Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (54001 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1931 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1658 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (7199 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (97 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (15214 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (75 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (224 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (132 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2371 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2266 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (732 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (21455 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (647 entries)

N

n [abbreviation, in mathcomp.field.fieldext]
n [abbreviation, in mathcomp.field.fieldext]
n [abbreviation, in mathcomp.algebra.matrix]
n [abbreviation, in mathcomp.algebra.matrix]
n [abbreviation, in mathcomp.algebra.matrix]
n [abbreviation, in mathcomp.algebra.matrix]
n [abbreviation, in mathcomp.algebra.mxpoly]
n [abbreviation, in mathcomp.algebra.mxpoly]
n [abbreviation, in mathcomp.character.mxabelem]
n [abbreviation, in mathcomp.character.mxabelem]
n [abbreviation, in mathcomp.character.mxrepresentation]
n [abbreviation, in mathcomp.character.mxrepresentation]
n [abbreviation, in mathcomp.algebra.vector]
n [abbreviation, in mathcomp.ssreflect.fintype]
NactionDef [section, in mathcomp.solvable.primitive_action]
NactionDef.gT [variable, in mathcomp.solvable.primitive_action]
NactionDef.n [variable, in mathcomp.solvable.primitive_action]
NactionDef.sT [variable, in mathcomp.solvable.primitive_action]
NactionDef.to [variable, in mathcomp.solvable.primitive_action]
nary_addv_expr [definition, in mathcomp.algebra.vector]
nary_addv_subproof [lemma, in mathcomp.algebra.vector]
nary_mxsum_expr [definition, in mathcomp.algebra.mxalgebra]
nary_mxsum_proof [lemma, in mathcomp.algebra.mxalgebra]
NatConst [section, in mathcomp.ssreflect.bigop]
NatConst.A [variable, in mathcomp.ssreflect.bigop]
NatConst.I [variable, in mathcomp.ssreflect.bigop]
natn [lemma, in mathcomp.algebra.ssralg]
natnseq0P [lemma, in mathcomp.ssreflect.seq]
NatPreds [section, in mathcomp.ssreflect.prime]
NatPreds.n [variable, in mathcomp.ssreflect.prime]
NatPreds.pi [variable, in mathcomp.ssreflect.prime]
natq_div [lemma, in mathcomp.algebra.rat]
natrDE [lemma, in mathcomp.algebra.ssralg]
natrE [definition, in mathcomp.algebra.ssralg]
natrME [lemma, in mathcomp.algebra.ssralg]
natrXE [lemma, in mathcomp.algebra.ssralg]
natr_negZp [lemma, in mathcomp.algebra.zmodp]
natr_Zp [lemma, in mathcomp.algebra.zmodp]
natr_absz [lemma, in mathcomp.algebra.ssrint]
natr0E [lemma, in mathcomp.algebra.ssralg]
natr1E [lemma, in mathcomp.algebra.ssralg]
natsum_of_intK [lemma, in mathcomp.algebra.ssrint]
natsum_of_int [definition, in mathcomp.algebra.ssrint]
NatTrec [module, in mathcomp.ssreflect.ssrnat]
natTrecE [abbreviation, in mathcomp.ssreflect.ssrnat]
NatTrec.add [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.addE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.add_mulE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.add_mul [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.double [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.doubleE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.doublen [abbreviation, in mathcomp.ssreflect.ssrnat]
NatTrec.exp [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.expE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.mul [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.mulE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.mul_expE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.mul_exp [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.odd [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.oddE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.oddn [abbreviation, in mathcomp.ssreflect.ssrnat]
NatTrec.trecE [definition, in mathcomp.ssreflect.ssrnat]
_ .*2 (nat_scope) [notation, in mathcomp.ssreflect.ssrnat]
_ ^ _ (nat_scope) [notation, in mathcomp.ssreflect.ssrnat]
_ * _ (nat_scope) [notation, in mathcomp.ssreflect.ssrnat]
_ + _ (nat_scope) [notation, in mathcomp.ssreflect.ssrnat]
natz [lemma, in mathcomp.algebra.ssrint]
nat_pickleK [lemma, in mathcomp.ssreflect.choice]
nat_hasChoice [lemma, in mathcomp.ssreflect.choice]
nat_power_theory [lemma, in mathcomp.ssreflect.ssrnat]
nat_semi_morph [lemma, in mathcomp.ssreflect.ssrnat]
nat_semi_ring [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_exp_bin [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_mul_bin [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_add_bin [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_mul_pos [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_add_pos [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_succ_pos [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_binK [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_bin [definition, in mathcomp.ssreflect.ssrnat]
nat_of_pos [definition, in mathcomp.ssreflect.ssrnat]
nat_AGM2 [lemma, in mathcomp.ssreflect.ssrnat]
nat_Cauchy [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_bool [definition, in mathcomp.ssreflect.ssrnat]
nat_irrelevance [lemma, in mathcomp.ssreflect.ssrnat]
nat_pred_of_nat [definition, in mathcomp.ssreflect.prime]
nat_pred_pred [definition, in mathcomp.ssreflect.prime]
nat_pred [definition, in mathcomp.ssreflect.prime]
nat_of_ord [definition, in mathcomp.ssreflect.fintype]
nclasses_isog [lemma, in mathcomp.fingroup.morphism]
nclasses_injm [lemma, in mathcomp.fingroup.morphism]
ncons [definition, in mathcomp.ssreflect.seq]
nconsK [lemma, in mathcomp.ssreflect.seq]
ncprod [definition, in mathcomp.solvable.center]
ncprodS [lemma, in mathcomp.solvable.center]
ncprod_key [lemma, in mathcomp.solvable.center]
ncprod_def [definition, in mathcomp.solvable.center]
ncprod0 [lemma, in mathcomp.solvable.center]
ncprod1 [lemma, in mathcomp.solvable.center]
nderivn [definition, in mathcomp.algebra.poly]
nderivnB [lemma, in mathcomp.algebra.poly]
nderivnC [lemma, in mathcomp.algebra.poly]
nderivnD [lemma, in mathcomp.algebra.poly]
nderivnMn [lemma, in mathcomp.algebra.poly]
nderivnMNn [lemma, in mathcomp.algebra.poly]
nderivnMXaddC [lemma, in mathcomp.algebra.poly]
nderivnN [lemma, in mathcomp.algebra.poly]
nderivnXn [lemma, in mathcomp.algebra.poly]
nderivnZ [lemma, in mathcomp.algebra.poly]
nderivn_map [lemma, in mathcomp.algebra.poly]
nderivn_poly0 [lemma, in mathcomp.algebra.poly]
nderivn_is_linear [lemma, in mathcomp.algebra.poly]
nderivn_def [lemma, in mathcomp.algebra.poly]
nderivn0 [lemma, in mathcomp.algebra.poly]
nderivn1 [lemma, in mathcomp.algebra.poly]
nderiv_taylor_wide [lemma, in mathcomp.algebra.poly]
nderiv_taylor [lemma, in mathcomp.algebra.poly]
ndirr [definition, in mathcomp.character.vcharacter]
ndirrK [lemma, in mathcomp.character.vcharacter]
ndirr_inj [lemma, in mathcomp.character.vcharacter]
ndirr_diff [lemma, in mathcomp.character.vcharacter]
ndir_s0p [lemma, in mathcomp.solvable.burnside_app]
negb_exists_in [lemma, in mathcomp.ssreflect.fintype]
negb_exists [lemma, in mathcomp.ssreflect.fintype]
negb_forall_in [lemma, in mathcomp.ssreflect.fintype]
negb_forall [lemma, in mathcomp.ssreflect.fintype]
negb_eqb [lemma, in mathcomp.ssreflect.eqtype]
negb_add [lemma, in mathcomp.ssreflect.eqtype]
negb_row_free [lemma, in mathcomp.algebra.mxalgebra]
negn [definition, in mathcomp.ssreflect.prime]
negnK [lemma, in mathcomp.ssreflect.prime]
Negz [constructor, in mathcomp.algebra.ssrint]
NegzE [lemma, in mathcomp.algebra.ssrint]
nElem [definition, in mathcomp.solvable.abelian]
nElemI [lemma, in mathcomp.solvable.abelian]
nElemP [lemma, in mathcomp.solvable.abelian]
nElemS [lemma, in mathcomp.solvable.abelian]
nElem0 [lemma, in mathcomp.solvable.abelian]
nElem1P [lemma, in mathcomp.solvable.abelian]
NeqNotEq [constructor, in mathcomp.ssreflect.eqtype]
neq_ltn [lemma, in mathcomp.ssreflect.ssrnat]
neq_dim_orthov1 [lemma, in mathcomp.algebra.sesquilinear]
neq_lift [lemma, in mathcomp.ssreflect.fintype]
neq_bump [lemma, in mathcomp.ssreflect.fintype]
neq0CG [lemma, in mathcomp.character.classfun]
neq0CiG [lemma, in mathcomp.character.classfun]
neq0_lt0n [lemma, in mathcomp.ssreflect.ssrnat]
neq0_dnorm_gt0 [definition, in mathcomp.algebra.sesquilinear]
neq0_has_constt [lemma, in mathcomp.character.character]
NewMixin [definition, in mathcomp.ssreflect.eqtype]
nexpIrz [lemma, in mathcomp.algebra.ssrint]
next [definition, in mathcomp.ssreflect.path]
nextE [lemma, in mathcomp.ssreflect.path]
next_map [lemma, in mathcomp.ssreflect.path]
next_rev [lemma, in mathcomp.ssreflect.path]
next_rotr [lemma, in mathcomp.ssreflect.path]
next_rot [lemma, in mathcomp.ssreflect.path]
next_prev [lemma, in mathcomp.ssreflect.path]
next_cycle [lemma, in mathcomp.ssreflect.path]
next_nth [lemma, in mathcomp.ssreflect.path]
next_at [definition, in mathcomp.ssreflect.path]
nG [abbreviation, in mathcomp.character.mxrepresentation]
nG [abbreviation, in mathcomp.character.mxrepresentation]
Nil [abbreviation, in mathcomp.ssreflect.seq]
nilP [lemma, in mathcomp.ssreflect.seq]
nilp [definition, in mathcomp.ssreflect.seq]
nilpE [lemma, in mathcomp.ssreflect.seq]
NilPGroups [section, in mathcomp.solvable.sylow]
NilPGroups.gT [variable, in mathcomp.solvable.sylow]
NilPGroups.p [variable, in mathcomp.solvable.sylow]
Nilpotent [section, in mathcomp.solvable.sylow]
nilpotent [definition, in mathcomp.solvable.nilpotent]
nilpotent [library]
NilpotentProps [section, in mathcomp.solvable.nilpotent]
NilpotentProps.gT [variable, in mathcomp.solvable.nilpotent]
nilpotentS [lemma, in mathcomp.solvable.nilpotent]
nilpotent_pcoreC [lemma, in mathcomp.solvable.sylow]
nilpotent_pcore_Hall [lemma, in mathcomp.solvable.sylow]
nilpotent_Hall_pcore [lemma, in mathcomp.solvable.sylow]
nilpotent_maxp_normal [lemma, in mathcomp.solvable.sylow]
nilpotent_Fitting [lemma, in mathcomp.solvable.maximal]
nilpotent_sol [lemma, in mathcomp.solvable.nilpotent]
nilpotent_subnormal [lemma, in mathcomp.solvable.nilpotent]
nilpotent_proper_norm [lemma, in mathcomp.solvable.nilpotent]
nilpotent_sub_norm [lemma, in mathcomp.solvable.nilpotent]
nilpotent_class [lemma, in mathcomp.solvable.nilpotent]
Nilpotent.gT [variable, in mathcomp.solvable.sylow]
nilpotent1 [lemma, in mathcomp.solvable.nilpotent]
nil_bseq [definition, in mathcomp.ssreflect.tuple]
nil_tuple [definition, in mathcomp.ssreflect.tuple]
nil_Zgroup_cyclic [lemma, in mathcomp.solvable.sylow]
nil_class_pgroup [lemma, in mathcomp.solvable.sylow]
nil_class3 [lemma, in mathcomp.solvable.sylow]
nil_class2 [lemma, in mathcomp.solvable.sylow]
nil_basis [lemma, in mathcomp.algebra.vector]
nil_free [lemma, in mathcomp.algebra.vector]
nil_poly [lemma, in mathcomp.algebra.poly]
nil_class_quotient_center [lemma, in mathcomp.solvable.nilpotent]
nil_class_injm [lemma, in mathcomp.solvable.nilpotent]
nil_class_morphim [lemma, in mathcomp.solvable.nilpotent]
nil_class_ucn [lemma, in mathcomp.solvable.nilpotent]
nil_class1 [lemma, in mathcomp.solvable.nilpotent]
nil_class0 [lemma, in mathcomp.solvable.nilpotent]
nil_comm_properr [lemma, in mathcomp.solvable.nilpotent]
nil_comm_properl [lemma, in mathcomp.solvable.nilpotent]
nil_class [definition, in mathcomp.solvable.nilpotent]
Nirr [abbreviation, in mathcomp.character.character]
NirrE [lemma, in mathcomp.character.character]
nmulrn [lemma, in mathcomp.algebra.ssrint]
nmulrz_rle0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_rge0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_rlt0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_rgt0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_lle0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_lge0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_llt0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_lgt0 [lemma, in mathcomp.algebra.ssrint]
nonconform_mx [lemma, in mathcomp.algebra.matrix]
nondegenerate [definition, in mathcomp.algebra.sesquilinear]
nonlinear_irr_vanish [lemma, in mathcomp.character.integral_char]
nontrivial_gacent_pgroup [lemma, in mathcomp.solvable.sylow]
nonzero1fx [lemma, in mathcomp.field.fieldext]
nonzero1q [lemma, in mathcomp.algebra.rat]
Nopick [constructor, in mathcomp.ssreflect.fintype]
normal [definition, in mathcomp.fingroup.fingroup]
normalC [lemma, in mathcomp.algebra.sesquilinear]
normalD1 [lemma, in mathcomp.fingroup.fingroup]
normalE [lemma, in mathcomp.algebra.sesquilinear]
normalField [definition, in mathcomp.field.galois]
normalFieldf [lemma, in mathcomp.field.galois]
normalFieldP [lemma, in mathcomp.field.galois]
normalFieldS [lemma, in mathcomp.field.galois]
normalField_isog [lemma, in mathcomp.field.galois]
normalField_isom [lemma, in mathcomp.field.galois]
normalField_img [lemma, in mathcomp.field.galois]
normalField_normal [lemma, in mathcomp.field.galois]
normalField_ker [lemma, in mathcomp.field.galois]
normalField_cast_morphism [definition, in mathcomp.field.galois]
normalField_castM [lemma, in mathcomp.field.galois]
normalField_cast_eq [lemma, in mathcomp.field.galois]
normalField_cast [definition, in mathcomp.field.galois]
normalField_galois [lemma, in mathcomp.field.galois]
normalField_factors [lemma, in mathcomp.field.galois]
normalField_root_minPoly [lemma, in mathcomp.field.galois]
normalField_kAut [lemma, in mathcomp.field.galois]
normalG [lemma, in mathcomp.fingroup.fingroup]
normalGI [lemma, in mathcomp.fingroup.fingroup]
NormalHall [section, in mathcomp.solvable.pgroup]
NormalHall.gT [variable, in mathcomp.solvable.pgroup]
NormalHall.pi [variable, in mathcomp.solvable.pgroup]
normalI [lemma, in mathcomp.fingroup.fingroup]
normalised [definition, in mathcomp.fingroup.fingroup]
Normaliser [section, in mathcomp.fingroup.fingroup]
normaliser [definition, in mathcomp.fingroup.fingroup]
normaliser_group [definition, in mathcomp.fingroup.fingroup]
Normaliser.gT [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.nCA [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.nBA [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.D [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.C [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.B [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.A [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans [section, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian [section, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian.A [variable, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian.B [variable, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian.C [variable, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian.cAA [variable, in mathcomp.fingroup.fingroup]
normalJ [lemma, in mathcomp.fingroup.fingroup]
normalM [lemma, in mathcomp.fingroup.fingroup]
normalmx [definition, in mathcomp.algebra.spectral]
normalmx [section, in mathcomp.algebra.spectral]
normalmxP [lemma, in mathcomp.algebra.spectral]
normalmx_keyed [definition, in mathcomp.algebra.spectral]
normalmx_key [lemma, in mathcomp.algebra.spectral]
normalP [lemma, in mathcomp.fingroup.fingroup]
normalP [lemma, in mathcomp.algebra.sesquilinear]
normalS [lemma, in mathcomp.fingroup.fingroup]
normalSG [lemma, in mathcomp.fingroup.fingroup]
normalY [lemma, in mathcomp.fingroup.fingroup]
normalYl [lemma, in mathcomp.fingroup.fingroup]
normalYr [lemma, in mathcomp.fingroup.fingroup]
normal_cosetpre [lemma, in mathcomp.fingroup.quotient]
normal_fixedField_galois [lemma, in mathcomp.field.galois]
normal_field_splitting [lemma, in mathcomp.field.galois]
normal_Inertia [lemma, in mathcomp.character.inertia]
normal_inertia [lemma, in mathcomp.character.inertia]
normal_subnorm [lemma, in mathcomp.fingroup.fingroup]
normal_refl [lemma, in mathcomp.fingroup.fingroup]
normal_norm [lemma, in mathcomp.fingroup.fingroup]
normal_sub [lemma, in mathcomp.fingroup.fingroup]
normal_pgroup [lemma, in mathcomp.solvable.sylow]
normal_sylowP [lemma, in mathcomp.solvable.sylow]
normal_Hall_pcore [lemma, in mathcomp.solvable.pgroup]
normal_max_pgroup_Hall [lemma, in mathcomp.solvable.pgroup]
normal_sub_max_pgroup [lemma, in mathcomp.solvable.pgroup]
normal_rfix_mx_module [lemma, in mathcomp.character.mxrepresentation]
normal_rank1_structure [lemma, in mathcomp.solvable.extremal]
normal_subnormal [lemma, in mathcomp.solvable.gseries]
normal_mx_ortho [lemma, in mathcomp.algebra.sesquilinear]
normal_ortho_mx [lemma, in mathcomp.algebra.sesquilinear]
normal1 [lemma, in mathcomp.fingroup.fingroup]
normC [lemma, in mathcomp.fingroup.fingroup]
normCs [lemma, in mathcomp.fingroup.fingroup]
normC_lin_char [lemma, in mathcomp.character.character]
normD1 [lemma, in mathcomp.fingroup.fingroup]
normedTI [definition, in mathcomp.solvable.frobenius]
normedTI_J [lemma, in mathcomp.solvable.frobenius]
normedTI_S [lemma, in mathcomp.solvable.frobenius]
normedTI_memJ_P [lemma, in mathcomp.solvable.frobenius]
normedTI_P [lemma, in mathcomp.solvable.frobenius]
normf1 [definition, in mathcomp.algebra.sesquilinear]
normf2 [definition, in mathcomp.algebra.sesquilinear]
normG [lemma, in mathcomp.fingroup.fingroup]
NormInt [section, in mathcomp.algebra.ssrint]
NormInt.R [variable, in mathcomp.algebra.ssrint]
normJ [lemma, in mathcomp.fingroup.fingroup]
normP [lemma, in mathcomp.fingroup.fingroup]
normq [definition, in mathcomp.algebra.rat]
