Library mathcomp.ssreflect.binomial
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria.
Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
From mathcomp Require Import div fintype tuple finfun bigop prime finset.
Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
From mathcomp Require Import div fintype tuple finfun bigop prime finset.
This files contains the definition of:
'C(n, m) == the binomial coefficient n choose m.
n ^_ m == the falling (or lower) factorial of n with m terms, i.e.,
the product n * (n - 1) * ... * (n - m + 1).
Note that n ^_ m = 0 if m > n, and 'C(n, m) = n ^_ m %/ m`!.
In additions to the properties of these functions, we prove a few seminal
results such as triangular_sum, Wilson and Pascal; their proofs are good
examples of how to manipulate expressions with bigops.
Set Implicit Arguments.
More properties of the factorial *
Lemma fact_prod n : n`! = \prod_(1 ≤ i < n.+1) i.
Lemma fact_split n m : m ≤ n → n`! = m`! × \prod_(m.+1 ≤ k < n.+1) k.
Lemma logn_fact p n : prime p → logn p n`! = \sum_(1 ≤ k < n.+1) n %/ p ^ k.
Theorem Wilson p : p > 1 → prime p = (p %| ((p.-1)`!).+1).
The falling factorial
Fixpoint ffact_rec n m := if m is m'.+1 then n × ffact_rec n.-1 m' else 1.
Definition falling_factorial := nosimpl ffact_rec.
Notation "n ^_ m" := (falling_factorial n m)
(at level 30, right associativity) : nat_scope.
Lemma ffactE : falling_factorial = ffact_rec.
Lemma ffactn0 n : n ^_ 0 = 1.
Lemma ffact0n m : 0 ^_ m = (m == 0).
Lemma ffactnS n m : n ^_ m.+1 = n × n.-1 ^_ m.
Lemma ffactSS n m : n.+1 ^_ m.+1 = n.+1 × n ^_ m.
Lemma ffactn1 n : n ^_ 1 = n.
Lemma ffactnSr n m : n ^_ m.+1 = n ^_ m × (n - m).
Lemma ffact_prod n m : n ^_ m = \prod_(i < m) (n - i).
Lemma ffact_gt0 n m : (0 < n ^_ m) = (m ≤ n).
Lemma ffact_small n m : n < m → n ^_ m = 0.
Lemma ffactnn n : n ^_ n = n`!.
Lemma ffact_fact n m : m ≤ n → n ^_ m × (n - m)`! = n`!.
Lemma ffact_factd n m : m ≤ n → n ^_ m = n`! %/ (n - m)`!.
Binomial coefficients
Fixpoint binomial_rec n m :=
match n, m with
| n'.+1, m'.+1 ⇒ binomial_rec n' m + binomial_rec n' m'
| _, 0 ⇒ 1
| 0, _.+1 ⇒ 0
end.
Arguments binomial_rec : simpl nomatch.
Definition binomial := nosimpl binomial_rec.
Notation "''C' ( n , m )" := (binomial n m)
(at level 8, format "''C' ( n , m )") : nat_scope.
Lemma binE : binomial = binomial_rec.
Lemma bin0 n : 'C(n, 0) = 1.
Lemma bin0n m : 'C(0, m) = (m == 0).
Lemma binS n m : 'C(n.+1, m.+1) = 'C(n, m.+1) + 'C(n, m).
Lemma bin1 n : 'C(n, 1) = n.
Lemma bin_gt0 n m : (0 < 'C(n, m)) = (m ≤ n).
Lemma leq_bin2l n1 n2 m : n1 ≤ n2 → 'C(n1, m) ≤ 'C(n2, m).
Lemma bin_small n m : n < m → 'C(n, m) = 0.
Lemma binn n : 'C(n, n) = 1.
Multiply to move diagonally down and right in the Pascal triangle.
Lemma mul_bin_diag n m : n × 'C(n.-1, m) = m.+1 × 'C(n, m.+1).
Lemma bin_fact n m : m ≤ n → 'C(n, m) × (m`! × (n - m)`!) = n`!.
Lemma bin_fact n m : m ≤ n → 'C(n, m) × (m`! × (n - m)`!) = n`!.
In fact the only exception for bin_factd is n = 0 and m = 1
Lemma bin_factd n m : 0 < n → 'C(n, m) = n`! %/ (m`! × (n - m)`!).
Lemma bin_ffact n m : 'C(n, m) × m`! = n ^_ m.
Lemma bin_ffactd n m : 'C(n, m) = n ^_ m %/ m`!.
Lemma bin_sub n m : m ≤ n → 'C(n, n - m) = 'C(n, m).
Lemma bin_ffact n m : 'C(n, m) × m`! = n ^_ m.
Lemma bin_ffactd n m : 'C(n, m) = n ^_ m %/ m`!.
Lemma bin_sub n m : m ≤ n → 'C(n, n - m) = 'C(n, m).
