Library mathcomp.algebra.finalg
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.
Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype finset fingroup morphism perm action.
From mathcomp Require Import ssralg countalg.
Distributed under the terms of CeCILL-B. *)
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice.
From mathcomp Require Import fintype finset fingroup morphism perm action.
From mathcomp Require Import ssralg countalg.
The algebraic part of the algebraic hierarchy for finite types
This file clones the entire ssralg hierarchy for finite types; this
allows type inference to function properly on expressions that mix
combinatorial and algebraic operators, e.g., [set x + y | x in A, y in A].
finNmodType, finZmodType, finSemiRingType, finRingType, finComRingType,
finComSemiRingType, finUnitRingType, finComUnitRingType, finIdomType,
finFieldType, finLmodType, finLalgType, finAlgType, finUnitAlgType
== the finite counterparts of nmodType, etc
Note that a finFieldType is canonically decidable.
This file also provides direct tie-ins with finite group theory:
[finGroupMixin of R for +%R] == structures for R
{unit R} == the type of units of R, which has a
canonical group structure
FinRing.unit R Ux == the element of {unit R} corresponding
to x, where Ux : x \in GRing.unit
'U%act == the action by right multiplication of
{unit R} on R, via FinRing.unit_act
(This is also a group action.)
Local Open Scope ring_scope.
Set Implicit Arguments.
Module FinRing.
Import GRing.Theory.
#[short(type="finNmodType")]
HB.structure Definition Nmodule := {M of GRing.Nmodule M & Finite M}.
#[short(type="finZmodType")]
HB.structure Definition Zmodule := {M of GRing.Zmodule M & Finite M}.
Module ZmoduleExports.
Notation "[ 'finGroupMixin' 'of' R 'for' +%R ]" :=
(isMulGroup.Build R (@addrA _) (@add0r _) (@addNr _))
(at level 0, format "[ 'finGroupMixin' 'of' R 'for' +%R ]") : form_scope.
End ZmoduleExports.
#[short(type="finSemiRingType")]
HB.structure Definition SemiRing := {R of GRing.SemiRing R & Finite R}.
#[short(type="finRingType")]
HB.structure Definition Ring := {R of GRing.Ring R & Finite R}.
#[short(type="finComSemiRingType")]
HB.structure Definition ComSemiRing := {R of GRing.ComSemiRing R & Finite R}.
#[short(type="finComRingType")]
HB.structure Definition ComRing := {R of GRing.ComRing R & Finite R}.
#[short(type="finUnitRingType")]
HB.structure Definition UnitRing := {R of GRing.UnitRing R & Finite R}.
#[short(type="finComUnitRingType")]
HB.structure Definition ComUnitRing := {R of GRing.ComUnitRing R & Finite R}.
#[short(type="finIdomainType")]
HB.structure Definition IntegralDomain :=
{R of GRing.IntegralDomain R & Finite R}.
#[short(type="finFieldType")]
HB.structure Definition Field := {R of GRing.Field R & Finite R}.
#[short(type="finLmodType")]
HB.structure Definition Lmodule (R : ringType) :=
{M of GRing.Lmodule R M & Finite M}.
#[short(type="finLalgType")]
HB.structure Definition Lalgebra (R : ringType) :=
{M of GRing.Lalgebra R M & Finite M}.
#[short(type="finAlgType")]
HB.structure Definition Algebra (R : ringType) :=
{M of GRing.Algebra R M & Finite M}.
#[short(type="finUnitAlgType")]
HB.structure Definition UnitAlgebra (R : unitRingType) :=
{M of GRing.UnitAlgebra R M & Finite M}.
Group structures
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : Zmodule.type) := [finGroupMixin of R for +%R].
Coercion Zmodule_to_baseFinGroup (R : Zmodule.type) := BaseFinGroup.clone R _.
Coercion Zmodule_to_finGroup (R : Zmodule.type) := FinGroup.clone R _.
Section AdditiveGroup.
Variable U : finZmodType.
Implicit Types x y : U.
Lemma zmod1gE : 1%g = 0 :> U.
