Library mathcomp.ssreflect.order

(* (c) Copyright 2006-2019 Microsoft Corporation and Inria.                  
 Distributed under the terms of CeCILL-B.                                  *)

From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq.
From mathcomp Require Import path fintype tuple bigop finset div prime finfun.
From mathcomp Require Import finset.

This files defines types equipped with order relations.
Use one of the following modules implementing different theories: Order.LTheory: partially ordered types and lattices excluding complement and totality related theorems. Order.CTheory: complemented lattices including Order.LTheory. Order.TTheory: totally ordered types including Order.LTheory. Order.Theory: ordered types including all of the above theory modules
To access the definitions, notations, and the theory from, say, "Order.Xyz", insert "Import Order.Xyz." at the top of your scripts. Notations are accessible by opening the scope "order_scope" bound to the delimiting key "O".
We provide the following structures of ordered types porderType d == the type of partially ordered types latticeType d == the type of non-distributive lattices bLatticeType d == latticeType with a bottom element tbLatticeType d == latticeType with both a top and a bottom distrLatticeType d == the type of distributive lattices bDistrLatticeType d == distrLatticeType with a bottom element tbDistrLatticeType d == distrLatticeType with both a top and a bottom cbDistrLatticeType d == the type of sectionally complemented distributive lattices (lattices with bottom and a difference operation) ctbDistrLatticeType d == the type of complemented distributive lattices (lattices with top, bottom, difference, and complement) orderType d == the type of totally ordered types finPOrderType d == the type of partially ordered finite types finLatticeType d == the type of nonempty finite non-distributive lattices finDistrLatticeType d == the type of nonempty finite distributive lattices finCDistrLatticeType d == the type of nonempty finite complemented distributive lattices finOrderType d == the type of nonempty totally ordered finite types
Each generic partial order and lattice operations symbols also has a first argument which is the display, the second which is the minimal structure they operate on and then the operands. Here is the exhaustive list of all such symbols for partial orders and lattices together with their default display (as displayed by Check). We document their meaning in the paragraph after the next.
For porderType T @Order.le disp T == <=%O (in fun_scope) @Order.lt disp T == <%O (in fun_scope) @Order.comparable disp T == >=<%O (in fun_scope) @Order.ge disp T == >=%O (in fun_scope) @Order.gt disp T == >%O (in fun_scope) @Order.leif disp T == <?=%O (in fun_scope) @Order.lteif disp T == <?<=%O (in fun_scope) For latticeType T @Order.meet disp T x y == x `&` y (in order_scope) @Order.join disp T x y == x `|` y (in order_scope) For bLatticeType T @Order.bottom disp T == 0 (in order_scope) For tbLatticeType T @Order.top disp T == 1 (in order_scope) For cbDistrLatticeType T @Order.sub disp T x y == x `|` y (in order_scope) For ctbDistrLatticeType T @Order.compl disp T x == ~` x (in order_scope)
This first argument named either d, disp or display, of type unit, configures the printing of notations. Instantiating d with tt or an unknown key will lead to a default display for notations, i.e. we have: For x, y of type T, where T is canonically a porderType d: x <= y <-> x is less than or equal to y. x < y <-> x is less than y (:= (y != x) && (x <= y)). min x y <-> if x < y then x else y max x y <-> if x < y then y else x x >= y <-> x is greater than or equal to y (:= y <= x). x > y <-> x is greater than y (:= y < x). x <= y ?= iff C <-> x is less than y, or equal iff C is true. x < y ?<= if C <-> x is smaller than y, and strictly if C is false. x >=< y <-> x and y are comparable (:= (x <= y) || (y <= x)). x >< y <-> x and y are incomparable (:= ~~ x >=< y). f \min g <-> the function x |-> Order.min (f x) (g x); f \min g simplifies on application. f \max g <-> the function x |-> Order.max (f x) (g x); f \max g simplifies on application. For x, y of type T, where T is canonically a latticeType d: x `&` y == the meet of x and y. x `|` y == the join of x and y. In a type T, where T is canonically a bLatticeType d: 0 == the bottom element. \join<range> e == iterated join of a lattice with a bottom. In a type T, where T is canonically a tbLatticeType d: 1 == the top element. \meet<range> e == iterated meet of a lattice with a top. For x, y of type T, where T is canonically a cbDistrLatticeType d: x `\` y == the (sectional) complement of y in [0, x]. For x of type T, where T is canonically a ctbDistrLatticeType d: ~` x == the complement of x in [0, 1].
There are three distinct uses of the symbols <, <=, >, >=, _ <= _ ?= iff _, >=<, and >< in the default display: they can be 0-ary, unary (prefix), and binary (infix). 0. <%O, <=%O, >%O, >=%O, <?=%O, >=<%O, and ><%O stand respectively for lt, le, gt, ge, leif (_ <= _ ?= iff _), comparable, and incomparable. 1. (< x), (<= x), (> x), (>= x), (>=< x), and (>< x) stand respectively for (>%O x), (>=%O x), (<%O x), (<=%O x), (>=<%O x), and (><%O x). So (< x) is a predicate characterizing elements smaller than x. 2. (x < y), (x <= y), ... mean what they are expected to. These conventions are compatible with Haskell's, where ((< y) x) = (x < y) = ((<) x y), except that we write <%O instead of (<).
Alternative notation displays can be defined by : 1. declaring a new opaque definition of type unit. Using the idiom `Lemma my_display : unit. Proof. exact: tt. Qed.` 2. using this symbol to tag canonical porderType structures using `Canonical my_porderType := POrderType my_display my_type my_mixin`, 3. declaring notations for the main operations of this library, by setting the first argument of the definition to the display, e.g. `Notation my_syndef_le x y := @Order.le my_display _ x y.` or `Notation "x <=< y" := @Order.lt my_display _ x y (at level ...).` Non overloaded notations will default to the default display.
One may use displays either for convenience or to disambiguate between different structures defined on "copies" of a type (as explained below.) We provide the following "copies" of types, the first one is a *documented example* natdvd := nat == a "copy" of nat which is canonically ordered using divisibility predicate dvdn. Notation %|, %<|, gcd, lcm are used instead of <=, <, meet and join. T^d := dual T, where dual is a new definition for (fun T => T) == a "copy" of T, such that if T is canonically ordered, then T^d is canonically ordered with the dual order, and displayed with an extra ^d in the notation i.e. <=^d, <^d, >=<^d, ><^d, `&`^d, `|`^d are used and displayed instead of <=, <, >=<, ><, `&`, `|` T *prod[d] T' := T * T' == a "copy" of the cartesian product such that, if T and T' are canonically ordered, then T *prod[d] T' is canonically ordered in product order. i.e. (x1, x2) <= (y1, y2) = (x1 <= y1) && (x2 <= y2), and displayed in display d T *p T' := T *prod[prod_display] T' where prod_display adds an extra ^p to all notations T *lexi[d] T' := T * T' == a "copy" of the cartesian product such that, if T and T' are canonically ordered, then T *lexi[d] T' is canonically ordered in lexicographic order i.e. (x1, x2) <= (y1, y2) = (x1 <= y1) && ((x1 >= y1) ==> (x2 <= y2)) and (x1, x2) < (y1, y2) = (x1 <= y1) && ((x1 >= y1) ==> (x2 < y2)) and displayed in display d T *l T' := T *lexi[lexi_display] T' where lexi_display adds an extra ^l to all notations seqprod_with d T := seq T == a "copy" of seq, such that if T is canonically ordered, then seqprod_with d T is canonically ordered in product order i.e. [:: x1, .., xn] <= [y1, .., yn] = (x1 <= y1) && ... && (xn <= yn) and displayed in display d n.-tupleprod[d] T == same with n.tuple T seqprod T := seqprod_with prod_display T n.-tupleprod T := n.-tuple[prod_display] T seqlexi_with d T := seq T == a "copy" of seq, such that if T is canonically ordered, then seqprod_with d T is canonically ordered in lexicographic order i.e. [:: x1, .., xn] <= [y1, .., yn] = (x1 <= x2) && ((x1 >= y1) ==> ((x2 <= y2) && ...)) and displayed in display d n.-tuplelexi[d] T == same with n.tuple T seqlexi T := lexiprod_with lexi_display T n.-tuplelexi T := n.-tuple[lexi_display] T {subset[d] T} := {set T} == a "copy" of set which is canonically ordered by the subset order and displayed in display d {subset T} := {subset[subset_display] T}
Beware that canonical structure inference will not try to find the copy of the structures that fits the display one mentioned, but will rather determine which canonical structure and display to use depending on the copy of the type one provided. In this sense they are merely displays to inform the user of what the inference did, rather than additional input for the inference.
Existing displays are either dual_display d (where d is a display), dvd_display (both explained above), ring_display (from algebra/ssrnum to change the scope of the usual notations to ring_scope). We also provide lexi_display and prod_display for lexicographic and product order respectively. The default display is tt and users can define their own as explained above.
For porderType we provide the following operations [arg min(i < i0 | P) M] == a value i : T minimizing M : R, subject to the condition P (i may appear in P and M), and provided P holds for i0. [arg max(i > i0 | P) M] == a value i maximizing M subject to P and provided P holds for i0. [arg min(i < i0 in A) M] == an i \in A minimizing M if i0 \in A. [arg max(i > i0 in A) M] == an i \in A maximizing M if i0 \in A. [arg min(i < i0) M] == an i : T minimizing M, given i0 : T. [arg max(i > i0) M] == an i : T maximizing M, given i0 : T. with head symbols Order.arg_min and Order.arg_max The user may use extremumP or extremum_inP to eliminate them.
  • > patterns for contextual rewriting: leLHS := (X in (X <= _)%O)%pattern leRHS := (X in (_ <= X)%O)%pattern ltLHS := (X in (X < _)%O)%pattern ltRHS := (X in (_ < X)%O)%pattern
In order to build the above structures, one must provide the appropriate factory instance to the following structure constructors. The list of possible factories is indicated after each constructor. Each factory is documented in the next paragraph. NB: Since each mixim_of record of structure in this library is an internal interface that is not designed to be used by users directly, one should not build structure instances from their Mixin constructors.
POrderType disp T pord_mixin == builds a porderType from a canonical choiceType instance of T where pord_mixin can be of types lePOrderMixin, ltPOrderMixin, meetJoinMixin, leOrderMixin, or ltOrderMixin or computed using PcanPOrderMixin or CanPOrderMixin. disp is a display as explained above
LatticeType T lat_mixin == builds a latticeType from a porderType where lat_mixin can be of types latticeMixin, distrLatticePOrderMixin, totalPOrderMixin, meetJoinMixin, leOrderMixin, or ltOrderMixin or computed using IsoLatticeMixin.
BLatticeType T bot_mixin == builds a bLatticeType from a latticeType and bottom where bot_mixin is of type bottomMixin.
TBLatticeType T top_mixin == builds a tbLatticeType from a bLatticeType and top where top_mixin is of type topMixin.
DistrLatticeType T lat_mixin == builds a distrLatticeType from a porderType where lat_mixin can be of types distrLatticeMixin, distrLatticePOrderMixin, totalLatticeMixin, totalPOrderMixin, meetJoinMixin, leOrderMixin, or ltOrderMixin or computed using IsoLatticeMixin.
CBDistrLatticeType T sub_mixin == builds a cbDistrLatticeType from a bDistrLatticeType and a difference operation where sub_mixin is of type cbDistrLatticeMixin.
CTBDistrLatticeType T compl_mixin == builds a ctbDistrLatticeType from a tbDistrLatticeType and a complement operation where compl_mixin is of type ctbDistrLatticeMixin.
OrderType T ord_mixin == builds an orderType from a distrLatticeType where ord_mixin can be of types totalOrderMixin, totalPOrderMixin, totalLatticeMixin, leOrderMixin, or ltOrderMixin or computed using MonoTotalMixin.
Additionally:
  • [porderType of _ ] ... notations are available to recover structures on "copies" of the types, as in eqType, choiceType, ssralg...
  • [finPOrderType of _ ] ... notations to compute joins between finite types and ordered types
List of possible factories:
  • lePOrderMixin == on a choiceType, takes le, lt, reflexivity, antisymmetry and transitivity of le. (can build: porderType)
  • ltPOrderMixin == on a choiceType, takes le, lt, irreflexivity and transitivity of lt. (can build: porderType)
  • latticeMixin == on a porderType, takes meet, join, commutativity and associativity of meet and join, and some absorption laws. (can build: latticeType)
  • distrLatticeMixin == on a latticeType, takes distributivity of meet over join. (can build: distrLatticeType)
  • distrLatticePOrderMixin == on a porderType, takes meet, join, commutativity and associativity of meet and join, and the absorption and distributive laws. (can build: latticeType, distrLatticeType)
  • meetJoinMixin == on a choiceType, takes le, lt, meet, join, commutativity and associativity of meet and join, the absorption and distributive laws, and idempotence of meet. (can build: porderType, latticeType, distrLatticeType)
  • meetJoinLeMixin == on a porderType, takes meet, join, and a proof that those are respectvely the greatest lower bound and the least upper bound. (can build: latticeType)
  • leOrderMixin == on a choiceType, takes le, lt, meet, join, antisymmetry, transitivity and totality of le. (can build: porderType, latticeType, distrLatticeType, orderType)
  • ltOrderMixin == on a choiceType, takes le, lt, meet, join, irreflexivity, transitivity and totality of lt. (can build: porderType, latticeType, distrLatticeType, orderType)
  • totalPOrderMixin == on a porderType T, totality of the order of T := total (<=%O : rel T) (can build: latticeType, distrLatticeType, orderType)
  • totalLatticeMixin == on a latticeType T, totality of the order of T := total (<=%O : rel T) (can build distrLatticeType, orderType)
  • totalOrderMixin == on a distrLatticeType T, totality of the order of T := total (<=%O : rel T) (can build: orderType) NB: the above three mixins are kept separate from each other (even though they are convertible), in order to avoid ambiguous coercion paths.
  • bottomMixin, topMixin, cbDistrLatticeMixin, ctbDistrLatticeMixin == mixins with one extra operation (respectively bottom, top, difference, and complement)
Additionally:
  • [porderMixin of T by <: ] creates a porderMixin by subtyping.
  • [totalOrderMixin of T by <: ] creates the associated totalOrderMixin.
  • PCanPOrderMixin, CanPOrderMixin create porderMixin from cancellations
  • MonoTotalMixin creates a totalPOrderMixin from monotonicity
  • IsoLatticeMixin creates a distrLatticeMixin from an ordered structure isomorphism (i.e., cancel f f', cancel f' f, {mono f : x y / x <= y})
List of "big pack" notations:
  • DistrLatticeOfChoiceType builds a distrLatticeType from a choiceType and a meetJoinMixin.
  • DistrLatticeOfPOrderType builds a distrLatticeType from a porderType and a distrLatticePOrderMixin.
  • OrderOfChoiceType builds an orderType from a choiceType, and a leOrderMixin or a ltOrderMixin.
  • OrderOfPOrder builds an orderType from a porderType and a totalPOrderMixin.
  • OrderOfLattice builds an orderType from a latticeType and a totalLatticeMixin.
NB: These big pack notations should be used only to construct instances on the fly, e.g., in the middle of a proof, and should not be used to declare canonical instances. See field/algebraics_fundamentals.v for an example usage.
We provide the following canonical instances of ordered types
  • all possible structures on bool
  • porderType, latticeType, distrLatticeType, orderType and bLatticeType on nat for the leq order
  • porderType, latticeType, distrLatticeType, orderType and finPOrderType on 'I_n and bLatticeType, tbLatticeType, bDistrLatticeType, tbDistrLatticeType, finLatticeType, finDistrLatticeType and finOrderType on 'I_n.+1 (to guarantee it is nonempty).
  • porderType, latticeType, distrLatticeType, bLatticeType, tbLatticeType, on nat for the dvdn order, where meet and join are respectively gcdn and lcmn
  • porderType, latticeType, distrLatticeType, orderType, bLatticeType, tbLatticeType, cbDistrLatticeType, ctbDistrLatticeType on T *prod[disp] T' a "copy" of T * T' using product order (and T *p T' its specialization to prod_display)
  • porderType, latticeType, distrLatticeType, and orderType, on T *lexi[disp] T' another "copy" of T * T', with lexicographic ordering (and T *l T' its specialization to lexi_display)
  • porderType, latticeType, distrLatticeType, and orderType, on {t : T & T' x} with lexicographic ordering
  • porderType, latticeType, distrLatticeType, orderType, bLatticeType, tbLatticeType, cbDistrLatticeType, ctbDistrLatticeType on seqprod_with disp T a "copy" of seq T using product order (and seqprod T' its specialization to prod_display)
  • porderType, latticeType, distrLatticeType, and orderType, on seqlexi_with disp T another "copy" of seq T, with lexicographic ordering (and seqlexi T its specialization to lexi_display)
  • porderType, latticeType, distrLatticeType, orderType, bLatticeType, tbLatticeType, cbDistrLatticeType, ctbDistrLatticeType on n.-tupleprod[disp] a "copy" of n.-tuple T using product order (and n.-tupleprod T its specialization to prod_display)
  • porderType, latticeType, distrLatticeType, and orderType, on n.-tuplelexi[d] T another "copy" of n.-tuple T, with lexicographic ordering (and n.-tuplelexi T its specialization to lexi_display)
  • porderType, latticeType, distrLatticeType, orderType, bLatticeType, tbLatticeType, cbDistrLatticeType, ctbDistrLatticeType on {subset[disp] T} a "copy" of {set T} using subset order (and {subset T} its specialization to subset_display)
and all possible finite type instances
In order to get a canonical order on prod, seq, tuple or set, one may import modules DefaultProdOrder or DefaultProdLexiOrder, DefaultSeqProdOrder or DefaultSeqLexiOrder, DefaultTupleProdOrder or DefaultTupleLexiOrder and DefaultSetSubsetOrder.
On orderType, leP ltP ltgtP are the three main lemmas for case analysis. On porderType, one may use comparableP, comparable_leP, comparable_ltP, and comparable_ltgtP, which are the four main lemmas for case analysis.
We also provide specialized versions of some theorems from path.v.
We provide Order.enum_val, Order.enum_rank, and Order.enum_rank_in, which are monotonous variations of enum_val, enum_rank, and enum_rank_in whenever the type is porderType, and their monotonicity is provided if this order is total. The theory is in the module Order (Order.enum_valK, Order.enum_rank_inK, etc) but Order.Enum can be imported to shorten these.
We provide an opaque monotonous bijection tagnat.sig / tagnat.rank between the finite types {i : 'I_n & 'I(p i)} and 'I(\sum_i p i): tagnat.sig : 'I(\sum_i p i) -> {i : 'I_n & 'I(p i)} tagnat.rank : {i : 'I_n & 'I(p i)} -> 'I(\sum_i p i) tagnat.sig1 : 'I(\sum_i p i) -> 'I_n tagnat.sig2 : forall p : 'I(\sum_i p i), 'I(p (tagnat.sig1 p)) tagnat.Rank : forall i, 'I(p i) -> 'I(\sum_i p i)
This file is based on prior work by D. Dreyer, G. Gonthier, A. Nanevski, P-Y Strub, B. Ziliani

