# Library mathcomp.ssreflect.tuple

(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.
Distributed under the terms of CeCILL-B.                                  *)

From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat.
From mathcomp Require Import seq choice fintype path.

Set Implicit Arguments.

This file defines tuples, i.e., sequences with a fixed (known) length, and sequences with bounded length. For tuples we define: n.-tuple T == the type of n-tuples of elements of type T. [tuple of s] == the tuple whose underlying sequence (value) is s. The size of s must be known: specifically, Coq must be able to infer a Canonical tuple projecting on s. in_tuple s == the (size s).-tuple with value s. [tuple] == the empty tuple. [tuple x1; ..; xn] == the explicit n.-tuple <x1; ..; xn>. [tuple E | i < n] == the n.-tuple with general term E (i : 'I_n is bound in E). tcast Emn t == the m.-tuple t cast as an n.-tuple using Emn : m = n. As n.-tuple T coerces to seq t, all seq operations (size, nth, ...) can be applied to t : n.-tuple T; we provide a few specialized instances when avoids the need for a default value. tsize t == the size of t (the n in n.-tuple T) tnth t i == the i'th component of t, where i : 'I_n. [tnth t i] == the i'th component of t, where i : nat and i < n is convertible to true. thead t == the first element of t, when n is m.+1 for some m. For bounded sequences we define: n.-bseq T == the type of bounded sequences of elements of type T, the length of a bounded sequence is smaller or or equal to n. [bseq of s] == the bounded sequence whose underlying value is s. The size of s must be known. in_bseq s == the (size s).-bseq with value s. [bseq] == the empty bseq. insub_bseq n s == the n.-bseq of value s if size s <= n, else [bseq]. [bseq x1; ..; xn] == the explicit n.-bseq <x1; ..; xn>. cast_bseq Emn t == the m.-bseq t cast as an n.-tuple using Emn : m = n. widen_bseq Lmn t == the m.-bseq t cast as an n.-tuple using Lmn : m <= n. Most seq constructors (cons, behead, cat, rcons, belast, take, drop, rot, rotr, map, ...) can be used to build tuples and bounded sequences via the [tuple of s] and [bseq of s] constructs respectively. Tuples and bounded sequences are actually instances of subType of seq, and inherit all combinatorial structures, including the finType structure. Some useful lemmas and definitions: tuple0 : [tuple] is the only 0.-tuple bseq0 : [bseq] is the only 0.-bseq tupleP : elimination view for n.+1.-tuple ord_tuple n : the n.-tuple of all i : 'I_n

Section TupleDef.

Variables (n : nat) (T : Type).

Structure tuple_of : Type := Tuple {tval :> seq T; _ : size tval == n}.

Canonical tuple_subType := Eval hnf in [subType for tval].

Implicit Type t : tuple_of.

Definition tsize of tuple_of := n.

Lemma size_tuple t : size t = n.

Lemma tnth_default t : 'I_n T.

Definition tnth t i := nth (tnth_default t i) t i.

Lemma tnth_nth x t i : tnth t i = nth x t i.

Lemma map_tnth_enum t : map (tnth t) (enum 'I_n) = t.

Lemma eq_from_tnth t1 t2 : tnth t1 =1 tnth t2 t1 = t2.

Definition tuple t mkT : tuple_of :=
mkT (let: Tuple _ tP := t return size t == n in tP).

Lemma tupleE t : tuple (fun sP ⇒ @Tuple t sP) = t.

End TupleDef.

Notation "n .-tuple" := (tuple_of n)
(at level 2, format "n .-tuple") : type_scope.

Notation "{ 'tuple' n 'of' T }" := (n.-tuple T : predArgType)
(at level 0, only parsing) : type_scope.

Notation "[ 'tuple' 'of' s ]" := (tuple (fun sP ⇒ @Tuple _ _ s sP))
(at level 0, format "[ 'tuple' 'of' s ]") : form_scope.

