Library mathcomp.boot.nmodule
From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq.
From mathcomp Require Import bigop fintype finfun monoid.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq.
From mathcomp Require Import bigop fintype finfun monoid.
Additive group-like structures
NB: See CONTRIBUTING.md for an introduction to HB concepts and commands.
This file defines the following algebraic structures:
baseAddMagmaType == type with an addition operator
The HB class is called BaseAddMagma.
ChoiceBaseAddMagma.type == join of baseAddMagmaType and choiceType
The HB class is called ChoiceBaseAddMagma.
addMagmaType == additive magma
The HB class is called AddMagma.
addSemigroupType == additive semigroup
The HB class is called AddSemigroup.
baseAddUMagmaType == pointed additive magma
The HB class is called BaseAddUMagma.
ChoiceBaseAddUMagma.type == join of baseAddUMagmaType and choiceType
The HB class is called ChoiceBaseUMagma.
addUmagmaType == additive unitary magma
The HB class is called AddUMagma.
nmodType == additive monoid
The HB class is called Nmodule.
baseZmodType == pointed additive magma with an opposite
operator
The HB class is called BaseZmodule.
zmodType == abelian group
The HB class is called Group.
and their joins with subType:
subBaseAddUMagmaType V P == join of baseAddUMagmaType and subType
(P : pred V) such that val is additive
The HB class is called SubBaseAddUMagma.
subAddUMagmaType V P == join of addUMagmaType and subType (P : pred V)
such that val is additive
The HB class is called SubAddUMagma.
subNmodType V P == join of nmodType and subType (P : pred V)
such that val is additive
The HB class is called SubNmodule.
subZmodType V P == join of zmodType and subType (P : pred V)
such that val is additive
The HB class is called SubZmodule.
Morphisms between the above structures (see below for details):
{additive U -> V} == nmod (resp. zmod) morphism between nmodType
(resp. zmodType) instances U and V.
The HB class is called Additive.
Closedness predicates for the algebraic structures:
mulgClosed V == predicate closed under multiplication on G : magmaType
The HB class is called MulClosed.
umagmaClosed V == predicate closed under multiplication and containing 1
on G : baseUMagmaType
The HB class is called UMagmaClosed.
invgClosed V == predicate closed under inversion on G : baseGroupType
The HB class is called InvClosed.
groupClosed V == predicate closed under multiplication and inversion and
containing 1 on G : baseGroupType
The HB class is called InvClosed.
Canonical properties of the algebraic structures:
addMagmaType (additive magmas):
x + y == the addition of x and y addr_closed S <-> collective predicate S is closed under additionbaseAddUMagmaType (pointed additive magmas):
0 == the zero of a unitary additive magma x *+ n == n times x, with n in nat (non-negative), i.e. x + (x + .. (x + x)..) (n terms); x *+ 1 is thus convertible to x, and x *+ 2 to x + x \sum_<range> e == iterated sum for a baseAddUMagmaType (cf bigop.v) e`_i == nth 0 e i, when e : seq M and M has an addUMagmaType structure support f == 0.-support f, i.e., [pred x | f x != 0] addumagma_closed S <-> collective predicate S is closed under addition and contains 0nmodType (abelian monoids):
nmod_closed S := addumagma_closed SbaseZmodType (pointed additive magmas with an opposite operator):
- x == the opposite of x
Additive (nmod or zmod morphisms):
nmod_morphism f <-> f of type U -> V is an nmod morphism, i.e., f maps the Nmodule structure of U to that of V, 0 to 0 and + to + := (f 0 = 0) * {morph f : x y / x + y} zmod_morphisme f <-> f of type U -> V is a zmod morphism, i.e., f maps the Zmodule structure of U to that of V, 0 to 0, - to - and + to + (equivalently, binary - to -) := {morph f : u v / u - v} {additive U -> V} == the interface type for a Structure (keyed on a function f : U -> V) that encapsulates the nmod_morphism property; both U and V must have canonical baseAddUMagmaType instances When both U and V have zmodType instances, it is a zmod morphism. := Algebra.Additive.type U V Notations are defined in scope ring_scope (delimiter %R) This library also extends the conventional suffixes described in library ssrbool.v with the following: 0 -- unitary additive magma 0, as in addr0 : x + 0 = x D -- additive magma addition, as in mulrnDr : x *+ (m + n) = x *+ m + x *+ n B -- z-module subtraction, as in opprB : - (x - y) = y - x Mn -- ring by nat multiplication, as in raddfMn : f (x *+ n) = f x *+ n N -- z-module opposite, as in mulNr : (- x) * y = - (x * y) The operator suffixes D, B are also used for the corresponding operations on nat, as in mulrDr : x *+ (m + n) = x *+ m + x *+ n.Set Implicit Arguments.
Declare Scope ring_scope.
Delimit Scope ring_scope with R.
Local Open Scope ring_scope.
Reserved Notation "+%R" (at level 0).
Reserved Notation "-%R" (at level 0).
Reserved Notation "n %:R" (at level 1, left associativity, format "n %:R").
Reserved Notation "\0" (at level 0).
Reserved Notation "f \+ g" (at level 50, left associativity).
Reserved Notation "f \- g" (at level 50, left associativity).
Reserved Notation "\- f" (at level 35, f at level 35).
Reserved Notation "'{' 'additive' U '->' V '}'"
(at level 0, U at level 98, V at level 99,
format "{ 'additive' U -> V }").
Module Import Algebra.
#[short(type="baseAddMagmaType")]
HB.structure Definition BaseAddMagma := {V of hasAdd V}.
Module BaseAddMagmaExports.
Bind Scope ring_scope with BaseAddMagma.sort.
End BaseAddMagmaExports.
Module ChoiceBaseAddMagmaExports.
Bind Scope ring_scope with ChoiceBaseAddMagma.sort.
End ChoiceBaseAddMagmaExports.
Local Notation "+%R" := (@add _) : function_scope.
Local Notation "x + y" := (add x y) : ring_scope.
Definition to_multiplicative := @id Type.
#[export]
HB.instance Definition _ (V : choiceType) := Choice.on (to_multiplicative V).
#[export]
HB.instance Definition _ (V : baseAddMagmaType) :=
hasMul.Build (to_multiplicative V) (@add V).