Set Implicit Arguments.

Declare Scope order_scope.

Delimit Scope order_scope with O.
Local Open Scope order_scope.

Reserved Notation "<= y" (at level 35).
Reserved Notation ">= y" (at level 35).
Reserved Notation "< y" (at level 35).
Reserved Notation "> y" (at level 35).
Reserved Notation "<= y :> T" (at level 35, y at next level).
Reserved Notation ">= y :> T" (at level 35, y at next level).
Reserved Notation "< y :> T" (at level 35, y at next level).
Reserved Notation "> y :> T" (at level 35, y at next level).
Reserved Notation "x >=< y" (at level 70, no associativity).
Reserved Notation ">=< y" (at level 35).
Reserved Notation ">=< y :> T" (at level 35, y at next level).
Reserved Notation "x >< y" (at level 70, no associativity).
Reserved Notation ">< x" (at level 35).
Reserved Notation ">< y :> T" (at level 35, y at next level).
Reserved Notation "f \min g" (at level 50, left associativity).
Reserved Notation "f \max g" (at level 50, left associativity).

Reserved Notation "x < y ?<= 'if' c" (at level 70, y, c at next level,
  format "x '[hv' < y '/' ?<= 'if' c ']'").
Reserved Notation "x < y ?<= 'if' c :> T" (at level 70, y, c at next level,
  format "x '[hv' < y '/' ?<= 'if' c :> T ']'").

Reserved notation for lattice operations.
Reserved Notation "A `&` B" (at level 48, left associativity).
Reserved Notation "A `|` B" (at level 52, left associativity).
Reserved Notation "A `\` B" (at level 50, left associativity).
Reserved Notation "~` A" (at level 35, right associativity).

Notations for dual partial and total order
Reserved Notation "x <=^d y" (at level 70, y at next level).
Reserved Notation "x >=^d y" (at level 70, y at next level).
Reserved Notation "x <^d y" (at level 70, y at next level).
Reserved Notation "x >^d y" (at level 70, y at next level).
Reserved Notation "x <=^d y :> T" (at level 70, y at next level).
Reserved Notation "x >=^d y :> T" (at level 70, y at next level).
Reserved Notation "x <^d y :> T" (at level 70, y at next level).
Reserved Notation "x >^d y :> T" (at level 70, y at next level).
Reserved Notation "<=^d y" (at level 35).
Reserved Notation ">=^d y" (at level 35).
Reserved Notation "<^d y" (at level 35).
Reserved Notation ">^d y" (at level 35).
Reserved Notation "<=^d y :> T" (at level 35, y at next level).
Reserved Notation ">=^d y :> T" (at level 35, y at next level).
Reserved Notation "<^d y :> T" (at level 35, y at next level).
Reserved Notation ">^d y :> T" (at level 35, y at next level).
Reserved Notation "x >=<^d y" (at level 70, no associativity).
Reserved Notation ">=<^d y" (at level 35).
Reserved Notation ">=<^d y :> T" (at level 35, y at next level).
Reserved Notation "x ><^d y" (at level 70, no associativity).
Reserved Notation "><^d x" (at level 35).
Reserved Notation "><^d y :> T" (at level 35, y at next level).

