (P : pred I) :
  (forall k n, P k -> 0 <= f k n) ->
  (forall k, P k -> f k @ \oo --> l k) ->
  (fun n => \sum_(k <- r | P k) f k n) @ \oo --> \sum_(k <- r | P k) l k.
Proof.
by move=> f0 ?; apply: cvg_nnesum => // ? ?; apply: nearW => ?; apply: f0.
Qed.

Let lim_shift_cst (R : realFieldType) (u : (\bar R) ^nat) (l : \bar R) :
    cvgn u -> (forall n, 0 <= u n) -> -oo < l ->
  limn (fun x => l + u x) = l + limn u.
Proof.
move=> cu u0 hl; apply/cvg_lim => //; apply: cvgeD (cu); last first.
  exact: cvg_cst.
rewrite ltninfty_adde_def// inE (@lt_le_trans _ _ 0)//.
by apply: lime_ge => //; exact: nearW.
Qed.

Section nneseries_split.

Let near_eq_lim (R : realFieldType) (f g : nat -> \bar R) :
  cvgn g -> {near \oo, f =1 g} -> limn f = limn g.
Proof.
move=> cg fg; suff: f @ \oo --> limn g by exact/cvg_lim.
by apply: cvg_trans cg; apply: near_eq_cvg; near do apply/esym.
Unshelve. all: by end_near. Qed.

Lemma nneseries_split (R : realType) (f : nat -> \bar R) N n :
  (forall k, (N <= k)%N -> 0 <= f k) ->
  \sum_(N <= k <oo) f k = \sum_(N <= k < N + n) f k + \sum_(N + n <= k <oo) f k.
Proof.
elim: n N => [N |n ih N] f0.
  rewrite addn0 [in X in _ = X + _]/index_iota subnn.
  by rewrite (@size0nil _ (iota _ 0)) ?size_iota// big_nil add0r.
rewrite addnS big_nat_recr/= ?leq_addr// -addeA.
rewrite [f (N + n)%N + _](_ : _ = \sum_(N + n <= k <oo) f k); first exact: ih.
have cf m : (m >= N)%N -> cvgn (fun n => \sum_(m <= k < n) f k).
  move=> Nm; apply: is_cvg_ereal_nneg_natsum => p Nmp.
  by rewrite f0// (leq_trans _ Nmp).
rewrite -lim_shift_cst; last by rewrite (@lt_le_trans _ _ 0)// f0// leq_addr.
- apply: (@near_eq_lim _ (fun x => f (N + n)%N + _)) => //.
  by apply: cf; rewrite leq_addr.
  by near do rewrite -big_ltn//; exact: nbhs_infty_gt.
- by apply: cf; rewrite -addnS leq_addr.
- move=> m; rewrite big_seq; apply: sume_ge0 => /= p.
  rewrite mem_index_iota => /andP[Nnp _].
  by rewrite f0// (leq_trans _ Nnp)// -addnS leq_addr.
Unshelve. all: by end_near. Qed.

End nneseries_split.
Arguments nneseries_split {R f} _ _.

Lemma nneseries_recl (R : realType) (f : nat -> \bar R) :
  (forall k, 0 <= f k) -> \sum_(k <oo) f k = f 0%N + \sum_(1 <= k <oo) f k.
Proof.
move=> f0; rewrite [LHS](nneseries_split _ 1)// add0n.
by rewrite /index_iota subn0/= big_cons big_nil addr0.
Qed.

Lemma nneseries_tail_cvg (R : realType) (f : (\bar R)^nat) :
  \sum_(k <oo) f k < +oo -> (forall k, 0 <= f k) ->
  \sum_(N <= k <oo) f k @[N --> \oo] --> 0.
Proof.
move=> foo f0.
have : cvg (\sum_(0 <= k < n) f k @[n --> \oo]).
  by apply: ereal_nondecreasing_is_cvgn; exact: lee_sum_nneg_natr.
move/cvg_ex => [[l fl||/cvg_lim fnoo]] /=; last 2 first.
  - by move/cvg_lim => fpoo; rewrite fpoo// in foo.
  - have : 0 <= \sum_(k <oo) f k by exact: nneseries_ge0.
    by rewrite fnoo.
rewrite [X in X @ _ --> _](_ : _ = fun N => l%:E - \sum_(0 <= k < N) f k).
  apply/cvgeNP; rewrite oppe0.
  under eq_fun => ? do rewrite oppeD// oppeK addeC.
  exact/cvge_sub0.
apply/funext => N; apply/esym/eqP; rewrite sube_eq//.
  by rewrite addeC -nneseries_split//; exact/eqP/esym/cvg_lim.
by rewrite ge0_adde_def//= ?inE; [exact: nneseries_ge0|exact: sume_ge0].
Qed.

Lemma nneseriesD (R : realType) (f g : nat -> \bar R) (P : pred nat) :
  (forall i, P i -> 0 <= f i) -> (forall i, P i -> 0 <= g i) ->
  \sum_(i <oo | P i) (f i + g i) =
  \sum_(i <oo | P i) f i + \sum_(i <oo | P i) g i.
Proof.
move=> f_eq0 g_eq0.
transitivity (limn (fun n => \sum_(0 <= i < n | P i) f i +
                         \sum_(0 <= i < n | P i) g i)).
  by apply/congr_lim/funext => n; rewrite big_split.
rewrite limeD /adde_def //=; do ? exact: is_cvg_nneseries.
by rewrite ![_ == -oo]gt_eqF ?andbF// (@lt_le_trans _ _ 0)
           ?[_ < _]real0// nneseries_ge0.
Qed.

Lemma nneseries_sum_nat (R : realType) n (f : nat -> nat -> \bar R) :
  (forall i j, 0 <= f i j) ->
  \sum_(j <oo) (\sum_(0 <= i < n) f i j) =
  \sum_(0 <= i < n) (\sum_(j <oo) (f i j)).
Proof.
move=> f0; elim: n => [|n IHn].
  by rewrite big_geq// eseries0// => i; rewrite big_geq.
rewrite big_nat_recr// -IHn/= -nneseriesD//; last by move=> i; rewrite sume_ge0.
by apply/congr_lim/funext => m; apply: eq_bigr => i _; rewrite big_nat_recr.
Qed.

Lemma nneseries_sum I (r : seq I) (P : {pred I}) [R : realType]
    [f : I -> nat -> \bar R] : (forall i j, P i -> 0 <= f i j) ->
  \sum_(j <oo) \sum_(i <- r | P i) f i j =
  \sum_(i <- r | P i) \sum_(j <oo) f i j.
Proof.
move=> f_ge0; case Dr : r => [|i r']; rewrite -?{}[_ :: _]Dr.
  by rewrite big_nil eseries0// => i; rewrite big_nil.
rewrite {r'}(big_nth i) big_mkcond.
rewrite (eq_eseriesr (fun _ _ => big_nth i _ _)).
rewrite (eq_eseriesr (fun _ _ => big_mkcond _ _))/=.
rewrite nneseries_sum_nat; last by move=> ? ?; case: ifP => // /f_ge0.
by apply: eq_bigr => j _; case: ifP => //; rewrite eseries0.
Qed.

Lemma nneseries_addn {R : realType} (f : (\bar R)^nat) k :
  (forall i, 0 <= f i) ->
  \sum_(i <oo) f (i + k)%N = \sum_(k <= i <oo) f i.
Proof.
move=> f0; have /cvg_ex[/= l fl] : cvg (\sum_(k <= i < n) f i @[n --> \oo]).
  by apply: ereal_nondecreasing_is_cvgn => m n mn; exact: lee_sum_nneg_natr.
rewrite (cvg_lim _ fl)//; apply/cvg_lim => //=.
move: fl; rewrite -(cvg_shiftn k) /=.
by under eq_fun do rewrite -{1}(add0n k)// big_addn addnK.
Qed.

Lemma lte_lim (R : realFieldType) (u : (\bar R)^nat) (M : R) :
  nondecreasing_seq u -> cvgn u -> M%:E < limn u ->
  \forall n \near \oo, M%:E <= u n.
Proof.
move=> ndu cu Ml; have [[n Mun]|] := pselect (exists n, M%:E <= u n).
  near=> m; suff : u n <= u m by exact: le_trans.
  by near: m; exists n.+1 => // p q; apply/ndu/ltnW.
move/forallNP => Mu.
have {}Mu : forall x, M%:E > u x by move=> x; rewrite ltNge; apply/negP.
have : limn u <= M%:E by apply lime_le => //; near=> m; apply/ltW/Mu.
by move/(lt_le_trans Ml); rewrite ltxx.
Unshelve. all: by end_near. Qed.