normqE [lemma, in mathcomp.algebra.rat]
normrMz [lemma, in mathcomp.algebra.ssrint]
normr_sg [lemma, in mathcomp.algebra.ssrint]
normr_sgz [lemma, in mathcomp.algebra.ssrint]
normr_num_div [lemma, in mathcomp.algebra.rat]
normr_denq [lemma, in mathcomp.algebra.rat]
normsD [lemma, in mathcomp.fingroup.fingroup]
normsD1 [lemma, in mathcomp.fingroup.fingroup]
normsG [lemma, in mathcomp.fingroup.fingroup]
normsGI [lemma, in mathcomp.fingroup.fingroup]
normsI [lemma, in mathcomp.fingroup.fingroup]
normsIG [lemma, in mathcomp.fingroup.fingroup]
normsIs [lemma, in mathcomp.fingroup.fingroup]
normsM [lemma, in mathcomp.fingroup.fingroup]
normsP [lemma, in mathcomp.fingroup.fingroup]
normsR [lemma, in mathcomp.fingroup.fingroup]
normsRl [lemma, in mathcomp.solvable.commutator]
normsRr [lemma, in mathcomp.solvable.commutator]
normsU [lemma, in mathcomp.fingroup.fingroup]
normsY [lemma, in mathcomp.fingroup.fingroup]
norms_cent [lemma, in mathcomp.fingroup.fingroup]
norms_bigcup [lemma, in mathcomp.fingroup.fingroup]
norms_bigcap [lemma, in mathcomp.fingroup.fingroup]
norms_class_support [lemma, in mathcomp.fingroup.fingroup]
norms_norm [lemma, in mathcomp.fingroup.fingroup]
norms_gen [lemma, in mathcomp.fingroup.fingroup]
norms_cycle [lemma, in mathcomp.fingroup.fingroup]
norms1 [lemma, in mathcomp.fingroup.fingroup]
normT [lemma, in mathcomp.fingroup.fingroup]
norm_quotient_pre [lemma, in mathcomp.fingroup.quotient]
norm_conj_autE [lemma, in mathcomp.fingroup.automorphism]
norm_conj_isom [lemma, in mathcomp.fingroup.automorphism]
norm_conjg_im [lemma, in mathcomp.fingroup.automorphism]
norm_Inertia [lemma, in mathcomp.character.inertia]
norm_inertia [lemma, in mathcomp.character.inertia]
norm_normalI [lemma, in mathcomp.fingroup.fingroup]
norm_gen [lemma, in mathcomp.fingroup.fingroup]
norm_conj_norm [lemma, in mathcomp.fingroup.fingroup]
norm_rlcoset [lemma, in mathcomp.fingroup.fingroup]
norm_joinEr [lemma, in mathcomp.fingroup.fingroup]
norm_joinEl [lemma, in mathcomp.fingroup.fingroup]
norm_sub_max_pgroup [lemma, in mathcomp.solvable.pgroup]
norm_sub_rstabs_rfix_mx [lemma, in mathcomp.character.mxrepresentation]
norm_ratN [lemma, in mathcomp.algebra.rat]
norm_conj_cent [lemma, in mathcomp.solvable.hall]
norm1 [lemma, in mathcomp.fingroup.fingroup]
Norm1vchar [section, in mathcomp.character.vcharacter]
Norm1vchar.G [variable, in mathcomp.character.vcharacter]
Norm1vchar.gT [variable, in mathcomp.character.vcharacter]
nosimpl [abbreviation, in mathcomp.ssreflect.ssreflect]
Notations [module, in mathcomp.fingroup.fingroup]
Notations_mulg__canonical__Monoid_Law [definition, in mathcomp.fingroup.fingroup]
Notations_mulg__canonical__SemiGroup_Law [definition, in mathcomp.fingroup.fingroup]
Notations.ElementOps [section, in mathcomp.fingroup.fingroup]
Notations.ElementOps.T [variable, in mathcomp.fingroup.fingroup]
Notations.expgn [definition, in mathcomp.fingroup.fingroup]
Notations.invg [definition, in mathcomp.fingroup.fingroup]
Notations.mulg [definition, in mathcomp.fingroup.fingroup]
Notations.oneg [definition, in mathcomp.fingroup.fingroup]
Notations.rT [abbreviation, in mathcomp.fingroup.fingroup]
_ ^- _ (group_scope) [notation, in mathcomp.fingroup.fingroup]
_ ^+ _ (group_scope) [notation, in mathcomp.fingroup.fingroup]
_ ^-1 (group_scope) [notation, in mathcomp.fingroup.fingroup]
_ * _ (group_scope) [notation, in mathcomp.fingroup.fingroup]
1 (group_scope) [notation, in mathcomp.fingroup.fingroup]
NotExtremal [constructor, in mathcomp.solvable.extremal]
NotFound [constructor, in mathcomp.ssreflect.seq]
notin_iter [lemma, in mathcomp.ssreflect.finset]
not_simple_Alt_4 [lemma, in mathcomp.solvable.alt]
not_isog_Dn_DnQ [lemma, in mathcomp.solvable.extraspecial]
not_asubv0 [lemma, in mathcomp.field.falgebra]
npoly [record, in mathcomp.algebra.qpoly]
npolyP [lemma, in mathcomp.algebra.qpoly]
npolyp [definition, in mathcomp.algebra.qpoly]
npolypK [lemma, in mathcomp.algebra.qpoly]
npolyp_key [lemma, in mathcomp.algebra.qpoly]
npolyX [definition, in mathcomp.algebra.qpoly]
npolyXE [lemma, in mathcomp.algebra.qpoly]
npolyX_gen [lemma, in mathcomp.algebra.qpoly]
npolyX_coords [lemma, in mathcomp.algebra.qpoly]
npolyX_full [lemma, in mathcomp.algebra.qpoly]
npolyX_free [lemma, in mathcomp.algebra.qpoly]
npoly_enum_uniq [lemma, in mathcomp.algebra.qpoly]
npoly_enum [definition, in mathcomp.algebra.qpoly]
npoly_of_seq [definition, in mathcomp.algebra.qpoly]
npoly_theory [section, in mathcomp.algebra.qpoly]
npoly_vect_axiom [lemma, in mathcomp.algebra.qpoly]
npoly_rV_K [lemma, in mathcomp.algebra.qpoly]
npoly_rV [definition, in mathcomp.algebra.qpoly]
npoly_is_a_poly_of_size [lemma, in mathcomp.algebra.qpoly]
npoly_submod_closed [lemma, in mathcomp.algebra.qpoly]
npoly0 [definition, in mathcomp.algebra.qpoly]
nseq [definition, in mathcomp.ssreflect.seq]
nseqD [lemma, in mathcomp.ssreflect.seq]
nseqP [lemma, in mathcomp.ssreflect.seq]
nseq_tuple [definition, in mathcomp.ssreflect.tuple]
nseq_tupleP [lemma, in mathcomp.ssreflect.tuple]
nth [abbreviation, in mathcomp.ssreflect.seq]
nth [definition, in mathcomp.ssreflect.seq]
nthK [lemma, in mathcomp.ssreflect.seq]
nthP [lemma, in mathcomp.ssreflect.seq]
NthTheory [section, in mathcomp.ssreflect.seq]
NthTheory.T [variable, in mathcomp.ssreflect.seq]
nth_mktuple [lemma, in mathcomp.ssreflect.tuple]
nth_flatten [lemma, in mathcomp.ssreflect.seq]
nth_shape [lemma, in mathcomp.ssreflect.seq]
nth_reshape [lemma, in mathcomp.ssreflect.seq]
nth_zip_cond [lemma, in mathcomp.ssreflect.seq]
nth_zip [lemma, in mathcomp.ssreflect.seq]
nth_scanl [lemma, in mathcomp.ssreflect.seq]
nth_cons_scanl [lemma, in mathcomp.ssreflect.seq]
nth_pairmap [lemma, in mathcomp.ssreflect.seq]
nth_mkseq [lemma, in mathcomp.ssreflect.seq]
nth_iota [lemma, in mathcomp.ssreflect.seq]
nth_index_map [lemma, in mathcomp.ssreflect.seq]
nth_map [lemma, in mathcomp.ssreflect.seq]
nth_incr_nth [lemma, in mathcomp.ssreflect.seq]
nth_rcons_cat_find [lemma, in mathcomp.ssreflect.seq]
nth_uniq [lemma, in mathcomp.ssreflect.seq]
nth_index [lemma, in mathcomp.ssreflect.seq]
nth_rev [lemma, in mathcomp.ssreflect.seq]
nth_take [lemma, in mathcomp.ssreflect.seq]
nth_drop [lemma, in mathcomp.ssreflect.seq]
nth_find [lemma, in mathcomp.ssreflect.seq]
nth_set_nth [lemma, in mathcomp.ssreflect.seq]
nth_nseq [lemma, in mathcomp.ssreflect.seq]
nth_ncons [lemma, in mathcomp.ssreflect.seq]
nth_rcons_default [lemma, in mathcomp.ssreflect.seq]
nth_rcons [lemma, in mathcomp.ssreflect.seq]
nth_cat [lemma, in mathcomp.ssreflect.seq]
nth_behead [lemma, in mathcomp.ssreflect.seq]
nth_last [lemma, in mathcomp.ssreflect.seq]
nth_seq1 [lemma, in mathcomp.ssreflect.seq]
nth_nil [lemma, in mathcomp.ssreflect.seq]
nth_default [lemma, in mathcomp.ssreflect.seq]
nth_fgraph_ord [lemma, in mathcomp.ssreflect.finfun]
nth_traject [lemma, in mathcomp.ssreflect.path]
nth_enum_rank [lemma, in mathcomp.ssreflect.fintype]
nth_enum_rank_in [lemma, in mathcomp.ssreflect.fintype]
nth_codom [lemma, in mathcomp.ssreflect.fintype]
nth_image [lemma, in mathcomp.ssreflect.fintype]
nth_ord_enum [lemma, in mathcomp.ssreflect.fintype]
nth_enum_ord [lemma, in mathcomp.ssreflect.fintype]
nth_lagrange [lemma, in mathcomp.algebra.qpoly]
nth_npolyX [lemma, in mathcomp.algebra.qpoly]
nth0 [lemma, in mathcomp.ssreflect.seq]
ntransitive [definition, in mathcomp.solvable.primitive_action]
NTransitive [section, in mathcomp.solvable.primitive_action]
ntransitive_primitive [lemma, in mathcomp.solvable.primitive_action]
ntransitive_weak [lemma, in mathcomp.solvable.primitive_action]
NTransitive.A [variable, in mathcomp.solvable.primitive_action]
NTransitive.gT [variable, in mathcomp.solvable.primitive_action]
NTransitive.n [variable, in mathcomp.solvable.primitive_action]
NTransitive.S [variable, in mathcomp.solvable.primitive_action]
NTransitive.sT [variable, in mathcomp.solvable.primitive_action]
NTransitive.to [variable, in mathcomp.solvable.primitive_action]
ntransitive0 [lemma, in mathcomp.solvable.primitive_action]
ntransitive1 [lemma, in mathcomp.solvable.primitive_action]
NTransitveProp [section, in mathcomp.solvable.primitive_action]
NTransitveProp.G [variable, in mathcomp.solvable.primitive_action]
NTransitveProp.gT [variable, in mathcomp.solvable.primitive_action]
NTransitveProp.S [variable, in mathcomp.solvable.primitive_action]
NTransitveProp.sT [variable, in mathcomp.solvable.primitive_action]
NTransitveProp.to [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1 [section, in mathcomp.solvable.primitive_action]
NTransitveProp1.G [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1.gT [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1.S [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1.sT [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1.to [variable, in mathcomp.solvable.primitive_action]
nt_pnElem [lemma, in mathcomp.solvable.abelian]
nt_prime_order [lemma, in mathcomp.solvable.cyclic]
nt_gen_prime [lemma, in mathcomp.solvable.cyclic]
Num [module, in mathcomp.algebra.archimedean]
Num [module, in mathcomp.algebra.ssrnum]
number [record, in mathcomp.ssreflect.ssrnat]
NumberInterpretation [section, in mathcomp.ssreflect.ssrnat]
NumberInterpretation.Trec [section, in mathcomp.ssreflect.ssrnat]
number_subType [definition, in mathcomp.ssreflect.ssrnat]
numden_Ratio [definition, in mathcomp.algebra.fraction]
numer_Ratio [lemma, in mathcomp.algebra.fraction]
NumFactor [definition, in mathcomp.ssreflect.prime]
NumFieldProj [section, in mathcomp.field.algnum]
NumFieldProj.Qn [variable, in mathcomp.field.algnum]
NumFieldProj.QnC [variable, in mathcomp.field.algnum]
numq [definition, in mathcomp.algebra.rat]
numqE [lemma, in mathcomp.algebra.rat]
numqK [lemma, in mathcomp.algebra.rat]
numqN [lemma, in mathcomp.algebra.rat]
numq_lt0 [lemma, in mathcomp.algebra.rat]
numq_gt0 [lemma, in mathcomp.algebra.rat]
numq_le0 [lemma, in mathcomp.algebra.rat]
numq_ge0 [lemma, in mathcomp.algebra.rat]
numq_div_lt0 [lemma, in mathcomp.algebra.rat]
numq_sign_mul [lemma, in mathcomp.algebra.rat]
numq_int [lemma, in mathcomp.algebra.rat]
numq_eq0 [lemma, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Num_isNumRing [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_isDuallyPOrder [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_POrder_isJoinSemilattice [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_Lattice_isDistributive [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_POrder_isMeetSemilattice [definition, in mathcomp.algebra.ssrint]
num_field_proj [lemma, in mathcomp.field.algnum]
num_field_exists [lemma, in mathcomp.field.algnum]
Num_IntegralDomain_isLeReal__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Num_isNumRing [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_isDuallyPOrder [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_POrder_isJoinSemilattice [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_Lattice_isDistributive [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_POrder_isMeetSemilattice [definition, in mathcomp.algebra.rat]
num_fracq [lemma, in mathcomp.algebra.rat]
Num.addr_gt0 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField [module, in mathcomp.algebra.archimedean]
Num.ArchiClosedFieldElpiOperations [module, in mathcomp.algebra.archimedean]
Num.ArchiClosedFieldExports [module, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.axioms_ [record, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.choice_hasChoice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.class [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports [module, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumField_and_Num_ClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumField_and_GRing_ClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumField_and_GRing_DecidableField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumDomain_and_Num_ClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumDomain_and_GRing_ClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumDomain_and_GRing_DecidableField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_ClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_ClosedField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_ArchiNumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_ArchiNumField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_NumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_NumField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Order_POrder_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_ClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_ClosedField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_DecidableField [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_DecidableField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_Field [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_Field_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__choice_Choice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_DecField_isAlgClosed_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_Field_isDecField_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Num_NumField_isImaginary_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Num_isNumRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.pack_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.phant_on_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.phant_clone [definition, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.sort [projection, in mathcomp.algebra.archimedean]
Num.ArchiClosedField.type [record, in mathcomp.algebra.archimedean]
Num.ArchiDomain [module, in mathcomp.algebra.archimedean]
Num.ArchiDomain [abbreviation, in mathcomp.algebra.archimedean]
Num.ArchiDomain.copy [abbreviation, in mathcomp.algebra.archimedean]
Num.ArchiDomain.on [abbreviation, in mathcomp.algebra.archimedean]
Num.ArchiDomain.type [abbreviation, in mathcomp.algebra.archimedean]
Num.ArchiField [module, in mathcomp.algebra.archimedean]
Num.ArchiField [abbreviation, in mathcomp.algebra.archimedean]
Num.ArchiField.copy [abbreviation, in mathcomp.algebra.archimedean]
Num.ArchiField.on [abbreviation, in mathcomp.algebra.archimedean]
Num.ArchiField.type [abbreviation, in mathcomp.algebra.archimedean]
Num.archimedean_axiom [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain [module, in mathcomp.algebra.archimedean]
Num.ArchiNumDomainElpiOperations [module, in mathcomp.algebra.archimedean]
Num.ArchiNumDomainExports [module, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.axioms_ [record, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.choice_hasChoice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.class [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports [module, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__Order_POrder_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_Ring_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__choice_Choice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.GRing_isNmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Num_isNumRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.pack_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.phant_on_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.phant_clone [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.sort [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumDomain.type [record, in mathcomp.algebra.archimedean]
Num.ArchiNumField [module, in mathcomp.algebra.archimedean]
Num.ArchiNumFieldElpiOperations [module, in mathcomp.algebra.archimedean]
Num.ArchiNumFieldExports [module, in mathcomp.algebra.archimedean]
Num.ArchiNumField.axioms_ [record, in mathcomp.algebra.archimedean]
Num.ArchiNumField.choice_hasChoice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.class [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports [module, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.join_Num_ArchiNumField_between_Num_ArchiNumDomain_and_Num_NumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.join_Num_ArchiNumField_between_Num_ArchiNumDomain_and_GRing_Field [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_NumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_NumField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Order_POrder_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_Field [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_Field_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__choice_Choice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Num_isNumRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.pack_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.phant_on_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.phant_clone [definition, in mathcomp.algebra.archimedean]
Num.ArchiNumField.sort [projection, in mathcomp.algebra.archimedean]
