Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (100113 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1864 entries)
Binder Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (49278 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1631 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (6978 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (94 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (14781 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (75 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (222 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (131 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2030 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (2189 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1149 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (19126 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (565 entries)

N

n [abbreviation, in mathcomp.field.fieldext]
n [abbreviation, in mathcomp.field.fieldext]
n [abbreviation, in mathcomp.algebra.matrix]
n [abbreviation, in mathcomp.algebra.matrix]
n [abbreviation, in mathcomp.algebra.matrix]
n [abbreviation, in mathcomp.algebra.matrix]
n [abbreviation, in mathcomp.algebra.mxpoly]
n [abbreviation, in mathcomp.algebra.mxpoly]
n [abbreviation, in mathcomp.character.mxabelem]
n [abbreviation, in mathcomp.character.mxabelem]
n [abbreviation, in mathcomp.character.mxrepresentation]
n [abbreviation, in mathcomp.character.mxrepresentation]
n [abbreviation, in mathcomp.ssreflect.fintype]
nAB:143 [binder, in mathcomp.fingroup.gproduct]
NactionDef [section, in mathcomp.solvable.primitive_action]
NactionDef.gT [variable, in mathcomp.solvable.primitive_action]
NactionDef.n [variable, in mathcomp.solvable.primitive_action]
NactionDef.sT [variable, in mathcomp.solvable.primitive_action]
NactionDef.to [variable, in mathcomp.solvable.primitive_action]
nary_addv_expr [definition, in mathcomp.algebra.vector]
nary_addv_subproof [lemma, in mathcomp.algebra.vector]
nary_mxsum_expr [definition, in mathcomp.algebra.mxalgebra]
nary_mxsum_proof [lemma, in mathcomp.algebra.mxalgebra]
natCK [abbreviation, in mathcomp.field.algC]
NatConst [section, in mathcomp.ssreflect.bigop]
NatConst.A [variable, in mathcomp.ssreflect.bigop]
NatConst.I [variable, in mathcomp.ssreflect.bigop]
natn [lemma, in mathcomp.algebra.ssralg]
natnseq0P [lemma, in mathcomp.ssreflect.seq]
NatPreds [section, in mathcomp.ssreflect.prime]
NatPreds.n [variable, in mathcomp.ssreflect.prime]
NatPreds.pi [variable, in mathcomp.ssreflect.prime]
natq_div [lemma, in mathcomp.algebra.rat]
natrDE [lemma, in mathcomp.algebra.ssralg]
natrE [definition, in mathcomp.algebra.ssralg]
natrME [lemma, in mathcomp.algebra.ssralg]
natrXE [lemma, in mathcomp.algebra.ssralg]
natr_negZp [lemma, in mathcomp.algebra.zmodp]
natr_Zp [lemma, in mathcomp.algebra.zmodp]
natr_absz [lemma, in mathcomp.algebra.ssrint]
natr0E [lemma, in mathcomp.algebra.ssralg]
natr1E [lemma, in mathcomp.algebra.ssralg]
natsum_of_intK [lemma, in mathcomp.algebra.ssrint]
natsum_of_int [definition, in mathcomp.algebra.ssrint]
NatTrec [module, in mathcomp.ssreflect.ssrnat]
natTrecE [abbreviation, in mathcomp.ssreflect.ssrnat]
NatTrec.add [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.addE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.add_mulE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.add_mul [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.double [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.doubleE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.doublen [abbreviation, in mathcomp.ssreflect.ssrnat]
NatTrec.exp [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.expE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.mul [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.mulE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.mul_expE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.mul_exp [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.odd [definition, in mathcomp.ssreflect.ssrnat]
NatTrec.oddE [lemma, in mathcomp.ssreflect.ssrnat]
NatTrec.oddn [abbreviation, in mathcomp.ssreflect.ssrnat]
NatTrec.trecE [definition, in mathcomp.ssreflect.ssrnat]
_ .*2 (nat_scope) [notation, in mathcomp.ssreflect.ssrnat]
_ ^ _ (nat_scope) [notation, in mathcomp.ssreflect.ssrnat]
_ * _ (nat_scope) [notation, in mathcomp.ssreflect.ssrnat]
_ + _ (nat_scope) [notation, in mathcomp.ssreflect.ssrnat]
natz [lemma, in mathcomp.algebra.ssrint]
nat_pickleK [lemma, in mathcomp.ssreflect.choice]
nat_hasChoice [lemma, in mathcomp.ssreflect.choice]
nat_power_theory [lemma, in mathcomp.ssreflect.ssrnat]
nat_semi_morph [lemma, in mathcomp.ssreflect.ssrnat]
nat_semi_ring [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_exp_bin [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_mul_bin [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_add_bin [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_mul_pos [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_add_pos [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_succ_pos [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_binK [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_bin [definition, in mathcomp.ssreflect.ssrnat]
nat_of_pos [definition, in mathcomp.ssreflect.ssrnat]
nat_AGM2 [lemma, in mathcomp.ssreflect.ssrnat]
nat_Cauchy [lemma, in mathcomp.ssreflect.ssrnat]
nat_of_bool [definition, in mathcomp.ssreflect.ssrnat]
nat_irrelevance [lemma, in mathcomp.ssreflect.ssrnat]
nat_pred_of_nat [definition, in mathcomp.ssreflect.prime]
nat_pred_pred [definition, in mathcomp.ssreflect.prime]
nat_pred [definition, in mathcomp.ssreflect.prime]
nat_num_subproof:49 [binder, in mathcomp.algebra.ssrnum]
nat_num_subdef:44 [binder, in mathcomp.algebra.ssrnum]
nat_of_ord [definition, in mathcomp.ssreflect.fintype]
nA:1492 [binder, in mathcomp.character.mxrepresentation]
nA:1497 [binder, in mathcomp.character.mxrepresentation]
nA:1501 [binder, in mathcomp.character.mxrepresentation]
Na:489 [binder, in mathcomp.fingroup.action]
nclasses_isog [lemma, in mathcomp.fingroup.morphism]
nclasses_injm [lemma, in mathcomp.fingroup.morphism]
ncons [definition, in mathcomp.ssreflect.seq]
nconsK [lemma, in mathcomp.ssreflect.seq]
ncprod [definition, in mathcomp.solvable.center]
ncprodS [lemma, in mathcomp.solvable.center]
ncprod_key [lemma, in mathcomp.solvable.center]
ncprod_def [definition, in mathcomp.solvable.center]
ncprod0 [lemma, in mathcomp.solvable.center]
ncprod1 [lemma, in mathcomp.solvable.center]
nderivn [definition, in mathcomp.algebra.poly]
nderivnB [lemma, in mathcomp.algebra.poly]
nderivnC [lemma, in mathcomp.algebra.poly]
nderivnD [lemma, in mathcomp.algebra.poly]
nderivnMn [lemma, in mathcomp.algebra.poly]
nderivnMNn [lemma, in mathcomp.algebra.poly]
nderivnMXaddC [lemma, in mathcomp.algebra.poly]
nderivnN [lemma, in mathcomp.algebra.poly]
nderivnXn [lemma, in mathcomp.algebra.poly]
nderivnZ [lemma, in mathcomp.algebra.poly]
nderivn_map [lemma, in mathcomp.algebra.poly]
nderivn_poly0 [lemma, in mathcomp.algebra.poly]
nderivn_is_linear [lemma, in mathcomp.algebra.poly]
nderivn_def [lemma, in mathcomp.algebra.poly]
nderivn0 [lemma, in mathcomp.algebra.poly]
nderivn1 [lemma, in mathcomp.algebra.poly]
nderiv_taylor_wide [lemma, in mathcomp.algebra.poly]
nderiv_taylor [lemma, in mathcomp.algebra.poly]
ndirr [definition, in mathcomp.character.vcharacter]
ndirrK [lemma, in mathcomp.character.vcharacter]
ndirr_inj [lemma, in mathcomp.character.vcharacter]
ndirr_diff [lemma, in mathcomp.character.vcharacter]
ndir_s0p [lemma, in mathcomp.solvable.burnside_app]
nd:44 [binder, in mathcomp.algebra.rat]
nd:54 [binder, in mathcomp.algebra.rat]
negb_exists_in [lemma, in mathcomp.ssreflect.fintype]
negb_exists [lemma, in mathcomp.ssreflect.fintype]
negb_forall_in [lemma, in mathcomp.ssreflect.fintype]
negb_forall [lemma, in mathcomp.ssreflect.fintype]
negb_eqb [lemma, in mathcomp.ssreflect.eqtype]