Reserved Notation "x <=^d y <=^d z" (at level 70, y, z at next level).
Reserved Notation "x <^d y <=^d z" (at level 70, y, z at next level).
Reserved Notation "x <=^d y <^d z" (at level 70, y, z at next level).
Reserved Notation "x <^d y <^d z" (at level 70, y, z at next level).
Reserved Notation "x <=^d y ?= 'iff' c" (at level 70, y, c at next level,
  format "x '[hv' <=^d y '/' ?= 'iff' c ']'").
Reserved Notation "x <=^d y ?= 'iff' c :> T" (at level 70, y, c at next level,
  format "x '[hv' <=^d y '/' ?= 'iff' c :> T ']'").
Reserved Notation "x <^d y ?<= 'if' c" (at level 70, y, c at next level,
  format "x '[hv' <^d y '/' ?<= 'if' c ']'").
Reserved Notation "x <^d y ?<= 'if' c :> T" (at level 70, y, c at next level,
  format "x '[hv' <^d y '/' ?<= 'if' c :> T ']'").

Reserved notation for dual lattice operations.
Reserved Notation "A `&^d` B" (at level 48, left associativity).
Reserved Notation "A `|^d` B" (at level 52, left associativity).
Reserved Notation "A `\^d` B" (at level 50, left associativity).
Reserved Notation "~^d` A" (at level 35, right associativity).

Reserved Notation "0^d" (at level 0).
Reserved Notation "1^d" (at level 0).

Reserved notations for product ordering of prod or seq
Reserved Notation "x <=^p y" (at level 70, y at next level).
Reserved Notation "x >=^p y" (at level 70, y at next level).
Reserved Notation "x <^p y" (at level 70, y at next level).
Reserved Notation "x >^p y" (at level 70, y at next level).
Reserved Notation "x <=^p y :> T" (at level 70, y at next level).
Reserved Notation "x >=^p y :> T" (at level 70, y at next level).
Reserved Notation "x <^p y :> T" (at level 70, y at next level).
Reserved Notation "x >^p y :> T" (at level 70, y at next level).
Reserved Notation "<=^p y" (at level 35).
Reserved Notation ">=^p y" (at level 35).
Reserved Notation "<^p y" (at level 35).
Reserved Notation ">^p y" (at level 35).
Reserved Notation "<=^p y :> T" (at level 35, y at next level).
Reserved Notation ">=^p y :> T" (at level 35, y at next level).
Reserved Notation "<^p y :> T" (at level 35, y at next level).
Reserved Notation ">^p y :> T" (at level 35, y at next level).
Reserved Notation "x >=<^p y" (at level 70, no associativity).
Reserved Notation ">=<^p x" (at level 35).
Reserved Notation ">=<^p y :> T" (at level 35, y at next level).
Reserved Notation "x ><^p y" (at level 70, no associativity).
Reserved Notation "><^p x" (at level 35).
Reserved Notation "><^p y :> T" (at level 35, y at next level).

Reserved Notation "x <=^p y <=^p z" (at level 70, y, z at next level).
Reserved Notation "x <^p y <=^p z" (at level 70, y, z at next level).
Reserved Notation "x <=^p y <^p z" (at level 70, y, z at next level).
Reserved Notation "x <^p y <^p z" (at level 70, y, z at next level).
Reserved Notation "x <=^p y ?= 'iff' c" (at level 70, y, c at next level,
  format "x '[hv' <=^p y '/' ?= 'iff' c ']'").
Reserved Notation "x <=^p y ?= 'iff' c :> T" (at level 70, y, c at next level,
  format "x '[hv' <=^p y '/' ?= 'iff' c :> T ']'").

Reserved notation for dual lattice operations.
Reserved Notation "A `&^p` B" (at level 48, left associativity).
Reserved Notation "A `|^p` B" (at level 52, left associativity).
Reserved Notation "A `\^p` B" (at level 50, left associativity).
Reserved Notation "~^p` A" (at level 35, right associativity).

Reserved notations for lexicographic ordering of prod or seq
Reserved Notation "x <=^l y" (at level 70, y at next level).
Reserved Notation "x >=^l y" (at level 70, y at next level).
Reserved Notation "x <^l y" (at level 70, y at next level).
Reserved Notation "x >^l y" (at level 70, y at next level).
Reserved Notation "x <=^l y :> T" (at level 70, y at next level).
Reserved Notation "x >=^l y :> T" (at level 70, y at next level).
Reserved Notation "x <^l y :> T" (at level 70, y at next level).
Reserved Notation "x >^l y :> T" (at level 70, y at next level).
Reserved Notation "<=^l y" (at level 35).
Reserved Notation ">=^l y" (at level 35).
Reserved Notation "<^l y" (at level 35).
Reserved Notation ">^l y" (at level 35).
Reserved Notation "<=^l y :> T" (at level 35, y at next level).
Reserved Notation ">=^l y :> T" (at level 35, y at next level).
Reserved Notation "<^l y :> T" (at level 35, y at next level).
Reserved Notation ">^l y :> T" (at level 35, y at next level).
Reserved Notation "x >=<^l y" (at level 70, no associativity).
Reserved Notation ">=<^l x" (at level 35).
Reserved Notation ">=<^l y :> T" (at level 35, y at next level).
Reserved Notation "x ><^l y" (at level 70, no associativity).
Reserved Notation "><^l x" (at level 35).
Reserved Notation "><^l y :> T" (at level 35, y at next level).

Reserved Notation "x <=^l y <=^l z" (at level 70, y, z at next level).
Reserved Notation "x <^l y <=^l z" (at level 70, y, z at next level).
Reserved Notation "x <=^l y <^l z" (at level 70, y, z at next level).
Reserved Notation "x <^l y <^l z" (at level 70, y, z at next level).
Reserved Notation "x <=^l y ?= 'iff' c" (at level 70, y, c at next level,
  format "x '[hv' <=^l y '/' ?= 'iff' c ']'").
Reserved Notation "x <=^l y ?= 'iff' c :> T" (at level 70, y, c at next level,
  format "x '[hv' <=^l y '/' ?= 'iff' c :> T ']'").

Reserved notations for divisibility
Reserved Notation "x %<| y" (at level 70, no associativity).

Reserved Notation "\gcd_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \gcd_ i '/ ' F ']'").
Reserved Notation "\gcd_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \gcd_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\gcd_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \gcd_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\gcd_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \gcd_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\gcd_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \gcd_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\gcd_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \gcd_ ( i | P ) '/ ' F ']'").
Reserved Notation "\gcd_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\gcd_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\gcd_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \gcd_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\gcd_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \gcd_ ( i < n ) F ']'").
Reserved Notation "\gcd_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \gcd_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\gcd_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \gcd_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\lcm_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \lcm_ i '/ ' F ']'").
Reserved Notation "\lcm_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \lcm_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\lcm_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \lcm_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\lcm_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \lcm_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\lcm_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \lcm_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\lcm_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \lcm_ ( i | P ) '/ ' F ']'").
Reserved Notation "\lcm_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\lcm_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\lcm_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \lcm_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\lcm_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \lcm_ ( i < n ) F ']'").
Reserved Notation "\lcm_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \lcm_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\lcm_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \lcm_ ( i 'in' A ) '/ ' F ']'").

Reserved notation for dual lattice operations.
Reserved Notation "A `&^l` B" (at level 48, left associativity).
Reserved Notation "A `|^l` B" (at level 52, left associativity).
Reserved Notation "A `\^l` B" (at level 50, left associativity).
Reserved Notation "~^l` A" (at level 35, right associativity).

Reserved Notation "\meet_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \meet_ i '/ ' F ']'").
Reserved Notation "\meet_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \meet_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\meet_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \meet_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\meet_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \meet_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\meet_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \meet_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\meet_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \meet_ ( i | P ) '/ ' F ']'").
Reserved Notation "\meet_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\meet_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\meet_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \meet_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\meet_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \meet_ ( i < n ) F ']'").
Reserved Notation "\meet_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \meet_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\meet_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \meet_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\join_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \join_ i '/ ' F ']'").
Reserved Notation "\join_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \join_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\join_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \join_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\join_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \join_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\join_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \join_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\join_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \join_ ( i | P ) '/ ' F ']'").
Reserved Notation "\join_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\join_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\join_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \join_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\join_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \join_ ( i < n ) F ']'").
Reserved Notation "\join_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \join_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\join_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \join_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\min_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \min_ i '/ ' F ']'").
Reserved Notation "\min_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \min_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\min_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \min_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\min_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \min_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\min_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \min_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\min_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \min_ ( i | P ) '/ ' F ']'").
Reserved Notation "\min_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\min_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\min_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \min_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\min_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \min_ ( i < n ) F ']'").
Reserved Notation "\min_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \min_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\min_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \min_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\max_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \max_ i '/ ' F ']'").
Reserved Notation "\max_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \max_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\max_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \max_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\max_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \max_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\max_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \max_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\max_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \max_ ( i | P ) '/ ' F ']'").
Reserved Notation "\max_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\max_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\max_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \max_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\max_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \max_ ( i < n ) F ']'").
Reserved Notation "\max_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \max_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\max_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \max_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\meet^d_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \meet^d_ i '/ ' F ']'").
Reserved Notation "\meet^d_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \meet^d_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\meet^d_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \meet^d_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\meet^d_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \meet^d_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\meet^d_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \meet^d_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\meet^d_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \meet^d_ ( i | P ) '/ ' F ']'").
Reserved Notation "\meet^d_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\meet^d_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\meet^d_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \meet^d_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\meet^d_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \meet^d_ ( i < n ) F ']'").
Reserved Notation "\meet^d_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \meet^d_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\meet^d_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \meet^d_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\join^d_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \join^d_ i '/ ' F ']'").
Reserved Notation "\join^d_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \join^d_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\join^d_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \join^d_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\join^d_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \join^d_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\join^d_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \join^d_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\join^d_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \join^d_ ( i | P ) '/ ' F ']'").
Reserved Notation "\join^d_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\join^d_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\join^d_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \join^d_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\join^d_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \join^d_ ( i < n ) F ']'").
Reserved Notation "\join^d_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \join^d_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\join^d_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \join^d_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\min^d_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \min^d_ i '/ ' F ']'").
Reserved Notation "\min^d_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \min^d_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\min^d_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \min^d_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\min^d_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \min^d_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\min^d_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \min^d_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\min^d_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \min^d_ ( i | P ) '/ ' F ']'").
Reserved Notation "\min^d_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\min^d_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\min^d_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \min^d_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\min^d_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \min^d_ ( i < n ) F ']'").
Reserved Notation "\min^d_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \min^d_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\min^d_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \min^d_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\max^d_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \max^d_ i '/ ' F ']'").
Reserved Notation "\max^d_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \max^d_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\max^d_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \max^d_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\max^d_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \max^d_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\max^d_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \max^d_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\max^d_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \max^d_ ( i | P ) '/ ' F ']'").
Reserved Notation "\max^d_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\max^d_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\max^d_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \max^d_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\max^d_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \max^d_ ( i < n ) F ']'").
Reserved Notation "\max^d_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \max^d_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\max^d_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \max^d_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\meet^p_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \meet^p_ i '/ ' F ']'").
Reserved Notation "\meet^p_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \meet^p_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\meet^p_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \meet^p_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\meet^p_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \meet^p_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\meet^p_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \meet^p_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\meet^p_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \meet^p_ ( i | P ) '/ ' F ']'").
Reserved Notation "\meet^p_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\meet^p_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\meet^p_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \meet^p_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\meet^p_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \meet^p_ ( i < n ) F ']'").
Reserved Notation "\meet^p_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \meet^p_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\meet^p_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \meet^p_ ( i 'in' A ) '/ ' F ']'").