Num.ArchiNumField.type [record, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField [module, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedFieldElpiOperations [module, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedFieldExports [module, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.axioms_ [record, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.choice_hasChoice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.class [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports [module, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.join_Num_ArchiRealClosedField_between_Num_ArchiRealField_and_Num_RealClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.join_Num_ArchiRealClosedField_between_Num_ArchiRealDomain_and_Num_RealClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.join_Num_ArchiRealClosedField_between_Num_ArchiNumField_and_Num_RealClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.join_Num_ArchiRealClosedField_between_Num_ArchiNumDomain_and_Num_RealClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_RealClosedField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_RealClosedField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_ArchiRealField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_ArchiRealField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_RealField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_RealField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_ArchiRealDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_ArchiRealDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_RealDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_Total [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_Total_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_DistrLattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_Lattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_Lattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_MeetSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_MeetSemilattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_JoinSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_JoinSemilattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_ArchiNumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_ArchiNumField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_NumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_NumField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_POrder_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_Field [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_Field_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__choice_Choice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Num_RealField_isClosed_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Num_isNumRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Order_Lattice_isDistributive_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Order_POrder_isJoinSemilattice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Order_POrder_isMeetSemilattice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.pack_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.phant_on_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.phant_clone [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.sort [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealClosedField.type [record, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain [module, in mathcomp.algebra.archimedean]
Num.ArchiRealDomainElpiOperations [module, in mathcomp.algebra.archimedean]
Num.ArchiRealDomainExports [module, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.axioms_ [record, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.choice_hasChoice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.class [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports [module, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.join_Num_ArchiRealDomain_between_Num_ArchiNumDomain_and_Num_RealDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.join_Num_ArchiRealDomain_between_Num_ArchiNumDomain_and_Order_Total [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.join_Num_ArchiRealDomain_between_Num_ArchiNumDomain_and_Order_DistrLattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.join_Num_ArchiRealDomain_between_Num_ArchiNumDomain_and_Order_Lattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.join_Num_ArchiRealDomain_between_Num_ArchiNumDomain_and_Order_MeetSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.join_Num_ArchiRealDomain_between_Num_ArchiNumDomain_and_Order_JoinSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Num_RealDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Order_Total [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Order_Total_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Order_DistrLattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Order_Lattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Order_Lattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Order_MeetSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Order_MeetSemilattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Order_JoinSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Order_JoinSemilattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Order_POrder_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_Ring_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__choice_Choice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain__to__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Exports.Num_ArchiRealDomain_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.GRing_isNmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Num_isNumRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Order_Lattice_isDistributive_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Order_POrder_isJoinSemilattice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Order_POrder_isMeetSemilattice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.pack_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.phant_on_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.phant_clone [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.sort [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealDomain.type [record, in mathcomp.algebra.archimedean]
Num.ArchiRealField [module, in mathcomp.algebra.archimedean]
Num.ArchiRealFieldElpiOperations [module, in mathcomp.algebra.archimedean]
Num.ArchiRealFieldExports [module, in mathcomp.algebra.archimedean]
Num.ArchiRealField.axioms_ [record, in mathcomp.algebra.archimedean]
Num.ArchiRealField.choice_hasChoice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.class [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports [module, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiRealDomain_and_Num_RealField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiRealDomain_and_Num_NumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiRealDomain_and_GRing_Field [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumField_and_Num_RealField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumField_and_Num_ArchiRealDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumField_and_Num_RealDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumField_and_Order_Total [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumField_and_Order_DistrLattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumField_and_Order_Lattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumField_and_Order_MeetSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumField_and_Order_JoinSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.join_Num_ArchiRealField_between_Num_ArchiNumDomain_and_Num_RealField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_RealField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_RealField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_ArchiRealDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_ArchiRealDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_RealDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Order_Total [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Order_Total_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Order_DistrLattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Order_Lattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Order_Lattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Order_MeetSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Order_MeetSemilattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Order_JoinSemilattice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Order_JoinSemilattice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_ArchiNumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_ArchiNumField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_NumField [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_NumField_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Order_POrder_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_Field [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_Field_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__choice_Choice_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField__to__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Exports.Num_ArchiRealField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Num_isNumRing_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Order_Lattice_isDistributive_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Order_POrder_isJoinSemilattice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Order_POrder_isMeetSemilattice_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.pack_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.phant_on_ [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.phant_clone [definition, in mathcomp.algebra.archimedean]
Num.ArchiRealField.sort [projection, in mathcomp.algebra.archimedean]
Num.ArchiRealField.type [record, in mathcomp.algebra.archimedean]
Num.bound [abbreviation, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_Export_23 [module, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__Num_ArchiNumDomain [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.HB_unnamed_factory_21 [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.truncP [lemma, in mathcomp.algebra.archimedean]
Num.Builders_19.trunc [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.trunc_subproof [lemma, in mathcomp.algebra.archimedean]
Num.Builders_19.boundP [lemma, in mathcomp.algebra.archimedean]
Num.Builders_19.bound [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.fresh_name_20 [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_Order_isDuallyPOrder [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.R [variable, in mathcomp.algebra.archimedean]
Num.Builders_19.Builders_19.Builders_19 [section, in mathcomp.algebra.archimedean]
Num.Builders_19.Super [module, in mathcomp.algebra.archimedean]
Num.Builders_19 [module, in mathcomp.algebra.archimedean]
Num.Builders_70.Builders_Export_81 [module, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Num_IntegralDomain_isLtReal__to__Order_POrder_isMeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Num_IntegralDomain_isLtReal__to__Order_POrder_isJoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Num_IntegralDomain_isLtReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Num_IntegralDomain_isLtReal__to__Order_Lattice_isDistributive [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.HB_unnamed_factory_76 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Num_IntegralDomain_isLtReal__to__Order_isDuallyPOrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Num_IntegralDomain_isLtReal__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Num_IntegralDomain_isLtReal__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.HB_unnamed_factory_72 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.le_total [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.lt_def [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.le_def' [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.eq0_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.le_normD [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.normM [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.le0_mul [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.le0_add [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.sub_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.le00 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.leN_total [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.lt0N [lemma, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Builders_70.lt [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_70.le [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.fresh_name_71 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_70.Builders_70.Builders_70 [section, in mathcomp.algebra.ssrnum]
Num.Builders_70.Super [module, in mathcomp.algebra.ssrnum]
Num.Builders_70 [module, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_Export_69 [module, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Num_IntegralDomain_isLeReal__to__Order_POrder_isMeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Num_IntegralDomain_isLeReal__to__Order_POrder_isJoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Num_IntegralDomain_isLeReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Num_IntegralDomain_isLeReal__to__Order_Lattice_isDistributive [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.HB_unnamed_factory_64 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Num_IntegralDomain_isLeReal__to__Order_isDuallyPOrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Num_IntegralDomain_isLeReal__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Num_IntegralDomain_isLeReal__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.HB_unnamed_factory_60 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.le_total [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_58.le_normD [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_58.normM [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_58.le_def [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_58.eq0_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_58.lt0_add [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.le00 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.leN_total [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.le0N [variable, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Builders_58.lt [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_58.le [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.fresh_name_59 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_58.Builders_58.Builders_58 [section, in mathcomp.algebra.ssrnum]
Num.Builders_58.Super [module, in mathcomp.algebra.ssrnum]
Num.Builders_58 [module, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_Export_57 [module, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Num_NumDomain_isReal__to__Order_POrder_isMeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Num_NumDomain_isReal__to__Order_POrder_isJoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Num_NumDomain_isReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Num_NumDomain_isReal__to__Order_Lattice_isDistributive [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.HB_unnamed_factory_52 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.le_total [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.fresh_name_51 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_Order_isDuallyPOrder [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_50.Builders_50.Builders_50 [section, in mathcomp.algebra.ssrnum]
Num.Builders_50.Super [module, in mathcomp.algebra.ssrnum]
Num.Builders_50 [module, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_Export_49 [module, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.HB_unnamed_factory_47 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.HB_unnamed_factory_45 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Num_IntegralDomain_isNumRing__to__Order_isDuallyPOrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.HB_unnamed_factory_43 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.normrN [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.normrN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.normrMn [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.le_trans [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.le_def' [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.lerr [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.ltW [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.lt01 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.le01 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.lt_trans [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.subr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.subr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.ge0_def [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_41.ltrr [lemma, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.fresh_name_42 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_41.Builders_41.Builders_41 [section, in mathcomp.algebra.ssrnum]
Num.Builders_41.Super [module, in mathcomp.algebra.ssrnum]
Num.Builders_41 [module, in mathcomp.algebra.ssrnum]
Num.ceil [abbreviation, in mathcomp.algebra.archimedean]
Num.ceilD [abbreviation, in mathcomp.algebra.archimedean]
Num.ClosedField [module, in mathcomp.algebra.ssrnum]
Num.ClosedFieldElpiOperations [module, in mathcomp.algebra.ssrnum]
Num.ClosedFieldExports [module, in mathcomp.algebra.ssrnum]