negb_add [lemma, in mathcomp.ssreflect.eqtype]
negb_row_free [lemma, in mathcomp.algebra.mxalgebra]
negn [definition, in mathcomp.ssreflect.prime]
negnK [lemma, in mathcomp.ssreflect.prime]
negPP [lemma, in mathcomp.ssreflect.ssrbool]
Negz [constructor, in mathcomp.algebra.ssrint]
NegzE [lemma, in mathcomp.algebra.ssrint]
neg_lit:1679 [binder, in mathcomp.algebra.ssralg]
neg:1673 [binder, in mathcomp.algebra.ssralg]
nElem [definition, in mathcomp.solvable.abelian]
nElemI [lemma, in mathcomp.solvable.abelian]
nElemP [lemma, in mathcomp.solvable.abelian]
nElemS [lemma, in mathcomp.solvable.abelian]
nElem0 [lemma, in mathcomp.solvable.abelian]
nElem1P [lemma, in mathcomp.solvable.abelian]
NeqNotEq [constructor, in mathcomp.ssreflect.eqtype]
neq_ltn [lemma, in mathcomp.ssreflect.ssrnat]
neq_lift [lemma, in mathcomp.ssreflect.fintype]
neq_bump [lemma, in mathcomp.ssreflect.fintype]
neq0CG [lemma, in mathcomp.character.classfun]
neq0CiG [lemma, in mathcomp.character.classfun]
neq0_lt0n [lemma, in mathcomp.ssreflect.ssrnat]
neq0_has_constt [lemma, in mathcomp.character.character]
NewMixin [definition, in mathcomp.ssreflect.eqtype]
nexpIrz [lemma, in mathcomp.algebra.ssrint]
next [definition, in mathcomp.ssreflect.path]
nextE [lemma, in mathcomp.ssreflect.path]
next_map [lemma, in mathcomp.ssreflect.path]
next_rev [lemma, in mathcomp.ssreflect.path]
next_rotr [lemma, in mathcomp.ssreflect.path]
next_rot [lemma, in mathcomp.ssreflect.path]
next_prev [lemma, in mathcomp.ssreflect.path]
next_cycle [lemma, in mathcomp.ssreflect.path]
next_nth [lemma, in mathcomp.ssreflect.path]
next_at [definition, in mathcomp.ssreflect.path]
nf:33 [binder, in mathcomp.algebra.rat]
nG [abbreviation, in mathcomp.character.mxrepresentation]
nG [abbreviation, in mathcomp.character.mxrepresentation]
nGy:18 [binder, in mathcomp.character.inertia]
nHG:163 [binder, in mathcomp.fingroup.quotient]
Nil [abbreviation, in mathcomp.ssreflect.seq]
nilP [lemma, in mathcomp.ssreflect.seq]
nilp [definition, in mathcomp.ssreflect.seq]
nilpE [lemma, in mathcomp.ssreflect.seq]
NilPGroups [section, in mathcomp.solvable.sylow]
NilPGroups.gT [variable, in mathcomp.solvable.sylow]
NilPGroups.p [variable, in mathcomp.solvable.sylow]
Nilpotent [section, in mathcomp.solvable.sylow]
nilpotent [definition, in mathcomp.solvable.nilpotent]
nilpotent [library]
NilpotentProps [section, in mathcomp.solvable.nilpotent]
NilpotentProps.gT [variable, in mathcomp.solvable.nilpotent]
nilpotentS [lemma, in mathcomp.solvable.nilpotent]
nilpotent_pcoreC [lemma, in mathcomp.solvable.sylow]
nilpotent_pcore_Hall [lemma, in mathcomp.solvable.sylow]
nilpotent_Hall_pcore [lemma, in mathcomp.solvable.sylow]
nilpotent_maxp_normal [lemma, in mathcomp.solvable.sylow]
nilpotent_Fitting [lemma, in mathcomp.solvable.maximal]
nilpotent_sol [lemma, in mathcomp.solvable.nilpotent]
nilpotent_subnormal [lemma, in mathcomp.solvable.nilpotent]
nilpotent_proper_norm [lemma, in mathcomp.solvable.nilpotent]
nilpotent_sub_norm [lemma, in mathcomp.solvable.nilpotent]
nilpotent_class [lemma, in mathcomp.solvable.nilpotent]
Nilpotent.gT [variable, in mathcomp.solvable.sylow]
nilpotent1 [lemma, in mathcomp.solvable.nilpotent]
nil_bseq [definition, in mathcomp.ssreflect.tuple]
nil_tuple [definition, in mathcomp.ssreflect.tuple]
nil_Zgroup_cyclic [lemma, in mathcomp.solvable.sylow]
nil_class_pgroup [lemma, in mathcomp.solvable.sylow]
nil_class3 [lemma, in mathcomp.solvable.sylow]
nil_class2 [lemma, in mathcomp.solvable.sylow]
nil_basis [lemma, in mathcomp.algebra.vector]
nil_free [lemma, in mathcomp.algebra.vector]
nil_poly [lemma, in mathcomp.algebra.poly]
nil_class_quotient_center [lemma, in mathcomp.solvable.nilpotent]
nil_class_injm [lemma, in mathcomp.solvable.nilpotent]
nil_class_morphim [lemma, in mathcomp.solvable.nilpotent]
nil_class_ucn [lemma, in mathcomp.solvable.nilpotent]
nil_class1 [lemma, in mathcomp.solvable.nilpotent]
nil_class0 [lemma, in mathcomp.solvable.nilpotent]
nil_comm_properr [lemma, in mathcomp.solvable.nilpotent]
nil_comm_properl [lemma, in mathcomp.solvable.nilpotent]
nil_class [definition, in mathcomp.solvable.nilpotent]
Nirr [abbreviation, in mathcomp.character.character]
NirrE [lemma, in mathcomp.character.character]
ni:162 [binder, in mathcomp.ssreflect.choice]
nmulrn [lemma, in mathcomp.algebra.ssrint]
nmulrz_rle0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_rge0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_rlt0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_rgt0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_lle0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_lge0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_llt0 [lemma, in mathcomp.algebra.ssrint]
nmulrz_lgt0 [lemma, in mathcomp.algebra.ssrint]
nn:1216 [binder, in mathcomp.ssreflect.ssrnat]
nn:149 [binder, in mathcomp.ssreflect.choice]
nn:151 [binder, in mathcomp.ssreflect.choice]
nonconform_mx [lemma, in mathcomp.algebra.matrix]
nonlinear_irr_vanish [lemma, in mathcomp.character.integral_char]
nontrivial_gacent_pgroup [lemma, in mathcomp.solvable.sylow]
nonzero1fx [lemma, in mathcomp.field.fieldext]
nonzero1q [lemma, in mathcomp.algebra.rat]
Nopick [constructor, in mathcomp.ssreflect.fintype]
normal [definition, in mathcomp.fingroup.fingroup]
normalD1 [lemma, in mathcomp.fingroup.fingroup]
normalField [definition, in mathcomp.field.galois]
normalFieldf [lemma, in mathcomp.field.galois]
normalFieldP [lemma, in mathcomp.field.galois]
normalFieldS [lemma, in mathcomp.field.galois]
normalField_isog [lemma, in mathcomp.field.galois]
normalField_isom [lemma, in mathcomp.field.galois]
normalField_img [lemma, in mathcomp.field.galois]
normalField_normal [lemma, in mathcomp.field.galois]
normalField_ker [lemma, in mathcomp.field.galois]
normalField_cast_morphism [definition, in mathcomp.field.galois]
normalField_castM [lemma, in mathcomp.field.galois]
normalField_cast_eq [lemma, in mathcomp.field.galois]
normalField_cast [definition, in mathcomp.field.galois]
normalField_galois [lemma, in mathcomp.field.galois]
normalField_factors [lemma, in mathcomp.field.galois]
normalField_root_minPoly [lemma, in mathcomp.field.galois]
normalField_kAut [lemma, in mathcomp.field.galois]
normalG [lemma, in mathcomp.fingroup.fingroup]
normalGI [lemma, in mathcomp.fingroup.fingroup]
NormalHall [section, in mathcomp.solvable.pgroup]
NormalHall.gT [variable, in mathcomp.solvable.pgroup]
NormalHall.pi [variable, in mathcomp.solvable.pgroup]
normalI [lemma, in mathcomp.fingroup.fingroup]
normalised [definition, in mathcomp.fingroup.fingroup]
Normaliser [section, in mathcomp.fingroup.fingroup]
normaliser [definition, in mathcomp.fingroup.fingroup]
normaliser_group [definition, in mathcomp.fingroup.fingroup]
Normaliser.gT [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.nCA [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.nBA [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.D [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.C [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.B [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans.A [variable, in mathcomp.fingroup.fingroup]
Normaliser.norm_trans [section, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian [section, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian.A [variable, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian.B [variable, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian.C [variable, in mathcomp.fingroup.fingroup]
Normaliser.SubAbelian.cAA [variable, in mathcomp.fingroup.fingroup]
normalJ [lemma, in mathcomp.fingroup.fingroup]
normalM [lemma, in mathcomp.fingroup.fingroup]
normalP [lemma, in mathcomp.fingroup.fingroup]
normalS [lemma, in mathcomp.fingroup.fingroup]
normalSG [lemma, in mathcomp.fingroup.fingroup]
normalY [lemma, in mathcomp.fingroup.fingroup]
normalYl [lemma, in mathcomp.fingroup.fingroup]
normalYr [lemma, in mathcomp.fingroup.fingroup]
normal_cosetpre [lemma, in mathcomp.fingroup.quotient]