Lemma eseries_mkcond [R : realFieldType] [P : pred nat] (f : nat -> \bar R) :
  \sum_(i <oo | P i) f i = \sum_(i <oo) if P i then f i else 0.
Proof.
by apply/congr_lim/eq_fun => n /=; apply: big_mkcond. Qed.

End sequences_ereal.
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `cvgeyPge` or a variant instead")]
Notation ereal_cvgPpinfty := __deprecated__ereal_cvgPpinfty (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="use `cvgeNyPle` or a variant instead")]
Notation ereal_cvgPninfty := __deprecated__ereal_cvgPninfty (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `squeeze_cvge` and generalized")]
Notation ereal_squeeze := __deprecated__ereal_squeeze (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvgeD` instead")]
Notation ereal_cvgD_pinfty_fin := __deprecated__ereal_cvgD_pinfty_fin (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvgeD` instead")]
Notation ereal_cvgD_ninfty_fin := __deprecated__ereal_cvgD_ninfty_fin (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvgeD` instead")]
Notation ereal_cvgD_pinfty_pinfty := __deprecated__ereal_cvgD_pinfty_pinfty (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgeD` and generalized")]
Notation ereal_cvgD := __deprecated__ereal_cvgD (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgeB` and generalized")]
Notation ereal_cvgB := __deprecated__ereal_cvgB (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `is_cvgeD` and generalized")]
Notation ereal_is_cvgD := __deprecated__ereal_is_cvgD (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvge_sub0` and generalized")]
Notation ereal_cvg_sub0 := __deprecated__ereal_cvg_sub0 (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `limeD` and generalized")]
Notation ereal_limD := __deprecated__ereal_limD (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvgeM` instead")]
Notation ereal_cvgM_gt0_pinfty := __deprecated__ereal_cvgM_gt0_pinfty (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvgeM` instead")]
Notation ereal_cvgM_lt0_pinfty := __deprecated__ereal_cvgM_lt0_pinfty (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvgeM` instead")]
Notation ereal_cvgM_gt0_ninfty := __deprecated__ereal_cvgM_gt0_ninfty (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvgeM` instead")]
Notation ereal_cvgM_lt0_ninfty := __deprecated__ereal_cvgM_lt0_ninfty (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgeM` and generalized")]
Notation ereal_cvgM := __deprecated__ereal_cvgM (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvg_nnesum` and generalized")]
Notation ereal_lim_sum := __deprecated__ereal_lim_sum (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvg_abse0P` and generalized")]
Notation ereal_cvg_abs0 := __deprecated__ereal_cvg_abs0 (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0", note="use `cvge_ge` instead")]
Notation ereal_cvg_ge0 := __deprecated__ereal_cvg_ge0 (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `lime_ge` and generalized")]
Notation ereal_lim_ge := __deprecated__ereal_lim_ge (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `lime_le` and generalized")]
Notation ereal_lim_le := __deprecated__ereal_lim_le (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `cvgeryP` and generalized")]
Notation dvg_ereal_cvg := __deprecated__dvg_ereal_cvg (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.0",
  note="renamed to `fine_cvgP` and generalized")]
Notation ereal_cvg_real := __deprecated__ereal_cvg_real (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `ereal_nondecreasing_cvgn`")]
Notation ereal_nondecreasing_cvg := ereal_nondecreasing_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `ereal_nondecreasing_is_cvgn`")]
Notation ereal_nondecreasing_is_cvg := ereal_nondecreasing_is_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `ereal_nonincreasing_cvgn`")]
Notation ereal_nonincreasing_cvg := ereal_nonincreasing_cvgn (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6",
  note="renamed to `ereal_nonincreasing_is_cvgn`")]
Notation ereal_nonincreasing_is_cvg := ereal_nonincreasing_is_cvgn (only parsing).
#[deprecated(since="analysis 0.6.0", note="Use eseries0 instead.")]
Notation nneseries0 := eseries0 (only parsing).
#[deprecated(since="analysis 0.6.0", note="Use eq_eseriesr instead.")]
Notation eq_nneseries := eq_eseriesr (only parsing).
#[deprecated(since="analysis 0.6.0", note="Use eseries_pred0 instead.")]
Notation nneseries_pred0 := eseries_pred0 (only parsing).
#[deprecated(since="analysis 0.6.0", note="Use eseries_mkcond instead.")]
Notation nneseries_mkcond := eseries_mkcond (only parsing).

Arguments nneseries_split {R f} _ _.

Section minr_cvg_0.
Local Open Scope ring_scope.
Context {R : realFieldType}.
Implicit Types (u : R^nat) (r : R).

Lemma minr_cvg_0_cvg_0 u r : 0 < r -> (forall k, 0 <= u k) ->
  minr (u n) r @[n --> \oo] --> 0 -> u n @[n --> \oo] --> 0.
Proof.
move=> r0 u0 minr_cvg; apply/cvgrPdist_lt => _ /posnumP[e].
have : 0 < minr e%:num r by rewrite lt_min// r0 andbT.
move/cvgrPdist_lt : minr_cvg => /[apply] -[M _ hM].
near=> n; rewrite sub0r normrN.
have /hM : (M <= n)%N by near: n; exists M.
rewrite sub0r normrN (ger0_norm (u0 n)) ger0_norm// => [/lt_min_lt//|].
by rewrite le_min u0 ltW.
Unshelve. all: by end_near. Qed.

Lemma maxr_cvg_0_cvg_0 u r : r < 0 -> (forall k, u k <= 0) ->
  maxr (u n) r @[n --> \oo] --> 0 -> u n @[n --> \oo] --> 0.
Proof.
rewrite -[in r < _]oppr0 ltrNr => r0 u0.
under eq_fun do rewrite -(opprK (u _)) -[in maxr _ _](opprK r) -oppr_min.
rewrite -[in _ --> _]oppr0 => /cvgNP/minr_cvg_0_cvg_0-/(_ r0).
have Nu0 k : 0 <= - u k by rewrite lerNr oppr0.
by move=> /(_ Nu0)/(cvgNP _ _).2; rewrite opprK oppr0.
Qed.

End minr_cvg_0.

Section mine_cvg_0.
Context {R : realFieldType}.
Local Open Scope ereal_scope.
Implicit Types (u : (\bar R)^nat) (r : R) (x : \bar R).

Lemma mine_cvg_0_cvg_fin_num u x : 0 < x -> (forall k, 0 <= u k) ->
  mine (u n) x @[n --> \oo] --> 0 ->
  \forall n \near \oo, u n \is a fin_num.
Proof.
case: x => [r r0 u0 /fine_cvgP[_]|_ u0|//]; last first.
  under eq_cvg do rewrite miney.
  by case/fine_cvgP.
move=> /cvgrPdist_lt/(_ _ r0)[N _ hN].
near=> n; have /hN : (N <= n)%N by near: n; exists N.
rewrite sub0r normrN /= ger0_norm ?fine_ge0//; last first.
  by rewrite le_min u0 ltW.
by have := u0 n; case: (u n) => //=; rewrite ltxx.
Unshelve. all: by end_near. Qed.

Lemma mine_cvg_minr_cvg u r : (0 < r)%R -> (forall k, 0 <= u k) ->
  mine (u n) r%:E @[n --> \oo] --> 0 ->
  minr (fine (u n)) r @[n --> \oo] --> 0%R.
Proof.
move=> r0 u0 mine_cvg; apply: (cvg_trans _ (fine_cvg mine_cvg)).
move/fine_cvgP : mine_cvg => [_ /=] /cvgrPdist_lt.
move=> /(_ _ r0)[N _ hN]; apply: near_eq_cvg; near=> n.
have xnoo : u n < +oo.
  rewrite ltNge leye_eq; apply/eqP => xnoo.
  have /hN : (N <= n)%N by near: n; exists N.
  by rewrite /= sub0r normrN xnoo //= gtr0_norm // ltxx.
by rewrite /= -(@fineK _ (u n)) ?ge0_fin_numE//= -fine_min.
Unshelve. all: by end_near. Qed.

Lemma mine_cvg_0_cvg_0 u x : 0 < x -> (forall k, 0 <= u k) ->
  mine (u n) x @[n --> \oo] --> 0 -> u n @[n --> \oo] --> 0.
Proof.
move=> x0 u0 h; apply/fine_cvgP; split.
  exact: (mine_cvg_0_cvg_fin_num x0).
case: x x0 h => [r r0 h|_|//]; last first.
  under eq_cvg do rewrite miney.
  exact: fine_cvg.
apply: (@minr_cvg_0_cvg_0 _ (fine \o u) r) => //.
  by move=> k /=; rewrite fine_ge0.
exact: mine_cvg_minr_cvg.
Qed.