FIXME: HB.saturate
#[export]
HB.instance Definition _ (V : ChoiceBaseAddMagma.type) :=
Magma.on (to_multiplicative V).
Section BaseAddMagmaTheory.
Variables V : baseAddMagmaType.
Section ClosedPredicates.
Variable S : {pred V}.
Definition addr_closed := {in S &, ∀ u v, u + v \in S}.
End ClosedPredicates.
End BaseAddMagmaTheory.
#[short(type="addMagmaType")]
HB.structure Definition AddMagma :=
{V of BaseAddMagma_isAddMagma V & ChoiceBaseAddMagma V}.
Module AddMagmaExports.
Bind Scope ring_scope with AddMagma.sort.
End AddMagmaExports.
Section AddMagmaTheory.
Variables V : addMagmaType.
Lemma commuteT x y : @commute (to_multiplicative V) x y.
End AddMagmaTheory.
#[short(type="addSemigroupType")]
HB.structure Definition AddSemigroup :=
{V of AddMagma_isAddSemigroup V & AddMagma V}.
Module AddSemigroupExports.
Bind Scope ring_scope with AddSemigroup.sort.
End AddSemigroupExports.
#[export]
HB.instance Definition _ (V : addSemigroupType) :=
Magma_isSemigroup.Build (to_multiplicative V) addrA.
Section AddSemigroupTheory.
Variables V : addSemigroupType.
Lemma addrCA : @left_commutative V V +%R.
Lemma addrAC : @right_commutative V V +%R.
Lemma addrACA : @interchange V +%R +%R.
End AddSemigroupTheory.
#[short(type="baseAddUMagmaType")]
HB.structure Definition BaseAddUMagma :=
{V of hasZero V & BaseAddMagma V}.
Module BaseAddUMagmaExports.
Bind Scope ring_scope with BaseAddUMagma.sort.
End BaseAddUMagmaExports.
Module ChoiceBaseAddUMagmaExports.
Bind Scope ring_scope with ChoiceBaseAddUMagma.sort.
End ChoiceBaseAddUMagmaExports.
Local Notation "0" := (@zero _) : ring_scope.
Definition natmul (V : baseAddUMagmaType) (x : V) n : V := iterop n +%R x 0.
Arguments natmul : simpl never.
Local Notation "x *+ n" := (natmul x n) : ring_scope.
#[export]
HB.instance Definition _ (V : baseAddUMagmaType) :=
hasOne.Build (to_multiplicative V) (@zero V).
HB.instance Definition _ (V : ChoiceBaseAddMagma.type) :=
Magma.on (to_multiplicative V).
Section BaseAddMagmaTheory.
Variables V : baseAddMagmaType.
Section ClosedPredicates.
Variable S : {pred V}.
Definition addr_closed := {in S &, ∀ u v, u + v \in S}.
End ClosedPredicates.
End BaseAddMagmaTheory.
#[short(type="addMagmaType")]
HB.structure Definition AddMagma :=
{V of BaseAddMagma_isAddMagma V & ChoiceBaseAddMagma V}.
Module AddMagmaExports.
Bind Scope ring_scope with AddMagma.sort.
End AddMagmaExports.
Section AddMagmaTheory.
Variables V : addMagmaType.
Lemma commuteT x y : @commute (to_multiplicative V) x y.
End AddMagmaTheory.
#[short(type="addSemigroupType")]
HB.structure Definition AddSemigroup :=
{V of AddMagma_isAddSemigroup V & AddMagma V}.
Module AddSemigroupExports.
Bind Scope ring_scope with AddSemigroup.sort.
End AddSemigroupExports.
#[export]
HB.instance Definition _ (V : addSemigroupType) :=
Magma_isSemigroup.Build (to_multiplicative V) addrA.
Section AddSemigroupTheory.
Variables V : addSemigroupType.
Lemma addrCA : @left_commutative V V +%R.
Lemma addrAC : @right_commutative V V +%R.
Lemma addrACA : @interchange V +%R +%R.
End AddSemigroupTheory.
#[short(type="baseAddUMagmaType")]
HB.structure Definition BaseAddUMagma :=
{V of hasZero V & BaseAddMagma V}.
Module BaseAddUMagmaExports.
Bind Scope ring_scope with BaseAddUMagma.sort.
End BaseAddUMagmaExports.
Module ChoiceBaseAddUMagmaExports.
Bind Scope ring_scope with ChoiceBaseAddUMagma.sort.
End ChoiceBaseAddUMagmaExports.
Local Notation "0" := (@zero _) : ring_scope.
Definition natmul (V : baseAddUMagmaType) (x : V) n : V := iterop n +%R x 0.
Arguments natmul : simpl never.
Local Notation "x *+ n" := (natmul x n) : ring_scope.
#[export]
HB.instance Definition _ (V : baseAddUMagmaType) :=
hasOne.Build (to_multiplicative V) (@zero V).
FIXME: HB.saturate
#[export]
HB.instance Definition _ (V : ChoiceBaseAddUMagma.type) :=
BaseUMagma.on (to_multiplicative V).
Section BaseAddUMagmaTheory.
Variable V : baseAddUMagmaType.
Implicit Types x : V.
Lemma mulr0n x : x *+ 0 = 0.
Lemma mulr1n x : x *+ 1 = x.
Lemma mulr2n x : x *+ 2 = x + x.
Lemma mulrb x (b : bool) : x *+ b = (if b then x else 0).
Lemma mulrSS x n : x *+ n.+2 = x + x *+ n.+1.
Section ClosedPredicates.
Variable S : {pred V}.
Definition addumagma_closed := 0 \in S ∧ addr_closed S.
End ClosedPredicates.
End BaseAddUMagmaTheory.
#[warning="-HB.no-new-instance"]
HB.instance Definition _ := BaseAddUMagma_isAddUMagma.Build V add0r.
#[short(type="addUMagmaType")]
HB.structure Definition AddUMagma := {V of isAddUMagma V & Choice V}.
Lemma addr0 (V : addUMagmaType) : right_id (@zero V) add.
Local Notation "\sum_ ( i <- r | P ) F" := (\big[+%R/0]_(i <- r | P) F).