normal_fixedField_galois [lemma, in mathcomp.field.galois]
normal_field_splitting_axiom:192 [binder, in mathcomp.field.galois]
normal_field_splitting [lemma, in mathcomp.field.galois]
normal_Inertia [lemma, in mathcomp.character.inertia]
normal_inertia [lemma, in mathcomp.character.inertia]
normal_subnorm [lemma, in mathcomp.fingroup.fingroup]
normal_refl [lemma, in mathcomp.fingroup.fingroup]
normal_norm [lemma, in mathcomp.fingroup.fingroup]
normal_sub [lemma, in mathcomp.fingroup.fingroup]
normal_pgroup [lemma, in mathcomp.solvable.sylow]
normal_sylowP [lemma, in mathcomp.solvable.sylow]
normal_Hall_pcore [lemma, in mathcomp.solvable.pgroup]
normal_max_pgroup_Hall [lemma, in mathcomp.solvable.pgroup]
normal_sub_max_pgroup [lemma, in mathcomp.solvable.pgroup]
normal_rfix_mx_module [lemma, in mathcomp.character.mxrepresentation]
normal_rank1_structure [lemma, in mathcomp.solvable.extremal]
normal_subnormal [lemma, in mathcomp.solvable.gseries]
normal1 [lemma, in mathcomp.fingroup.fingroup]
normC [lemma, in mathcomp.fingroup.fingroup]
normCK:92 [binder, in mathcomp.algebra.ssrnum]
normCs [lemma, in mathcomp.fingroup.fingroup]
normC_lin_char [lemma, in mathcomp.character.character]
normD1 [lemma, in mathcomp.fingroup.fingroup]
normD:2507 [binder, in mathcomp.algebra.ssrnum]
normedTI [definition, in mathcomp.solvable.frobenius]
normedTI_J [lemma, in mathcomp.solvable.frobenius]
normedTI_S [lemma, in mathcomp.solvable.frobenius]
normedTI_memJ_P [lemma, in mathcomp.solvable.frobenius]
normedTI_P [lemma, in mathcomp.solvable.frobenius]
normG [lemma, in mathcomp.fingroup.fingroup]
NormInt [section, in mathcomp.algebra.ssrint]
NormInt.R [variable, in mathcomp.algebra.ssrint]
normJ [lemma, in mathcomp.fingroup.fingroup]
normM:2520 [binder, in mathcomp.algebra.ssrnum]
normN:2567 [binder, in mathcomp.algebra.ssrnum]
normN:2607 [binder, in mathcomp.algebra.ssrnum]
normP [lemma, in mathcomp.fingroup.fingroup]
normq [definition, in mathcomp.algebra.rat]
normqE [lemma, in mathcomp.algebra.rat]
normrMn:14 [binder, in mathcomp.algebra.ssrnum]
normrMz [lemma, in mathcomp.algebra.ssrint]
normrM:34 [binder, in mathcomp.algebra.ssrnum]
normrN:16 [binder, in mathcomp.algebra.ssrnum]
normr_sg [lemma, in mathcomp.algebra.ssrint]
normr_sgz [lemma, in mathcomp.algebra.ssrint]
normr_num_div [lemma, in mathcomp.algebra.rat]
normr_denq [lemma, in mathcomp.algebra.rat]
normr0_eq0:11 [binder, in mathcomp.algebra.ssrnum]
normsD [lemma, in mathcomp.fingroup.fingroup]
normsD1 [lemma, in mathcomp.fingroup.fingroup]
normsG [lemma, in mathcomp.fingroup.fingroup]
normsGI [lemma, in mathcomp.fingroup.fingroup]
normsI [lemma, in mathcomp.fingroup.fingroup]
normsIG [lemma, in mathcomp.fingroup.fingroup]
normsIs [lemma, in mathcomp.fingroup.fingroup]
normsM [lemma, in mathcomp.fingroup.fingroup]
normsP [lemma, in mathcomp.fingroup.fingroup]
normsR [lemma, in mathcomp.fingroup.fingroup]
normsRl [lemma, in mathcomp.solvable.commutator]
normsRr [lemma, in mathcomp.solvable.commutator]
normsU [lemma, in mathcomp.fingroup.fingroup]
normsY [lemma, in mathcomp.fingroup.fingroup]
norms_cent [lemma, in mathcomp.fingroup.fingroup]
norms_bigcup [lemma, in mathcomp.fingroup.fingroup]
norms_bigcap [lemma, in mathcomp.fingroup.fingroup]
norms_class_support [lemma, in mathcomp.fingroup.fingroup]
norms_norm [lemma, in mathcomp.fingroup.fingroup]
norms_gen [lemma, in mathcomp.fingroup.fingroup]
norms_cycle [lemma, in mathcomp.fingroup.fingroup]
norms1 [lemma, in mathcomp.fingroup.fingroup]
normT [lemma, in mathcomp.fingroup.fingroup]
norm_quotient_pre [lemma, in mathcomp.fingroup.quotient]
norm_Cint_ge1 [abbreviation, in mathcomp.field.algC]
norm_Cnat [abbreviation, in mathcomp.field.algC]
norm_conj_autE [lemma, in mathcomp.fingroup.automorphism]
norm_conj_isom [lemma, in mathcomp.fingroup.automorphism]
norm_conjg_im [lemma, in mathcomp.fingroup.automorphism]
norm_Inertia [lemma, in mathcomp.character.inertia]
norm_inertia [lemma, in mathcomp.character.inertia]
norm_normalI [lemma, in mathcomp.fingroup.fingroup]
norm_gen [lemma, in mathcomp.fingroup.fingroup]
norm_conj_norm [lemma, in mathcomp.fingroup.fingroup]
norm_rlcoset [lemma, in mathcomp.fingroup.fingroup]
norm_joinEr [lemma, in mathcomp.fingroup.fingroup]
norm_joinEl [lemma, in mathcomp.fingroup.fingroup]
norm_sub_max_pgroup [lemma, in mathcomp.solvable.pgroup]
norm_sub_rstabs_rfix_mx [lemma, in mathcomp.character.mxrepresentation]
norm_eq0:2512 [binder, in mathcomp.algebra.ssrnum]
norm_ratN [lemma, in mathcomp.algebra.rat]
norm_conj_cent [lemma, in mathcomp.solvable.hall]
norm1 [lemma, in mathcomp.fingroup.fingroup]
Norm1vchar [section, in mathcomp.character.vcharacter]
Norm1vchar.G [variable, in mathcomp.character.vcharacter]
Norm1vchar.gT [variable, in mathcomp.character.vcharacter]
norm:2504 [binder, in mathcomp.algebra.ssrnum]
norm:2552 [binder, in mathcomp.algebra.ssrnum]
norm:2592 [binder, in mathcomp.algebra.ssrnum]
norm:6 [binder, in mathcomp.algebra.ssrnum]
Notations [module, in mathcomp.fingroup.fingroup]
Notations_mulg__canonical__Monoid_Law [definition, in mathcomp.fingroup.fingroup]
Notations_mulg__canonical__SemiGroup_Law [definition, in mathcomp.fingroup.fingroup]
Notations.ElementOps [section, in mathcomp.fingroup.fingroup]
Notations.ElementOps.T [variable, in mathcomp.fingroup.fingroup]
Notations.expgn [definition, in mathcomp.fingroup.fingroup]
Notations.expgn_rec [definition, in mathcomp.fingroup.fingroup]
Notations.invg [definition, in mathcomp.fingroup.fingroup]
Notations.mulg [definition, in mathcomp.fingroup.fingroup]
Notations.oneg [definition, in mathcomp.fingroup.fingroup]
Notations.rT [abbreviation, in mathcomp.fingroup.fingroup]
_ ^- _ (group_scope) [notation, in mathcomp.fingroup.fingroup]
_ ^+ _ (group_scope) [notation, in mathcomp.fingroup.fingroup]
_ ^-1 (group_scope) [notation, in mathcomp.fingroup.fingroup]
_ * _ (group_scope) [notation, in mathcomp.fingroup.fingroup]
1 (group_scope) [notation, in mathcomp.fingroup.fingroup]
NotExtremal [constructor, in mathcomp.solvable.extremal]
NotFound [constructor, in mathcomp.ssreflect.seq]
notin_iter [lemma, in mathcomp.ssreflect.finset]
not_simple_Alt_4 [lemma, in mathcomp.solvable.alt]
not_isog_Dn_DnQ [lemma, in mathcomp.solvable.extraspecial]
not_asubv0 [lemma, in mathcomp.field.falgebra]
npoly [definition, in mathcomp.algebra.qpoly]
NPoly [abbreviation, in mathcomp.algebra.qpoly]
npolyP [lemma, in mathcomp.algebra.qpoly]
npolyp [definition, in mathcomp.algebra.qpoly]
npolypK [lemma, in mathcomp.algebra.qpoly]
npolyp_key [lemma, in mathcomp.algebra.qpoly]
npolyX [definition, in mathcomp.algebra.qpoly]
npolyXE [lemma, in mathcomp.algebra.qpoly]
npolyX_gen [lemma, in mathcomp.algebra.qpoly]
npolyX_coords [lemma, in mathcomp.algebra.qpoly]
npolyX_full [lemma, in mathcomp.algebra.qpoly]
npolyX_free [lemma, in mathcomp.algebra.qpoly]
npoly_enum_uniq [lemma, in mathcomp.algebra.qpoly]
npoly_enum [definition, in mathcomp.algebra.qpoly]
npoly_of_seq [definition, in mathcomp.algebra.qpoly]
npoly_theory [section, in mathcomp.algebra.qpoly]
npoly_vect_axiom [lemma, in mathcomp.algebra.qpoly]
npoly_rV_K [lemma, in mathcomp.algebra.qpoly]
npoly_rV [definition, in mathcomp.algebra.qpoly]
npoly_is_a_poly_of_size [lemma, in mathcomp.algebra.qpoly]
npoly_of [record, in mathcomp.algebra.qpoly]
npoly_submod_closed [lemma, in mathcomp.algebra.qpoly]
npoly0 [definition, in mathcomp.algebra.qpoly]
np:14 [binder, in mathcomp.field.algnum]
nrr:215 [binder, in mathcomp.field.closed_field]
nSA:546 [binder, in mathcomp.fingroup.action]
nseq [definition, in mathcomp.ssreflect.seq]
nseqD [lemma, in mathcomp.ssreflect.seq]
nseqP [lemma, in mathcomp.ssreflect.seq]
nseq_tuple [definition, in mathcomp.ssreflect.tuple]
nseq_tupleP [lemma, in mathcomp.ssreflect.tuple]
ns:143 [binder, in mathcomp.ssreflect.choice]
nth [abbreviation, in mathcomp.ssreflect.seq]
nth [definition, in mathcomp.ssreflect.seq]
nthK [lemma, in mathcomp.ssreflect.seq]
nthP [lemma, in mathcomp.ssreflect.seq]