Lemma maxe_cvg_0_cvg_fin_num u x : x < 0 -> (forall k, u k <= 0) ->
  maxe (u n) x @[n --> \oo] --> 0 ->
  \forall n \near \oo, u n \is a fin_num.
Proof.
rewrite -[in x < _]oppe0 lteNr => x0 u0.
under eq_fun do rewrite -(oppeK (u _)) -[in maxe _ _](oppeK x) -oppe_min.
rewrite -[in _ --> _]oppe0 => /cvgeNP/mine_cvg_0_cvg_fin_num-/(_ x0).
have Nu0 k : 0 <= - u k by rewrite leeNr oppe0.
by move=> /(_ Nu0)[n _ nu]; exists n => // m/= nm; rewrite -fin_numN nu.
Qed.

Lemma maxe_cvg_maxr_cvg u r : (r < 0)%R -> (forall k, u k <= 0) ->
  maxe (u n) r%:E @[n --> \oo] --> 0 ->
  maxr (fine (u n)) r @[n --> \oo] --> 0%R.
Proof.
rewrite -[in (r < _)%R]oppr0 ltrNr => r0 u0.
under eq_fun do rewrite -(oppeK (u _)) -[in maxe _ _](oppeK r%:E) -oppe_min.
rewrite -[in _ --> _]oppe0 => /cvgeNP/mine_cvg_minr_cvg-/(_ r0).
have Nu0 k : 0 <= - u k by rewrite leeNr oppe0.
move=> /(_ Nu0)/(cvgNP _ _).2; rewrite oppr0.
by under eq_cvg do rewrite /GRing.opp /= oppr_min fineN !opprK.
Qed.

Lemma maxe_cvg_0_cvg_0 u x : x < 0 -> (forall k, u k <= 0) ->
  maxe (u n) x @[n --> \oo] --> 0 -> u n @[n --> \oo] --> 0.
Proof.
rewrite -[in x < _]oppe0 lteNr => x0 u0.
under eq_fun do rewrite -(oppeK (u _)) -[in maxe _ _](oppeK x) -oppe_min.
rewrite -[in _ --> _]oppe0 => /cvgeNP/mine_cvg_0_cvg_0-/(_ x0).
have Nu0 k : 0 <= - u k by rewrite leeNr oppe0.
by move=> /(_ Nu0); rewrite -[in _ --> _]oppe0 => /cvgeNP.
Qed.

End mine_cvg_0.

Definition sdrop T (u : T^nat) n := [set u k | k in [set k | k >= n]]%N.

Section sdrop.
Variables (d : Order.disp_t) (R : porderType d).
Implicit Types (u : R^o^nat).

Lemma has_lbound_sdrop u : has_lbound (range u) ->
  forall m, has_lbound (sdrop u m).
Proof.
by move=> [M uM] n; exists M => _ [m /= nm] <-; rewrite uM //; exists m.
Qed.

Lemma has_ubound_sdrop u : has_ubound (range u) ->
  forall m, has_ubound (sdrop u m).
Proof.
by move=> [M uM] n; exists M => _ [m /= nm] <-; rewrite uM //; exists m.
Qed.

End sdrop.

Section sups_infs.
Variable R : realType.
Implicit Types (r : R) (u : R^o^nat).

Definition sups u := [sequence sup (sdrop u n)]_n.

Definition infs u := [sequence inf (sdrop u n)]_n.

Lemma supsN u : sups (-%R \o u) = - infs u.
Proof.
rewrite funeqE => n; rewrite /sups /infs /inf /= opprK; congr (sup _).
by rewrite predeqE => x; split => [[m /= nm <-]|[_ [m /= nm] <-] <-];
  [exists (u m) => //; exists m | exists m].
Qed.

Lemma infsN u : infs (-%R \o u) = - sups u.
Proof.
apply/eqP; rewrite -eqr_oppLR -supsN; apply/eqP; congr (sups _).
by rewrite funeqE => ? /=; rewrite opprK.
Qed.

Lemma nonincreasing_sups u : has_ubound (range u) ->
  nonincreasing_seq (sups u).
Proof.
move=> u_ub m n mn; apply: le_sup => [_ /= [p np] <-| |].
- by apply/downP; exists (u p) => //=; exists p => //; exact: leq_trans np.
- by exists (u n) => /=; exists n => /=.
- by split; [exists (u m); exists m => //=|exact/has_ubound_sdrop].
Qed.

Lemma nondecreasing_infs u : has_lbound (range u) ->
  nondecreasing_seq (infs u).
Proof.
move=> u_lb; rewrite -nonincreasing_opp -supsN; apply/nonincreasing_sups.
by move: u_lb => /has_lb_ubN; rewrite /comp /= image_comp.
Qed.

Lemma is_cvg_sups u : cvgn u -> cvgn (sups u).
Proof.
move=> cf; have [M [Mreal Mu]] := cvg_seq_bounded cf.
apply: nonincreasing_is_cvgn.
  exact/nonincreasing_sups/bounded_fun_has_ubound/cvg_seq_bounded.
exists (- (M + 1)) => _ [n _ <-]; rewrite (@le_trans _ _ (u n)) //.
  by apply/lerNnormlW/Mu => //; rewrite ltrDl.
apply: sup_ubound; last by exists n => /=.
exact/has_ubound_sdrop/bounded_fun_has_ubound/cvg_seq_bounded.
Qed.

Lemma is_cvg_infs u : cvgn u -> cvgn (infs u).
Proof.
by move/is_cvgN/is_cvg_sups; rewrite supsN; move/is_cvgN; rewrite opprK.
Qed.

Lemma infs_le_sups u n : cvgn u -> infs u n <= sups u n.
Proof.
move=> cu; rewrite /infs /sups /=; set A := sdrop _ _.
have [a Aa] : A !=set0 by exists (u n); rewrite /A /=; exists n => //=.
rewrite (@le_trans _ _ a) //; [apply/inf_lbound|apply/sup_ubound] => //.
- exact/has_lbound_sdrop/bounded_fun_has_lbound/cvg_seq_bounded.
- exact/has_ubound_sdrop/bounded_fun_has_ubound/cvg_seq_bounded.
Qed.

Lemma cvg_sups_inf u : has_ubound (range u) -> has_lbound (range u) ->
  sups u @ \oo --> inf (range (sups u)).
Proof.
move=> u_ub u_lb; apply: nonincreasing_cvgn; first exact: nonincreasing_sups.
case: u_lb => M uM; exists M => _ [n _ <-].
rewrite (@le_trans _ _ (u n)) //; first by apply: uM; exists n.
by apply: sup_ubound; [exact/has_ubound_sdrop|exists n => /=].
Qed.

Lemma cvg_infs_sup u : has_ubound (range u) -> has_lbound (range u) ->
  infs u @ \oo --> sup (range (infs u)).
Proof.
move=> u_ub u_lb; have : sups (- u) @ \oo --> inf (range (sups (- u))).
  apply: cvg_sups_inf.
  - by move: u_lb => /has_lb_ubN; rewrite image_comp.
  - by move: u_ub => /has_ub_lbN; rewrite image_comp.
rewrite /inf => /(@cvg_comp _ _ _ _ (fun x => - x)).
rewrite supsN /comp /= -[in X in _ -> X --> _](opprK (infs u)); apply.
rewrite image_comp /comp /= -(opprK (sup (range (infs u)))); apply: cvgN.
by rewrite (_ : [set _ | _ in setT] = (range (infs u))) // opprK.
Qed.

Lemma sups_preimage T (D : set T) r (f : (T -> R)^nat) n :
  (forall t, D t -> has_ubound (range (f ^~ t))) ->
  D `&` (fun x => sups (f ^~x) n) @^-1` `]r, +oo[%classic =
  D `&` \bigcup_(k in [set k | n <= k]%N) f k @^-1` `]r, +oo[.
Proof.
move=> f_ub; rewrite predeqE => t; split.
- have [|/set0P h] := eqVneq (sdrop (f ^~ t) n) set0.
    by rewrite predeqE => /(_ (f n t))[+ _] => /forall2NP/(_ n)/= [].
  rewrite /= in_itv /= andbT => -[Dt].
  move=> /(sup_gt h)[_ [m /= nm <-]] rfmt. split => //; exists m => //.
  by rewrite /= in_itv /= rfmt.
- move=> [Dt [k /= nk]]; rewrite in_itv /= andbT => rfkt.
  split=> //; rewrite /= in_itv /= andbT; apply: (lt_le_trans rfkt).
  by apply: sup_ubound; [exact/has_ubound_sdrop/f_ub|by exists k].
Qed.