Lemma zmodVgE x : x^-1%g = - x.
Lemma zmodMgE x y : (x × y)%g = x + y.
Lemma zmodXgE n x : (x ^+ n)%g = x *+ n.
Lemma zmod_mulgC x y : commute x y.
Lemma zmod_abelian (A : {set U}) : abelian A.
End AdditiveGroup.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : Ring.type) := [finGroupMixin of R for +%R].
Coercion Ring_to_baseFinGroup (R : Ring.type) := BaseFinGroup.clone R _.
Coercion Ring_to_finGroup (R : Ring.type) := FinGroup.clone R _.
Definition is_inv (x y : R) := (x × y == 1) && (y × x == 1).
Definition unit := [qualify a x : R | [∃ y, is_inv x y]].
Definition inv x := odflt x (pick (is_inv x)).
Lemma mulVr : {in unit, left_inverse 1 inv *%R}.
Lemma mulrV : {in unit, right_inverse 1 inv *%R}.
Lemma intro_unit x y : y × x = 1 ∧ x × y = 1 → x \is a unit.
Lemma invr_out : {in [predC unit], inv =1 id}.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : ComRing.type) := [finGroupMixin of R for +%R].
Coercion ComRing_to_baseFinGroup (R : ComRing.type) := BaseFinGroup.clone R _.
Coercion ComRing_to_finGroup (R : ComRing.type) := FinGroup.clone R _.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : UnitRing.type) := [finGroupMixin of R for +%R].
Coercion UnitRing_to_baseFinGroup (R : UnitRing.type) := BaseFinGroup.clone R _.
Coercion UnitRing_to_finGroup (R : UnitRing.type) := FinGroup.clone R _.
Section UnitsGroup.
Variable R : finUnitRingType.
Inductive unit_of := Unit (x : R) of x \is a GRing.unit.
Bind Scope group_scope with unit_of.
Implicit Types u v : unit_of.
Definition uval u := let: Unit x _ := u in x.
#[export] HB.instance Definition _ := [isSub for uval].
#[export] HB.instance Definition _ := [Finite of unit_of by <:].
Definition unit1 := Unit (@GRing.unitr1 _).
Lemma unit_inv_proof u : (val u)^-1 \is a GRing.unit.
Definition unit_inv u := Unit (unit_inv_proof u).
Lemma unit_mul_proof u v : val u × val v \is a GRing.unit.
Definition unit_mul u v := Unit (unit_mul_proof u v).
Lemma unit_muluA : associative unit_mul.
Lemma unit_mul1u : left_id unit1 unit_mul.
Lemma unit_mulVu : left_inverse unit1 unit_inv unit_mul.
#[export] HB.instance Definition _ := isMulGroup.Build unit_of
unit_muluA unit_mul1u unit_mulVu.
Lemma val_unit1 : val (1%g : unit_of) = 1.
Lemma val_unitM x y : val (x × y : unit_of)%g = val x × val y.
Lemma val_unitV x : val (x^-1 : unit_of)%g = (val x)^-1.
Lemma val_unitX n x : val (x ^+ n : unit_of)%g = val x ^+ n.
Definition unit_act x u := x × val u.
Lemma unit_actE x u : unit_act x u = x × val u.
Canonical unit_action :=
@TotalAction _ _ unit_act (@mulr1 _) (fun _ _ _ ⇒ mulrA _ _ _).
Lemma unit_is_groupAction : @is_groupAction _ R setT setT unit_action.
Canonical unit_groupAction := GroupAction unit_is_groupAction.
End UnitsGroup.
Module Import UnitsGroupExports.
Bind Scope group_scope with unit_of.
Arguments unit_of R%type.
Canonical unit_action.
Canonical unit_groupAction.
End UnitsGroupExports.
Notation unit R Ux := (@Unit R%type _ Ux).
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : ComUnitRing.type) := [finGroupMixin of R for +%R].
Coercion ComUnitRing_to_baseFinGroup (R : ComUnitRing.type) :=
BaseFinGroup.clone R _.
