Library Combi.SSRcomplements.sorted: [path] and [sorted] complements
Various Lemmas about path and sorted which are missing in MathComp
TODO: these probably should be contributed to path.v
Require Import mathcomp.ssreflect.ssreflect.
From mathcomp Require Import ssrbool ssrfun ssrnat eqtype fintype choice seq.
From mathcomp Require Import path.
Set Implicit Arguments.
Open Scope N.
Module LeqGeqOrder.
Definition geq_refl : reflexive geq :=
fun x => leqnn x.
Definition geq_total : total geq :=
fun x y => leq_total y x.
Definition geq_trans : transitive geq :=
fun x y z H1 H2 => leq_trans H2 H1.
Definition anti_geq : antisymmetric geq :=
fun x y H => esym (anti_leq H).
Definition ltn_irr : irreflexive ltn :=
fun x => ltnn x.
Definition gtn_trans : transitive gtn :=
fun x y z H1 H2 => ltn_trans H2 H1.
Definition gtn_irr : irreflexive gtn :=
fun x => ltnn x.
#[export] Hint Resolve leq_total leq_trans anti_leq : core.
#[export] Hint Resolve geq_refl geq_total geq_trans anti_geq : core.
#[export] Hint Resolve ltn_trans ltn_irr gtn_trans gtn_irr : core.
End LeqGeqOrder.
Import LeqGeqOrder.
Section Sorted.
Variable T : eqType.
Variable Z : T.
Variable R : rel T.
Implicit Type l : T.
Implicit Type r : seq T.
#[local] Notation sorted r := (sorted R r).
#[local] Notation "x <=R y" := (R x y) (at level 70, y at next level).
Lemma sorted_consK l r : sorted (cons l r) -> sorted r.
Lemma sorted_rconsK l r : sorted (rcons r l) -> sorted r.
Lemma sorted_rcons l r : sorted r -> (last l r <=R l) -> sorted (rcons r l).
Hypothesis Rtrans : transitive R.
Lemma incr_equiv r :
(forall (i j : nat), i < j < (size r) -> nth Z r i <=R nth Z r j)
<->
(forall (i : nat), i.+1 < (size r) -> nth Z r i <=R nth Z r i.+1).
Lemma sorted_strictP r :
reflect
(forall (i j : nat), i < j < (size r) -> (nth Z r i <=R nth Z r j))
(sorted r).
Hypothesis Rrefl : reflexive R.
Lemma non_decr_equiv r :
(forall (i j : nat), i <= j < (size r) -> nth Z r i <=R nth Z r j)
<->
(forall (i : nat), i.+1 < (size r) -> nth Z r i <=R nth Z r i.+1).
Lemma sorted2P r :
reflect
(forall (i j : nat), i <= j < (size r) -> (nth Z r i <=R nth Z r j))
(sorted r).
Lemma sorted_cons l r : sorted (cons l r) -> (l <=R head l r) /\ sorted r.
Lemma sorted_last l r : sorted (rcons r l) -> (last l r <=R l).
Lemma head_leq_last_sorted l r : sorted (l :: r) -> (l <=R last l r).
Hypothesis Hanti : antisymmetric R.
Lemma sorted_lt_by_pos r p q :
sorted r -> p < size r -> q < size r ->
(nth Z r p != nth Z r q) && (nth Z r p <=R nth Z r q) -> p < q.
End Sorted.
Require Import tools.
Lemma enum_ord_sorted_ltn N :
sorted (fun i j : 'I_N => i < j) (enum 'I_N).
Lemma enum_ord_sorted N :
sorted (fun i j : 'I_N => i <= j) (enum 'I_N).
Lemma sorted_ltn_ind s :
sorted ltn s -> sumn (iota 0 (size s)) <= sumn s /\ last 0 s >= (size s).-1.
Lemma sorted_sumn_iotaE s :
sorted ltn s -> sumn s = sumn (iota 0 (size s)) -> s = iota 0 (size s).
From mathcomp Require Import ssrbool ssrfun ssrnat eqtype fintype choice seq.
From mathcomp Require Import path.
Set Implicit Arguments.
Open Scope N.
Module LeqGeqOrder.
Definition geq_refl : reflexive geq :=
fun x => leqnn x.
Definition geq_total : total geq :=
fun x y => leq_total y x.
Definition geq_trans : transitive geq :=
fun x y z H1 H2 => leq_trans H2 H1.
Definition anti_geq : antisymmetric geq :=
fun x y H => esym (anti_leq H).
Definition ltn_irr : irreflexive ltn :=
fun x => ltnn x.
Definition gtn_trans : transitive gtn :=
fun x y z H1 H2 => ltn_trans H2 H1.
Definition gtn_irr : irreflexive gtn :=
fun x => ltnn x.
#[export] Hint Resolve leq_total leq_trans anti_leq : core.
#[export] Hint Resolve geq_refl geq_total geq_trans anti_geq : core.
#[export] Hint Resolve ltn_trans ltn_irr gtn_trans gtn_irr : core.
End LeqGeqOrder.
Import LeqGeqOrder.
Section Sorted.
Variable T : eqType.
Variable Z : T.
Variable R : rel T.
Implicit Type l : T.
Implicit Type r : seq T.
#[local] Notation sorted r := (sorted R r).
#[local] Notation "x <=R y" := (R x y) (at level 70, y at next level).
Lemma sorted_consK l r : sorted (cons l r) -> sorted r.
Lemma sorted_rconsK l r : sorted (rcons r l) -> sorted r.
Lemma sorted_rcons l r : sorted r -> (last l r <=R l) -> sorted (rcons r l).
Hypothesis Rtrans : transitive R.
Lemma incr_equiv r :
(forall (i j : nat), i < j < (size r) -> nth Z r i <=R nth Z r j)
<->
(forall (i : nat), i.+1 < (size r) -> nth Z r i <=R nth Z r i.+1).
Lemma sorted_strictP r :
reflect
(forall (i j : nat), i < j < (size r) -> (nth Z r i <=R nth Z r j))
(sorted r).
Hypothesis Rrefl : reflexive R.
Lemma non_decr_equiv r :
(forall (i j : nat), i <= j < (size r) -> nth Z r i <=R nth Z r j)
<->
(forall (i : nat), i.+1 < (size r) -> nth Z r i <=R nth Z r i.+1).
Lemma sorted2P r :
reflect
(forall (i j : nat), i <= j < (size r) -> (nth Z r i <=R nth Z r j))
(sorted r).
Lemma sorted_cons l r : sorted (cons l r) -> (l <=R head l r) /\ sorted r.
Lemma sorted_last l r : sorted (rcons r l) -> (last l r <=R l).
Lemma head_leq_last_sorted l r : sorted (l :: r) -> (l <=R last l r).
Hypothesis Hanti : antisymmetric R.
Lemma sorted_lt_by_pos r p q :
sorted r -> p < size r -> q < size r ->
(nth Z r p != nth Z r q) && (nth Z r p <=R nth Z r q) -> p < q.
End Sorted.
Require Import tools.
Lemma enum_ord_sorted_ltn N :
sorted (fun i j : 'I_N => i < j) (enum 'I_N).
Lemma enum_ord_sorted N :
sorted (fun i j : 'I_N => i <= j) (enum 'I_N).
Lemma sorted_ltn_ind s :
sorted ltn s -> sumn (iota 0 (size s)) <= sumn s /\ last 0 s >= (size s).-1.
Lemma sorted_sumn_iotaE s :
sorted ltn s -> sumn s = sumn (iota 0 (size s)) -> s = iota 0 (size s).