Notation "[ 'tnth' t i ]" := (tnth t (@Ordinal (tsize t) i (erefl true)))
(at level 0, t, i at level 8, format "[ 'tnth' t i ]") : form_scope.

Canonical nil_tuple T := Tuple (isT : @size T [::] == 0).
Canonical cons_tuple n T x (t : n.-tuple T) :=
Tuple (valP t : size (x :: t) == n.+1).

Notation "[ 'tuple' x1 ; .. ; xn ]" := [tuple of x1 :: .. [:: xn] ..]
(at level 0, format "[ 'tuple' '[' x1 ; '/' .. ; '/' xn ']' ]")
: form_scope.

Notation "[ 'tuple' ]" := [tuple of [::]]
(at level 0, format "[ 'tuple' ]") : form_scope.

Section CastTuple.

Variable T : Type.

Definition in_tuple (s : seq T) := Tuple (eqxx (size s)).

Definition tcast m n (eq_mn : m = n) t :=
let: erefl in _ = n := eq_mn return n.-tuple T in t.

Lemma tcastE m n (eq_mn : m = n) t i :
tnth (tcast eq_mn t) i = tnth t (cast_ord (esym eq_mn) i).

Lemma tcast_id n (eq_nn : n = n) t : tcast eq_nn t = t.

Lemma tcastK m n (eq_mn : m = n) : cancel (tcast eq_mn) (tcast (esym eq_mn)).

Lemma tcastKV m n (eq_mn : m = n) : cancel (tcast (esym eq_mn)) (tcast eq_mn).

Lemma tcast_trans m n p (eq_mn : m = n) (eq_np : n = p) t:
tcast (etrans eq_mn eq_np) t = tcast eq_np (tcast eq_mn t).

Lemma tvalK n (t : n.-tuple T) : in_tuple t = tcast (esym (size_tuple t)) t.

Lemma val_tcast m n (eq_mn : m = n) (t : m.-tuple T) :
tcast eq_mn t = t :> seq T.

Lemma in_tupleE s : in_tuple s = s :> seq T.

End CastTuple.

Section SeqTuple.

Variables (n m : nat) (T U rT : Type).
Implicit Type t : n.-tuple T.

Lemma rcons_tupleP t x : size (rcons t x) == n.+1.
Canonical rcons_tuple t x := Tuple (rcons_tupleP t x).

Lemma nseq_tupleP x : @size T (nseq n x) == n.
Canonical nseq_tuple x := Tuple (nseq_tupleP x).

Lemma iota_tupleP : size (iota m n) == n.
Canonical iota_tuple := Tuple iota_tupleP.

Lemma belast_tupleP x t : size (belast x t) == n.
Canonical belast_tuple x t := Tuple (belast_tupleP x t).

Lemma cat_tupleP t (u : m.-tuple T) : size (t ++ u) == n + m.
Canonical cat_tuple t u := Tuple (cat_tupleP t u).

Lemma take_tupleP t : size (take m t) == minn m n.
Canonical take_tuple t := Tuple (take_tupleP t).

Lemma drop_tupleP t : size (drop m t) == n - m.
Canonical drop_tuple t := Tuple (drop_tupleP t).

Lemma rev_tupleP t : size (rev t) == n.
Canonical rev_tuple t := Tuple (rev_tupleP t).

Lemma rot_tupleP t : size (rot m t) == n.
Canonical rot_tuple t := Tuple (rot_tupleP t).

Lemma rotr_tupleP t : size (rotr m t) == n.
Canonical rotr_tuple t := Tuple (rotr_tupleP t).

Lemma map_tupleP f t : @size rT (map f t) == n.
Canonical map_tuple f t := Tuple (map_tupleP f t).

Lemma scanl_tupleP f x t : @size rT (scanl f x t) == n.
Canonical scanl_tuple f x t := Tuple (scanl_tupleP f x t).

Lemma pairmap_tupleP f x t : @size rT (pairmap f x t) == n.
Canonical pairmap_tuple f x t := Tuple (pairmap_tupleP f x t).