Local Notation "\sum_ ( m <= i < n ) F" := (\big[+%R/0]_(m ≤ i < n) F).
Local Notation "\sum_ ( i < n ) F" := (\big[+%R/0]_(i < n) F).
Local Notation "\sum_ ( i 'in' A ) F" := (\big[+%R/0]_(i in A) F).
Import Monoid.Theory.
#[export]
HB.instance Definition _ (V : addUMagmaType) :=
Magma_isUMagma.Build (to_multiplicative V) add0r (@addr0 V).
Module AddUMagmaExports.
Bind Scope ring_scope with AddUMagma.sort.
End AddUMagmaExports.
#[short(type="nmodType")]
HB.structure Definition Nmodule := {V of isNmodule V & Choice V}.
Module NmoduleExports.
Bind Scope ring_scope with Nmodule.sort.
End NmoduleExports.
#[export]
HB.instance Definition _ (V : nmodType) :=
UMagma_isMonoid.Build (to_multiplicative V) addrA.
#[export]
HB.instance Definition _ (V : nmodType) :=
Monoid.isComLaw.Build V 0%R +%R addrA addrC add0r.
Section NmoduleTheory.
Variable V : nmodType.
Implicit Types x y : V.
Let G := to_multiplicative V.
HB.instance Definition _ (V : ChoiceBaseAddUMagma.type) :=
BaseUMagma.on (to_multiplicative V).
Section BaseAddUMagmaTheory.
Variable V : baseAddUMagmaType.
Implicit Types x : V.
Lemma mulr0n x : x *+ 0 = 0.
Lemma mulr1n x : x *+ 1 = x.
Lemma mulr2n x : x *+ 2 = x + x.
Lemma mulrb x (b : bool) : x *+ b = (if b then x else 0).
Lemma mulrSS x n : x *+ n.+2 = x + x *+ n.+1.
Section ClosedPredicates.
Variable S : {pred V}.
Definition addumagma_closed := 0 \in S ∧ addr_closed S.
End ClosedPredicates.
End BaseAddUMagmaTheory.
#[warning="-HB.no-new-instance"]
HB.instance Definition _ := BaseAddUMagma_isAddUMagma.Build V add0r.
#[short(type="addUMagmaType")]
HB.structure Definition AddUMagma := {V of isAddUMagma V & Choice V}.
Lemma addr0 (V : addUMagmaType) : right_id (@zero V) add.
Local Notation "\sum_ ( i <- r | P ) F" := (\big[+%R/0]_(i <- r | P) F).
Local Notation "\sum_ ( m <= i < n ) F" := (\big[+%R/0]_(m ≤ i < n) F).
Local Notation "\sum_ ( i < n ) F" := (\big[+%R/0]_(i < n) F).
Local Notation "\sum_ ( i 'in' A ) F" := (\big[+%R/0]_(i in A) F).
Import Monoid.Theory.
#[export]
HB.instance Definition _ (V : addUMagmaType) :=
Magma_isUMagma.Build (to_multiplicative V) add0r (@addr0 V).
Module AddUMagmaExports.
Bind Scope ring_scope with AddUMagma.sort.
End AddUMagmaExports.
#[short(type="nmodType")]
HB.structure Definition Nmodule := {V of isNmodule V & Choice V}.
Module NmoduleExports.
Bind Scope ring_scope with Nmodule.sort.
End NmoduleExports.
#[export]
HB.instance Definition _ (V : nmodType) :=
UMagma_isMonoid.Build (to_multiplicative V) addrA.
#[export]
HB.instance Definition _ (V : nmodType) :=
Monoid.isComLaw.Build V 0%R +%R addrA addrC add0r.
Section NmoduleTheory.
Variable V : nmodType.
Implicit Types x y : V.
Let G := to_multiplicative V.
addrA, addrC and add0r in the structure
addr0 proved above
Lemma mulrS x n : x *+ n.+1 = x + (x *+ n).
Lemma mulrSr x n : x *+ n.+1 = x *+ n + x.
Lemma mul0rn n : 0 *+ n = 0 :> V.
Lemma mulrnDl n : {morph (fun x ⇒ x *+ n) : x y / x + y}.
Lemma mulrnDr x m n : x *+ (m + n) = x *+ m + x *+ n.
Lemma mulrnA x m n : x *+ (m × n) = x *+ m *+ n.
Lemma mulrnAC x m n : x *+ m *+ n = x *+ n *+ m.
Lemma iter_addr n x y : iter n (+%R x) y = x *+ n + y.
Lemma iter_addr_0 n x : iter n (+%R x) 0 = x *+ n.
Lemma sumrMnl I r P (F : I → V) n :
\sum_(i <- r | P i) F i *+ n = (\sum_(i <- r | P i) F i) *+ n.
Lemma sumrMnr x I r P (F : I → nat) :
\sum_(i <- r | P i) x *+ F i = x *+ (\sum_(i <- r | P i) F i).
Lemma sumr_const (I : finType) (A : pred I) x : \sum_(i in A) x = x *+ #|A|.
Lemma sumr_const_nat m n x : \sum_(n ≤ i < m) x = x *+ (m - n).
End NmoduleTheory.
Notation nmod_closed := addumagma_closed.
#[short(type="baseZmodType")]
HB.structure Definition BaseZmodule := {V of hasOpp V & BaseAddUMagma V}.
Module BaseZmodExports.
Bind Scope ring_scope with BaseZmodule.sort.
End BaseZmodExports.
Local Notation "-%R" := (@opp _) : ring_scope.
Local Notation "- x" := (opp x) : ring_scope.
Local Notation "x - y" := (x + - y) : ring_scope.
Local Notation "x *- n" := (- (x *+ n)) : ring_scope.
Section ClosedPredicates.
Variable (U : baseZmodType) (S : {pred U}).
Definition oppr_closed := {in S, ∀ u, - u \in S}.
Definition subr_closed := {in S &, ∀ u v, u - v \in S}.
Definition zmod_closed := 0 \in S ∧ subr_closed.
End ClosedPredicates.
#[short(type="zmodType")]
HB.structure Definition Zmodule :=
{V of BaseZmoduleNmodule_isZmodule V & BaseZmodule V & Nmodule V}.
Module ZmoduleExports.
Bind Scope ring_scope with Zmodule.sort.