Num.ClosedField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.ClosedField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.class [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports [module, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_ClosedField_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_DecidableField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_DecidableField_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_DecField_isAlgClosed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_Field_isDecField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Num_NumField_isImaginary_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.sort [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.type [record, in mathcomp.algebra.ssrnum]
Num.comparable [abbreviation, in mathcomp.algebra.ssrnum]
Num.conj_op [definition, in mathcomp.algebra.ssrnum]
Num.Def [module, in mathcomp.algebra.archimedean]
Num.Def [module, in mathcomp.algebra.ssrnum]
Num.Def.archi_bound [definition, in mathcomp.algebra.archimedean]
Num.Def.ceil [definition, in mathcomp.algebra.archimedean]
Num.Def.comparabler [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.Def [section, in mathcomp.algebra.archimedean]
Num.Def.floor [definition, in mathcomp.algebra.archimedean]
Num.Def.floor_subproof [lemma, in mathcomp.algebra.archimedean]
Num.Def.ger [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.gtr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.int_num [definition, in mathcomp.algebra.archimedean]
Num.Def.ler [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.lerif [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.lterif [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.ltr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.maxr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.minr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.nat_num [definition, in mathcomp.algebra.archimedean]
Num.Def.normr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.NumDomainDef [section, in mathcomp.algebra.ssrnum]
Num.Def.Rneg [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rneg_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rnneg [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rnneg_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rnpos [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rnpos_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rpos [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rpos_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rreal [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rreal_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.sgr [definition, in mathcomp.algebra.ssrnum]
Num.Def.trunc [definition, in mathcomp.algebra.archimedean]
Num.Def.truncP [lemma, in mathcomp.algebra.archimedean]
Num.Def.trunc_itv [lemma, in mathcomp.algebra.archimedean]
@ minr _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
@ maxr _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
@ comparabler _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
@ lteif _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
@ lerif _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
@ gtr _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
@ ger _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
@ ltr _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
@ ler _ (function_scope) [notation, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Exports [module, in mathcomp.algebra.archimedean]
Num.Exports [module, in mathcomp.algebra.ssrnum]
Num.ExtensionAxioms [section, in mathcomp.algebra.ssrnum]
Num.ExtensionAxioms.R [variable, in mathcomp.algebra.ssrnum]
Num.ExtraDef [module, in mathcomp.algebra.ssrnum]
Num.ExtraDef.sqrtr [definition, in mathcomp.algebra.ssrnum]
Num.floor [abbreviation, in mathcomp.algebra.archimedean]
Num.floorD [abbreviation, in mathcomp.algebra.archimedean]
Num.ge [abbreviation, in mathcomp.algebra.ssrnum]
Num.ger_leVge [definition, in mathcomp.algebra.ssrnum]
Num.gt [abbreviation, in mathcomp.algebra.ssrnum]
Num.HB_unnamed_factory_1 [definition, in mathcomp.algebra.archimedean]
Num.imaginary [definition, in mathcomp.algebra.ssrnum]
Num.int [abbreviation, in mathcomp.algebra.archimedean]
Num.intArchimedean [module, in mathcomp.algebra.archimedean]
Num.intArchimedean.intArchimedean [section, in mathcomp.algebra.archimedean]
Num.intArchimedean.intArchimedean.trunc [variable, in mathcomp.algebra.archimedean]
Num.intArchimedean.is_intE [lemma, in mathcomp.algebra.archimedean]
Num.intArchimedean.is_natE [lemma, in mathcomp.algebra.archimedean]
Num.intArchimedean.truncP [lemma, in mathcomp.algebra.archimedean]
Num.IntegralDomain_isLtReal.Exports [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.le_def [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.ge0_norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.normN [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.lt0_total [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.sub_gt0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.lt0_ngt0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.lt0_mul [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.lt0_add [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.Rle [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.Rlt [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.R [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.IntegralDomain_isLtReal [section, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.Exports [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.lt_def [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.ge0_norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.normN [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.le0_total [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.sub_ge0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.le0_anti [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.le0_mul [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.le0_add [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.Rlt [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.Rle [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.R [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.IntegralDomain_isLeReal [section, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.Exports [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.lt_def [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.le_def [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.normM [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.ger_total [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.norm_eq0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.addr_gt0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.normD [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.Rlt [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.Rle [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.R [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.IntegralDomain_isNumRing [section, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing [module, in mathcomp.algebra.ssrnum]
Num.Internals [module, in mathcomp.algebra.ssrnum]
Num.Internals.addr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_DivringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_SdivClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_DivClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_SubringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_SmulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_SemiringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_MulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_Semiring2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_ZmodClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_AddClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_OppClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_SemiringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_Semiring2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_AddClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_DivClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_MulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rpos_pred__canonical__GRing_DivClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rpos_pred__canonical__GRing_MulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rpos_pred__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Exports [module, in mathcomp.algebra.ssrnum]
Num.Internals.ger0_def [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isInvClosed__30 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul1Closed__28 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul2Closed__26 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isInvClosed__14 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul1Closed__12 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul2Closed__10 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isInvClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul1Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_33 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_32 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_31 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_24 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_22 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_20 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_18 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_17 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_16 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_15 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_8 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_7 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_6 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_5 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_1 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.ler01 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.le0r [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.ltr01 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.nnegrE [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.nneg_addr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.nneg_divr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.NumDomain [section, in mathcomp.algebra.ssrnum]
Num.Internals.NumDomain.R [variable, in mathcomp.algebra.ssrnum]
Num.Internals.num_real [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.oppr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.pmulr_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.poly_ivt [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.posrE [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.pos_divr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.RealClosed [section, in mathcomp.algebra.ssrnum]
Num.Internals.RealClosed.R [variable, in mathcomp.algebra.ssrnum]
Num.Internals.realE [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.real_divr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.real_addr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.real_oppr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.sqrtr_subproof [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.subr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.int_num_subproof [definition, in mathcomp.algebra.archimedean]
Num.int_num_subdef [definition, in mathcomp.algebra.archimedean]
Num.isNumRing [module, in mathcomp.algebra.ssrnum]
Num.isNumRing.addr_gt0 [projection, in mathcomp.algebra.ssrnum]
Num.isNumRing.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.isNumRing.Exports [module, in mathcomp.algebra.ssrnum]
Num.isNumRing.ger_leVge [projection, in mathcomp.algebra.ssrnum]
Num.isNumRing.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.isNumRing [section, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_Order_isDuallyPOrder [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.R [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.ler_def [projection, in mathcomp.algebra.ssrnum]
Num.isNumRing.normrM [projection, in mathcomp.algebra.ssrnum]
Num.isNumRing.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.le [abbreviation, in mathcomp.algebra.ssrnum]
Num.leif [abbreviation, in mathcomp.algebra.ssrnum]
Num.ler_def [definition, in mathcomp.algebra.ssrnum]
Num.ler_normD [definition, in mathcomp.algebra.ssrnum]
Num.lt [abbreviation, in mathcomp.algebra.ssrnum]
Num.lteif [abbreviation, in mathcomp.algebra.ssrnum]
Num.max [abbreviation, in mathcomp.algebra.ssrnum]
Num.min [abbreviation, in mathcomp.algebra.ssrnum]
Num.nat [abbreviation, in mathcomp.algebra.archimedean]
Num.nat_num_subproof [definition, in mathcomp.algebra.archimedean]
Num.nat_num_subdef [definition, in mathcomp.algebra.archimedean]
Num.neg [abbreviation, in mathcomp.algebra.ssrnum]
Num.nneg [abbreviation, in mathcomp.algebra.ssrnum]
Num.norm [definition, in mathcomp.algebra.ssrnum]
Num.normCK [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule [module, in mathcomp.algebra.ssrnum]
Num.NormedZmoduleElpiOperations [module, in mathcomp.algebra.ssrnum]
Num.NormedZmoduleExports [module, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.class [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports [module, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.sort [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.type [record, in mathcomp.algebra.ssrnum]
Num.normrM [definition, in mathcomp.algebra.ssrnum]
Num.normrMn [definition, in mathcomp.algebra.ssrnum]
Num.normrN [definition, in mathcomp.algebra.ssrnum]
Num.normr0_eq0 [definition, in mathcomp.algebra.ssrnum]
Num.npos [abbreviation, in mathcomp.algebra.ssrnum]
Num.NumDomain [module, in mathcomp.algebra.ssrnum]
Num.NumDomainElpiOperations [module, in mathcomp.algebra.ssrnum]
Num.NumDomainExports [module, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.Exports [module, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.phant_axioms [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.phant_Build [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.archi_bound_subproof [projection, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.axioms_ [record, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_Order_isDuallyPOrder [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.R [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean [section, in mathcomp.algebra.archimedean]
Num.NumDomain_bounded_isArchimedean [module, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.Exports [module, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.identity_builder [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.phant_axioms [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.phant_Build [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.int_num_subproof [projection, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.nat_num_subproof [projection, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.trunc_subproof [projection, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.int_num_subdef [projection, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.nat_num_subdef [projection, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.trunc_subdef [projection, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.axioms_ [record, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_Ring [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__Order_POrder [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_Order_isDuallyPOrder [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__choice_Choice [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.R [variable, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.NumDomain_isArchimedean [section, in mathcomp.algebra.archimedean]
Num.NumDomain_isArchimedean [module, in mathcomp.algebra.archimedean]
Num.NumDomain_isReal.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.real [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_Order_isDuallyPOrder [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.R [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.NumDomain_isReal [section, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal [module, in mathcomp.algebra.ssrnum]
Num.NumDomain.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumDomain.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.class [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_POrderedZmodule_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_POrderedZmodule_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_POrderedZmodule_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Order_POrder_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Order_POrder_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Order_POrder_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_IntegralDomain_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_IntegralDomain_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_IntegralDomain_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComUnitRing_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComUnitRing_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComUnitRing_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComRing_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComRing_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComRing_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComSemiRing_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComSemiRing_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComSemiRing_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.sort [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.type [record, in mathcomp.algebra.ssrnum]
Num.NumField [module, in mathcomp.algebra.ssrnum]