NthTheory [section, in mathcomp.ssreflect.seq]
NthTheory.T [variable, in mathcomp.ssreflect.seq]
nth_mktuple [lemma, in mathcomp.ssreflect.tuple]
nth_flatten [lemma, in mathcomp.ssreflect.seq]
nth_shape [lemma, in mathcomp.ssreflect.seq]
nth_reshape [lemma, in mathcomp.ssreflect.seq]
nth_zip_cond [lemma, in mathcomp.ssreflect.seq]
nth_zip [lemma, in mathcomp.ssreflect.seq]
nth_scanl [lemma, in mathcomp.ssreflect.seq]
nth_cons_scanl [lemma, in mathcomp.ssreflect.seq]
nth_pairmap [lemma, in mathcomp.ssreflect.seq]
nth_mkseq [lemma, in mathcomp.ssreflect.seq]
nth_iota [lemma, in mathcomp.ssreflect.seq]
nth_index_map [lemma, in mathcomp.ssreflect.seq]
nth_map [lemma, in mathcomp.ssreflect.seq]
nth_incr_nth [lemma, in mathcomp.ssreflect.seq]
nth_rcons_cat_find [lemma, in mathcomp.ssreflect.seq]
nth_uniq [lemma, in mathcomp.ssreflect.seq]
nth_index [lemma, in mathcomp.ssreflect.seq]
nth_rev [lemma, in mathcomp.ssreflect.seq]
nth_take [lemma, in mathcomp.ssreflect.seq]
nth_drop [lemma, in mathcomp.ssreflect.seq]
nth_find [lemma, in mathcomp.ssreflect.seq]
nth_set_nth [lemma, in mathcomp.ssreflect.seq]
nth_nseq [lemma, in mathcomp.ssreflect.seq]
nth_ncons [lemma, in mathcomp.ssreflect.seq]
nth_rcons_default [lemma, in mathcomp.ssreflect.seq]
nth_rcons [lemma, in mathcomp.ssreflect.seq]
nth_cat [lemma, in mathcomp.ssreflect.seq]
nth_behead [lemma, in mathcomp.ssreflect.seq]
nth_last [lemma, in mathcomp.ssreflect.seq]
nth_seq1 [lemma, in mathcomp.ssreflect.seq]
nth_nil [lemma, in mathcomp.ssreflect.seq]
nth_default [lemma, in mathcomp.ssreflect.seq]
nth_fgraph_ord [lemma, in mathcomp.ssreflect.finfun]
nth_traject [lemma, in mathcomp.ssreflect.path]
nth_enum_rank [lemma, in mathcomp.ssreflect.fintype]
nth_enum_rank_in [lemma, in mathcomp.ssreflect.fintype]
nth_codom [lemma, in mathcomp.ssreflect.fintype]
nth_image [lemma, in mathcomp.ssreflect.fintype]
nth_ord_enum [lemma, in mathcomp.ssreflect.fintype]
nth_enum_ord [lemma, in mathcomp.ssreflect.fintype]
nth_lagrange [lemma, in mathcomp.algebra.qpoly]
nth_npolyX [lemma, in mathcomp.algebra.qpoly]
nth0 [lemma, in mathcomp.ssreflect.seq]
ntransitive [definition, in mathcomp.solvable.primitive_action]
NTransitive [section, in mathcomp.solvable.primitive_action]
ntransitive_primitive [lemma, in mathcomp.solvable.primitive_action]
ntransitive_weak [lemma, in mathcomp.solvable.primitive_action]
NTransitive.A [variable, in mathcomp.solvable.primitive_action]
NTransitive.gT [variable, in mathcomp.solvable.primitive_action]
NTransitive.n [variable, in mathcomp.solvable.primitive_action]
NTransitive.S [variable, in mathcomp.solvable.primitive_action]
NTransitive.sT [variable, in mathcomp.solvable.primitive_action]
NTransitive.to [variable, in mathcomp.solvable.primitive_action]
ntransitive0 [lemma, in mathcomp.solvable.primitive_action]
ntransitive1 [lemma, in mathcomp.solvable.primitive_action]
NTransitveProp [section, in mathcomp.solvable.primitive_action]
NTransitveProp.G [variable, in mathcomp.solvable.primitive_action]
NTransitveProp.gT [variable, in mathcomp.solvable.primitive_action]
NTransitveProp.S [variable, in mathcomp.solvable.primitive_action]
NTransitveProp.sT [variable, in mathcomp.solvable.primitive_action]
NTransitveProp.to [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1 [section, in mathcomp.solvable.primitive_action]
NTransitveProp1.G [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1.gT [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1.S [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1.sT [variable, in mathcomp.solvable.primitive_action]
NTransitveProp1.to [variable, in mathcomp.solvable.primitive_action]
nt_pnElem [lemma, in mathcomp.solvable.abelian]
nt_prime_order [lemma, in mathcomp.solvable.cyclic]
nt_gen_prime [lemma, in mathcomp.solvable.cyclic]
nt:163 [binder, in mathcomp.ssreflect.choice]
nT:328 [binder, in mathcomp.ssreflect.eqtype]
nT:331 [binder, in mathcomp.ssreflect.eqtype]
Num [module, in mathcomp.algebra.archimedean]
Num [module, in mathcomp.algebra.ssrnum]
number [record, in mathcomp.ssreflect.ssrnat]
NumberInterpretation [section, in mathcomp.ssreflect.ssrnat]
NumberInterpretation.Trec [section, in mathcomp.ssreflect.ssrnat]
number_subType [definition, in mathcomp.ssreflect.ssrnat]
numden_Ratio [definition, in mathcomp.algebra.fraction]
numer_Ratio [lemma, in mathcomp.algebra.fraction]
NumFactor [definition, in mathcomp.ssreflect.prime]
NumFieldProj [section, in mathcomp.field.algnum]
NumFieldProj.Qn [variable, in mathcomp.field.algnum]
NumFieldProj.QnC [variable, in mathcomp.field.algnum]
numq [definition, in mathcomp.algebra.rat]
numqE [lemma, in mathcomp.algebra.rat]
numqK [lemma, in mathcomp.algebra.rat]
numqN [lemma, in mathcomp.algebra.rat]
numq_lt0 [lemma, in mathcomp.algebra.rat]
numq_gt0 [lemma, in mathcomp.algebra.rat]
numq_le0 [lemma, in mathcomp.algebra.rat]
numq_ge0 [lemma, in mathcomp.algebra.rat]
numq_div_lt0 [lemma, in mathcomp.algebra.rat]
numq_sign_mul [lemma, in mathcomp.algebra.rat]
numq_int [lemma, in mathcomp.algebra.rat]
numq_eq0 [lemma, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Num_isNumRing [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_isPOrder [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrint]
Num_IntegralDomain_isLeReal__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrint]
num_field_proj [lemma, in mathcomp.field.algnum]
num_field_exists [lemma, in mathcomp.field.algnum]
Num_IntegralDomain_isLeReal__to__Num_isNumRing [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_isPOrder [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.rat]
Num_IntegralDomain_isLeReal__to__Order_POrder_isLattice [definition, in mathcomp.algebra.rat]
num_fracq [lemma, in mathcomp.algebra.rat]
Num.addr_gt0 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField [module, in mathcomp.algebra.ssrnum]
Num.ArchiClosedFieldExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiClosedFieldExports.archiClosedFieldType [abbreviation, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.class [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.HB_unnamed_factory_155 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.hb_instance_154.R [variable, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.hb_instance_154 [section, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__Num_NumDomain_isArchimedean [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__Num_NumField_isImaginary [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_DecField_isAlgClosed [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_Field_isDecField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_UnitRing_isField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.Num_ArchiClosedField__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.EtaAndMixinExports.structures_eta__canonical__Num_ArchiClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports [module, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumField_and_Num_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumField_and_GRing_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumField_and_GRing_DecidableField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumDomain_and_Num_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumDomain_and_GRing_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.join_Num_ArchiClosedField_between_Num_ArchiNumDomain_and_GRing_DecidableField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_ArchiNumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_ArchiNumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_ClosedField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_ClosedField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_DecidableField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_DecidableField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Exports.Num_ArchiClosedField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_DecField_isAlgClosed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_Field_isDecField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Num_NumField_isImaginary_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.sort [projection, in mathcomp.algebra.ssrnum]