Lemma infs_preimage T (D : set T) r (f : (T -> R)^nat) n :
  (forall t, D t -> has_lbound (range (f ^~ t))) ->
  D `&` (fun x => infs (f ^~ x) n) @^-1` `]-oo, r[ =
  D `&` \bigcup_(k in [set k | n <= k]%N) f k @^-1` `]-oo, r[.
Proof.
move=> lb_f; rewrite predeqE => t; split.
- have [|/set0P h] := eqVneq (sdrop (f ^~ t) n) set0.
    by rewrite predeqE => /(_ (f n t))[+ _] => /forall2NP/(_ n)/= [].
  rewrite /= in_itv /= => -[Dt].
  by move=> /(inf_lt h)[_ [m /= nm <-]] fmtr; split => //; exists m.
- move=> [Dt [k /= nk]]; rewrite /= in_itv /= => fktr.
  rewrite in_itv /=; split => //; apply: le_lt_trans fktr.
  by apply/inf_lbound => //; [exact/has_lbound_sdrop/lb_f|by exists k].
Qed.

Lemma bounded_fun_has_lbound_sups u :
  bounded_fun u -> has_lbound (range (sups u)).
Proof.
move=> /[dup] ba /bounded_fun_has_lbound/has_lbound_sdrop h.
have [M hM] := h O; exists M => y [n _ <-].
rewrite (@le_trans _ _ (u n)) //; first by apply: hM; exists n.
apply: sup_ubound; last by exists n => /=.
by move: ba => /bounded_fun_has_ubound/has_ubound_sdrop; exact.
Qed.

Lemma bounded_fun_has_ubound_infs u :
  bounded_fun u -> has_ubound (range (infs u)).
Proof.
move=> /[dup] ba /bounded_fun_has_ubound/has_ubound_sdrop h.
have [M hM] := h O; exists M => y [n _ <-].
rewrite (@le_trans _ _ (u n)) //; last by apply: hM; exists n.
apply: inf_lbound; last by exists n => /=.
by move: ba => /bounded_fun_has_lbound/has_lbound_sdrop; exact.
Qed.

End sups_infs.

Section limn_sup_limn_inf.
Variable R : realType.
Implicit Types (r : R) (u v : R^o^nat).

Definition limn_sup u := limn (sups u).

Definition limn_inf u := limn (infs u).

Lemma limn_infN u : cvgn u -> limn_inf (-%R \o u) = - limn_sup u.
Proof.
by move=> cu_; rewrite /limn_inf infsN limN//; exact: is_cvg_sups.
Qed.

Lemma limn_supE u : bounded_fun u -> limn_sup u = inf (range (sups u)).
Proof.
move=> ba; apply/cvg_lim => //.
by apply/cvg_sups_inf; [exact/bounded_fun_has_ubound|
                        exact/bounded_fun_has_lbound].
Qed.

Lemma limn_infE u : bounded_fun u -> limn_inf u = sup (range (infs u)).
Proof.
move=> ba; apply/cvg_lim => //.
by apply/cvg_infs_sup; [exact/bounded_fun_has_ubound|
                        exact/bounded_fun_has_lbound].
Qed.

Lemma limn_inf_sup u : cvgn u -> limn_inf u <= limn_sup u.
Proof.
move=> cf_; apply: ler_lim; [exact: is_cvg_infs|exact: is_cvg_sups|].
by apply: nearW => n; apply: infs_le_sups.
Qed.

Lemma cvg_limn_inf_sup u l : u @ \oo --> l -> (limn_inf u = l) * (limn_sup u = l).
Proof.
move=> ul.
have /cvg_seq_bounded [M [Mr Mu]] : cvg (u @ \oo)
   by apply/cvg_ex; eexists; exact: ul.
suff: limn_sup u <= l <= limn_inf u.
  move=> /andP[sul liu].
  have /limn_inf_sup iusu : cvg (u @ \oo) by apply/cvg_ex; eexists; exact: ul.
  split; first by apply/eqP; rewrite eq_le liu andbT (le_trans iusu).
  by apply/eqP; rewrite eq_le sul /= (le_trans _ iusu).
apply/andP; split.
- apply/ler_addgt0Pr => e e0.
  apply: limr_le; first by apply: is_cvg_sups; apply/cvg_ex; exists l.
  move/cvgrPdist_lt : (ul) => /(_ _ e0) -[k _ klu].
  near=> n; have kn : (k <= n)%N by near: n; exists k.
  apply: sup_le_ub; first by exists (u n) => /=; exists n => //=.
  move=> _ /= [m nm] <-; apply/ltW/ltr_distlDr; rewrite distrC.
  by apply: (klu m) => /=; rewrite (leq_trans kn).
- apply/ler_addgt0Pr => e e0; rewrite -lerBlDr.
  apply: limr_ge; first by apply: is_cvg_infs; apply/cvg_ex; exists l.
  move/cvgrPdist_lt : (ul) => /(_ _ e0) -[k _ klu].
  near=> n; have kn : (k <= n)%N by near: n; exists k.
  apply: lb_le_inf; first by exists (u n) => /=; exists n => //=.
  move=> _ /= [m nm] <-; apply/ltW/ltr_distlBl.
  by apply: (klu m) => /=; rewrite (leq_trans kn).
Unshelve. all: by end_near. Qed.

Lemma cvg_limn_infE u : cvgn u -> limn_inf u = limn u.
Proof.
move=> /cvg_ex[l ul]; have [-> _] := cvg_limn_inf_sup ul.
by move/cvg_lim : ul => ->.
Qed.

Lemma cvg_limn_supE u : cvgn u -> limn_sup u = limn u.
Proof.
move=> /cvg_ex[l ul]; have [_ ->] := cvg_limn_inf_sup ul.
by move/cvg_lim : ul => ->.
Qed.

Lemma cvg_sups u l : u @ \oo --> l -> sups u @ \oo --> (l : R^o).
Proof.
move=> ul; have [iul <-] := cvg_limn_inf_sup ul.
apply/cvg_closeP; split => //; apply: is_cvg_sups.
by apply/cvg_ex; eexists; apply: ul.
Qed.

Lemma cvg_infs u l : u @ \oo --> l -> infs u @ \oo --> (l : R^o).
Proof.
move=> ul; have [<- iul] := cvg_limn_inf_sup ul.
apply/cvg_closeP; split => //; apply: is_cvg_infs.
by apply/cvg_ex; eexists; apply: ul.
Qed.

Lemma le_limn_supD u v : bounded_fun u -> bounded_fun v ->
  limn_sup (u \+ v) <= limn_sup u + limn_sup v.
Proof.
move=> ba bb; have ab k : sups (u \+ v) k <= sups u k + sups v k.
  apply: sup_le_ub; first by exists ((u \+ v) k); exists k => /=.
  by move=> M [n /= kn <-]; apply: lerD; apply: sup_ubound; [
    exact/has_ubound_sdrop/bounded_fun_has_ubound; exact | exists n |
    exact/has_ubound_sdrop/bounded_fun_has_ubound; exact | exists n ].
have cu : cvgn (sups u).
  apply: nonincreasing_is_cvgn; last exact: bounded_fun_has_lbound_sups.
  exact/nonincreasing_sups/bounded_fun_has_ubound.
have cv : cvgn (sups v).
  apply: nonincreasing_is_cvgn; last exact: bounded_fun_has_lbound_sups.
  exact/nonincreasing_sups/bounded_fun_has_ubound.
rewrite -(limD cu cv); apply: ler_lim.
- apply: nonincreasing_is_cvgn; last first.
    exact/bounded_fun_has_lbound_sups/bounded_funD.
  exact/nonincreasing_sups/bounded_fun_has_ubound/bounded_funD.
- exact: is_cvgD cu cv.
- exact: nearW.
Qed.

Lemma le_limn_infD u v : bounded_fun u -> bounded_fun v ->
  limn_inf u + limn_inf v <= limn_inf (u \+ v).
Proof.
move=> ba bb; have ab k : infs u k + infs v k <= infs (u \+ v) k.
  apply: lb_le_inf; first by exists ((u \+ v) k); exists k => /=.
  by move=> M [n /= kn <-]; apply: lerD; apply: inf_lbound; [
    exact/has_lbound_sdrop/bounded_fun_has_lbound; exact | exists n |
    exact/has_lbound_sdrop/bounded_fun_has_lbound; exact | exists n ].
have cu : cvgn (infs u).
  apply: nondecreasing_is_cvgn; last exact: bounded_fun_has_ubound_infs.
  exact/nondecreasing_infs/bounded_fun_has_lbound.
have cv : cvgn (infs v).
  apply: nondecreasing_is_cvgn; last exact: bounded_fun_has_ubound_infs.
  exact/nondecreasing_infs/bounded_fun_has_lbound.
rewrite -(limD cu cv); apply: ler_lim.
- exact: is_cvgD cu cv.
- apply: nondecreasing_is_cvgn; last first.
    exact/bounded_fun_has_ubound_infs/bounded_funD.
  exact/nondecreasing_infs/bounded_fun_has_lbound/bounded_funD.
- exact: nearW.
Qed.