Lemma zip_tupleP t (u : n.-tuple U) : size (zip t u) == n.
Canonical zip_tuple t u := Tuple (zip_tupleP t u).

Lemma allpairs_tupleP f t (u : m.-tuple U) : @size rT (allpairs f t u) == n × m.
Canonical allpairs_tuple f t u := Tuple (allpairs_tupleP f t u).

Lemma sort_tupleP r t : size (sort r t) == n.
Canonical sort_tuple r t := Tuple (sort_tupleP r t).

Definition thead (u : n.+1.-tuple T) := tnth u ord0.

Lemma tnth0 x t : tnth [tuple of x :: t] ord0 = x.

Lemma tnthS x t i : tnth [tuple of x :: t] (lift ord0 i) = tnth t i.

Lemma theadE x t : thead [tuple of x :: t] = x.

Lemma tuple0 : all_equal_to ([tuple] : 0.-tuple T).

Variant tuple1_spec : n.+1.-tuple T Type :=
Tuple1spec x t : tuple1_spec [tuple of x :: t].

Lemma tupleP u : tuple1_spec u.

Lemma tnth_map f t i : tnth [tuple of map f t] i = f (tnth t i) :> rT.

Lemma tnth_nseq x i : tnth [tuple of nseq n x] i = x.

End SeqTuple.

Lemma tnth_behead n T (t : n.+1.-tuple T) i :
tnth [tuple of behead t] i = tnth t (inord i.+1).

Lemma tuple_eta n T (t : n.+1.-tuple T) : t = [tuple of thead t :: behead t].

Section TupleQuantifiers.

Variables (n : nat) (T : Type).
Implicit Types (a : pred T) (t : n.-tuple T).

Lemma forallb_tnth a t : [ i, a (tnth t i)] = all a t.

Lemma existsb_tnth a t : [ i, a (tnth t i)] = has a t.

Lemma all_tnthP a t : reflect ( i, a (tnth t i)) (all a t).

Lemma has_tnthP a t : reflect ( i, a (tnth t i)) (has a t).

End TupleQuantifiers.

Arguments all_tnthP {n T a t}.
Arguments has_tnthP {n T a t}.

Section EqTuple.

Variables (n : nat) (T : eqType).

Definition tuple_eqMixin := Eval hnf in [eqMixin of n.-tuple T by <:].
Canonical tuple_eqType := Eval hnf in EqType (n.-tuple T) tuple_eqMixin.

Canonical tuple_predType := PredType (pred_of_seq : n.-tuple T pred T).

Lemma eqEtuple (t1 t2 : n.-tuple T) :
(t1 == t2) = [ i, tnth t1 i == tnth t2 i].

Lemma memtE (t : n.-tuple T) : mem t = mem (tval t).

Lemma mem_tnth i (t : n.-tuple T) : tnth t i \in t.

Lemma memt_nth x0 (t : n.-tuple T) i : i < n nth x0 t i \in t.

Lemma tnthP (t : n.-tuple T) x : reflect ( i, x = tnth t i) (x \in t).

Lemma seq_tnthP (s : seq T) x : x \in s {i | x = tnth (in_tuple s) i}.

Lemma tuple_uniqP (t : n.-tuple T) : reflect (injective (tnth t)) (uniq t).

End EqTuple.

Definition tuple_choiceMixin n (T : choiceType) :=
[choiceMixin of n.-tuple T by <:].

Canonical tuple_choiceType n (T : choiceType) :=
Eval hnf in ChoiceType (n.-tuple T) (tuple_choiceMixin n T).

Definition tuple_countMixin n (T : countType) :=
[countMixin of n.-tuple T by <:].

Canonical tuple_countType n (T : countType) :=
Eval hnf in CountType (n.-tuple T) (tuple_countMixin n T).

Canonical tuple_subCountType n (T : countType) :=
Eval hnf in [subCountType of n.-tuple T].