Num.ArchiClosedField.type [record, in mathcomp.algebra.ssrnum]
Num.ArchiDomain [module, in mathcomp.algebra.ssrnum]
Num.ArchiDomainExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiDomainExports.archiDomainType [abbreviation, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.class [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.HB_unnamed_factory_174 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.hb_instance_173.R [variable, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.hb_instance_173 [section, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__Num_NumDomain_isArchimedean [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.Num_ArchiDomain__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.EtaAndMixinExports.structures_eta__canonical__Num_ArchiDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports [module, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.join_Num_ArchiDomain_between_Num_ArchiNumDomain_and_Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.join_Num_ArchiDomain_between_Num_ArchiNumDomain_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.join_Num_ArchiDomain_between_Num_ArchiNumDomain_and_Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.join_Num_ArchiDomain_between_Num_ArchiNumDomain_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Exports.Num_ArchiDomain_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Order_Lattice_Meet_isDistrLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Order_POrder_isLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.sort [projection, in mathcomp.algebra.ssrnum]
Num.ArchiDomain.type [record, in mathcomp.algebra.ssrnum]
Num.ArchiField [module, in mathcomp.algebra.ssrnum]
Num.ArchiFieldExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiFieldExports.archiFieldType [abbreviation, in mathcomp.algebra.ssrnum]
[ archiFieldType of _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
[ archiFieldType of _ for _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
Num.ArchiField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.ArchiField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.class [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.HB_unnamed_factory_192 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.hb_instance_191.R [variable, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.hb_instance_191 [section, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__Num_NumDomain_isArchimedean [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__GRing_UnitRing_isField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.Num_ArchiField__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.EtaAndMixinExports.structures_eta__canonical__Num_ArchiField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports [module, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiDomain_and_Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiDomain_and_Num_ArchiNumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiDomain_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiDomain_and_GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiNumField_and_Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiNumField_and_Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiNumField_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiNumField_and_Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiNumField_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.join_Num_ArchiField_between_Num_ArchiNumDomain_and_Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_RealField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_ArchiDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_ArchiDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_ArchiNumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_ArchiNumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.Exports.Num_ArchiField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.Order_Lattice_Meet_isDistrLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.Order_POrder_isLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.ArchiField.sort [projection, in mathcomp.algebra.ssrnum]
Num.ArchiField.type [record, in mathcomp.algebra.ssrnum]
Num.ArchimedeanField [abbreviation, in mathcomp.algebra.ssrnum]
Num.ArchimedeanField [module, in mathcomp.algebra.ssrnum]
Num.ArchimedeanField.on [abbreviation, in mathcomp.algebra.ssrnum]
Num.ArchimedeanField.sort [abbreviation, in mathcomp.algebra.ssrnum]
Num.archimedean_axiom [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain [module, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomainExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomainExports.archiNumDomainType [abbreviation, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.class [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.HB_unnamed_mixin_47 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.HB_unnamed_factory_34 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.hb_instance_33.R [variable, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.hb_instance_33 [section, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__Num_NumDomain_isArchimedean [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.Num_ArchiNumDomain__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.EtaAndMixinExports.structures_eta__canonical__Num_ArchiNumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports [module, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Exports.Num_ArchiNumDomain_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.sort [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumDomain.type [record, in mathcomp.algebra.ssrnum]
Num.ArchiNumField [module, in mathcomp.algebra.ssrnum]
Num.ArchiNumFieldExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiNumFieldExports.archiNumFieldType [abbreviation, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.class [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.HB_unnamed_factory_139 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.hb_instance_138.R [variable, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.hb_instance_138 [section, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__Num_NumDomain_isArchimedean [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__GRing_UnitRing_isField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.Num_ArchiNumField__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.EtaAndMixinExports.structures_eta__canonical__Num_ArchiNumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports [module, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.join_Num_ArchiNumField_between_Num_ArchiNumDomain_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.join_Num_ArchiNumField_between_Num_ArchiNumDomain_and_GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Exports.Num_ArchiNumField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.sort [projection, in mathcomp.algebra.ssrnum]