Reserved Notation "\join^p_ i F"
  (at level 41, F at level 41, i at level 0,
           format "'[' \join^p_ i '/ ' F ']'").
Reserved Notation "\join^p_ ( i <- r | P ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \join^p_ ( i <- r | P ) '/ ' F ']'").
Reserved Notation "\join^p_ ( i <- r ) F"
  (at level 41, F at level 41, i, r at level 50,
           format "'[' \join^p_ ( i <- r ) '/ ' F ']'").
Reserved Notation "\join^p_ ( m <= i < n | P ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \join^p_ ( m <= i < n | P ) '/ ' F ']'").
Reserved Notation "\join^p_ ( m <= i < n ) F"
  (at level 41, F at level 41, i, m, n at level 50,
           format "'[' \join^p_ ( m <= i < n ) '/ ' F ']'").
Reserved Notation "\join^p_ ( i | P ) F"
  (at level 41, F at level 41, i at level 50,
           format "'[' \join^p_ ( i | P ) '/ ' F ']'").
Reserved Notation "\join^p_ ( i : t | P ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\join^p_ ( i : t ) F"
  (at level 41, F at level 41, i at level 50).
Reserved Notation "\join^p_ ( i < n | P ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \join^p_ ( i < n | P ) '/ ' F ']'").
Reserved Notation "\join^p_ ( i < n ) F"
  (at level 41, F at level 41, i, n at level 50,
           format "'[' \join^p_ ( i < n ) F ']'").
Reserved Notation "\join^p_ ( i 'in' A | P ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \join^p_ ( i 'in' A | P ) '/ ' F ']'").
Reserved Notation "\join^p_ ( i 'in' A ) F"
  (at level 41, F at level 41, i, A at level 50,
           format "'[' \join^p_ ( i 'in' A ) '/ ' F ']'").

Module Order.

STRUCTURES


#[short(type="porderType")]
HB.structure Definition POrder (d : unit) :=
  { T of Choice T & isPOrdered d T }.


TODO: print nice error message when keyed type is not provided


Let le_refl : reflexive le.

Let le_anti : antisymmetric le.

Let le_trans : transitive le.

Let lt_def x y : lt x y = (y != x) && (le x y).



#[key="T"]
HB.builders Context (d : unit) (T : Type) of isLtPOrdered d T.

Module POrderExports.
Arguments le_trans {d s} [_ _ _].
Notation "[ 'porderType' 'of' T 'for' cT ]" := (POrder.clone _ T%type cT)
  (at level 0, format "[ 'porderType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'porderType' 'of' T 'for' cT 'with' disp ]" :=
  (POrder.clone disp T%type cT)
  (at level 0, format "[ 'porderType' 'of' T 'for' cT 'with' disp ]") :
  form_scope.
Notation "[ 'porderType' 'of' T ]" := [porderType of T%type for _]
  (at level 0, format "[ 'porderType' 'of' T ]") : form_scope.
Notation "[ 'porderType' 'of' T 'with' disp ]" :=
  [porderType of T%type for _ with disp]
  (at level 0, format "[ 'porderType' 'of' T 'with' disp ]") : form_scope.
End POrderExports.
Bind Scope order_scope with POrder.sort.

Section POrderDef.

Variable (disp : unit) (T : porderType disp).


Definition comparable : rel T := fun (x y : T) ⇒ (x y) || (y x).

Definition ge : simpl_rel T := [rel x y | y x].
Definition gt : simpl_rel T := [rel x y | y < x].
Definition leif (x y : T) C : Prop := ((x y) × ((x == y) = C))%type.

Definition le_of_leif x y C (le_xy : @leif x y C) := le_xy.1 : le x y.

Definition lteif (x y : T) C := if C then x y else x < y.

Variant le_xor_gt (x y : T) :
  T T T T bool bool Set :=
  | LeNotGt of x y : le_xor_gt x y x x y y true false
  | GtNotLe of y < x : le_xor_gt x y y y x x false true.

Variant lt_xor_ge (x y : T) :
  T T T T bool bool Set :=
  | LtNotGe of x < y : lt_xor_ge x y x x y y false true
  | GeNotLt of y x : lt_xor_ge x y y y x x true false.

Definition min (x y : T) := if x < y then x else y.
Definition max (x y : T) := if x < y then y else x.

Variant compare (x y : T) :
   T T T T
   bool bool bool bool bool bool Set :=
  | CompareLt of x < y : compare x y
    x x y y false false false true false true
  | CompareGt of y < x : compare x y
    y y x x false false true false true false
  | CompareEq of x = y : compare x y
    x x x x true true true true false false.

Variant incompare (x y : T) :
   T T T T
  bool bool bool bool bool bool bool bool Set :=
  | InCompareLt of x < y : incompare x y
    x x y y false false false true false true true true
  | InCompareGt of y < x : incompare x y
    y y x x false false true false true false true true
  | InCompare of x >< y : incompare x y
    x y y x false false false false false false false false
  | InCompareEq of x = y : incompare x y
    x x x x true true true true false false true true.

Definition arg_min {I : finType} := @extremum T I le.
Definition arg_max {I : finType} := @extremum T I ge.

Lifted min/max operations.
Section LiftedPOrder.
Variable T' : Type.
Implicit Type f : T' T.
Definition min_fun f g x := min (f x) (g x).
Definition max_fun f g x := min (f x) (g x).
End LiftedPOrder.

End POrderDef.

Arguments ge {_ _}.
Arguments gt {_ _}.
Arguments min {_ _}.
Arguments max {_ _}.
Arguments comparable {_ _}.
Arguments min_fun {_ _ _} f g _ /.
Arguments max_fun {_ _ _} f g _ /.

Module Import POSyntax.

Notation "<=%O" := le : fun_scope.
Notation ">=%O" := ge : fun_scope.
Notation "<%O" := lt : fun_scope.
Notation ">%O" := gt : fun_scope.
Notation "<?=%O" := leif : fun_scope.
Notation "<?<=%O" := lteif : fun_scope.
Notation ">=<%O" := comparable : fun_scope.
Notation "><%O" := (fun x y~~ (comparable x y)) : fun_scope.

Notation "<= y" := (ge y) : order_scope.
Notation "<= y :> T" := ( (y : T)) (only parsing) : order_scope.
Notation ">= y" := (le y) : order_scope.
Notation ">= y :> T" := ( (y : T)) (only parsing) : order_scope.

Notation "< y" := (gt y) : order_scope.
Notation "< y :> T" := (< (y : T)) (only parsing) : order_scope.
Notation "> y" := (lt y) : order_scope.
Notation "> y :> T" := (> (y : T)) (only parsing) : order_scope.

Notation "x <= y" := (le x y) : order_scope.
Notation "x <= y :> T" := ((x : T) (y : T)) (only parsing) : order_scope.
Notation "x >= y" := (y x) (only parsing) : order_scope.
Notation "x >= y :> T" := ((x : T) (y : T)) (only parsing) : order_scope.

Notation "x < y" := (lt x y) : order_scope.
Notation "x < y :> T" := ((x : T) < (y : T)) (only parsing) : order_scope.
Notation "x > y" := (y < x) (only parsing) : order_scope.
Notation "x > y :> T" := ((x : T) > (y : T)) (only parsing) : order_scope.

Notation "x <= y <= z" := ((x y) && (y z)) : order_scope.
Notation "x < y <= z" := ((x < y) && (y z)) : order_scope.
Notation "x <= y < z" := ((x y) && (y < z)) : order_scope.
Notation "x < y < z" := ((x < y) && (y < z)) : order_scope.

Notation "x <= y ?= 'iff' C" := (leif x y C) : order_scope.
Notation "x <= y ?= 'iff' C :> T" := ((x : T) (y : T) ?= iff C)
  (only parsing) : order_scope.

Notation "x < y ?<= 'if' C" := (lteif x y C) : order_scope.
Notation "x < y ?<= 'if' C :> T" := ((x : T) < (y : T) ?<= if C)
  (only parsing) : order_scope.

Notation ">=< y" := [pred x | comparable x y] : order_scope.
Notation ">=< y :> T" := (>=< (y : T)) (only parsing) : order_scope.
Notation "x >=< y" := (comparable x y) : order_scope.

Notation ">< y" := [pred x | ~~ comparable x y] : order_scope.
Notation ">< y :> T" := (>< (y : T)) (only parsing) : order_scope.
Notation "x >< y" := (~~ (comparable x y)) : order_scope.

Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
    (arg_min i0 (fun iP%B) (fun iF))
  (at level 0, i, i0 at level 10,
   format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : order_scope.

Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" :=
    [arg min_(i < i0 | i \in A) F]
  (at level 0, i, i0 at level 10,
   format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : order_scope.

Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
  (at level 0, i, i0 at level 10,
   format "[ 'arg' 'min_' ( i < i0 ) F ]") : order_scope.

Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
     (arg_max i0 (fun iP%B) (fun iF))
  (at level 0, i, i0 at level 10,
   format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : order_scope.

Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" :=
    [arg max_(i > i0 | i \in A) F]
  (at level 0, i, i0 at level 10,
   format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : order_scope.

Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F]
  (at level 0, i, i0 at level 10,
   format "[ 'arg' 'max_' ( i > i0 ) F ]") : order_scope.

Notation "f \min g" := (min_fun f g) : order_scope.
Notation "f \max g" := (max_fun f g) : order_scope.

Notation leLHS := (X in (X _)%O)%pattern.
Notation leRHS := (X in (_ X)%O)%pattern.
Notation ltLHS := (X in (X < _)%O)%pattern.
Notation ltRHS := (X in (_ < X)%O)%pattern.

End POSyntax.

Module POCoercions.
Coercion le_of_leif : leif >-> is_true.
End POCoercions.