Module Type FinTupleSig.
Section FinTupleSig.
Variables (n : nat) (T : finType).
Parameter enum : seq (n.-tuple T).
Axiom enumP : Finite.axiom enum.
Axiom size_enum : size enum = #|T| ^ n.
End FinTupleSig.
End FinTupleSig.

Module FinTuple : FinTupleSig.
Section FinTuple.
Variables (n : nat) (T : finType).

Definition enum : seq (n.-tuple T) :=
let extend e := flatten (codom (fun xmap (cons x) e)) in
pmap insub (iter n extend [::[::]]).

Lemma enumP : Finite.axiom enum.

Lemma size_enum : size enum = #|T| ^ n.

End FinTuple.
End FinTuple.

Section UseFinTuple.

Variables (n : nat) (T : finType).

tuple_finMixin could, in principle, be made Canonical to allow for folding Finite.enum of a finite tuple type (see comments around eqE in eqtype.v), but in practice it will not work because the mixin_enum projector has been buried under an opaque alias, to avoid some performance issues during type inference.
Definition tuple_finMixin := Eval hnf in FinMixin (@FinTuple.enumP n T).
Canonical tuple_finType := Eval hnf in FinType (n.-tuple T) tuple_finMixin.
Canonical tuple_subFinType := Eval hnf in [subFinType of n.-tuple T].

Lemma card_tuple : #|{:n.-tuple T}| = #|T| ^ n.

Lemma enum_tupleP (A : {pred T}) : size (enum A) == #|A|.
Canonical enum_tuple A := Tuple (enum_tupleP A).

Definition ord_tuple : n.-tuple 'I_n := Tuple (introT eqP (size_enum_ord n)).
Lemma val_ord_tuple : val ord_tuple = enum 'I_n.

Lemma tuple_map_ord U (t : n.-tuple U) : t = [tuple of map (tnth t) ord_tuple].

Lemma tnth_ord_tuple i : tnth ord_tuple i = i.

Section ImageTuple.

Variables (T' : Type) (f : T T') (A : {pred T}).

Canonical image_tuple : #|A|.-tuple T' := [tuple of image f A].
Canonical codom_tuple : #|T|.-tuple T' := [tuple of codom f].

End ImageTuple.

Section MkTuple.

Variables (T' : Type) (f : 'I_n T').

Definition mktuple := map_tuple f ord_tuple.

Lemma tnth_mktuple i : tnth mktuple i = f i.

Lemma nth_mktuple x0 (i : 'I_n) : nth x0 mktuple i = f i.

End MkTuple.

Lemma eq_mktuple T' (f1 f2 : 'I_n T') :
f1 =1 f2 mktuple f1 = mktuple f2.

End UseFinTuple.

Notation "[ 'tuple' F | i < n ]" := (mktuple (fun i : 'I_nF))
(at level 0, i at level 0,
format "[ '[hv' 'tuple' F '/' | i < n ] ']'") : form_scope.

Arguments eq_mktuple {n T'} [f1] f2 eq_f12.

Section BseqDef.

Variables (n : nat) (T : Type).

Structure bseq_of : Type := Bseq {bseqval :> seq T; _ : size bseqval n}.

Canonical bseq_subType := Eval hnf in [subType for bseqval].

Implicit Type bs : bseq_of.

Lemma size_bseq bs : size bs n.

Definition bseq bs mkB : bseq_of :=
mkB (let: Bseq _ bsP := bs return size bs n in bsP).

Lemma bseqE bs : bseq (fun sP ⇒ @Bseq bs sP) = bs.

End BseqDef.

Canonical nil_bseq n T := Bseq (isT : @size T [::] n).
Canonical cons_bseq n T x (t : bseq_of n T) :=
Bseq (valP t : size (x :: t) n.+1).

Notation "n .-bseq" := (bseq_of n)
(at level 2, format "n .-bseq") : type_scope.

Notation "{ 'bseq' n 'of' T }" := (n.-bseq T : predArgType)
(at level 0, only parsing) : type_scope.