Num.NumFieldElpiOperations [module, in mathcomp.algebra.ssrnum]
Num.NumFieldExports [module, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.normCK [projection, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.sqrCi [projection, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.conj_op [projection, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.imaginary [projection, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_UnitRing_isField [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_Order_isDuallyPOrder [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.R [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.NumField_isImaginary [section, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary [module, in mathcomp.algebra.ssrnum]
Num.NumField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.class [projection, in mathcomp.algebra.ssrnum]
Num.NumField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.join_Num_NumField_between_GRing_Field_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.join_Num_NumField_between_GRing_Field_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.join_Num_NumField_between_GRing_Field_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.join_Num_NumField_between_GRing_Field_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.NumField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.NumField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.NumField.sort [projection, in mathcomp.algebra.ssrnum]
Num.NumField.type [record, in mathcomp.algebra.ssrnum]
Num.poly_ivt_subproof [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule [module, in mathcomp.algebra.ssrnum]
Num.POrderedZmoduleElpiOperations [module, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.class [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports [module, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.join_Num_POrderedZmodule_between_Order_POrder_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.join_Num_POrderedZmodule_between_GRing_Nmodule_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.sort [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.type [record, in mathcomp.algebra.ssrnum]
Num.pos [abbreviation, in mathcomp.algebra.ssrnum]
Num.PredInstances [module, in mathcomp.algebra.ssrnum]
Num.real [abbreviation, in mathcomp.algebra.ssrnum]
Num.RealClosedField [module, in mathcomp.algebra.ssrnum]
Num.RealClosedFieldElpiOperations [module, in mathcomp.algebra.ssrnum]
Num.RealClosedFieldExports [module, in mathcomp.algebra.ssrnum]
Num.RealClosedField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.RealClosedField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.class [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports [module, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_RealField_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_MeetSemilattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_JoinSemilattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Num_RealField_isClosed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_Lattice_isDistributive_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_POrder_isMeetSemilattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_POrder_isJoinSemilattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.sort [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.type [record, in mathcomp.algebra.ssrnum]
Num.RealDomain [module, in mathcomp.algebra.ssrnum]
Num.RealDomainElpiOperations [module, in mathcomp.algebra.ssrnum]
Num.RealDomainExports [module, in mathcomp.algebra.ssrnum]
Num.RealDomain.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.RealDomain.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.class [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports [module, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Total_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Total_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_MeetSemilattice_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_MeetSemilattice_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_MeetSemilattice_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_MeetSemilattice_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_MeetSemilattice_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_MeetSemilattice_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_MeetSemilattice_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_MeetSemilattice_and_GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_JoinSemilattice_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_JoinSemilattice_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_JoinSemilattice_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_JoinSemilattice_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_JoinSemilattice_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_JoinSemilattice_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_JoinSemilattice_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_JoinSemilattice_and_GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Num_NumDomain_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Num_POrderedZmodule_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_IntegralDomain_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_IntegralDomain_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_IntegralDomain_and_Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_IntegralDomain_and_Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComUnitRing_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComUnitRing_and_Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComUnitRing_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComUnitRing_and_Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComUnitRing_and_Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComRing_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComRing_and_Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComRing_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComRing_and_Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComRing_and_Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComSemiRing_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComSemiRing_and_Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComSemiRing_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComSemiRing_and_Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComSemiRing_and_Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_Ring_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Num_NormedZmodule_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_SemiRing_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_Nmodule_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_MeetSemilattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_JoinSemilattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_Lattice_isDistributive_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_POrder_isMeetSemilattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_POrder_isJoinSemilattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.sort [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.type [record, in mathcomp.algebra.ssrnum]
Num.RealField [module, in mathcomp.algebra.ssrnum]
Num.RealFieldElpiOperations [module, in mathcomp.algebra.ssrnum]
Num.RealFieldExports [module, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.Exports [module, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.poly_ivt_subproof [projection, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_UnitRing_isField [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_DistrLattice_isTotal [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_Lattice_isDistributive [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_POrder_isMeetSemilattice [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_POrder_isJoinSemilattice [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_isDuallyPOrder [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.R [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.RealField_isClosed [section, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed [module, in mathcomp.algebra.ssrnum]
Num.RealField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.RealField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.class [projection, in mathcomp.algebra.ssrnum]
Num.RealField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Exports [module, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Order_DistrLattice_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Order_DistrLattice_and_GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Order_Lattice_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Order_MeetSemilattice_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Order_JoinSemilattice_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Num_NumField_and_Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Num_NumField_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_GRing_Field_and_Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_GRing_Field_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_GRing_Field_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_GRing_Field_and_Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_GRing_Field_and_Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_MeetSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_MeetSemilattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_JoinSemilattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_JoinSemilattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_Lattice_isDistributive_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_POrder_isMeetSemilattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_POrder_isJoinSemilattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_isDuallyPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.RealField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.RealField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.RealField.sort [projection, in mathcomp.algebra.ssrnum]
Num.RealField.type [record, in mathcomp.algebra.ssrnum]
Num.real_ceilD [abbreviation, in mathcomp.algebra.archimedean]
Num.real_closed_axiom [definition, in mathcomp.algebra.ssrnum]
Num.real_axiom [definition, in mathcomp.algebra.ssrnum]
Num.sg [abbreviation, in mathcomp.algebra.ssrnum]
Num.sqrCi [definition, in mathcomp.algebra.ssrnum]
Num.sqrt [abbreviation, in mathcomp.algebra.ssrnum]
Num.ssrint_int__canonical__Num_ArchiRealDomain [definition, in mathcomp.algebra.archimedean]
Num.ssrint_int__canonical__Num_ArchiNumDomain [definition, in mathcomp.algebra.archimedean]
Num.Syntax [module, in mathcomp.algebra.ssrnum]
><%R (function_scope) [notation, in mathcomp.algebra.ssrnum]
>=<%R (function_scope) [notation, in mathcomp.algebra.ssrnum]
<?<=%R (function_scope) [notation, in mathcomp.algebra.ssrnum]
<?=%R (function_scope) [notation, in mathcomp.algebra.ssrnum]
>%R (function_scope) [notation, in mathcomp.algebra.ssrnum]
<%R (function_scope) [notation, in mathcomp.algebra.ssrnum]
>=%R (function_scope) [notation, in mathcomp.algebra.ssrnum]
<=%R (function_scope) [notation, in mathcomp.algebra.ssrnum]
_ >< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>< _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ >=< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>=< _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>=< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ ?<= if _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ ?<= if _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ ?= iff _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ ?= iff _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ > _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ > _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ >= _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ >= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
> _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
< _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>= _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
<= _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
<= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Theory [module, in mathcomp.algebra.archimedean]
Num.Theory [module, in mathcomp.algebra.ssrnum]
Num.Theory.addC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_maxr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_maxl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_minr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_minl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_max_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_min_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_ss_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_gt0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ArchiClosedFieldTheory [section, in mathcomp.algebra.archimedean]
Num.Theory.ArchiClosedFieldTheory.R [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory [section, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory.f [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory.R [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory.U [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory.V [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumFieldTheory [section, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumFieldTheory.R [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiRealDomainTheory [section, in mathcomp.algebra.archimedean]
Num.Theory.ArchiRealDomainTheory.R [variable, in mathcomp.algebra.archimedean]
Num.Theory.archi_boundP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.argCle [definition, in mathcomp.algebra.ssrnum]
Num.Theory.aut_intr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.aut_natr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.bigmax_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.bigmin_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.big_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Cauchy_root_bound [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ceil [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.ceilDrz [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilDzr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilM [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilN [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilX [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_le_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_itv [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_le [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_def [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.char_num [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.argCleP [variable, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.C [variable, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.neg_unity_root [variable, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.nz2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.Re2 [variable, in mathcomp.algebra.ssrnum]
'Im _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
'Re _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ .-root (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Theory.comparablerE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.comparabler_trans [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.comparabler0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.comparable0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.comparer [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerEq [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerEq0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerGt [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerGt0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerLt [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerLt0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.comparer0 [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.conjCi [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjCN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conj_intr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.conj_natr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.conj_normC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conj_Creal [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.cprD [definition, in mathcomp.algebra.ssrnum]