HB.mixin Record POrder_isJoinSemiLattice d (T : indexed Type) of POrder d T := { join : T -> T -> T; joinC : commutative join; joinA : associative join; le_defU : forall x y, (x <= y) = (join x y == y); }. # [short(type="joinSemiLatticeType") ] HB.structure Definition JoinSemiLattice d := { T of POrder_isJoinSemiLattice d T & POrder d T }.
HB.mixin Record POrder_isMeetSemiLattice d (T : indexed Type) of POrder d T := { meet : T -> T -> T; meetC : commutative meet; meetA : associative meet; le_def : forall x y, (x <= y) = (meet x y == x); }. # [short(type="meetSemiLatticeType") ] HB.structure Definition MeetSemiLattice d := { T of POrder_isMeetSemiLattice d T & POrder d T }.

#[key="T"]
HB.mixin Record POrder_isLattice d (T : Type) of POrder d T := {
  meet : T T T;
  join : T T T;
  meetC : commutative meet;
  joinC : commutative join;
  meetA : associative meet;
  joinA : associative join;
  joinKI : y x, meet x (join x y) = x;
  meetKU : y x, join x (meet x y) = x;
  leEmeet : x y, (x y) = (meet x y == x);
}.
HB.builders Context d T of POrder_isLattice d T.
Let le_defU : forall x y, (x <= y) = (join x y == y). Proof. Admitted.
HB.instance Definition _ := @POrder_isMeetSemiLattice.Build d T meet meetC meetA le_def. HB.instance Definition _ := @POrder_isJoinSemiLattice.Build d T join joinC joinA le_defU. HB.end.

#[short(type="latticeType")]
HB.structure Definition Lattice d :=
  { T of POrder_isLattice d T & POrder d T }.

Module LatticeExports.
Notation "[ 'latticeType' 'of' T 'for' cT ]" := (Lattice.clone _ T%type cT)
  (at level 0, format "[ 'latticeType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'latticeType' 'of' T 'for' cT 'with' disp ]" :=
  (Lattice.clone disp T%type cT)
  (at level 0, format "[ 'latticeType' 'of' T 'for' cT 'with' disp ]") :
  form_scope.
Notation "[ 'latticeType' 'of' T ]" := [latticeType of T%type for _]
  (at level 0, format "[ 'latticeType' 'of' T ]") : form_scope.
Notation "[ 'latticeType' 'of' T 'with' disp ]" :=
  [latticeType of T%type for _ with disp]
  (at level 0, format "[ 'latticeType' 'of' T 'with' disp ]") : form_scope.
End LatticeExports.

Section LatticeDef.
Context {disp : unit} {T : latticeType disp}.

Variant lel_xor_gt (x y : T) :
  T T T T T T T T bool bool Set :=
  | LelNotGt of x y : lel_xor_gt x y x x y y x x y y true false
  | GtlNotLe of y < x : lel_xor_gt x y y y x x y y x x false true.

Variant ltl_xor_ge (x y : T) :
  T T T T T T T T bool bool Set :=
  | LtlNotGe of x < y : ltl_xor_ge x y x x y y x x y y false true
  | GelNotLt of y x : ltl_xor_ge x y y y x x y y x x true false.

Variant comparel (x y : T) :
   T T T T T T T T
   bool bool bool bool bool bool Set :=
  | ComparelLt of x < y : comparel x y
    x x y y x x y y false false false true false true
  | ComparelGt of y < x : comparel x y
    y y x x y y x x false false true false true false
  | ComparelEq of x = y : comparel x y
    x x x x x x x x true true true true false false.

Variant incomparel (x y : T) :
  T T T T T T T T
  bool bool bool bool bool bool bool bool Set :=
  | InComparelLt of x < y : incomparel x y
    x x y y x x y y false false false true false true true true
  | InComparelGt of y < x : incomparel x y
    y y x x y y x x false false true false true false true true
  | InComparel of x >< y : incomparel x y
    x y y x (meet y x) (meet x y) (join y x) (join x y)
    false false false false false false false false
  | InComparelEq of x = y : incomparel x y
    x x x x x x x x true true true true false false true true.

End LatticeDef.

Module LatticeSyntax.

Notation "x `&` y" := (meet x y) : order_scope.
Notation "x `|` y" := (join x y) : order_scope.

End LatticeSyntax.

#[key="T"]
HB.mixin Record hasBottom d (T : Type) of POrder d T := {
  bottom : T;
  le0x : x, bottom x;
}.
TODO: Restore when we remove the mathcomp attribute HB.structure Definition BPOrder d := { T of hasBottom d T & POrder d T }.
#[short(type="bLatticeType")]
HB.structure Definition BLattice d := { T of hasBottom d T & Lattice d T }.

Module BLatticeExports.
Notation "[ 'bLatticeType' 'of' T 'for' cT ]" := (BLattice.clone _ T%type cT)
  (at level 0, format "[ 'bLatticeType' 'of' T 'for' cT ]") : form_scope.
Notation "[ 'bLatticeType' 'of' T ]" := [bLatticeType of T%type for _]
  (at level 0, format "[ 'bLatticeType' 'of' T ]") : form_scope.
Notation " [ 'bLatticeType' 'of' T 'for' cT 'with' disp ]" := (@clone_with T _ cT disp _ id) (at level 0, format " [ 'bLatticeType' 'of' T 'for' cT 'with' disp ]") : form_scope. Notation " [ 'bLatticeType' 'of' T 'with' disp ]" := [bLatticeType of T for _ with disp] (at level 0, format " [ 'bLatticeType' 'of' T 'with' disp ]") : form_scope.
End BLatticeExports.

Module BLatticeSyntax.
Notation "0" := bottom : order_scope.

Notation "\join_ ( i <- r | P ) F" :=
  (\big[@join _ _/0%O]_(i <- r | P%B) F%O) : order_scope.
Notation "\join_ ( i <- r ) F" :=
  (\big[@join _ _/0%O]_(i <- r) F%O) : order_scope.
Notation "\join_ ( i | P ) F" :=
  (\big[@join _ _/0%O]_(i | P%B) F%O) : order_scope.
Notation "\join_ i F" :=
  (\big[@join _ _/0%O]_i F%O) : order_scope.
Notation "\join_ ( i : I | P ) F" :=
  (\big[@join _ _/0%O]_(i : I | P%B) F%O) (only parsing) : order_scope.
Notation "\join_ ( i : I ) F" :=
  (\big[@join _ _/0%O]_(i : I) F%O) (only parsing) : order_scope.
Notation "\join_ ( m <= i < n | P ) F" :=
  (\big[@join _ _/0%O]_(m i < n | P%B) F%O) : order_scope.
Notation "\join_ ( m <= i < n ) F" :=
  (\big[@join _ _/0%O]_(m i < n) F%O) : order_scope.
Notation "\join_ ( i < n | P ) F" :=
  (\big[@join _ _/0%O]_(i < n | P%B) F%O) : order_scope.
Notation "\join_ ( i < n ) F" :=
  (\big[@join _ _/0%O]_(i < n) F%O) : order_scope.
Notation "\join_ ( i 'in' A | P ) F" :=
  (\big[@join _ _/0%O]_(i in A | P%B) F%O) : order_scope.
Notation "\join_ ( i 'in' A ) F" :=
  (\big[@join _ _/0%O]_(i in A) F%O) : order_scope.

End BLatticeSyntax.

#[key="T"]
HB.mixin Record hasTop d (T : Type) of POrder d T := {
  top : T;
  lex1 : x, x top;
}.
TODO: Restore when we remove the mathcomp attribute HB.structure Definition TPOrder d := { T of hasBottom d T & POrder d T }. HB.structure Definition TLattice d := { T of hasTop d T & Lattice d T }. HB.structure Definition TBOrder d := { T of hasTop d T & BPOrder d T }.
#[short(type="tbLatticeType")]
HB.structure Definition TBLattice d := { T of hasTop d T & BLattice d T }.

Module TBLatticeExports.
FIXME: clone?
End TBLatticeExports.

Module TBLatticeSyntax.

Notation "1" := top : order_scope.

Notation "\meet_ ( i <- r | P ) F" :=
  (\big[meet/1]_(i <- r | P%B) F%O) : order_scope.
Notation "\meet_ ( i <- r ) F" :=
  (\big[meet/1]_(i <- r) F%O) : order_scope.
Notation "\meet_ ( i | P ) F" :=
  (\big[meet/1]_(i | P%B) F%O) : order_scope.
Notation "\meet_ i F" :=
  (\big[meet/1]_i F%O) : order_scope.
Notation "\meet_ ( i : I | P ) F" :=
  (\big[meet/1]_(i : I | P%B) F%O) (only parsing) : order_scope.
Notation "\meet_ ( i : I ) F" :=
  (\big[meet/1]_(i : I) F%O) (only parsing) : order_scope.
Notation "\meet_ ( m <= i < n | P ) F" :=
 (\big[meet/1]_(m i < n | P%B) F%O) : order_scope.
Notation "\meet_ ( m <= i < n ) F" :=
 (\big[meet/1]_(m i < n) F%O) : order_scope.
Notation "\meet_ ( i < n | P ) F" :=
 (\big[meet/1]_(i < n | P%B) F%O) : order_scope.
Notation "\meet_ ( i < n ) F" :=
 (\big[meet/1]_(i < n) F%O) : order_scope.
Notation "\meet_ ( i 'in' A | P ) F" :=
 (\big[meet/1]_(i in A | P%B) F%O) : order_scope.
Notation "\meet_ ( i 'in' A ) F" :=
 (\big[meet/1]_(i in A) F%O) : order_scope.

End TBLatticeSyntax.

TODO: rename to lattice_ismeet_distributive ?
#[key="T"]
HB.mixin Record Lattice_MeetIsDistributive d (T : Type) of Lattice d T := {
  meetUl : @left_distributive T T meet join;
}.
#[short(type="distrLatticeType")]
HB.structure Definition DistrLattice d :=
  { T of Lattice_MeetIsDistributive d T & Lattice d T }.

Module DistrLatticeExports.
FIXME: clone?
End DistrLatticeExports.

#[short(type="bDistrLatticeType")]
HB.structure Definition BDistrLattice d :=
  { T of hasBottom d T & DistrLattice d T}.

Module BDistrLatticeExports.
Notation "[ 'bDistrLatticeType' 'of' T ]" := (BDistrLattice.clone _ T%type _)
  (at level 0, format "[ 'bDistrLatticeType' 'of' T ]") : form_scope.
End BDistrLatticeExports.

#[short(type="tbDistrLatticeType")]
HB.structure Definition TBDistrLattice d :=
  { T of TBLattice d T & BDistrLattice d T }.

Module TBDistrLatticeExports.
Notation "[ 'tbDistrLatticeType' 'of' T ]" := (TBDistrLattice.clone _ T%type _)
  (at level 0, format "[ 'tbDistrLatticeType' 'of' T ]") : form_scope.
End TBDistrLatticeExports.