End ZmoduleExports.
Lemma addrN (V : zmodType) : @right_inverse V V V 0 -%R +%R.
#[export]
HB.instance Definition _ (V : baseZmodType) :=
hasInv.Build (to_multiplicative V) (@opp V).
#[export]
HB.instance Definition _ (V : zmodType) :=
Monoid_isGroup.Build (to_multiplicative V) addNr (@addrN V).
Section ZmoduleTheory.
Variable V : zmodType.
Implicit Types x y : V.
Let G := to_multiplicative V.
Definition subrr := addrN.
Lemma addKr : @left_loop V V -%R +%R.
Lemma addNKr : @rev_left_loop V V -%R +%R.
Lemma addrK : @right_loop V V -%R +%R.
Lemma addrNK : @rev_right_loop V V -%R +%R.
Definition subrK := addrNK.
Lemma subKr x : involutive (fun y ⇒ x - y).
Lemma addrI : @right_injective V V V +%R.
Lemma addIr : @left_injective V V V +%R.
Lemma subrI : right_injective (fun x y ⇒ x - y).
Lemma subIr : left_injective (fun x y ⇒ x - y).
Lemma opprK : @involutive V -%R.
Lemma oppr_inj : @injective V V -%R.
Lemma oppr0 : -0 = 0 :> V.
Lemma oppr_eq0 x : (- x == 0) = (x == 0).
Lemma subr0 x : x - 0 = x.
Lemma sub0r x : 0 - x = - x.
Lemma opprB x y : - (x - y) = y - x.
Lemma opprD : {morph -%R: x y / x + y : V}.
Lemma addrKA z x y : (x + z) - (z + y) = x - y.
Lemma subrKA z x y : (x - z) + (z + y) = x + y.
Lemma addr0_eq x y : x + y = 0 → - x = y.
Lemma subr0_eq x y : x - y = 0 → x = y.
Lemma subr_eq x y z : (x - z == y) = (x == y + z).
Lemma subr_eq0 x y : (x - y == 0) = (x == y).
Lemma addr_eq0 x y : (x + y == 0) = (x == - y).
Lemma eqr_opp x y : (- x == - y) = (x == y).
Lemma eqr_oppLR x y : (- x == y) = (x == - y).
Lemma mulNrn x n : (- x) *+ n = x *- n.
Lemma mulrnBl n : {morph (fun x ⇒ x *+ n) : x y / x - y}.
Lemma mulrnBr x m n : n ≤ m → x *+ (m - n) = x *+ m - x *+ n.
Lemma sumrN I r P (F : I → V) :
(\sum_(i <- r | P i) - F i = - (\sum_(i <- r | P i) F i)).
Lemma sumrB I r (P : pred I) (F1 F2 : I → V) :
\sum_(i <- r | P i) (F1 i - F2 i)
= \sum_(i <- r | P i) F1 i - \sum_(i <- r | P i) F2 i.
Lemma telescope_sumr n m (f : nat → V) : n ≤ m →
\sum_(n ≤ k < m) (f k.+1 - f k) = f m - f n.
Lemma telescope_sumr_eq n m (f u : nat → V) : n ≤ m →
(∀ k, (n ≤ k < m)%N → u k = f k.+1 - f k) →
\sum_(n ≤ k < m) u k = f m - f n.
Section ClosedPredicates.
Variable (S : {pred V}).
Lemma zmod_closedN : zmod_closed S → oppr_closed S.
Lemma zmod_closedD : zmod_closed S → addr_closed S.
Lemma zmod_closed0D : zmod_closed S → nmod_closed S.
End ClosedPredicates.
End ZmoduleTheory.
Arguments addrI {V} y [x1 x2].
Arguments addIr {V} x [x1 x2].
Arguments opprK {V}.
Arguments oppr_inj {V} [x1 x2].
Definition nmod_morphism (U V : baseAddUMagmaType) (f : U → V) : Prop :=
(f 0 = 0) × {morph f : x y / x + y}.
#[deprecated(since="mathcomp 2.5.0", note="use `nmod_morphism` instead")]
Definition semi_additive := nmod_morphism.
Module isSemiAdditive.
#[deprecated(since="mathcomp 2.5.0",
note="Use isNmodMorphism.Build instead.")]
Notation Build U V apply := (isNmodMorphism.Build U V apply) (only parsing).
End isSemiAdditive.
#[mathcomp(axiom="nmod_morphism")]
HB.structure Definition Additive (U V : baseAddUMagmaType) :=
{f of isNmodMorphism U V f}.
Definition zmod_morphism (U V : zmodType) (f : U → V) :=
{morph f : x y / x - y}.
#[deprecated(since="mathcomp 2.5.0", note="use `zmod_morphism` instead")]
Definition additive := zmod_morphism.
Module isAdditive.
#[deprecated(since="mathcomp 2.5.0",
note="Use isZmodMorphism.Build instead.")]
Notation Build U V apply := (isZmodMorphism.Build U V apply) (only parsing).
End isAdditive.
Local Lemma raddf0 : apply 0 = 0.
Local Lemma raddfD : {morph apply : x y / x + y}.
Module AdditiveExports.
Notation "{ 'additive' U -> V }" := (Additive.type U%type V%type) : type_scope.
End AdditiveExports.
Section AdditiveTheory.
Variables (U V : baseAddUMagmaType) (f : {additive U → V}).
Lemma raddf0 : f 0 = 0.
Lemma raddfD :
{morph f : x y / x + y}.
End AdditiveTheory.
Definition to_fmultiplicative U V :=
@id (to_multiplicative U → to_multiplicative V).
#[export]
HB.instance Definition _ U V (f : {additive U → V}) :=
isMultiplicative.Build (to_multiplicative U) (to_multiplicative V)
(to_fmultiplicative f) (@raddfD _ _ f).
#[export]
HB.instance Definition _ (U V : baseAddUMagmaType) (f : {additive U → V}) :=
Multiplicative_isUMagmaMorphism.Build
(to_multiplicative U) (to_multiplicative V) (to_fmultiplicative f)
(@raddf0 _ _ f).
Section LiftedAddMagma.
Variables (U : Type) (V : baseAddMagmaType).
Definition add_fun (f g : U → V) x := f x + g x.