Num.ArchiNumField.type [record, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField [module, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedFieldExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedFieldExports.archiRcfType [abbreviation, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.class [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.HB_unnamed_factory_211 [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.hb_instance_210.R [variable, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.hb_instance_210 [section, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__Num_NumDomain_isArchimedean [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__Num_RealField_isClosed [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__GRing_UnitRing_isField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.Num_ArchiRealClosedField__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.EtaAndMixinExports.structures_eta__canonical__Num_ArchiRealClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports [module, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.join_Num_ArchiRealClosedField_between_Num_ArchiField_and_Num_RealClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.join_Num_ArchiRealClosedField_between_Num_ArchiDomain_and_Num_RealClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.join_Num_ArchiRealClosedField_between_Num_ArchiNumField_and_Num_RealClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.join_Num_ArchiRealClosedField_between_Num_ArchiNumDomain_and_Num_RealClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_RealClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_RealClosedField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_ArchiField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_ArchiField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_RealField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_ArchiDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_ArchiDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_ArchiNumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_ArchiNumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_ArchiNumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_ArchiNumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Exports.Num_ArchiRealClosedField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Num_NumDomain_isArchimedean_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Num_RealField_isClosed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Order_Lattice_Meet_isDistrLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Order_POrder_isLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.sort [projection, in mathcomp.algebra.ssrnum]
Num.ArchiRealClosedField.type [record, in mathcomp.algebra.ssrnum]
Num.bound [abbreviation, in mathcomp.algebra.archimedean]
Num.bound [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_320.NumDomain_bounded_isArchimedean_Exports [module, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__Num_ArchiNumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.HB_unnamed_factory_322 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.truncP [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_320.trunc [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.trunc_subproof [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_320.boundP [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_320.bound [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.fresh_name_321 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_Order_isPOrder [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_320.Builders_320 [section, in mathcomp.algebra.ssrnum]
Num.Builders_320 [module, in mathcomp.algebra.ssrnum]
Num.Builders_310.IntegralDomain_isLtReal_Exports [module, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Num_IntegralDomain_isLtReal__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Num_IntegralDomain_isLtReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Num_IntegralDomain_isLtReal__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.HB_unnamed_factory_316 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Num_IntegralDomain_isLtReal__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Num_IntegralDomain_isLtReal__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Num_IntegralDomain_isLtReal__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.HB_unnamed_factory_312 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.le_total [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.lt_def [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.le_def' [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.eq0_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.le_normD [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.normM [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.le0_mul [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.le0_add [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.sub_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.le00 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.leN_total [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.lt0N [lemma, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Builders_310.lt [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_310.le [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.fresh_name_311 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_310.Builders_310 [section, in mathcomp.algebra.ssrnum]
Num.Builders_310 [module, in mathcomp.algebra.ssrnum]
Num.Builders_300.IntegralDomain_isLeReal_Exports [module, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Num_IntegralDomain_isLeReal__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Num_IntegralDomain_isLeReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Num_IntegralDomain_isLeReal__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.HB_unnamed_factory_306 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Num_IntegralDomain_isLeReal__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Num_IntegralDomain_isLeReal__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Num_IntegralDomain_isLeReal__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.HB_unnamed_factory_302 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.le_total [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_300.le_normD [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_300.normM [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_300.le_def [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_300.eq0_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_300.lt0_add [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.le00 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.leN_total [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.le0N [variable, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Builders_300.lt [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_300.le [abbreviation, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.fresh_name_301 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_300.Builders_300 [section, in mathcomp.algebra.ssrnum]
Num.Builders_300 [module, in mathcomp.algebra.ssrnum]
Num.Builders_294.NumDomain_isReal_Exports [module, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Num_NumDomain_isReal__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Num_NumDomain_isReal__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Num_NumDomain_isReal__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.HB_unnamed_factory_296 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.le_total [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.fresh_name_295 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_Order_isPOrder [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_294.Builders_294 [section, in mathcomp.algebra.ssrnum]
Num.Builders_294 [module, in mathcomp.algebra.ssrnum]
Num.Builders_286.IntegralDomain_isNumRing_Exports [module, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.HB_unnamed_factory_292 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.HB_unnamed_factory_290 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Num_IntegralDomain_isNumRing__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.HB_unnamed_factory_288 [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.normrN [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.normrN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.normrMn [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.le_trans [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.le_def' [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.lerr [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.ltW [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.lt01 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.le01 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.lt_trans [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.subr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.subr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.ge0_def [lemma, in mathcomp.algebra.ssrnum]