#[key="T"]
HB.mixin Record hasSub d (T : Type) of BDistrLattice d T := {
  sub : T T T;
  subKI : x y, y `&` sub x y = bottom;
  joinIB : x y, (x `&` y) `|` sub x y = x
}.

#[short(type="cbDistrLatticeType")]
HB.structure Definition CBDistrLattice d :=
  { T of hasSub d T & BDistrLattice d T }.

Module CBDistrLatticeExports.
Notation " [ 'cbDistrLatticeType' 'of' T 'for' cT ]" := (@CBDistrLattice.clone _ T%type cT) (at level 0, format " [ 'cbDistrLatticeType' 'of' T 'for' cT ]") : form_scope. Notation " [ 'cbDistrLatticeType' 'of' T 'for' cT 'with' disp ]" := (@CBDistrLattice.clone disp T%type cT) (at level 0, format " [ 'cbDistrLatticeType' 'of' T 'for' cT 'with' disp ]") : form_scope. Notation " [ 'cbDistrLatticeType' 'of' T ]" := [cbDistrLatticeType of T for _ ] (at level 0, format " [ 'cbDistrLatticeType' 'of' T ]") : form_scope. Notation " [ 'cbDistrLatticeType' 'of' T 'with' disp ]" := [cbDistrLatticeType of T for _ with disp] (at level 0, format " [ 'cbDistrLatticeType' 'of' T 'with' disp ]") : form_scope.
End CBDistrLatticeExports.


Module Import CBDistrLatticeSyntax.
Notation "x `\` y" := (sub x y) : order_scope.
End CBDistrLatticeSyntax.

#[key="T"]
HB.mixin Record hasCompl d (T : Type) of
         TBDistrLattice d T & CBDistrLattice d T := {
  compl : T T;
  complE : x : T, compl x = (top : T) `\` x (* FIXME? *)
}.

#[short(type="ctbDistrLatticeType")]
HB.structure Definition CTBDistrLattice d :=
  { T of hasCompl d T & TBDistrLattice d T & CBDistrLattice d T }.

Module CTBDistrLatticeExports.
Notation " [ 'ctbDistrLatticeType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) (at level 0, format " [ 'ctbDistrLatticeType' 'of' T 'for' cT ]") : form_scope. Notation " [ 'ctbDistrLatticeType' 'of' T 'for' cT 'with' disp ]" := (@clone_with T _ cT disp _ id) (at level 0, format " [ 'ctbDistrLatticeType' 'of' T 'for' cT 'with' disp ]") : form_scope. Notation " [ 'ctbDistrLatticeType' 'of' T ]" := [ctbDistrLatticeType of T for _ ] (at level 0, format " [ 'ctbDistrLatticeType' 'of' T ]") : form_scope. Notation " [ 'ctbDistrLatticeType' 'of' T 'with' disp ]" := [ctbDistrLatticeType of T for _ with disp] (at level 0, format " [ 'ctbDistrLatticeType' 'of' T 'with' disp ]") : form_scope. Notation " [ 'default_ctbDistrLatticeType' 'of' T ]" := (@pack T _ id _ id (Mixin (fun=> erefl))) (at level 0, format " [ 'default_ctbDistrLatticeType' 'of' T ]") : form_scope.
End CTBDistrLatticeExports.

Module Import CTBDistrLatticeSyntax.
Notation "~` A" := (compl A) : order_scope.
End CTBDistrLatticeSyntax.


#[short(type="orderType")]
HB.structure Definition Total d :=
  { T of DistrLattice_isTotal d T & DistrLattice d T }.

Module TotalExports.
Notation " [ 'orderType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) (at level 0, format " [ 'orderType' 'of' T 'for' cT ]") : form_scope. Notation " [ 'orderType' 'of' T 'for' cT 'with' disp ]" := (@clone_with T _ cT disp _ id) (at level 0, format " [ 'orderType' 'of' T 'for' cT 'with' disp ]") : form_scope. Notation " [ 'orderType' 'of' T ]" := [orderType of T for _ ] (at level 0, format " [ 'orderType' 'of' T ]") : form_scope. Notation " [ 'orderType' 'of' T 'with' disp ]" := [orderType of T for _ with disp] (at level 0, format " [ 'orderType' 'of' T 'with' disp ]") : form_scope.
FINITE

#[short(type="finPOrderType")]
HB.structure Definition FinPOrder d := { T of Finite T & POrder d T }.

Module FinPOrderExports.
Notation "[ 'finPOrderType' 'of' T ]" := (FinPOrder.clone _ T%type _ )
  (at level 0, format "[ 'finPOrderType' 'of' T ]") : form_scope.
End FinPOrderExports.

#[short(type="finLatticeType")]
HB.structure Definition FinLattice d := { T of Finite T & TBLattice d T }.

Module FinLatticeExports.
Notation "[ 'finLatticeType' 'of' T ]" := (FinLattice.clone _ T%type _ )
  (at level 0, format "[ 'finLatticeType' 'of' T ]") : form_scope.
End FinLatticeExports.

#[short(type="finDistrLatticeType")]
HB.structure Definition FinDistrLattice d :=
  { T of Finite T & TBDistrLattice d T }.

Module FinDistrLatticeExports.
Notation "[ 'finDistrLatticeType' 'of' T ]" := (FinDistrLattice.clone _ T%type _ )
  (at level 0, format "[ 'finDistrLatticeType' 'of' T ]") : form_scope.
End FinDistrLatticeExports.

#[short(type="finCDistrLatticeType")]
HB.structure Definition FinCDistrLattice d :=
  { T of Finite T & CTBDistrLattice d T }.

Module FinCDistrLatticeExports.
Notation "[ 'finCDistrLatticeType' 'of' T ]" := (FinCDistrLattice.clone _ T%type _ )
  (at level 0, format "[ 'finCDistrLatticeType' 'of' T ]") : form_scope.
End FinCDistrLatticeExports.

#[short(type="finOrderType")]
HB.structure Definition FinTotal d :=
  { T of Total d T & FinDistrLattice d T }.

Module FinTotalExports.
Notation "[ 'finOrderType' 'of' T ]" := (FinTotal.clone _ T%type _ )
  (at level 0, format "[ 'finOrderType' 'of' T ]") : form_scope.
End FinTotalExports.

DUAL

Definition dual T : Type := T.
Definition dual_display : unit unit.

Notation dual_le := (@le (dual_display _) _).
Notation dual_lt := (@lt (dual_display _) _).
Notation dual_comparable := (@comparable (dual_display _) _).
Notation dual_ge := (@ge (dual_display _) _).
Notation dual_gt := (@gt (dual_display _) _).
Notation dual_leif := (@leif (dual_display _) _).
Notation dual_lteif := (@lteif (dual_display _) _).
Notation dual_max := (@max (dual_display _) _).
Notation dual_min := (@min (dual_display _) _).
Notation dual_meet := (@meet (dual_display _) _).
Notation dual_join := (@join (dual_display _) _).
Notation dual_bottom := (@bottom (dual_display _) _).
Notation dual_top := (@top (dual_display _) _).

Module Import DualSyntax.

Notation "T ^d" := (dual T) (at level 2, format "T ^d") : type_scope.
Notation "<=^d%O" := dual_le : fun_scope.
Notation ">=^d%O" := dual_ge : fun_scope.
Notation "<^d%O" := dual_lt : fun_scope.
Notation ">^d%O" := dual_gt : fun_scope.
Notation "<?=^d%O" := dual_leif : fun_scope.
Notation "<?<=^d%O" := dual_lteif : fun_scope.
Notation ">=<^d%O" := dual_comparable : fun_scope.
Notation "><^d%O" := (fun x y~~ dual_comparable x y) : fun_scope.

Notation "<=^d y" := (>=^d%O y) : order_scope.
Notation "<=^d y :> T" := (<=^d (y : T)) (only parsing) : order_scope.
Notation ">=^d y" := (<=^d%O y) : order_scope.
Notation ">=^d y :> T" := (>=^d (y : T)) (only parsing) : order_scope.

Notation "<^d y" := (>^d%O y) : order_scope.
Notation "<^d y :> T" := (<^d (y : T)) (only parsing) : order_scope.
Notation ">^d y" := (<^d%O y) : order_scope.
Notation ">^d y :> T" := (>^d (y : T)) (only parsing) : order_scope.

Notation "x <=^d y" := (<=^d%O x y) : order_scope.
Notation "x <=^d y :> T" := ((x : T) <=^d (y : T)) (only parsing) : order_scope.
Notation "x >=^d y" := (y <=^d x) (only parsing) : order_scope.
Notation "x >=^d y :> T" := ((x : T) >=^d (y : T)) (only parsing) : order_scope.

Notation "x <^d y" := (<^d%O x y) : order_scope.
Notation "x <^d y :> T" := ((x : T) <^d (y : T)) (only parsing) : order_scope.
Notation "x >^d y" := (y <^d x) (only parsing) : order_scope.
Notation "x >^d y :> T" := ((x : T) >^d (y : T)) (only parsing) : order_scope.

Notation "x <=^d y <=^d z" := ((x <=^d y) && (y <=^d z)) : order_scope.
Notation "x <^d y <=^d z" := ((x <^d y) && (y <=^d z)) : order_scope.
Notation "x <=^d y <^d z" := ((x <=^d y) && (y <^d z)) : order_scope.
Notation "x <^d y <^d z" := ((x <^d y) && (y <^d z)) : order_scope.

Notation "x <=^d y ?= 'iff' C" := (<?=^d%O x y C) : order_scope.
Notation "x <=^d y ?= 'iff' C :> T" := ((x : T) <=^d (y : T) ?= iff C)
  (only parsing) : order_scope.

Notation "x <^d y ?<= 'if' C" := (<?<=^d%O x y C) : order_scope.
Notation "x <^d y ?<= 'if' C :> T" := ((x : T) <^d (y : T) ?<= if C)
  (only parsing) : order_scope.

Notation ">=<^d x" := (>=<^d%O x) : order_scope.
Notation ">=<^d y :> T" := (>=<^d (y : T)) (only parsing) : order_scope.
Notation "x >=<^d y" := (>=<^d%O x y) : order_scope.

Notation "><^d y" := [pred x | ~~ dual_comparable x y] : order_scope.
Notation "><^d y :> T" := (><^d (y : T)) (only parsing) : order_scope.
Notation "x ><^d y" := (~~ (><^d%O x y)) : order_scope.

Notation "x `&^d` y" := (dual_meet x y) : order_scope.
Notation "x `|^d` y" := (dual_join x y) : order_scope.

Notation "0^d" := dual_bottom : order_scope.
Notation "1^d" := dual_top : order_scope.

The following Local Notations are here to define the \join^d and \meet^d notations later. Do not remove them.