Num.Theory.CrealE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.CrealJ [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.CrealP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Creal_ReP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Creal_ImP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Creal_Im [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Creal_Re [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Crect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave [section, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex [section, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave [section, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex [section, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.deg_le2_poly_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.deg_le2_poly_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.deg_le2_poly_delta_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.deg_le2_poly_delta_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.distrC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.divC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.divC_Crect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.divr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.divr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqCP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqC_semipolar [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqrMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqrXn2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_sqrtC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_rootC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_sqrt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_norm2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_norm_idVN [definition, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_normN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_norm_id [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_pMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_odd_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_odd_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_odd_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_odd_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_even_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_even_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_even_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_even_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_cp1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_egte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_egt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ege1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ilte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ilt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ile1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_gte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.expr_gte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.expr_gt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.expr_ge1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.expr_lte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.expr_lt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.expr_le1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.FinGroup [section, in mathcomp.algebra.ssrnum]
Num.Theory.FinGroup.gT [variable, in mathcomp.algebra.ssrnum]
Num.Theory.FinGroup.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.floor [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.floorDrz [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorDzr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorM [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorN [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorpK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorpP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorX [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor_ge_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor_itv [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor_le [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor_def [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.geC0_unit_exp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.geC0_conj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gerBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gerB_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gerDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gerDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.GerNotLt [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ger_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_leVge [definition, in mathcomp.algebra.ssrnum]
Num.Theory.Ger0NotLt0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ger0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_xor_lt0 [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_le_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger1_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ge_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ge0_cp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.GRing_isSubringClosed__to__GRing_isAddClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSubringClosed__to__GRing_isOppClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSubringClosed__to__GRing_isMul2Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSubringClosed__to__GRing_isMul1Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSemiringClosed__to__GRing_isAddClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSemiringClosed__to__GRing_isMul1Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSemiringClosed__to__GRing_isMul2Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isAdditive__to__GRing_isSemiAdditive__39 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.GRing_isAdditive__to__GRing_isSemiAdditive [definition, in mathcomp.algebra.ssrnum]
Num.Theory.gtrBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.GtrNotLe [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Gtr0NotGt0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.gtr0_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr0_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr0_le_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr0_norm [definition, in mathcomp.algebra.ssrnum]
Num.Theory.gt_pred_ceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.gt_ge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gt0_cp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.HB_unnamed_mixin_18 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_mixin_17 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_mixin_16 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_mixin_15 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_factory_10 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_mixin_9 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_mixin_8 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_mixin_7 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_factory_3 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_mixin_40 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.HB_unnamed_factory_37 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.HB_unnamed_mixin_36 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.HB_unnamed_factory_34 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ieexprIn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ieexprn_weq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im [definition, in mathcomp.algebra.ssrnum]
Num.Theory.imaginaryCE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImMil [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImMir [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_rootC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_div [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_conj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_i [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_is_additive [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_lock [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.intrE [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrEceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrEfloor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrEge0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrEsign [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrKceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrKfloor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_aut [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_ler_sqr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_normK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.int_num_subring [lemma, in mathcomp.algebra.archimedean]
Num.Theory.int_num1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.int_num0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.int_num [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.invCi [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invC_Crect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invC_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_cp1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invf_lte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invf_lt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_le1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_nle [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_nlt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_ple [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_plt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_gte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invf_ge1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_gt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_nge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_ngt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_pge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_pgt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_cp1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_lte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_lt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_le1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_gte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_ge1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_gt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_lte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_gte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.IsNoSqrtr [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.IsSqrtr [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.lef_nV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lef_pV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leifBLR [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leifBRL [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leifD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_rootC_AGM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_Re_Creal [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_normC_Re_Creal [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_AGM2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_mean_square [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_AGM2_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_mean_square_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_AGM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_AGM_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_pprod [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_nM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_pM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_0_sum [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_sum [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_nat_r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerBDl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lerBDr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lerBlDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerBlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerBrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerBrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerB_dist [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerB_normD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerB_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerD2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lerD2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerD2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerNl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerNnormlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.LerNotGt [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.lerNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lern0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lern1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerN10 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerN2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sqrtC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_rootC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_rootCl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sqrt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_psqrt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wsqrtr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlCBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlCDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normlP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_addgt0Pl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_addgt0Pr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nnorml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_dist_normD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_dist_dist [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_norm_sum [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sqr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_eXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_iXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_weXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wiXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_eXnr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_iXnr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_niMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_piMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_niMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_piMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_neMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_peMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_neMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_peMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_prod [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sum_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sum [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ltB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ltD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_xor_gt [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ler_leVge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_def [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normD [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ler0n [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Ler0NotLe0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ler0N1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_sqrtr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_xor_gt0 [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_ge_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler01 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler1n [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler1_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler10 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.le_ceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.le0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.le0_cp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltef_nV2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltef_pV2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBDl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBDr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBlDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifD2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteifD2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifD2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifNl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifNr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifN2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_nnormr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_nM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_nM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_oppE [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteif0Nr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif01 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lterBDl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterBDr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterD2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterNE [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterNl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterNr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterN2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterXn2r [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_distlC [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_distl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_normr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_norml [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivrMl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivlMl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivrMr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivlMr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivrMl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivlMl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivrMr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivlMr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_nnormr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pXn2r [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_eXn2l [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_iXn2l [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_Xnr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_eXnr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_iXnr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_nM2r [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_nM2l [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pM2r [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pM2l [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter01 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltf_nV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltf_pV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBDl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBDr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBlDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrD2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltrD2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrD2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrgtP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrgt0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrNl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrNnormlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.LtrNotGe [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ltrNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrn0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrn1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrN10 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrN2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sqrtC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_rootC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_rootCl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sqrt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlCBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlCDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_normlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_normlP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nnorml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sqr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_eXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_iXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_eXnr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_iXnr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_prod_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_prod [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nwDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wnDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pwDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nwDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wnDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pwDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_leB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_leD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_xor_ge [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0n [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Ltr0NotGe0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0N1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0Sn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_sqrtr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_ge_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_norm [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr01 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr1n [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr10 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lt_succ_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.lt_le [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lt0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lt0r_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lt0_cp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_to_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.max_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mid [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.midf_lte [definition, in mathcomp.algebra.ssrnum]
Num.Theory.midf_lt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.midf_le [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_to_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.min_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.monic_Cauchy_bound [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulCii [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrIn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_wlt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_wgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_wle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_wge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sg_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_Nsign_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sign_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sign_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sg_eqN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sg_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_cp1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_egte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_egt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ege1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ilte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ilt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ile1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ge0_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_le0_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ge0_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mul_conjC_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mul_conjC_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mul_conjC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.naddr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natf_indexg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natf_div [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natrE [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natrEint [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natrG_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natrG_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natrK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natrP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_aut [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_exp_even [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_norm_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_prod_eq1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_mul_eq1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_sum_eq1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_gt0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_ge0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_normK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_indexg_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natr_indexg_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nat_num_semiring [lemma, in mathcomp.algebra.archimedean]
Num.Theory.nat_num1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.nat_num0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.nat_num [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.negrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.neqr0_sign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.neq0Ci [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.neq0_mulr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulrn_rle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulrn_rge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulrn_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_lle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_llt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_lge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_lgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_rle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_rlt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_rge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nnegIm [definition, in mathcomp.algebra.ssrnum]
Num.Theory.nnegrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nonRealCi [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normCBeq [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normCDeq [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normCi [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normCK [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normCKC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_sum_upper [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_sum_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_sum_eq [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_Re_Im [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC2_Re_Im [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC2_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normfV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normf_div [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrE [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normrEsg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrM [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normrMn [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normrMsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrN [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normrN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_sign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_nneg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_id [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_eq0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normr_unit [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_prod [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_idP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr0_eq0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normr1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.norm_intr_ge1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.norm_natr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.norm_conjC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.norm_rootC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nposrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Nreal_gtF [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Nreal_ltF [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Nreal_geF [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Nreal_leF [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nthroot [definition, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.D [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.f [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.f' [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.R' [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.NormedZmoduleTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.NormedZmoduleTheory.V [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.RealDomainArgExtremum [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.RealDomainArgExtremum.F_real [variable, in mathcomp.algebra.ssrnum]
Num.Theory.numEsg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.numEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.NumFieldTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumFieldTheory.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumIntegralDomainTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumIntegralDomainTheory.NormedZmoduleTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumIntegralDomainTheory.NormedZmoduleTheory.V [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumIntegralDomainTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.numNEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Num_int_num_subdef__canonical__GRing_SubringClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_int_num_subdef__canonical__GRing_ZmodClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_int_num_subdef__canonical__GRing_SemiringClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_int_num_subdef__canonical__GRing_Semiring2Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_int_num_subdef__canonical__GRing_AddClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_int_num_subdef__canonical__GRing_SmulClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_int_num_subdef__canonical__GRing_OppClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_int_num_subdef__canonical__GRing_MulClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_int_num_subdef__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_nat_num_subdef__canonical__GRing_SemiringClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_nat_num_subdef__canonical__GRing_Semiring2Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_nat_num_subdef__canonical__GRing_AddClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_nat_num_subdef__canonical__GRing_MulClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.Num_nat_num_subdef__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.num_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_cp0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_lte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_gte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.paddr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2 [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.deg2_poly_root2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.deg2_poly_root1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.deg2_poly_factor [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.monicp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.deg2_poly_root2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.deg2_poly_root1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.deg2_poly_factor [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_le0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_ge0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_ge0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_lt0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_gt0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_gt0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_noroot [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_root2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_root1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_factor [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_minE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.a1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.deltam [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.monicp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.nz2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.a1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.a2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.a4 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.deltam [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.monicp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_ge0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_le0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_le0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_gt0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_lt0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_lt0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_le0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_ge0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_ge0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_lt0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_gt0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_gt0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_noroot [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_root2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_root1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_factor [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_maxE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_minE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.ale0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.aNge0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.degpN [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.deltaN [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.r1N [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.r2N [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.aa4gt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.age0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.agt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.aneq0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.a2gt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.a4gt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.nz2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.pneq0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.sqa2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.xb4 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.ale0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.b2a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.degpN [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.deltaN [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.age0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.agt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.aneq0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.a4gt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.pneq0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.pexpIrn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pexprn_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pexpr_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrnI [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_rle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_rge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_rlt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_lle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_lge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_llt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_lgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_lle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_llt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_lge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_lgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_rle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_rlt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_rge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pnatr_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pnatr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.poly_ivt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.poly_itv_bound [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.poly_disk_bound [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.posrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.prodr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.prodr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.prod_truncK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.prod_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.psumr_neq0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.psumr_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.psumr_eq0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.psumr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.raddfZ_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.raddfZ_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.Re [definition, in mathcomp.algebra.ssrnum]