Lemma limn_supD u v : cvgn u -> cvgn v ->
  limn_sup (u \+ v) = limn_sup u + limn_sup v.
Proof.
move=> cu cv; have [ba bb] := (cvg_seq_bounded cu, cvg_seq_bounded cv).
apply/eqP; rewrite eq_le le_limn_supD //=.
have := @le_limn_supD _ _ (bounded_funD ba bb) (bounded_funN bb).
rewrite -lerBlDr; apply: le_trans.
rewrite -[_ \+ _]/(u + v - v) addrK -limn_infN; last exact: is_cvgN.
rewrite /comp /=; under eq_fun do rewrite opprK.
by rewrite lerD// cvg_limn_infE// cvg_limn_supE.
Qed.

Lemma limn_infD u v : cvgn u -> cvgn v ->
  limn_inf (u \+ v) = limn_inf u + limn_inf v.
Proof.
move=> cu cv; rewrite (cvg_limn_infE cu) -(cvg_limn_supE cu).
rewrite (cvg_limn_infE cv) -(cvg_limn_supE cv) -limn_supD//.
rewrite cvg_limn_supE; last exact: (@is_cvgD _ _ _ _ _ _ _ cu cv).
by rewrite cvg_limn_infE //; exact: (@is_cvgD _ _ _ _ _ _ _ cu cv).
Qed.

End limn_sup_limn_inf.

#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_sup`")]
Notation lim_sup := limn_sup (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_inf`")]
Notation lim_inf := limn_sup (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_infN`")]
Notation lim_infN := limn_infN (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_supE`")]
Notation lim_supE := limn_supE (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_infE`")]
Notation lim_infE := limn_infE (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_inf_sup`")]
Notation lim_inf_le_lim_sup := limn_inf_sup (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `cvg_limn_infE`")]
Notation cvg_lim_infE := cvg_limn_infE (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `cvg_limn_supE`")]
Notation cvg_lim_supE := cvg_limn_supE (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `le_limn_supD`")]
Notation le_lim_supD := le_limn_supD (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `le_limn_infD`")]
Notation le_lim_infD := le_limn_infD (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_supD`")]
Notation lim_supD := limn_supD (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_infD`")]
Notation lim_infD := limn_infD (only parsing).

Section esups_einfs.
Variable R : realType.
Implicit Types (u : (\bar R)^nat).
Local Open Scope ereal_scope.

Definition esups u := [sequence ereal_sup (sdrop u n)]_n.

Definition einfs u := [sequence ereal_inf (sdrop u n)]_n.

Lemma esupsN u : esups (-%E \o u) = -%E \o einfs u.
Proof.
rewrite funeqE => n; rewrite /esups /= oppeK; congr (ereal_sup _).
by rewrite predeqE => x; split => [[m /= nm <-]|[_ [m /= nm] <-] <-];
  [exists (u m) => //; exists m | exists m].
Qed.

Lemma einfsN u : einfs (-%E \o u) = -%E \o esups u.
Proof.
by rewrite [in RHS](_ : u = -%E \o -%E \o u);
  rewrite ?esupsN funeqE => n /=; rewrite oppeK.
Qed.

Lemma nonincreasing_esups u : nonincreasing_seq (esups u).
Proof.
move=> m n mn; apply: le_ereal_sup => _ /= [k nk <-]; exists k => //=.
by rewrite (leq_trans mn).
Qed.

Lemma nondecreasing_einfs u : nondecreasing_seq (einfs u).
Proof.
move=> m n mn; apply: le_ereal_inf => _ /= [k nk <-]; exists k => //=.
by rewrite (leq_trans mn).
Qed.

Lemma einfs_le_esups u n : einfs u n <= esups u n.
Proof.
rewrite /einfs /=; set A := sdrop _ _; have [a Aa] : A !=set0.
  by exists (u n); rewrite /A /=; exists n => //=.
by rewrite (@le_trans _ _ a)//; [exact/ereal_inf_lbound|exact/ereal_sup_ubound].
Unshelve. all: by end_near. Qed.

Lemma cvg_esups_inf u : esups u @ \oo --> ereal_inf (range (esups u)).
Proof.
by apply: ereal_nonincreasing_cvgn => //; exact: nonincreasing_esups. Qed.

Lemma is_cvg_esups u : cvgn (esups u).
Proof.
by apply/cvg_ex; eexists; exact/cvg_esups_inf. Qed.

Lemma cvg_einfs_sup u : einfs u @ \oo --> ereal_sup (range (einfs u)).
Proof.
by apply: ereal_nondecreasing_cvgn => //; exact: nondecreasing_einfs. Qed.

Lemma is_cvg_einfs u : cvgn (einfs u).
Proof.
by apply/cvg_ex; eexists; exact/cvg_einfs_sup. Qed.

Lemma esups_preimage T (a : \bar R) (f : (T -> \bar R)^nat) n :
  (fun x => esups (f^~x) n) @^-1` `]a, +oo[ =
  \bigcup_(k in [set k | n <= k]%N) f k @^-1` `]a, +oo[.
Proof.
rewrite predeqE => t; split => /=.
  rewrite /= in_itv /= andbT=> /ereal_sup_gt[_ [/= k nk <-]] afnt.
  by exists k => //=; rewrite in_itv /= afnt.
move=> -[k /= nk] /=; rewrite in_itv /= andbT => /lt_le_trans afkt.
by rewrite in_itv andbT/=; apply/afkt/ereal_sup_ubound; exists k.
Qed.

Lemma einfs_preimage T (a : \bar R) (f : (T -> \bar R)^nat) n :
  (fun x => einfs (f^~x) n) @^-1` `[a, +oo[%classic =
  \bigcap_(k in [set k | n <= k]%N) f k @^-1` `[a, +oo[%classic.
Proof.
rewrite predeqE => t; split => /= [|h].
  rewrite in_itv andbT /= => h k nk /=.
  by rewrite /= in_itv/= (le_trans h)//; apply: ereal_inf_lbound; exists k.
rewrite /= in_itv /= andbT leNgt; apply/negP.
move=> /ereal_inf_lt[_ /= [k nk <-]]; apply/negP.
by have := h _ nk; rewrite /= in_itv /= andbT -leNgt.
Qed.

End esups_einfs.

Section limn_esup_einf.
Context {R : realType}.
Implicit Type (u : (\bar R)^nat).
Local Open Scope ereal_scope.

Definition limn_esup u := limf_esup u \oo.

Definition limn_einf u := - limn_esup (\- u).

Lemma limn_esup_lim u : limn_esup u = limn (esups u).
Proof.
apply/eqP; rewrite eq_le; apply/andP; split.
  apply: lime_ge; first exact: is_cvg_esups.
  near=> m; apply: ereal_inf_lbound => /=.
  by exists [set k | (m <= k)%N] => //=; exists m.
apply: lb_ereal_inf => /= _ [A [r /= r0 rA] <-].
apply: lime_le; first exact: is_cvg_esups.
near=> m; apply: le_ereal_sup => _ [n /= mn] <-.
exists n => //; apply: rA => //=; apply: leq_trans mn.
by near: m; exists r.
Unshelve. all: by end_near. Qed.

Lemma limn_einf_lim u : limn_einf u = limn (einfs u).
Proof.
rewrite /limn_einf limn_esup_lim esupsN -limeN//.
  by under eq_fun do rewrite oppeK.
by apply: is_cvgeN; exact: is_cvg_einfs.
Qed.

End limn_esup_einf.

Section lim_esup_inf.
Local Open Scope ereal_scope.
Variable R : realType.
Implicit Types (u v : (\bar R)^nat) (l : \bar R).

Lemma limn_einf_shift u l : l \is a fin_num ->
  limn_einf (fun x => l + u x) = l + limn_einf u.
Proof.
move=> lfin; rewrite !limn_einf_lim; apply/cvg_lim => //; apply: cvg_trans; last first.
  apply: (@cvgeD _ \oo _ _ (cst l) (einfs u) _ (limn (einfs u))).
  - by rewrite fin_num_adde_defr.
  - exact: cvg_cst.
  - exact: is_cvg_einfs.
suff : einfs (fun n => l + u n) = (fun n => l + einfs u n) by move=> ->.
rewrite funeqE => n.
apply/eqP; rewrite eq_le; apply/andP; split.
- rewrite addeC -leeBlDr//; apply: lb_ereal_inf => /= _ [m /= mn] <-.
  rewrite leeBlDr//; apply: ereal_inf_lbound.
  by exists m => //; rewrite addeC.
- apply: lb_ereal_inf => /= _ [m /= mn] <-.
  by rewrite leeD2l//; apply: ereal_inf_lbound; exists m => /=.
Qed.