Notation "\join^d_ ( i <- r | P ) F" :=
  (\big[join/0]_(i <- r | P%B) F%O) : order_scope.
Notation "\join^d_ ( i <- r ) F" :=
  (\big[join/0]_(i <- r) F%O) : order_scope.
Notation "\join^d_ ( i | P ) F" :=
  (\big[join/0]_(i | P%B) F%O) : order_scope.
Notation "\join^d_ i F" :=
  (\big[join/0]_i F%O) : order_scope.
Notation "\join^d_ ( i : I | P ) F" :=
  (\big[join/0]_(i : I | P%B) F%O) (only parsing) : order_scope.
Notation "\join^d_ ( i : I ) F" :=
  (\big[join/0]_(i : I) F%O) (only parsing) : order_scope.
Notation "\join^d_ ( m <= i < n | P ) F" :=
 (\big[join/0]_(m i < n | P%B) F%O) : order_scope.
Notation "\join^d_ ( m <= i < n ) F" :=
 (\big[join/0]_(m i < n) F%O) : order_scope.
Notation "\join^d_ ( i < n | P ) F" :=
 (\big[join/0]_(i < n | P%B) F%O) : order_scope.
Notation "\join^d_ ( i < n ) F" :=
 (\big[join/0]_(i < n) F%O) : order_scope.
Notation "\join^d_ ( i 'in' A | P ) F" :=
 (\big[join/0]_(i in A | P%B) F%O) : order_scope.
Notation "\join^d_ ( i 'in' A ) F" :=
 (\big[join/0]_(i in A) F%O) : order_scope.

Notation "\meet^d_ ( i <- r | P ) F" :=
  (\big[meet/1]_(i <- r | P%B) F%O) : order_scope.
Notation "\meet^d_ ( i <- r ) F" :=
  (\big[meet/1]_(i <- r) F%O) : order_scope.
Notation "\meet^d_ ( i | P ) F" :=
  (\big[meet/1]_(i | P%B) F%O) : order_scope.
Notation "\meet^d_ i F" :=
  (\big[meet/1]_i F%O) : order_scope.
Notation "\meet^d_ ( i : I | P ) F" :=
  (\big[meet/1]_(i : I | P%B) F%O) (only parsing) : order_scope.
Notation "\meet^d_ ( i : I ) F" :=
  (\big[meet/1]_(i : I) F%O) (only parsing) : order_scope.
Notation "\meet^d_ ( m <= i < n | P ) F" :=
 (\big[meet/1]_(m i < n | P%B) F%O) : order_scope.
Notation "\meet^d_ ( m <= i < n ) F" :=
 (\big[meet/1]_(m i < n) F%O) : order_scope.
Notation "\meet^d_ ( i < n | P ) F" :=
 (\big[meet/1]_(i < n | P%B) F%O) : order_scope.
Notation "\meet^d_ ( i < n ) F" :=
 (\big[meet/1]_(i < n) F%O) : order_scope.
Notation "\meet^d_ ( i 'in' A | P ) F" :=
 (\big[meet/1]_(i in A | P%B) F%O) : order_scope.
Notation "\meet^d_ ( i 'in' A ) F" :=
 (\big[meet/1]_(i in A) F%O) : order_scope.

End DualSyntax.

THEORY

Module Import POrderTheory.
Section POrderTheory.

Context {disp : unit} {T : porderType disp}.

Implicit Types (x y : T) (s : seq T).

Lemma geE x y : ge x y = (y x).
Lemma gtE x y : gt x y = (y < x).

Lemma lexx (x : T) : x x.
Hint Resolve lexx : core.

Definition le_refl : reflexive le := lexx.
Definition ge_refl : reflexive ge := lexx.
Hint Resolve le_refl : core.

Lemma le_anti: antisymmetric (<=%O : rel T).

Lemma ge_anti: antisymmetric (>=%O : rel T).

Lemma le_trans: transitive (<=%O : rel T).

Lemma ge_trans: transitive (>=%O : rel T).

Lemma le_le_trans x y z t : z x y t x y z t.

Lemma lt_def x y: (x < y) = (y != x) && (x y).

Lemma lt_neqAle x y: (x < y) = (x != y) && (x y).

Lemma ltxx x: x < x = false.

Definition lt_irreflexive : irreflexive lt := ltxx.
Hint Resolve lt_irreflexive : core.

Definition ltexx := (lexx, ltxx).

Lemma le_eqVlt x y: (x y) = (x == y) || (x < y).

Lemma lt_eqF x y: x < y x == y = false.

Lemma gt_eqF x y : y < x x == y = false.

Lemma eq_le x y: (x == y) = (x y x).

Lemma ltW x y: x < y x y.

Lemma lt_le_trans y x z: x < y y z x < z.

Lemma lt_trans: transitive (<%O : rel T).

Lemma le_lt_trans y x z: x y y < z x < z.

Lemma lt_nsym x y : x < y y < x False.

Lemma lt_asym x y : x < y < x = false.

Lemma le_gtF x y: x y y < x = false.

Lemma lt_geF x y : (x < y) y x = false.

Definition lt_gtF x y hxy := le_gtF (@ltW x y hxy).

Lemma lt_leAnge x y : (x < y) = (x y) && ~~ (y x).

Lemma lt_le_asym x y : x < y x = false.

Lemma le_lt_asym x y : x y < x = false.

Definition lte_anti := (=^~ eq_le, lt_asym, lt_le_asym, le_lt_asym).

Lemma le_path_min x s : path <=%O x s all ( x) s.

Lemma lt_path_min x s : path <%O x s all (> x) s.

Lemma le_path_sortedE x s : path <=%O x s = all ( x) s && sorted <=%O s.

Lemma lt_path_sortedE x s : path <%O x s = all (> x) s && sorted <%O s.

Lemma le_sorted_pairwise s : sorted <=%O s = pairwise <=%O s.

Lemma lt_sorted_pairwise s : sorted <%O s = pairwise <%O s.

Lemma le_path_pairwise x s : path <=%O x s = pairwise <=%O (x :: s).

Lemma lt_path_pairwise x s : path <%O x s = pairwise <%O (x :: s).

Lemma lt_sorted_uniq_le s : sorted <%O s = uniq s && sorted <=%O s.

Lemma le_sorted_mask m s : sorted <=%O s sorted <=%O (mask m s).

Lemma lt_sorted_mask m s : sorted <%O s sorted <%O (mask m s).

Lemma le_sorted_filter a s : sorted <=%O s sorted <=%O (filter a s).

Lemma lt_sorted_filter a s : sorted <%O s sorted <%O (filter a s).

Lemma le_path_mask x m s : path <=%O x s path <=%O x (mask m s).

Lemma lt_path_mask x m s : path <%O x s path <%O x (mask m s).

Lemma le_path_filter x a s : path <=%O x s path <=%O x (filter a s).

Lemma lt_path_filter x a s : path <%O x s path <%O x (filter a s).

Lemma le_sorted_ltn_nth (x0 : T) (s : seq T) : sorted <=%O s
 {in [pred n | (n < size s)%N] &,
    {homo nth x0 s : i j / (i < j)%N >-> i j}}.

Lemma le_sorted_leq_nth (x0 : T) (s : seq T) : sorted <=%O s
  {in [pred n | (n < size s)%N] &,
    {homo nth x0 s : i j / (i j)%N >-> i j}}.

Lemma lt_sorted_leq_nth (x0 : T) (s : seq T) : sorted <%O s
  {in [pred n | (n < size s)%N] &,
    {mono nth x0 s : i j / (i j)%N >-> i j}}.

Lemma lt_sorted_ltn_nth (x0 : T) (s : seq T) : sorted <%O s
  {in [pred n | (n < size s)%N] &,
    {mono nth x0 s : i j / (i < j)%N >-> i < j}}.

Lemma subseq_le_path x s1 s2 : subseq s1 s2 path <=%O x s2 path <=%O x s1.

Lemma subseq_lt_path x s1 s2 : subseq s1 s2 path <%O x s2 path <%O x s1.

Lemma subseq_le_sorted s1 s2 : subseq s1 s2 sorted <=%O s2 sorted <=%O s1.

Lemma subseq_lt_sorted s1 s2 : subseq s1 s2 sorted <%O s2 sorted <%O s1.

Lemma lt_sorted_uniq s : sorted <%O s uniq s.

Lemma lt_sorted_eq s1 s2 :
  sorted <%O s1 sorted <%O s2 s1 =i s2 s1 = s2.

Lemma le_sorted_eq s1 s2 :
  sorted <=%O s1 sorted <=%O s2 perm_eq s1 s2 s1 = s2.

Lemma filter_lt_nth x0 s i : sorted <%O s (i < size s)%N
  [seq x <- s | x < nth x0 s i] = take i s.

Lemma count_lt_nth x0 s i : sorted <%O s (i < size s)%N
  count (< nth x0 s i) s = i.

Lemma filter_le_nth x0 s i : sorted <%O s (i < size s)%N
  [seq x <- s | x nth x0 s i] = take i.+1 s.

Lemma count_le_nth x0 s i : sorted <%O s (i < size s)%N
  count ( nth x0 s i) s = i.+1.

Lemma count_lt_le_mem x s : (count (< x) s < count ( x) s)%N = (x \in s).

Lemma sorted_filter_lt x s :
  sorted <=%O s [seq y <- s | y < x] = take (count (< x) s) s.

Lemma sorted_filter_le x s :
  sorted <=%O s [seq y <- s | y x] = take (count ( x) s) s.

Lemma nth_count_le x x0 s i : sorted <=%O s
  (i < count ( x) s)%N nth x0 s i x.

Lemma nth_count_lt x x0 s i : sorted <=%O s
  (i < count (< x) s)%N nth x0 s i < x.

Lemma sort_le_id s : sorted <=%O s sort <=%O s = s.

Lemma sort_lt_id s : sorted <%O s sort <%O s = s.

Lemma comparable_leNgt x y : x >=< y (x y) = ~~ (y < x).

Lemma comparable_ltNge x y : x >=< y (x < y) = ~~ (y x).

Lemma comparable_ltgtP x y : x >=< y
  compare x y (min y x) (min x y) (max y x) (max x y)
  (y == x) (x == y) (x y) (x y) (x > y) (x < y).

Lemma comparable_leP x y : x >=< y
  le_xor_gt x y (min y x) (min x y) (max y x) (max x y) (x y) (y < x).

Lemma comparable_ltP x y : x >=< y
  lt_xor_ge x y (min y x) (min x y) (max y x) (max x y) (y x) (x < y).

Lemma comparable_sym x y : (y >=< x) = (x >=< y).

Lemma comparablexx x : x >=< x.

Lemma incomparable_eqF x y : (x >< y) (x == y) = false.

Lemma incomparable_leF x y : (x >< y) (x y) = false.

Lemma incomparable_ltF x y : (x >< y) (x < y) = false.

Lemma comparableP x y : incompare x y
  (min y x) (min x y) (max y x) (max x y)
  (y == x) (x == y) (x y) (x y) (x > y) (x < y)
  (y >=< x) (x >=< y).

Lemma le_comparable (x y : T) : x y x >=< y.

Lemma lt_comparable (x y : T) : x < y x >=< y.