End LiftedAddMagma.
Section LiftedNmod.
Variables (U : Type) (V : baseAddUMagmaType).
Definition null_fun of U : V := 0.
End LiftedNmod.
Section LiftedZmod.
Variables (U : Type) (V : baseZmodType).
Definition opp_fun (f : U → V) x := - f x.
Definition sub_fun (f g : U → V) x := f x - g x.
End LiftedZmod.
Arguments null_fun {_} V _ /.
Arguments add_fun {_ _} f g _ /.
Arguments opp_fun {_ _} f _ /.
Arguments sub_fun {_ _} f g _ /.
Local Notation "\0" := (null_fun _) : function_scope.
Local Notation "f \+ g" := (add_fun f g) : function_scope.
Local Notation "\- f" := (opp_fun f) : function_scope.
Local Notation "f \- g" := (sub_fun f g) : function_scope.
Section Nmod.
Variables (U V : addUMagmaType) (f : {additive U → V}).
Let g := to_fmultiplicative f.
Lemma raddf_eq0 x : injective f → (f x == 0) = (x == 0).
Lemma raddfMn n : {morph f : x / x *+ n}.
Lemma raddf_sum I r (P : pred I) E :
f (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) f (E i).
Lemma can2_nmod_morphism f' : cancel f f' → cancel f' f → nmod_morphism f'.
#[deprecated(since="mathcomp 2.5.0", note="use `can2_nmod_morphism` instead")]
Definition can2_semi_additive := can2_nmod_morphism.
End Nmod.
Section Zmod.
Variables (U V : zmodType) (f : {additive U → V}).
Let g := to_fmultiplicative f.
Lemma raddfN : {morph f : x / - x}.
Lemma raddfB : {morph f : x y / x - y}.
Lemma raddf_inj : (∀ x, f x = 0 → x = 0) → injective f.
Lemma raddfMNn n : {morph f : x / x *- n}.
Lemma can2_zmod_morphism f' : cancel f f' → cancel f' f → zmod_morphism f'.
#[warning="-deprecated-since-mathcomp-2.5.0",
deprecated(since="mathcomp 2.5.0", note="use `can2_zmod_morphism` instead")]
Definition can2_additive := can2_zmod_morphism.
End Zmod.
Section AdditiveTheory.
Section AddCFun.
Variables (U : baseAddUMagmaType) (V : nmodType).
Implicit Types (f g : {additive U → V}).
Fact add_fun_nmod_morphism f g : nmod_morphism (add_fun f g).
#[export]
HB.instance Definition _ f g :=
isNmodMorphism.Build U V (add_fun f g) (add_fun_nmod_morphism f g).
End AddCFun.
Section AddFun.
Variables (U V W : baseAddUMagmaType).
Variables (f : {additive V → W}) (g : {additive U → V}).
Fact idfun_is_nmod_morphism : nmod_morphism (@idfun U).
#[export]
HB.instance Definition _ := isNmodMorphism.Build U U idfun
idfun_is_nmod_morphism.
Fact comp_is_nmod_morphism : nmod_morphism (f \o g).
#[export]
HB.instance Definition _ := isNmodMorphism.Build U W (f \o g)
comp_is_nmod_morphism.
End AddFun.
Section AddFun.
Variables (U : baseAddUMagmaType) (V : addUMagmaType) (W : nmodType).
Variables (f g : {additive U → W}).
Fact null_fun_is_nmod_morphism : nmod_morphism (\0 : U → V).
#[export]
HB.instance Definition _ :=
isNmodMorphism.Build U V (\0 : U → V)
null_fun_is_nmod_morphism.
End AddFun.
Section AddVFun.
Variables (U : baseAddUMagmaType) (V : zmodType).
Variables (f g : {additive U → V}).
Fact opp_is_zmod_morphism : zmod_morphism (-%R : V → V).
#[export]
HB.instance Definition _ :=
isZmodMorphism.Build V V -%R opp_is_zmod_morphism.
Fact opp_fun_is_zmod_morphism : nmod_morphism (\- f).
#[export]
HB.instance Definition _ :=
isNmodMorphism.Build U V (opp_fun f) opp_fun_is_zmod_morphism.
Fact sub_fun_is_zmod_morphism :
nmod_morphism (f \- g).
#[export]
HB.instance Definition _ :=
isNmodMorphism.Build U V (f \- g) sub_fun_is_zmod_morphism.
End AddVFun.
End AdditiveTheory.
Mixins for stability properties
Structures for stability properties
#[short(type="addrClosed")]
HB.structure Definition AddClosed V := {S of isAddClosed V S}.
#[short(type="opprClosed")]
HB.structure Definition OppClosed V := {S of isOppClosed V S}.
#[short(type="zmodClosed")]
HB.structure Definition ZmodClosed V := {S of OppClosed V S & AddClosed V S}.
Factories for stability properties
Definition to_pmultiplicative (T : Type) := @id {pred to_multiplicative T}.
#[export]
HB.instance Definition _ (U : baseAddUMagmaType) (S : addrClosed U) :=
isMulClosed.Build (to_multiplicative U) (to_pmultiplicative S)
(snd nmod_closed_subproof).
#[export]
HB.instance Definition _ (U : baseAddUMagmaType) (S : addrClosed U) :=
isMul1Closed.Build (to_multiplicative U) (to_pmultiplicative S)
(fst nmod_closed_subproof).
#[export]
HB.instance Definition _ (U : zmodType) (S : opprClosed U) :=
isInvClosed.Build (to_multiplicative U) (to_pmultiplicative S)
oppr_closed_subproof.
FIXME: HB.saturate
#[export]
HB.instance Definition _ (U : zmodType) (S : zmodClosed U) :=
InvClosed.on (to_pmultiplicative S).
Section BaseAddUMagmaPred.
Variables (V : baseAddUMagmaType).
Section BaseAddUMagmaPred.
Variables S : addrClosed V.
Lemma rpred0 : 0 \in S.
Lemma rpredD : {in S &, ∀ u v, u + v \in S}.
Lemma rpred0D : addumagma_closed S.
Lemma rpredMn n : {in S, ∀ u, u *+ n \in S}.