Coercion ComUnitRing_to_finGroup (R : ComUnitRing.type) :=
FinGroup.clone R _.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : IntegralDomain.type) :=
[finGroupMixin of R for +%R].
Coercion IntegralDomain_to_baseFinGroup (R : IntegralDomain.type) :=
BaseFinGroup.clone R _.
Coercion IntegralDomain_to_finGroup (R : IntegralDomain.type) :=
FinGroup.clone R _.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : Field.type) := [finGroupMixin of R for +%R].
Coercion Field_to_baseFinGroup (R : Field.type) := BaseFinGroup.clone R _.
Coercion Field_to_finGroup (R : Field.type) := FinGroup.clone R _.
Fixpoint sat e f :=
match f with
| GRing.Bool b ⇒ b
| t1 == t2 ⇒ (GRing.eval e t1 == GRing.eval e t2)%bool
| GRing.Unit t ⇒ GRing.eval e t \is a GRing.unit
| f1 ∧ f2 ⇒ sat e f1 && sat e f2
| f1 ∨ f2 ⇒ sat e f1 || sat e f2
| f1 ==> f2 ⇒ (sat e f1 ==> sat e f2)%bool
| ¬ f1 ⇒ ~~ sat e f1
| ('∃ 'X_k, f1) ⇒ [∃ x : F, sat (set_nth 0%R e k x) f1]
| ('∀ 'X_k, f1) ⇒ [∀ x : F, sat (set_nth 0%R e k x) f1]
end%T.
Lemma decidable : GRing.decidable_field_axiom sat.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : ringType) (M : Lmodule.type R) :=
[finGroupMixin of M for +%R].
Coercion Lmodule_to_baseFinGroup (R : ringType) (M : Lmodule.type R) :=
BaseFinGroup.clone M _.
Coercion Lmodule_to_finGroup (R : ringType) (M : Lmodule.type R) : finGroupType :=
FinGroup.clone (M : Type) _.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : ringType) (M : Lalgebra.type R) :=
[finGroupMixin of M for +%R].
Coercion Lalgebra_to_baseFinGroup (R : ringType) (M : Lalgebra.type R) :=
BaseFinGroup.clone M _.
Coercion Lalgebra_to_finGroup (R : ringType) (M : Lalgebra.type R) :=
FinGroup.clone M _.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : ringType) (M : Algebra.type R) :=
[finGroupMixin of M for +%R].
Coercion Algebra_to_baseFinGroup (R : ringType) (M : Algebra.type R) :=
BaseFinGroup.clone M _.
Coercion Algebra_to_finGroup (R : ringType) (M : Algebra.type R) :=
FinGroup.clone M _.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : unitRingType) (M : UnitAlgebra.type R) :=
[finGroupMixin of M for +%R].
Coercion UnitAlgebra_to_baseFinGroup (R : unitRingType) (M : UnitAlgebra.type R) :=
BaseFinGroup.clone M _.
Coercion UnitAlgebra_to_finGroup (R : unitRingType) (M : UnitAlgebra.type R) :=
FinGroup.clone M _.
Module RegularExports.
End RegularExports.
Module Theory.
Definition zmod1gE := zmod1gE.
Definition zmodVgE := zmodVgE.
Definition zmodMgE := zmodMgE.
Definition zmodXgE := zmodXgE.
Definition zmod_mulgC := zmod_mulgC.
Definition zmod_abelian := zmod_abelian.
Definition val_unit1 := val_unit1.
Definition val_unitM := val_unitM.
Definition val_unitX := val_unitX.
Definition val_unitV := val_unitV.
Definition unit_actE := unit_actE.
End Theory.
End FinRing.
Import FinRing.
Lemma card_finRing_gt1 (R : finRingType) : 1 < #|R|.
Notation "{ 'unit' R }" := (unit_of R)
(at level 0, format "{ 'unit' R }") : type_scope.
Notation "''U'" := (unit_action _) (at level 8) : action_scope.
Notation "''U'" := (unit_groupAction _) (at level 8) : groupAction_scope.
Lemma card_finField_unit (F : finFieldType) : #|[set: {unit F}]| = #|F|.-1.
Finite Algebraic structure for bool