Num.Builders_286.ltrr [lemma, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.fresh_name_287 [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286.R [variable, in mathcomp.algebra.ssrnum]
Num.Builders_286.Builders_286 [section, in mathcomp.algebra.ssrnum]
Num.Builders_286 [module, in mathcomp.algebra.ssrnum]
Num.ceil [abbreviation, in mathcomp.algebra.archimedean]
Num.ClosedField [module, in mathcomp.algebra.ssrnum]
Num.ClosedFieldExports [module, in mathcomp.algebra.ssrnum]
[ numClosedFieldType of _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
[ numClosedFieldType of _ for _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
Num.ClosedField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.ClosedField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.class [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.HB_unnamed_mixin_81 [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.HB_unnamed_factory_65 [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.hb_instance_64.R [variable, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.hb_instance_64 [section, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__Num_NumField_isImaginary [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_DecField_isAlgClosed [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_UnitRing_isField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_Field_isDecField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.Num_ClosedField__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.EtaAndMixinExports.structures_eta__canonical__Num_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports [module, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_ClosedField_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.join_Num_ClosedField_between_GRing_DecidableField_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_ClosedField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_ClosedField_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_DecidableField [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_DecidableField_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.Exports.Num_ClosedField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_DecField_isAlgClosed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_Field_isDecField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Num_NumField_isImaginary_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.ClosedField.sort [projection, in mathcomp.algebra.ssrnum]
Num.ClosedField.type [record, in mathcomp.algebra.ssrnum]
Num.comparable [abbreviation, in mathcomp.algebra.ssrnum]
Num.conj_op [definition, in mathcomp.algebra.ssrnum]
Num.Def [module, in mathcomp.algebra.archimedean]
Num.Def [module, in mathcomp.algebra.ssrnum]
Num.Def.ArchiNumDomainDef [section, in mathcomp.algebra.ssrnum]
Num.Def.ceil [definition, in mathcomp.algebra.archimedean]
Num.Def.comparabler [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.floor [definition, in mathcomp.algebra.archimedean]
Num.Def.ger [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.gtr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.int_num [definition, in mathcomp.algebra.ssrnum]
Num.Def.ler [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.lerif [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.lterif [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.ltr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.maxr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.minr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.nat_num [definition, in mathcomp.algebra.ssrnum]
Num.Def.normr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Def.NumDomainDef [section, in mathcomp.algebra.ssrnum]
Num.Def.Rneg [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rneg_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rnneg [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rnneg_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rnpos [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rnpos_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rpos [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rpos_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rreal [definition, in mathcomp.algebra.ssrnum]
Num.Def.Rreal_pred [definition, in mathcomp.algebra.ssrnum]
Num.Def.sgr [definition, in mathcomp.algebra.ssrnum]
Num.Def.trunc [definition, in mathcomp.algebra.ssrnum]
@ minr _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
@ maxr _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
@ comparabler _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
@ lteif _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
@ lerif _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
@ gtr _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
@ ger _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
@ ltr _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
@ ler _ (fun_scope) [notation, in mathcomp.algebra.ssrnum]
Num.ElpiOperations117 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations137 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations153 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations17 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations172 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations190 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations209 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations229 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations32 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations48 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations63 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations8 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations82 [module, in mathcomp.algebra.ssrnum]
Num.ElpiOperations99 [module, in mathcomp.algebra.ssrnum]
Num.Exports [module, in mathcomp.algebra.archimedean]
Num.Exports [module, in mathcomp.algebra.ssrnum]
Num.Exports.archiClosedFieldType [abbreviation, in mathcomp.algebra.archimedean]
Num.Exports.archiDomainType [abbreviation, in mathcomp.algebra.archimedean]
Num.Exports.archiFieldType [abbreviation, in mathcomp.algebra.archimedean]
Num.Exports.archiNumDomainType [abbreviation, in mathcomp.algebra.archimedean]
Num.Exports.archiNumFieldType [abbreviation, in mathcomp.algebra.archimedean]
Num.Exports.archiRcfType [abbreviation, in mathcomp.algebra.archimedean]
Num.ExtensionAxioms [section, in mathcomp.algebra.ssrnum]
Num.ExtensionAxioms.R [variable, in mathcomp.algebra.ssrnum]
Num.ExtraDef [module, in mathcomp.algebra.ssrnum]
Num.ExtraDef.archi_bound [definition, in mathcomp.algebra.ssrnum]
Num.ExtraDef.sqrtr [definition, in mathcomp.algebra.ssrnum]
Num.floor [abbreviation, in mathcomp.algebra.archimedean]
Num.ge [abbreviation, in mathcomp.algebra.ssrnum]
Num.ger_leVge [definition, in mathcomp.algebra.ssrnum]
Num.gt [abbreviation, in mathcomp.algebra.ssrnum]
Num.imaginary [definition, in mathcomp.algebra.ssrnum]
Num.int [abbreviation, in mathcomp.algebra.archimedean]