Lemma rpred_sum I r (P : pred I) F :
(∀ i, P i → F i \in S) → \sum_(i <- r | P i) F i \in S.
End BaseAddUMagmaPred.
End BaseAddUMagmaPred.
Section ZmodPred.
Variables (V : zmodType).
Section Opp.
Variable S : opprClosed V.
Lemma rpredNr : {in S, ∀ u, - u \in S}.
Lemma rpredN : {mono -%R: u / u \in S}.
End Opp.
Section Zmod.
Variables S : zmodClosed V.
Let T := to_pmultiplicative S.
Lemma rpredB : {in S &, ∀ u v, u - v \in S}.
Lemma rpredBC u v : u - v \in S = (v - u \in S).
Lemma rpredMNn n: {in S, ∀ u, u *- n \in S}.
Lemma rpredDr x y : x \in S → (y + x \in S) = (y \in S).
Lemma rpredDl x y : x \in S → (x + y \in S) = (y \in S).
Lemma rpredBr x y : x \in S → (y - x \in S) = (y \in S).
Lemma rpredBl x y : x \in S → (x - y \in S) = (y \in S).
Lemma zmodClosedP : zmod_closed S.
End Zmod.
End ZmodPred.
#[short(type="subBaseAddUMagma")]
HB.structure Definition SubBaseAddUMagma (V : baseAddUMagmaType) S :=
{ U of SubChoice V S U & BaseAddUMagma U & isSubBaseAddUMagma V S U }.
#[short(type="subAddUMagma")]
HB.structure Definition SubAddUMagma (V : addUMagmaType) S :=
{ U of SubChoice V S U & AddUMagma U & isSubBaseAddUMagma V S U }.
#[short(type="subNmodType")]
HB.structure Definition SubNmodule (V : nmodType) S :=
{ U of SubChoice V S U & Nmodule U & isSubBaseAddUMagma V S U}.
Section subBaseAddUMagma.
Context (V : baseAddUMagmaType) (S : pred V) (U : subBaseAddUMagma S).
Notation val := (val : U → V).
#[export]
HB.instance Definition _ := isNmodMorphism.Build U V val valD0_subproof.
Lemma valD : {morph val : x y / x + y}.
Lemma val0 : val 0 = 0.
End subBaseAddUMagma.
Let inU v Sv : U := Sub v Sv.
Let addU (u1 u2 : U) := inU (rpredD (valP u1) (valP u2)).
Let oneU := inU (fst addumagma_closed_subproof).
Lemma addrC : commutative addU.
Lemma add0r : left_id oneU addU.
Lemma valD0 : nmod_morphism (val : U → V).
Lemma addrA : associative (@add U).
#[short(type="subZmodType")]
HB.structure Definition SubZmodule (V : zmodType) S :=
{ U of SubChoice V S U & Zmodule U & isSubBaseAddUMagma V S U}.
Section zmod_morphism.
Context (V : zmodType) (S : pred V) (U : SubZmodule.type S).
Notation val := (val : U → V).
Lemma valB : {morph val : x y / x - y}.
Lemma valN : {morph val : x / - x}.
End zmod_morphism.
Fact valD0 : nmod_morphism (val : U → V).
Let inU v Sv : U := Sub v Sv.
Let oppU (u : U) := inU (rpredNr (valP u)).
Lemma addNr : left_inverse 0 oppU (@add U).
Module SubExports.
Notation "[ 'SubChoice_isSubNmodule' 'of' U 'by' <: ]" :=
(SubChoice_isSubNmodule.Build _ _ U rpred0D)
(at level 0, format "[ 'SubChoice_isSubNmodule' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubNmodule_isSubZmodule' 'of' U 'by' <: ]" :=
(SubNmodule_isSubZmodule.Build _ _ U (@rpredNr _ _))
(at level 0, format "[ 'SubNmodule_isSubZmodule' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubChoice_isSubZmodule' 'of' U 'by' <: ]" :=
(SubChoice_isSubZmodule.Build _ _ U (zmodClosedP _))
(at level 0, format "[ 'SubChoice_isSubZmodule' 'of' U 'by' <: ]")
: form_scope.
End SubExports.
Module AllExports. End AllExports.
End Algebra.
Export AllExports.
Notation "0" := (@zero _) : ring_scope.
Notation "-%R" := (@opp _) : ring_scope.
Notation "- x" := (opp x) : ring_scope.
Notation "+%R" := (@add _) : function_scope.
Notation "x + y" := (add x y) : ring_scope.
Notation "x - y" := (add x (- y)) : ring_scope.
Arguments natmul : simpl never.
Notation "x *+ n" := (natmul x n) : ring_scope.
Notation "x *- n" := (opp (x *+ n)) : ring_scope.
Notation "s `_ i" := (seq.nth 0%R s%R i) : ring_scope.
Notation support := 0.-support.
Notation "1" := (@one _) : ring_scope.
Notation "- 1" := (opp 1) : ring_scope.
Notation "n %:R" := (natmul 1 n) : ring_scope.
Notation "\sum_ ( i <- r | P ) F" :=
(\big[+%R/0%R]_(i <- r | P%B) F%R) : ring_scope.
Notation "\sum_ ( i <- r ) F" :=
(\big[+%R/0%R]_(i <- r) F%R) : ring_scope.
Notation "\sum_ ( m <= i < n | P ) F" :=
(\big[+%R/0%R]_(m ≤ i < n | P%B) F%R) : ring_scope.
Notation "\sum_ ( m <= i < n ) F" :=
(\big[+%R/0%R]_(m ≤ i < n) F%R) : ring_scope.
Notation "\sum_ ( i | P ) F" :=
(\big[+%R/0%R]_(i | P%B) F%R) : ring_scope.
Notation "\sum_ i F" :=
(\big[+%R/0%R]_i F%R) : ring_scope.
Notation "\sum_ ( i : t | P ) F" :=
(\big[+%R/0%R]_(i : t | P%B) F%R) (only parsing) : ring_scope.
Notation "\sum_ ( i : t ) F" :=
(\big[+%R/0%R]_(i : t) F%R) (only parsing) : ring_scope.
Notation "\sum_ ( i < n | P ) F" :=
(\big[+%R/0%R]_(i < n | P%B) F%R) : ring_scope.