Lemma limn_esup_le_cvg u l : limn_esup u <= l -> (forall n, l <= u n) ->
  u @ \oo --> l.
Proof.
move=> supul ul; have usupu n : l <= u n <= esups u n.
  by rewrite ul /=; apply/ereal_sup_ubound; exists n => /=.
suff : esups u @ \oo --> l.
  by apply: (@squeeze_cvge _ _ _ _ (cst l)) => //; [exact: nearW|exact: cvg_cst].
apply/cvg_closeP; split; first exact: is_cvg_esups.
rewrite closeE//; apply/eqP.
rewrite eq_le -[X in X <= _ <= _]limn_esup_lim supul/=.
apply: (lime_ge (@is_cvg_esups _ _)); apply: nearW => m.
have /le_trans : l <= einfs u m by apply: lb_ereal_inf => _ [p /= pm] <-.
by apply; exact: einfs_le_esups.
Qed.

Lemma limn_einfN u : limn_einf (-%E \o u) = - limn_esup u.
Proof.
by rewrite /limn_esup -limf_einfN. Qed.

Lemma limn_esupN u : limn_esup (-%E \o u) = - limn_einf u.
Proof.
by rewrite /limn_einf oppeK. Qed.

Lemma limn_einf_sup u : limn_einf u <= limn_esup u.
Proof.
rewrite limn_esup_lim limn_einf_lim.
apply: lee_lim; [exact/is_cvg_einfs|exact/is_cvg_esups|].
by apply: nearW; exact: einfs_le_esups.
Qed.

Lemma cvgNy_limn_einf_sup u : u @ \oo --> -oo ->
  (limn_einf u = -oo) * (limn_esup u = -oo).
Proof.
move=> uoo; suff: limn_esup u = -oo.
  by move=> {}uoo; split => //; apply/eqP; rewrite -leeNy_eq -uoo limn_einf_sup.
rewrite limn_esup_lim; apply: cvg_lim => //=; apply/cvgeNyPle => M.
have /cvgeNyPle/(_ M)[m _ uM] := uoo.
near=> n; apply: ub_ereal_sup => _ [k /= nk <-].
by apply: uM => /=; rewrite (leq_trans _ nk)//; near: n; exists m.
Unshelve. all: by end_near. Qed.

Lemma cvgNy_einfs u : u @ \oo --> -oo -> einfs u @ \oo --> -oo.
Proof.
move=> /cvgNy_limn_einf_sup[uoo _].
apply/cvg_closeP; split; [exact: is_cvg_einfs|rewrite closeE//].
by rewrite -limn_einf_lim.
Qed.

Lemma cvgNy_esups u : u @ \oo --> -oo -> esups u @ \oo --> -oo.
Proof.
move=> /cvgNy_limn_einf_sup[_ uoo]; apply/cvg_closeP.
by split; [exact: is_cvg_esups|rewrite closeE// -limn_esup_lim].
Qed.

Lemma cvgy_einfs u : u @ \oo --> +oo -> einfs u @ \oo --> +oo.
Proof.
move=> /cvgeN/cvgNy_esups/cvgeN; rewrite esupsN.
by under eq_cvg do rewrite /= oppeK.
Qed.

Lemma cvgy_esups u : u @ \oo --> +oo -> esups u @ \oo --> +oo.
Proof.
move=> /cvgeN/cvgNy_einfs/cvgeN; rewrite einfsN.
by under eq_cvg do rewrite /= oppeK.
Qed.

Lemma cvg_esups u l : u @ \oo --> l -> esups u @ \oo --> l.
Proof.
case: l => [l /fine_cvgP[u_fin_num] ul| |]; last 2 first.
  - exact: cvgy_esups.
  - exact: cvgNy_esups.
have [p _ pu] := u_fin_num; apply/cvg_ballP => _/posnumP[e].
have : EFin \o sups (fine \o u) @ \oo --> l%:E.
  by apply: continuous_cvg => //; apply: cvg_sups.
move=> /cvg_ballP /(_ e%:num (gt0 _))[q _ qsupsu]; near=> n.
have -> : esups u n = (EFin \o sups (fine \o u)) n.
  rewrite /= -ereal_sup_EFin; last 2 first.
    - apply/has_ubound_sdrop/bounded_fun_has_ubound.
      by apply/cvg_seq_bounded/cvg_ex; eexists; exact ul.
    - by eexists; rewrite /sdrop /=; exists n; [|reflexivity].
  congr (ereal_sup _).
  rewrite predeqE => y; split=> [[m /= nm <-{y}]|[r [m /= nm <-{r} <-{y}]]].
    have /pu : (p <= m)%N by rewrite (leq_trans _ nm) //; near: n; exists p.
    by move=> /fineK umE; eexists; [exists m|exact/umE].
  have /pu : (p <= m)%N by rewrite (leq_trans _ nm) //; near: n; exists p.
  by move=> /fineK umE; exists m => //; exact/umE.
by apply: qsupsu => /=; near: n; exists q.
Unshelve. all: by end_near. Qed.

Lemma cvg_einfs u l : u @ \oo --> l -> einfs u @ \oo --> l.
Proof.
move=> /cvgeN/cvg_esups/cvgeN; rewrite oppeK esupsN.
by under eq_cvg do rewrite /= oppeK.
Qed.

Lemma cvg_limn_einf_sup u l : u @ \oo --> l ->
  (limn_einf u = l) * (limn_esup u = l).
Proof.
move=> ul; rewrite limn_esup_lim limn_einf_lim; split.
- by apply/cvg_lim => //; exact/cvg_einfs.
- by apply/cvg_lim => //; exact/cvg_esups.
Qed.

Lemma is_cvg_limn_einfE u : cvgn u -> limn_einf u = limn u.
Proof.
move=> /cvg_ex[l ul]; have [-> _] := cvg_limn_einf_sup ul.
by move/cvg_lim : ul => ->.
Qed.

Lemma is_cvg_limn_esupE u : cvgn u -> limn_esup u = limn u.
Proof.
move=> /cvg_ex[l ul]; have [_ ->] := cvg_limn_einf_sup ul.
by move/cvg_lim : ul => ->.
Qed.

End lim_esup_inf.
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_einf_shift`")]
Notation lim_einf_shift := limn_einf_shift (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_esup_le_cvg`")]
Notation lim_esup_le_cvg := limn_esup_le_cvg (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_einfN`")]
Notation lim_einfN := limn_einfN (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_esupN`")]
Notation lim_esupN := limn_esupN (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `limn_einf_sup`")]
Notation lim_einf_sup := limn_einf_sup (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `cvgNy_limn_einf_sup`")]
Notation cvgNy_lim_einf_sup := cvgNy_limn_einf_sup (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `cvg_limn_einf_sup`")]
Notation cvg_lim_einf_sup := cvg_limn_einf_sup (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `is_cvg_limn_einfE`")]
Notation is_cvg_lim_einfE := is_cvg_limn_einfE (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.6", note="renamed to `is_cvg_limn_esupE`")]
Notation is_cvg_lim_esupE := is_cvg_limn_esupE (only parsing).

Lemma geometric_le_lim {R : realType} (n : nat) (a x : R) :
  0 <= a -> 0 < x -> `|x| < 1 -> series (geometric a x) n <= a * (1 - x)^-1.
Proof.
move=> a0 x0 x1.
have /(@cvg_unique _ (@Rhausdorff R)) := @cvg_geometric_series _ a _ x1.
move/(_ _ (@is_cvg_geometric_series _ a _ x1)) => ->.
apply: nondecreasing_cvgn_le; last exact: is_cvg_geometric_series.
by apply: nondecreasing_series => ? _ /=; rewrite pmulr_lge0 // exprn_gt0.
Qed.

Section banach_contraction.

Context {R : realType} {X : completeNormedModType R} (U : set X).
Variables (f : {fun U >-> U}).

Section contractions.
Variables (q : {nonneg R}) (ctrf : contraction q f) (base : X) (Ubase : U base).
Let C := `|f base - base| / (1 - q%:num).
Let y := fun n => iter n f base.
Let q1 := ctrf.1.
Let ctrfq := ctrf.2.
Let C_ge0 : 0 <= C.
Proof.