Num.Theory.realB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realBC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.RealClosedFieldTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealClosedFieldTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.realD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.MinMax [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.numR_real [variable, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.PolyBounds [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.PolyBounds.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.R [variable, in mathcomp.algebra.ssrnum]
[ arg max_ ( _ > _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg max_ ( _ > _ in _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg max_ ( _ > _ | _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg min_ ( _ < _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg min_ ( _ < _ in _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg min_ ( _ < _ | _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.realE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realEsg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realEsqr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.RealField [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealField.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.RealField.x [variable, in mathcomp.algebra.ssrnum]
Num.Theory.RealField.y [variable, in mathcomp.algebra.ssrnum]
Num.Theory.realM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realNEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn_nmono_in [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn_mono_in [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn_nmono [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn_mono [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realrM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realrMn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ceil_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_ceilDrz [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_ceilDzr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_ceil_le_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_le_ceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_gt_pred_ceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_ceil_itv [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_floorDrz [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_floorDzr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_floor_ge_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_lt_succ_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_ge_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_floor_itv [lemma, in mathcomp.algebra.archimedean]
Num.Theory.real_leif_AGM2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_mean_square [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_nmono_in [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_mono_in [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_nmono [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_mono [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_AGM2_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_mean_square_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lteif_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lteif_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lteif_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lteifNE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_mulr_Nsign_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_mulr_sign_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_normrEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_normK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_odd_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_odd_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_odd_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_odd_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_even_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_even_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_even_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_even_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlCBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlCBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlCDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlCDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lter_distl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lerNnormlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_normlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltrNnormlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_normlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lter_normr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_normlP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lter_norml [definition, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_eqr_norm2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_eqr_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_normlP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_arg_maxP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_arg_minP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_minNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_minrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_minr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_minr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_addr_maxr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_addr_maxl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_addr_minr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_addr_minl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_oppr_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_oppr_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_wlog_ltr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_wlog_ler [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_neqr_lt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltgt0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_le0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ge0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltgtP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leNgt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltNge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_comparable [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leVge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rectC_mull [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rectC_mulr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReMil [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReMir [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_div [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_conj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_i [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_is_additive [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_lock [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCpX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.RootCspec [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.rootCV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_lt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_le1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_gt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_ge1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_Re_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_inj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_subproof [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_spec [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.rootC0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.root0C [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.root1C [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rpredZ_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.rpredZ_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.rpred_int_num [lemma, in mathcomp.algebra.archimedean]
Num.Theory.rpred_nat_num [lemma, in mathcomp.algebra.archimedean]
Num.Theory.Rreal_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.Rreal_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.sgrE [definition, in mathcomp.algebra.ssrnum]
Num.Theory.sgrM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgrMn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.SgrNeg [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.SgrNull [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.sgrN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgrP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.SgrPos [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.sgrV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgrX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_smul [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_val [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_cp0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_id [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_odd [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_inj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.splitr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrCi [definition, in mathcomp.algebra.ssrnum]
Num.Theory.sqrCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrCK_P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrn_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrp_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtCM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_inj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtrM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtrP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtrV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_sqr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_spec [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqr_intr_ge1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.sqr_sqrtr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqr_norm_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqr_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lteif0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lteif0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lteifr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_comparable0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_cp0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.subr_gte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sumr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sum_truncK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.sum_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Theory_Im__canonical__GRing_Additive [definition, in mathcomp.algebra.ssrnum]
Num.Theory.Theory_Re__canonical__GRing_Additive [definition, in mathcomp.algebra.ssrnum]
Num.Theory.trunc [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.truncD [lemma, in mathcomp.algebra.archimedean]
Num.Theory.truncK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.truncM [lemma, in mathcomp.algebra.archimedean]
Num.Theory.truncX [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc_gt0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc_def [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc_itv [definition, in mathcomp.algebra.archimedean]
Num.Theory.trunc0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc0Pn [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.unitf_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.unitf_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.upper_nthrootP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ZnatP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ZnatPred [section, in mathcomp.algebra.archimedean]
Num.Theory.Znat_def [lemma, in mathcomp.algebra.archimedean]
'Im _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
'Re _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
'i (ring_scope) [notation, in mathcomp.algebra.ssrnum]
'i (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ ^* (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ .-root [notation, in mathcomp.algebra.ssrnum]
Num.trunc [abbreviation, in mathcomp.algebra.archimedean]
Num.trunc_subproof [definition, in mathcomp.algebra.archimedean]
Num.trunc_subdef [definition, in mathcomp.algebra.archimedean]
Num.Zmodule_isNormed.Exports [module, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.normrN [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.normrMn [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.normr0_eq0 [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.ler_normD [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.norm [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed_M__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed_M__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed_M__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed_M__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.M [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.R [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.Zmodule_isNormed [section, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed [module, in mathcomp.algebra.ssrnum]
nz_row_eq0 [lemma, in mathcomp.algebra.matrix]
nz_row [definition, in mathcomp.algebra.matrix]
nz_socle [lemma, in mathcomp.character.mxrepresentation]
nz_row_mxsimple [lemma, in mathcomp.character.mxrepresentation]
nz_row_sub [lemma, in mathcomp.algebra.mxalgebra]
n_act_add [lemma, in mathcomp.solvable.primitive_action]
n_act0 [lemma, in mathcomp.solvable.primitive_action]
n_act_dtuple [lemma, in mathcomp.solvable.primitive_action]
n_act_action [definition, in mathcomp.solvable.primitive_action]
n_act_is_action [lemma, in mathcomp.solvable.primitive_action]
n_act [definition, in mathcomp.solvable.primitive_action]
n_comp_connect [lemma, in mathcomp.ssreflect.fingraph]
n_comp_closure2 [lemma, in mathcomp.ssreflect.fingraph]
n_compC [lemma, in mathcomp.ssreflect.fingraph]
n_comp [abbreviation, in mathcomp.ssreflect.fingraph]
n_comp_mem [definition, in mathcomp.ssreflect.fingraph]
n' [abbreviation, in mathcomp.character.mxabelem]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (54001 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1931 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1658 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (7199 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (97 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (15214 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (75 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (224 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (132 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2371 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2266 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (732 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (21455 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (647 entries)