Notation "\sum_ ( i < n ) F" :=
(\big[+%R/0%R]_(i < n) F%R) : ring_scope.
Notation "\sum_ ( i 'in' A | P ) F" :=
(\big[+%R/0%R]_(i in A | P%B) F%R) : ring_scope.
Notation "\sum_ ( i 'in' A ) F" :=
(\big[+%R/0%R]_(i in A) F%R) : ring_scope.
Section FinFunBaseAddMagma.
Variable (aT : finType) (rT : baseAddMagmaType).
Implicit Types f g : {ffun aT → rT}.
Definition ffun_add f g := [ffun a ⇒ f a + g a].
End FinFunBaseAddMagma.
Section FinFunAddMagma.
Variable (aT : finType) (rT : addMagmaType).
Implicit Types f g : {ffun aT → rT}.
Fact ffun_addrC : commutative (@ffun_add aT rT).
End FinFunAddMagma.
Section FinFunAddSemigroup.
Variable (aT : finType) (rT : addSemigroupType).
Implicit Types f g : {ffun aT → rT}.
Fact ffun_addrA : associative (@ffun_add aT rT).
End FinFunAddSemigroup.
Section FinFunBaseAddUMagma.
Variable (aT : finType) (rT : baseAddUMagmaType).
Implicit Types f g : {ffun aT → rT}.
Definition ffun_zero := [ffun a : aT ⇒ (0 : rT)].
End FinFunBaseAddUMagma.
Section FinFunAddUMagma.
Variable (aT : finType) (rT : addUMagmaType).
Implicit Types f g : {ffun aT → rT}.
Fact ffun_add0r : left_id (@ffun_zero aT rT) (@ffun_add aT rT).
End FinFunAddUMagma.
HB.instance Definition _ (U : zmodType) (S : zmodClosed U) :=
InvClosed.on (to_pmultiplicative S).
Section BaseAddUMagmaPred.
Variables (V : baseAddUMagmaType).
Section BaseAddUMagmaPred.
Variables S : addrClosed V.
Lemma rpred0 : 0 \in S.
Lemma rpredD : {in S &, ∀ u v, u + v \in S}.
Lemma rpred0D : addumagma_closed S.
Lemma rpredMn n : {in S, ∀ u, u *+ n \in S}.
Lemma rpred_sum I r (P : pred I) F :
(∀ i, P i → F i \in S) → \sum_(i <- r | P i) F i \in S.
End BaseAddUMagmaPred.
End BaseAddUMagmaPred.
Section ZmodPred.
Variables (V : zmodType).
Section Opp.
Variable S : opprClosed V.
Lemma rpredNr : {in S, ∀ u, - u \in S}.
Lemma rpredN : {mono -%R: u / u \in S}.
End Opp.
Section Zmod.
Variables S : zmodClosed V.
Let T := to_pmultiplicative S.
Lemma rpredB : {in S &, ∀ u v, u - v \in S}.
Lemma rpredBC u v : u - v \in S = (v - u \in S).
Lemma rpredMNn n: {in S, ∀ u, u *- n \in S}.
Lemma rpredDr x y : x \in S → (y + x \in S) = (y \in S).
Lemma rpredDl x y : x \in S → (x + y \in S) = (y \in S).
Lemma rpredBr x y : x \in S → (y - x \in S) = (y \in S).
Lemma rpredBl x y : x \in S → (x - y \in S) = (y \in S).
Lemma zmodClosedP : zmod_closed S.
End Zmod.
End ZmodPred.
#[short(type="subBaseAddUMagma")]
HB.structure Definition SubBaseAddUMagma (V : baseAddUMagmaType) S :=
{ U of SubChoice V S U & BaseAddUMagma U & isSubBaseAddUMagma V S U }.
#[short(type="subAddUMagma")]
HB.structure Definition SubAddUMagma (V : addUMagmaType) S :=
{ U of SubChoice V S U & AddUMagma U & isSubBaseAddUMagma V S U }.
#[short(type="subNmodType")]
HB.structure Definition SubNmodule (V : nmodType) S :=
{ U of SubChoice V S U & Nmodule U & isSubBaseAddUMagma V S U}.
Section subBaseAddUMagma.
Context (V : baseAddUMagmaType) (S : pred V) (U : subBaseAddUMagma S).
Notation val := (val : U → V).
#[export]
HB.instance Definition _ := isNmodMorphism.Build U V val valD0_subproof.
Lemma valD : {morph val : x y / x + y}.
Lemma val0 : val 0 = 0.
End subBaseAddUMagma.
Let inU v Sv : U := Sub v Sv.
Let addU (u1 u2 : U) := inU (rpredD (valP u1) (valP u2)).
Let oneU := inU (fst addumagma_closed_subproof).
Lemma addrC : commutative addU.
Lemma add0r : left_id oneU addU.
Lemma valD0 : nmod_morphism (val : U → V).
Lemma addrA : associative (@add U).
#[short(type="subZmodType")]
HB.structure Definition SubZmodule (V : zmodType) S :=
{ U of SubChoice V S U & Zmodule U & isSubBaseAddUMagma V S U}.
Section zmod_morphism.
Context (V : zmodType) (S : pred V) (U : SubZmodule.type S).
Notation val := (val : U → V).
Lemma valB : {morph val : x y / x - y}.
Lemma valN : {morph val : x / - x}.
End zmod_morphism.
Fact valD0 : nmod_morphism (val : U → V).
Let inU v Sv : U := Sub v Sv.
Let oppU (u : U) := inU (rpredNr (valP u)).
Lemma addNr : left_inverse 0 oppU (@add U).
Module SubExports.
Notation "[ 'SubChoice_isSubNmodule' 'of' U 'by' <: ]" :=
(SubChoice_isSubNmodule.Build _ _ U rpred0D)
(at level 0, format "[ 'SubChoice_isSubNmodule' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubNmodule_isSubZmodule' 'of' U 'by' <: ]" :=
(SubNmodule_isSubZmodule.Build _ _ U (@rpredNr _ _))
(at level 0, format "[ 'SubNmodule_isSubZmodule' 'of' U 'by' <: ]")
: form_scope.