Lemma contraction_dist n m : `|y n - y (n + m)| <= C * q%:num ^+ n.
Proof.
have f1 k : `|y k.+1 - y k| <= q%:num ^+ k * `|f base - base|.
  elim: k => [|k /(ler_wpM2l (ge0 q))]; first by rewrite expr0 mul1r.
  rewrite mulrA -exprS; apply: le_trans.
  by rewrite (@ctrfq (y k.+1, y k)); split; exact: funS.
have /le_trans -> // : `| y n - y (n + m)| <=
    series (geometric (`|f base - base| * q%:num ^+ n) q%:num) m.
  elim: m => [|m ih].
    by rewrite geometric_seriesE ?lt_eqF//= addn0 subrr normr0 subrr mulr0 mul0r.
  rewrite (le_trans (ler_distD (y (n + m)%N) _ _))//.
  apply: (le_trans (lerD ih _)); first by rewrite distrC addnS; exact: f1.
  rewrite [_ * `|_|]mulrC exprD mulrA geometric_seriesE ?lt_eqF//=.
  rewrite -!/(`1-_) (onem_PosNum ctrf.1) (onemX_NngNum (ltW ctrf.1)).
  rewrite -!mulrA -mulrDr ler_pM// -mulrDr exprSr onemM -addrA.
  rewrite -[in leRHS](mulrC _ `1-(_ ^+ m)) -onemMr onemK.
  by rewrite [in leRHS]mulrDl mulrAC mulrV ?mul1r// unitf_gt0// onem_gt0.
rewrite geometric_seriesE ?lt_eqF//= -[leRHS]mulr1 (ACl (1*4*2*3))/= -/C.
by rewrite ler_wpM2l// 1?mulr_ge0// lerBlDr lerDl.
Qed.

Lemma contraction_cvg : cvgn y.
Proof.
apply/cauchy_cvgP; apply/cauchy_ballP => _/posnumP[e]; near_simpl.
have lt_min n m : `|y n - y m| <= C * q%:num ^+ minn n m.
  wlog : n m / (n <= m)%N => W.
    by case/orP: (leq_total n m) => /W //; rewrite distrC minnC.
  by rewrite (minn_idPl _)// (le_trans _ (contraction_dist _ (m - n)))// subnKC.
case: ltrgt0P C_ge0 => // [Cpos|C0] _; last first.
  near=> n m => /=; rewrite -ball_normE.
  by apply: (le_lt_trans (lt_min _ _)); rewrite C0 mul0r.
near=> n; rewrite -ball_normE /= (le_lt_trans (lt_min n.1 n.2)) //.
rewrite // -ltr_pdivlMl //.
suff : ball 0 (C^-1 * e%:num) (q%:num ^+ minn n.1 n.2).
  by rewrite /ball /= sub0r normrN ger0_norm.
near: n; rewrite nbhs_simpl.
pose g := fun w : nat * nat => q%:num ^+ minn w.1 w.2.
have := @fcvg_ball _ _ (g @ filter_prod \oo \oo) _ 0 _ (C^-1 * e%:num).
move: (@cvg_geometric _ 1 q%:num); rewrite ger0_norm // => /(_ q1) geo.
near_simpl; apply; last by rewrite mulr_gt0 // invr_gt0.
apply/cvg_ballP => _/posnumP[delta]; near_simpl.
have [N _ Q] : \forall N \near \oo, ball 0 delta%:num (geometric 1 q%:num N).
  exact: (@fcvg_ball R R _ _ 0 geo).
exists ([set n | N <= n], [set n | N <= n])%N; first by split; exists N.
move=> [n m] [Nn Nm]; rewrite /ball /= sub0r normrN ger0_norm /g //.
apply: le_lt_trans; last by apply: (Q N) => /=.
rewrite sub0r normrN ger0_norm /geometric //= mul1r.
by rewrite ler_wiXn2l // ?ltW // leq_min Nn.
Unshelve. all: end_near. Qed.

Lemma contraction_cvg_fixed : closed U -> limn y = f (limn y).
Proof.
move=> clU; apply: cvg_lim => //.
apply/cvgrPdist_lt => _/posnumP[e]; near_simpl; apply: near_inftyS.
have [q_gt0 | | q0] := ltrgt0P q%:num.
- near=> n => /=; apply: (le_lt_trans (@ctrfq (_, _) _)) => //=.
  + split; last exact: funS.
    by apply: closed_cvg contraction_cvg => //; apply: nearW => ?; exact: funS.
  + rewrite -ltr_pdivlMl //; near: n; move/cvgrPdist_lt: contraction_cvg.
    by apply; rewrite mulr_gt0 // invr_gt0.
- by rewrite ltNge//; exact: contraNP.
- apply: nearW => /= n; apply: (le_lt_trans (@ctrfq (_, _) _)).
  + split; last exact: funS.
    by apply: closed_cvg contraction_cvg => //; apply: nearW => ?; exact: funS.
  + by rewrite q0 mul0r.
Unshelve. all: end_near. Qed.

End contractions.

Variable ctrf : is_contraction f.

Theorem banach_fixed_point : closed U -> U !=set0 -> exists2 p, U p & p = f p.
Proof.
case: ctrf => [q ctrq] ? [base Ubase]; exists (lim (iter n f base @[n -->\oo])).
  apply: closed_cvg (contraction_cvg ctrq Ubase) => //.
  by apply: nearW => ?; exact: funS.
exact: (contraction_cvg_fixed ctrq).
Unshelve. all: end_near. Qed.

End banach_contraction.

Section Baire.
Variable K : realType.

Theorem Baire (U : completeNormedModType K) (F : (set U)^nat) :
  (forall i, open (F i) /\ dense (F i)) -> dense (\bigcap_i (F i)).
Proof.
move=> odF D Dy OpenD.
have /(_ D Dy OpenD)[a0 DF0a0] : dense (F 0%N) := proj2 (odF 0%N).
have {OpenD Dy} openIDF0 : open (D `&` F 0%N).
  by apply: openI => //; exact: (proj1 (odF 0%N)).
have /open_nbhs_nbhs/nbhs_closedballP[r0 Ball_a0] : open_nbhs a0 (D `&` F 0%N).
  by [].
pose P (m : nat) (arn : U * {posnum K}) (arm : U * {posnum K}) :=
  closed_ball arm.1 (arm.2%:num) `<=` (closed_ball arn.1 arn.2%:num)^° `&` F m
  /\ arm.2%:num < m.+1%:R^-1.
have Ar : forall na : nat * (U * {posnum K}), exists b : U * {posnum K},
    P na.1.+1 na.2 b.
  move=> [n [an rn]].
  have [ openFn denseFn] := odF n.+1.
  have [an1 B0Fn2an1] : exists x, ((closed_ball an rn%:num)^° `&` F n.+1) x.
    have [//|? ?] := @open_nbhs_closed_ball _ _ an rn%:num.
    by apply: denseFn => //; exists an.
  have openIB0Fn1 : open ((closed_ball an rn%:num)^° `&` F n.+1).
    by apply/openI => //; exact/open_interior.
  have /open_nbhs_nbhs/nbhs_closedballP[rn01 Ball_an1] :
    open_nbhs an1 ((closed_ball an rn%:num)^° `&` F n.+1) by [].
  have n31_gt0 : n.+3%:R^-1 > 0 :> K by [].
  have majr : minr (PosNum n31_gt0)%:num rn01%:num > 0 by [].
  exists (an1, PosNum majr); split.
    apply/(subset_trans _ Ball_an1)/le_closed_ball => /=.
    by rewrite ge_min lexx orbT.
  rewrite (@le_lt_trans _ _ n.+3%:R^-1) //= ?ge_min ?lexx//.
  by rewrite ltf_pV2 // ?ltr_nat// posrE.
have [f Pf] := choice Ar.
pose fix ar n := if n is p.+1 then (f (p, ar p)) else (a0, r0).
pose a := fun n => (ar n).1.
pose r := fun n => (ar n).2.
have Suite_ball n m : (n <= m)%N ->
    closed_ball (a m) (r m)%:num `<=` closed_ball (a n) (r n)%:num.
  elim m=> [|k iHk]; first by rewrite leqn0 => /eqP ->.
  rewrite leq_eqVlt => /orP[/eqP -> //|/iHk]; apply: subset_trans.
  have [+ _] : P k.+1 (a k, r k) (a k.+1, r k.+1) by apply: (Pf (k, ar k)).
  rewrite subsetI => -[+ _].
  by move/subset_trans; apply => //; exact: interior_subset.
have : cvg (a @ \oo).
  suff : cauchy (a @ \oo) by exact: cauchy_cvg.
  suff : cauchy_ex (a @ \oo) by exact: cauchy_exP.
  move=> e e0; rewrite /fmapE -ball_normE /ball_.
  have [n rne] : exists n, 2 * (r n)%:num < e.
    pose eps := e / 2.
    have [n n1e] : exists n, n.+1%:R^-1 < eps.
      exists `|ceil eps^-1|%N.
      rewrite -ltf_pV2 ?(posrE,divr_gt0)// invrK -addn1 natrD.
      rewrite natr_absz gtr0_norm.
      by rewrite (le_lt_trans (ceil_ge _)) // ltrDl.
      by rewrite -ceil_gt0 invr_gt0 divr_gt0.
    exists n.+1; rewrite -ltr_pdivlMl //.
    have /lt_trans : (r n.+1)%:num < n.+1%:R^-1.
      have [_ ] : P n.+1 (a n, r n) (a n.+1, r n.+1) by apply: (Pf (n, ar n)).
      by move/lt_le_trans => -> //; rewrite lef_pV2// // ?posrE// ler_nat.
    by apply; rewrite mulrC.
  exists (a n), n => // m nsupm.
  apply: (@lt_trans _ _ (2 * (r n)%:num) (`|a n - a m|) e) => //.
  have : (closed_ball (a n) (r n)%:num) (a m).
     have /(_ (a m)) := Suite_ball n m nsupm.
     by apply; exact: closed_ballxx.
  rewrite closed_ballE /closed_ball_ //= => /le_lt_trans; apply.
  by rewrite -?ltr_pdivrMr ?mulfV ?ltr1n.
rewrite cvg_ex //= => -[l Hl]; exists l; split.
- have Hinter : (closed_ball a0 r0%:num) l.
    apply: (@closed_cvg _ _ \oo eventually_filter a) => //.
    + exact: closed_ball_closed.
    + apply: nearW; move=> m; have /(_ (a m)) := @Suite_ball 0%N _ (leq0n m).
      by apply; exact: closed_ballxx.
  suff : closed_ball a0 r0%:num `<=` D by move/(_ _ Hinter).
  by move: Ball_a0; rewrite closed_ballE //= subsetI; apply: proj1.
- move=> i _.
  have : closed_ball (a i) (r i)%:num l.
    rewrite -(@cvg_shiftn i _ a l) /= in Hl.
    apply: (@closed_cvg _ _ \oo eventually_filter (fun n => a (n + i)%N)) => //=.
    + exact: closed_ball_closed.
    + by apply: nearW; move=> n; exact/(Suite_ball _ _ (leq_addl n i))/closed_ballxx.
  move: i => [|n].
    by move: Ball_a0; rewrite subsetI => -[_ p] la0; move: (p _ la0).
  have [+ _] : P n.+1 (a n, r n) (a n.+1, r n.+1) by apply : (Pf (n , ar n)).
  by rewrite subsetI => -[_ p] lan1; move: (p l lan1).
Unshelve. all: by end_near. Qed.