Multiply to move down in the Pascal triangle.
Multiply to move left in the Pascal triangle.
Lemma mul_bin_left n m : m.+1 × 'C(n, m.+1) = (n - m) × 'C(n, m).
Lemma binSn n : 'C(n.+1, n) = n.+1.
Lemma bin2 n : 'C(n, 2) = (n × n.-1)./2.
Lemma bin2odd n : odd n → 'C(n, 2) = n × n.-1./2.
Lemma prime_dvd_bin k p : prime p → 0 < k < p → p %| 'C(p, k).
Lemma triangular_sum n : \sum_(0 ≤ i < n) i = 'C(n, 2).
Lemma textbook_triangular_sum n : \sum_(0 ≤ i < n) i = 'C(n, 2).
Theorem Pascal a b n :
(a + b) ^ n = \sum_(i < n.+1) 'C(n, i) × (a ^ (n - i) × b ^ i).
Definition expnDn := Pascal.
Lemma Vandermonde k l i :
\sum_(j < i.+1) 'C(k, j) × 'C(l, i - j) = 'C(k + l , i).
Lemma subn_exp m n k :
m ^ k - n ^ k = (m - n) × (\sum_(i < k) m ^ (k.-1 -i) × n ^ i).
Lemma predn_exp m k : (m ^ k).-1 = m.-1 × (\sum_(i < k) m ^ i).
Lemma dvdn_pred_predX n e : (n.-1 %| (n ^ e).-1)%N.
Lemma modn_summ I r (P : pred I) F d :
\sum_(i <- r | P i) F i %% d = \sum_(i <- r | P i) F i %[mod d].
Lemma prime_modn_expSn p n : prime p → n.+1 ^ p = (n ^ p).+1 %[mod p].
Lemma fermat_little a p : prime p → a ^ p = a %[mod p].
Lemma binSn n : 'C(n.+1, n) = n.+1.
Lemma bin2 n : 'C(n, 2) = (n × n.-1)./2.
Lemma bin2odd n : odd n → 'C(n, 2) = n × n.-1./2.
Lemma prime_dvd_bin k p : prime p → 0 < k < p → p %| 'C(p, k).
Lemma triangular_sum n : \sum_(0 ≤ i < n) i = 'C(n, 2).
Lemma textbook_triangular_sum n : \sum_(0 ≤ i < n) i = 'C(n, 2).
Theorem Pascal a b n :
(a + b) ^ n = \sum_(i < n.+1) 'C(n, i) × (a ^ (n - i) × b ^ i).
Definition expnDn := Pascal.
Lemma Vandermonde k l i :
\sum_(j < i.+1) 'C(k, j) × 'C(l, i - j) = 'C(k + l , i).
Lemma subn_exp m n k :
m ^ k - n ^ k = (m - n) × (\sum_(i < k) m ^ (k.-1 -i) × n ^ i).
Lemma predn_exp m k : (m ^ k).-1 = m.-1 × (\sum_(i < k) m ^ i).
Lemma dvdn_pred_predX n e : (n.-1 %| (n ^ e).-1)%N.
Lemma modn_summ I r (P : pred I) F d :
\sum_(i <- r | P i) F i %% d = \sum_(i <- r | P i) F i %[mod d].
Lemma prime_modn_expSn p n : prime p → n.+1 ^ p = (n ^ p).+1 %[mod p].
Lemma fermat_little a p : prime p → a ^ p = a %[mod p].
Combinatorial characterizations.
Section Combinations.
Implicit Types T D : finType.
Lemma card_uniq_tuples T n (A : pred T) :
#|[set t : n.-tuple T | all A t & uniq t]| = #|A| ^_ n.
Lemma card_inj_ffuns_on D T (R : pred T) :
#|[set f : {ffun D → T} in ffun_on R | injectiveb f]| = #|R| ^_ #|D|.
Lemma card_inj_ffuns D T :
#|[set f : {ffun D → T} | injectiveb f]| = #|T| ^_ #|D|.
Lemma cards_draws T (B : {set T}) k :
#|[set A : {set T} | A \subset B & #|A| == k]| = 'C(#|B|, k).
Lemma card_draws T k : #|[set A : {set T} | #|A| == k]| = 'C(#|T|, k).
Lemma card_ltn_sorted_tuples m n :
#|[set t : m.-tuple 'I_n | sorted ltn (map val t)]| = 'C(n, m).
Lemma card_sorted_tuples m n :
#|[set t : m.-tuple 'I_n.+1 | sorted leq (map val t)]| = 'C(m + n, m).
Lemma card_partial_ord_partitions m n :
#|[set t : m.-tuple 'I_n.+1 | \sum_(i <- t) i ≤ n]| = 'C(m + n, m).
Lemma card_ord_partitions m n :
#|[set t : m.+1.-tuple 'I_n.+1 | \sum_(i <- t) i == n]| = 'C(m + n, m).
End Combinations.