Notation "[ 'SubChoice_isSubZmodule' 'of' U 'by' <: ]" :=
(SubChoice_isSubZmodule.Build _ _ U (zmodClosedP _))
(at level 0, format "[ 'SubChoice_isSubZmodule' 'of' U 'by' <: ]")
: form_scope.
End SubExports.
Module AllExports. End AllExports.
End Algebra.
Export AllExports.
Notation "0" := (@zero _) : ring_scope.
Notation "-%R" := (@opp _) : ring_scope.
Notation "- x" := (opp x) : ring_scope.
Notation "+%R" := (@add _) : function_scope.
Notation "x + y" := (add x y) : ring_scope.
Notation "x - y" := (add x (- y)) : ring_scope.
Arguments natmul : simpl never.
Notation "x *+ n" := (natmul x n) : ring_scope.
Notation "x *- n" := (opp (x *+ n)) : ring_scope.
Notation "s `_ i" := (seq.nth 0%R s%R i) : ring_scope.
Notation support := 0.-support.
Notation "1" := (@one _) : ring_scope.
Notation "- 1" := (opp 1) : ring_scope.
Notation "n %:R" := (natmul 1 n) : ring_scope.
Notation "\sum_ ( i <- r | P ) F" :=
(\big[+%R/0%R]_(i <- r | P%B) F%R) : ring_scope.
Notation "\sum_ ( i <- r ) F" :=
(\big[+%R/0%R]_(i <- r) F%R) : ring_scope.
Notation "\sum_ ( m <= i < n | P ) F" :=
(\big[+%R/0%R]_(m ≤ i < n | P%B) F%R) : ring_scope.
Notation "\sum_ ( m <= i < n ) F" :=
(\big[+%R/0%R]_(m ≤ i < n) F%R) : ring_scope.
Notation "\sum_ ( i | P ) F" :=
(\big[+%R/0%R]_(i | P%B) F%R) : ring_scope.
Notation "\sum_ i F" :=
(\big[+%R/0%R]_i F%R) : ring_scope.
Notation "\sum_ ( i : t | P ) F" :=
(\big[+%R/0%R]_(i : t | P%B) F%R) (only parsing) : ring_scope.
Notation "\sum_ ( i : t ) F" :=
(\big[+%R/0%R]_(i : t) F%R) (only parsing) : ring_scope.
Notation "\sum_ ( i < n | P ) F" :=
(\big[+%R/0%R]_(i < n | P%B) F%R) : ring_scope.
Notation "\sum_ ( i < n ) F" :=
(\big[+%R/0%R]_(i < n) F%R) : ring_scope.
Notation "\sum_ ( i 'in' A | P ) F" :=
(\big[+%R/0%R]_(i in A | P%B) F%R) : ring_scope.
Notation "\sum_ ( i 'in' A ) F" :=
(\big[+%R/0%R]_(i in A) F%R) : ring_scope.
Section FinFunBaseAddMagma.
Variable (aT : finType) (rT : baseAddMagmaType).
Implicit Types f g : {ffun aT → rT}.
Definition ffun_add f g := [ffun a ⇒ f a + g a].
End FinFunBaseAddMagma.
Section FinFunAddMagma.
Variable (aT : finType) (rT : addMagmaType).
Implicit Types f g : {ffun aT → rT}.
Fact ffun_addrC : commutative (@ffun_add aT rT).
End FinFunAddMagma.
Section FinFunAddSemigroup.
Variable (aT : finType) (rT : addSemigroupType).
Implicit Types f g : {ffun aT → rT}.
Fact ffun_addrA : associative (@ffun_add aT rT).
End FinFunAddSemigroup.
Section FinFunBaseAddUMagma.
Variable (aT : finType) (rT : baseAddUMagmaType).
Implicit Types f g : {ffun aT → rT}.
Definition ffun_zero := [ffun a : aT ⇒ (0 : rT)].
End FinFunBaseAddUMagma.
Section FinFunAddUMagma.
Variable (aT : finType) (rT : addUMagmaType).
Implicit Types f g : {ffun aT → rT}.
Fact ffun_add0r : left_id (@ffun_zero aT rT) (@ffun_add aT rT).
End FinFunAddUMagma.
FIXME: HB.saturate
FIXME: HB.saturate
Lemma ffunMnE f n x : (f *+ n) x = f x *+ n.
Section Sum.
Variables (I : Type) (r : seq I) (P : pred I) (F : I → {ffun aT → rT}).
Lemma sum_ffunE x : (\sum_(i <- r | P i) F i) x = \sum_(i <- r | P i) F i x.
Lemma sum_ffun :
\sum_(i <- r | P i) F i = [ffun x ⇒ \sum_(i <- r | P i) F i x].
End Sum.
End FinFunNmod.
Section FinFunZmod.
Variable (aT : finType) (rT : zmodType).
Implicit Types f g : {ffun aT → rT}.
Definition ffun_opp f := [ffun a ⇒ - f a].
Fact ffun_addNr : left_inverse 0 ffun_opp +%R.
End FinFunZmod.
Section PairBaseAddMagma.
Variables U V : baseAddMagmaType.
Definition add_pair (a b : U × V) := (a.1 + b.1, a.2 + b.2).
End PairBaseAddMagma.
Section PairAddMagma.
Variables U V : addMagmaType.
Fact pair_addrC : commutative (@add_pair U V).
End PairAddMagma.
Section PairAddSemigroup.
Variables U V : addSemigroupType.
Fact pair_addrA : associative (@add_pair U V).
End PairAddSemigroup.
Section PairBaseAddUMagma.
Variables U V : baseAddUMagmaType.
Definition pair_zero : U × V := (0, 0).
Fact fst_is_zmod_morphism : nmod_morphism (@fst U V).
Fact snd_is_zmod_morphism : nmod_morphism (@snd U V).
End PairBaseAddUMagma.
Section PairAddUMagma.
Variables U V : addUMagmaType.
Fact pair_add0r : left_id (@pair_zero U V) (@add_pair U V).
End PairAddUMagma.
FIXME: HB.saturate
/FIXME
Section PairZmodule.
Variables U V : zmodType.
Definition pair_opp (a : U × V) := (- a.1, - a.2).
Fact pair_addNr : left_inverse 0 pair_opp +%R.
End PairZmodule.
zmodType structure on bool
nmodType structure on nat