End Baire.

Definition bounded_fun_norm (K : realType) (V : normedModType K)
    (W : normedModType K) (f : V -> W) :=
  forall r, exists M, forall x, `|x| <= r -> `|f x| <= M.

Lemma bounded_landau (K : realType) (V : normedModType K)
    (W : normedModType K) (f : {linear V -> W}) :
  bounded_fun_norm f <-> ((f : V -> W) =O_ (0 : V) cst (1:K)).
Proof.
rewrite eqOP; split => [|Bf].
- move=> /(_ 1)[M bm].
  rewrite !nearE /=; exists M; rewrite num_real; split => // x Mx.
  apply/nbhs_normP; exists 1 => //= y /=.
  rewrite sub0r normrN/= normr1 mulr1 => y1.
  by apply/ltW; rewrite (le_lt_trans _ Mx)// bm// ltW.
- apply/bounded_funP; rewrite /bounded_near.
  near=> M.
  rewrite (_ : mkset _ = (fun x => `|f x| <= M * `|cst 1 x|)); last first.
    by rewrite funeqE => x; rewrite normr1 mulr1.
  by near: M.
Unshelve. all: by end_near. Qed.



Definition pointwise_bounded (K : realType) (V : normedModType K) (W : normedModType K)
  (F : set (V -> W)) := forall x, exists M, forall f, F f -> `|f x| <= M.

Definition uniform_bounded (K : realType) (V : normedModType K) (W : normedModType K)
  (F : set (V -> W)) := forall r, exists M, forall f, F f -> forall x, `|x| <= r -> `|f x| <= M.

Section banach_steinhaus.
Variables (K : realType) (V : completeNormedModType K) (W : normedModType K).

Let pack_linear (f : V -> W) (lf : linear f) : {linear V -> W}
 := HB.pack f (GRing.isLinear.Build _ _ _ _ _ lf).

Theorem Banach_Steinhauss (F : set (V -> W)):
  (forall f, F f -> bounded_fun_norm f /\ linear f) ->
  pointwise_bounded F -> uniform_bounded F.
Proof.
move=> Propf BoundedF.
set O := fun n => \bigcup_(f in F) (normr \o f)@^-1` [set y | y > n%:R].
have O_open : forall n, open ( O n ).
  move=> n; apply: bigcup_open => i Fi.
  apply: (@open_comp _ _ (normr \o i) [set y | y > n%:R]); last first.
    exact: open_gt.
  move=> x Hx; apply: continuous_comp; last exact: norm_continuous.
  have Li : linear i := proj2 (Propf _ Fi).
  apply: (@linear_continuous K V W (pack_linear Li)) => /=.
  exact/(proj1 (bounded_landau (pack_linear Li)))/(proj1 (Propf _ Fi)).
set O_inf := \bigcap_i (O i).
have O_infempty : O_inf = set0.
  rewrite -subset0 => x.
  have [M FxM] := BoundedF x; rewrite /O_inf /O /=.
  move=> /(_ `|ceil M|%N Logic.I)[f Ff]; apply/negP; rewrite -leNgt.
  rewrite (le_trans (FxM _ Ff))// (le_trans (ceil_ge _))//.
  by have := lez_abs (ceil M); rewrite -(@ler_int K).
have ContraBaire : exists i, not (dense (O i)).
  have dOinf : ~ dense O_inf.
    rewrite /dense O_infempty ; apply /existsNP; exists setT; elim.
    - by move=> x; rewrite setI0.
    - by exists point.
    - exact: openT.
  have /contra_not/(_ dOinf) : (forall i, open(O i) /\ dense (O i)) -> dense (O_inf).
    exact: Baire.
  move=> /asboolPn /existsp_asboolPn[n /and_asboolP /nandP Hn].
  by exists n; case: Hn => /asboolPn.
have [n [x0 [r H]] k] :
    exists n x (r : {posnum K}), (ball x r%:num) `<=` (~` (O n)).
  move: ContraBaire =>
  [i /(denseNE) [ O0 [ [ x /open_nbhs_nbhs /nbhs_ballP [r r0 bxr]
   /((@subsetI_eq0 _ (ball x r) O0 (O i) (O i)))]]]] /(_ bxr) bxrOi.
  by exists i, x, (PosNum r0); apply/disjoints_subset/bxrOi.
exists ((n + n)%:R * k * 2 / r%:num)=> f Ff y Hx; move: (Propf f Ff) => [ _ linf].
case: (eqVneq y 0) => [-> | Zeroy].
  move: (linear0 (pack_linear linf)) => /= ->.
  by rewrite normr0 !mulr_ge0 // (le_trans _ Hx).
have majballi : forall f x, F f -> (ball x0 r%:num) x -> `|f x | <= n%:R.
  move=> g x Fg /(H x); rewrite leNgt.
  by rewrite /O setC_bigcup /= => /(_ _ Fg)/negP.
have majball : forall f x, F f -> (ball x0 r%:num) x -> `|f (x - x0)| <= n%:R + n%:R.
  move=> g x Fg; move: (Propf g Fg) => [Bg Lg].
  move: (linearB (pack_linear Lg)) => /= -> Ballx.
  apply/(le_trans (ler_normB _ _))/lerD; first exact: majballi.
  by apply: majballi => //; exact/ball_center.
have ballprop : ball x0 r%:num (2^-1 * (r%:num / `|y|) *: y + x0).
  rewrite -ball_normE /ball_ /= opprD addrCA subrr addr0 normrN normrZ.
  rewrite 2!normrM -2!mulrA (@normfV _ `|y|) normr_id mulVf ?mulr1 ?normr_eq0//.
  by rewrite gtr0_norm // gtr0_norm // gtr_pMl // invf_lt1 // ltr1n.
have := majball f (2^-1 * (r%:num / `|y|) *: y + x0) Ff ballprop.
rewrite -addrA addrN linf.
move: (linear0 (pack_linear linf)) => /= ->.
rewrite addr0 normrZ 2!normrM gtr0_norm // gtr0_norm //.
rewrite normfV normr_id -ler_pdivlMl //=; last first.
  by rewrite mulr_gt0 // mulr_gt0 // invr_gt0 normr_gt0.
move/le_trans; apply.
rewrite -natrD -!mulrA (mulrC (_%:R)) ler_pM //.
by rewrite invfM invrK mulrCA ler_pM2l // invf_div // ler_pM2r.
Qed.

End banach_steinhaus.