Notation "[ 'bseq' 'of' s ]" := (bseq (fun sP ⇒ @Bseq _ _ s sP))
(at level 0, format "[ 'bseq' 'of' s ]") : form_scope.

Notation "[ 'bseq' x1 ; .. ; xn ]" := [bseq of x1 :: .. [:: xn] ..]
(at level 0, format "[ 'bseq' '[' x1 ; '/' .. ; '/' xn ']' ]")
: form_scope.

Notation "[ 'bseq' ]" := [bseq of [::]]
(at level 0, format "[ 'bseq' ]") : form_scope.

Coercion bseq_of_tuple n T (t : n.-tuple T) : n.-bseq T :=
Bseq (eq_leq (size_tuple t)).

Definition insub_bseq n T (s : seq T) : n.-bseq T := insubd [bseq] s.

Lemma size_insub_bseq n T (s : seq T) : size (insub_bseq n s) size s.

Section CastBseq.

Variable T : Type.

Definition in_bseq (s : seq T) : (size s).-bseq T := Bseq (leqnn (size s)).

Definition cast_bseq m n (eq_mn : m = n) bs :=
let: erefl in _ = n := eq_mn return n.-bseq T in bs.

Definition widen_bseq m n (lemn : m n) (bs : m.-bseq T) : n.-bseq T :=
@Bseq n T bs (leq_trans (size_bseq bs) lemn).

Lemma cast_bseq_id n (eq_nn : n = n) bs : cast_bseq eq_nn bs = bs.

Lemma cast_bseqK m n (eq_mn : m = n) :
cancel (cast_bseq eq_mn) (cast_bseq (esym eq_mn)).

Lemma cast_bseqKV m n (eq_mn : m = n) :
cancel (cast_bseq (esym eq_mn)) (cast_bseq eq_mn).

Lemma cast_bseq_trans m n p (eq_mn : m = n) (eq_np : n = p) bs :
cast_bseq (etrans eq_mn eq_np) bs = cast_bseq eq_np (cast_bseq eq_mn bs).

Lemma size_cast_bseq m n (eq_mn : m = n) (bs : m.-bseq T) :
size (cast_bseq eq_mn bs) = size bs.

Lemma widen_bseq_id n (lenn : n n) (bs : n.-bseq T) :
widen_bseq lenn bs = bs.

Lemma cast_bseqEwiden m n (eq_mn : m = n) (bs : m.-bseq T) :
cast_bseq eq_mn bs = widen_bseq (eq_leq eq_mn) bs.

Lemma widen_bseqK m n (lemn : m n) (lenm : n m) :
cancel (@widen_bseq m n lemn) (widen_bseq lenm).

Lemma widen_bseq_trans m n p (lemn : m n) (lenp : n p) (bs : m.-bseq T) :
widen_bseq (leq_trans lemn lenp) bs = widen_bseq lenp (widen_bseq lemn bs).

Lemma size_widen_bseq m n (lemn : m n) (bs : m.-bseq T) :
size (widen_bseq lemn bs) = size bs.

Lemma in_bseqE s : in_bseq s = s :> seq T.

Lemma widen_bseq_in_bseq n (bs : n.-bseq T) :
widen_bseq (size_bseq bs) (in_bseq bs) = bs.

End CastBseq.

Section SeqBseq.

Variables (n m : nat) (T U rT : Type).
Implicit Type s : n.-bseq T.

Lemma rcons_bseqP s x : size (rcons s x) n.+1.
Canonical rcons_bseq s x := Bseq (rcons_bseqP s x).

Lemma belast_bseqP x s : size (belast x s) n.
Canonical belast_bseq x s := Bseq (belast_bseqP x s).

Lemma cat_bseqP s (s' : m.-bseq T) : size (s ++ s') n + m.
Canonical cat_bseq s (s' : m.-bseq T) := Bseq (cat_bseqP s s').

Lemma take_bseqP s : size (take m s) n.
Canonical take_bseq s := Bseq (take_bseqP s).

Lemma drop_bseqP s : size (drop m s) n - m.
Canonical drop_bseq s := Bseq (drop_bseqP s).