Lemma ge_comparable (x y : T) : y x x >=< y.

Lemma gt_comparable (x y : T) : y < x x >=< y.

leif

Lemma leifP x y C : reflect (x y ?= iff C) (if C then x == y else x < y).

Lemma leif_refl x C : reflect (x x ?= iff C) C.

Lemma leif_trans x1 x2 x3 C12 C23 :
  x1 x2 ?= iff C12 x2 x3 ?= iff C23 x1 x3 ?= iff C12 && C23.

Lemma leif_le x y : x y x y ?= iff (x y).

Lemma leif_eq x y : x y x y ?= iff (x == y).

Lemma ge_leif x y C : x y ?= iff C (y x) = C.

Lemma lt_leif x y C : x y ?= iff C (x < y) = ~~ C.

Lemma ltNleif x y C : x y ?= iff ~~ C (x < y) = C.

Lemma eq_leif x y C : x y ?= iff C (x == y) = C.

Lemma eqTleif x y C : x y ?= iff C C x = y.

lteif

Lemma lteif_trans x y z C1 C2 :
  x < y ?<= if C1 y < z ?<= if C2 x < z ?<= if C1 && C2.

Lemma lteif_anti C1 C2 x y :
  (x < y ?<= if C1) && (y < x ?<= if C2) = C1 && C2 && (x == y).

Lemma lteifxx x C : (x < x ?<= if C) = C.

Lemma lteifNF x y C : y < x ?<= if ~~ C x < y ?<= if C = false.

Lemma lteifS x y C : x < y x < y ?<= if C.

Lemma lteifT x y : x < y ?<= if true = (x y).

Lemma lteifF x y : x < y ?<= if false = (x < y).

Lemma lteif_orb x y : {morph lteif x y : p q / p || q}.

Lemma lteif_andb x y : {morph lteif x y : p q / p && q}.

Lemma lteif_imply C1 C2 x y : C1 ==> C2 x < y ?<= if C1 x < y ?<= if C2.

Lemma lteifW C x y : x < y ?<= if C x y.

Lemma ltrW_lteif C x y : x < y x < y ?<= if C.

Lemma lteifN C x y : x < y ?<= if ~~ C ~~ (y < x ?<= if C).

min and max

Lemma minElt x y : min x y = if x < y then x else y.
Lemma maxElt x y : max x y = if x < y then y else x.

Lemma minEle x y : min x y = if x y then x else y.

Lemma maxEle x y : max x y = if x y then y else x.

Lemma comparable_minEgt x y : x >=< y min x y = if x > y then y else x.
Lemma comparable_maxEgt x y : x >=< y max x y = if x > y then x else y.
Lemma comparable_minEge x y : x >=< y min x y = if x y then y else x.
Lemma comparable_maxEge x y : x >=< y max x y = if x y then x else y.

Lemma min_l x y : x y min x y = x.
Lemma min_r x y : y x min x y = y.
Lemma max_l x y : y x max x y = x.
Lemma max_r x y : x y max x y = y.

Lemma minxx : idempotent (min : T T T).

Lemma maxxx : idempotent (max : T T T).

Lemma eq_minl x y : (min x y == x) = (x y).

Lemma eq_maxr x y : (max x y == y) = (x y).

Lemma min_idPl x y : reflect (min x y = x) (x y).

Lemma max_idPr x y : reflect (max x y = y) (x y).

Lemma min_minKx x y : min (min x y) y = min x y.

Lemma min_minxK x y : min x (min x y) = min x y.

Lemma max_maxKx x y : max (max x y) y = max x y.

Lemma max_maxxK x y : max x (max x y) = max x y.

Lemma comparable_minl z : {in >=< z &, x y, min x y >=< z}.

Lemma comparable_minr z : {in >=<%O z &, x y, z >=< min x y}.

Lemma comparable_maxl z : {in >=< z &, x y, max x y >=< z}.

Lemma comparable_maxr z : {in >=<%O z &, x y, z >=< max x y}.

Section Comparable2.
Variables (z x y : T) (cmp_xy : x >=< y).

Lemma comparable_minC : min x y = min y x.

Lemma comparable_maxC : max x y = max y x.

Lemma comparable_eq_minr : (min x y == y) = (y x).

Lemma comparable_eq_maxl : (max x y == x) = (y x).

Lemma comparable_min_idPr : reflect (min x y = y) (y x).

Lemma comparable_max_idPl : reflect (max x y = x) (y x).

Lemma comparable_le_minr : (z min x y) = (z x) && (z y).

Lemma comparable_le_minl : (min x y z) = (x z) || (y z).

Lemma comparable_lt_minr : (z < min x y) = (z < x) && (z < y).

Lemma comparable_lt_minl : (min x y < z) = (x < z) || (y < z).

Lemma comparable_le_maxr : (z max x y) = (z x) || (z y).

Lemma comparable_le_maxl : (max x y z) = (x z) && (y z).

Lemma comparable_lt_maxr : (z < max x y) = (z < x) || (z < y).

Lemma comparable_lt_maxl : (max x y < z) = (x < z) && (y < z).

Lemma comparable_minxK : max (min x y) y = y.

Lemma comparable_minKx : max x (min x y) = x.

Lemma comparable_maxxK : min (max x y) y = y.

Lemma comparable_maxKx : min x (max x y) = x.

Lemma comparable_lteifNE C : x >=< y x < y ?<= if ~~ C = ~~ (y < x ?<= if C).

Lemma comparable_lteif_minr C :
  (z < Order.min x y ?<= if C) = (z < x ?<= if C) && (z < y ?<= if C).

Lemma comparable_lteif_minl C :
  (Order.min x y < z ?<= if C) = (x < z ?<= if C) || (y < z ?<= if C).

Lemma comparable_lteif_maxr C :
  (z < Order.max x y ?<= if C) = (z < x ?<= if C) || (z < y ?<= if C).

Lemma comparable_lteif_maxl C :
  (Order.max x y < z ?<= if C) = (x < z ?<= if C) && (y < z ?<= if C).

End Comparable2.

Section Comparable3.
Variables (x y z : T) (cmp_xy : x >=< y) (cmp_xz : x >=< z) (cmp_yz : y >=< z).
Let P := comparableP.

Lemma comparable_minA : min x (min y z) = min (min x y) z.

Lemma comparable_maxA : max x (max y z) = max (max x y) z.

Lemma comparable_max_minl : max (min x y) z = min (max x z) (max y z).

Lemma comparable_min_maxl : min (max x y) z = max (min x z) (min y z).

End Comparable3.

Lemma comparable_minAC x y z : x >=< y x >=< z y >=< z
  min (min x y) z = min (min x z) y.

Lemma comparable_maxAC x y z : x >=< y x >=< z y >=< z
  max (max x y) z = max (max x z) y.

Lemma comparable_minCA x y z : x >=< y x >=< z y >=< z
  min x (min y z) = min y (min x z).

Lemma comparable_maxCA x y z : x >=< y x >=< z y >=< z
  max x (max y z) = max y (max x z).

Lemma comparable_minACA x y z t :
    x >=< y x >=< z x >=< t y >=< z y >=< t z >=< t
  min (min x y) (min z t) = min (min x z) (min y t).

Lemma comparable_maxACA x y z t :
    x >=< y x >=< z x >=< t y >=< z y >=< t z >=< t
  max (max x y) (max z t) = max (max x z) (max y t).

Lemma comparable_max_minr x y z : x >=< y x >=< z y >=< z
  max x (min y z) = min (max x y) (max x z).

Lemma comparable_min_maxr x y z : x >=< y x >=< z y >=< z
  min x (max y z) = max (min x y) (min x z).

Section ArgExtremum.

Context (I : finType) (i0 : I) (P : {pred I}) (F : I T) (Pi0 : P i0).
Hypothesis F_comparable : {in P &, i j, F i >=< F j}.

Lemma comparable_arg_minP: extremum_spec <=%O P F (arg_min i0 P F).

Lemma comparable_arg_maxP: extremum_spec >=%O P F (arg_max i0 P F).

End ArgExtremum.

monotonicity

Lemma mono_in_leif (A : {pred T}) (f : T T) C :
   {in A &, {mono f : x y / x y}}
  {in A &, x y, (f x f y ?= iff C) = (x y ?= iff C)}.

Lemma mono_leif (f : T T) C :
    {mono f : x y / x y}
   x y, (f x f y ?= iff C) = (x y ?= iff C).

Lemma nmono_in_leif (A : {pred T}) (f : T T) C :
    {in A &, {mono f : x y /~ x y}}
  {in A &, x y, (f x f y ?= iff C) = (y x ?= iff C)}.

Lemma nmono_leif (f : T T) C : {mono f : x y /~ x y}
   x y, (f x f y ?= iff C) = (y x ?= iff C).

Lemma comparable_bigl x x0 op I (P : pred I) F (s : seq I) :
  {in >=< x &, y z, op y z >=< x} x0 >=< x
  {in P, i, F i >=< x} \big[op/x0]_(i <- s | P i) F i >=< x.

Lemma comparable_bigr x x0 op I (P : pred I) F (s : seq I) :
  {in >=<%O x &, y z, x >=< op y z} x >=< x0
  {in P, i, x >=< F i} x >=< \big[op/x0]_(i <- s | P i) F i.

End POrderTheory.
#[global] Hint Resolve comparable_minr comparable_minl : core.
#[global] Hint Resolve comparable_maxr comparable_maxl : core.

Section ContraTheory.
Context {disp1 disp2 : unit} {T1 : porderType disp1} {T2 : porderType disp2}.
Implicit Types (x y : T1) (z t : T2) (b : bool) (m n : nat) (P : Prop).

Lemma comparable_contraTle b x y : x >=< y (y < x ~~ b) (b x y).

Lemma comparable_contraTlt b x y : x >=< y (y x ~~ b) (b x < y).

Lemma comparable_contraPle P x y : x >=< y (y < x ¬ P) (P x y).

Lemma comparable_contraPlt P x y : x >=< y (y x ¬ P) (P x < y).

Lemma comparable_contraNle b x y : x >=< y (y < x b) (~~ b x y).

Lemma comparable_contraNlt b x y : x >=< y (y x b) (~~ b x < y).

Lemma comparable_contra_not_le P x y : x >=< y (y < x P) (¬ P x y).

Lemma comparable_contra_not_lt P x y : x >=< y (y x P) (¬ P x < y).

Lemma comparable_contraFle b x y : x >=< y (y < x b) (b = false x y).

Lemma comparable_contraFlt b x y : x >=< y (y x b) (b = false x < y).

Lemma contra_leT b x y : (~~ b x < y) (y x b).

Lemma contra_ltT b x y : (~~ b x y) (y < x b).

Lemma contra_leN b x y : (b x < y) (y x ~~ b).

Lemma contra_ltN b x y : (b x y) (y < x ~~ b).

Lemma contra_le_not P x y : (P x < y) (y x ¬ P).

Lemma contra_lt_not P x y : (P x y) (y < x