Lemma rev_bseqP s : size (rev s) n.
Canonical rev_bseq s := Bseq (rev_bseqP s).

Lemma rot_bseqP s : size (rot m s) n.
Canonical rot_bseq s := Bseq (rot_bseqP s).

Lemma rotr_bseqP s : size (rotr m s) n.
Canonical rotr_bseq s := Bseq (rotr_bseqP s).

Lemma map_bseqP f s : @size rT (map f s) n.
Canonical map_bseq f s := Bseq (map_bseqP f s).

Lemma scanl_bseqP f x s : @size rT (scanl f x s) n.
Canonical scanl_bseq f x s := Bseq (scanl_bseqP f x s).

Lemma pairmap_bseqP f x s : @size rT (pairmap f x s) n.
Canonical pairmap_bseq f x s := Bseq (pairmap_bseqP f x s).

Lemma allpairs_bseqP f s (s' : m.-bseq U) : @size rT (allpairs f s s') n × m.
Canonical allpairs_bseq f s (s' : m.-bseq U) := Bseq (allpairs_bseqP f s s').

Lemma sort_bseqP r s : size (sort r s) n.
Canonical sort_bseq r s := Bseq (sort_bseqP r s).

Lemma bseq0 : all_equal_to ([bseq] : 0.-bseq T).

End SeqBseq.

Definition bseq_eqMixin n (T : eqType) :=
Eval hnf in [eqMixin of n.-bseq T by <:].

Canonical bseq_eqType n (T : eqType) :=
Eval hnf in EqType (n.-bseq T) (bseq_eqMixin n T).

Canonical bseq_predType n (T : eqType) :=
Eval hnf in PredType (fun t : n.-bseq Tmem_seq t).

Lemma membsE n (T : eqType) (bs : n.-bseq T) : mem bs = mem (bseqval bs).

Definition bseq_choiceMixin n (T : choiceType) :=
[choiceMixin of n.-bseq T by <:].

Canonical bseq_choiceType n (T : choiceType) :=
Eval hnf in ChoiceType (n.-bseq T) (bseq_choiceMixin n T).

Definition bseq_countMixin n (T : countType) :=
[countMixin of n.-bseq T by <:].

Canonical bseq_countType n (T : countType) :=
Eval hnf in CountType (n.-bseq T) (bseq_countMixin n T).

Canonical bseq_subCountType n (T : countType) :=
Eval hnf in [subCountType of n.-bseq T].

Definition bseq_tagged_tuple n T (s : n.-bseq T) : {k : 'I_n.+1 & k.-tuple T} :=
Tagged _ (in_tuple s : (Ordinal (size_bseq s : size s < n.+1)).-tuple _).
Arguments bseq_tagged_tuple {n T}.

Definition tagged_tuple_bseq n T (t : {k : 'I_n.+1 & k.-tuple T}) : n.-bseq T :=
widen_bseq (leq_ord (tag t)) (tagged t).
Arguments tagged_tuple_bseq {n T}.

Lemma bseq_tagged_tupleK {n T} :
cancel (@bseq_tagged_tuple n T) tagged_tuple_bseq.

Lemma tagged_tuple_bseqK {n T} :
cancel (@tagged_tuple_bseq n T) bseq_tagged_tuple.

Lemma bseq_tagged_tuple_bij {n T} : bijective (@bseq_tagged_tuple n T).

Lemma tagged_tuple_bseq_bij {n T} : bijective (@tagged_tuple_bseq n T).

#[global] Hint Resolve bseq_tagged_tuple_bij tagged_tuple_bseq_bij : core.

Definition bseq_finMixin n (T : finType) :=
CanFinMixin (@bseq_tagged_tupleK n T).

Canonical bseq_finType n (T : finType) :=
Eval hnf in FinType (n.-bseq T) (bseq_finMixin n T).

Canonical bseq_subFinType n (T : finType) :=
Eval hnf in [subFinType of n.-bseq T].