Num.int [abbreviation, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.Exports [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.le_def [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.ge0_norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.normN [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.lt0_total [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.sub_gt0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.lt0_ngt0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.lt0_mul [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.lt0_add [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.Rle [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.Rlt [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal.R [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal.IntegralDomain_isLtReal [section, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLtReal [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.Exports [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.lt_def [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.ge0_norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.normN [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.le0_total [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.sub_ge0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.le0_anti [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.le0_mul [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.le0_add [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.Rlt [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.Rle [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal.R [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal.IntegralDomain_isLeReal [section, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isLeReal [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.Exports [module, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.lt_def [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.le_def [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.normM [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.ger_total [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.norm_eq0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.addr_gt0 [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.normD [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.norm [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.Rlt [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.Rle [projection, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing.R [variable, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing.IntegralDomain_isNumRing [section, in mathcomp.algebra.ssrnum]
Num.IntegralDomain_isNumRing [module, in mathcomp.algebra.ssrnum]
Num.Internals [module, in mathcomp.algebra.archimedean]
Num.Internals [module, in mathcomp.algebra.ssrnum]
Num.Internals.addr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.ArchiNumDomain [section, in mathcomp.algebra.archimedean]
Num.Internals.ArchiNumDomain [section, in mathcomp.algebra.ssrnum]
Num.Internals.ArchiNumDomain.R [variable, in mathcomp.algebra.archimedean]
Num.Internals.ArchiNumDomain.R [variable, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_DivringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_SdivClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_DivClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_SubringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_SmulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_SemiringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_MulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_Semiring2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_ZmodClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_AddClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rreal_pred__canonical__GRing_OppClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_SemiringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_Semiring2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_AddClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_DivClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_MulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rnneg_pred__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rpos_pred__canonical__GRing_DivClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rpos_pred__canonical__GRing_MulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Def_Rpos_pred__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.Exports [module, in mathcomp.algebra.ssrnum]
Num.Internals.floor_subproof [lemma, in mathcomp.algebra.archimedean]
Num.Internals.ger0_def [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isInvClosed__259 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul1Closed__257 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul2Closed__255 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isInvClosed__243 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul1Closed__241 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul2Closed__239 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isInvClosed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul1Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.GRing_isDivClosed__to__GRing_isMul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_262 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_261 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_260 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_253 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_251 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_249 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_247 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_246 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_245 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_244 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_237 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_236 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_235 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_mixin_234 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.HB_unnamed_factory_230 [definition, in mathcomp.algebra.ssrnum]
Num.Internals.ler01 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.le0r [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.ltr01 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.nnegrE [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.nneg_addr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.nneg_divr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.NumDomain [section, in mathcomp.algebra.ssrnum]
Num.Internals.NumDomain.R [variable, in mathcomp.algebra.ssrnum]
Num.Internals.num_real [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.oppr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.pmulr_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.poly_ivt [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.posrE [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.pos_divr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.RealClosed [section, in mathcomp.algebra.ssrnum]
Num.Internals.RealClosed.R [variable, in mathcomp.algebra.ssrnum]
Num.Internals.realE [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.real_divr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.real_addr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.real_oppr_closed [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.sqrtr_subproof [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.subr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.trunc [abbreviation, in mathcomp.algebra.archimedean]
Num.Internals.truncP [definition, in mathcomp.algebra.archimedean]
Num.Internals.truncP [lemma, in mathcomp.algebra.ssrnum]
Num.Internals.trunc_itv [definition, in mathcomp.algebra.archimedean]
Num.Internals.trunc_itv [lemma, in mathcomp.algebra.ssrnum]
Num.int_num_subproof [definition, in mathcomp.algebra.ssrnum]
Num.int_num_subdef [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing [module, in mathcomp.algebra.ssrnum]
Num.isNumRing.addr_gt0 [projection, in mathcomp.algebra.ssrnum]
Num.isNumRing.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.isNumRing.Exports [module, in mathcomp.algebra.ssrnum]
Num.isNumRing.ger_leVge [projection, in mathcomp.algebra.ssrnum]
Num.isNumRing.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing [section, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_Order_isPOrder [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.isNumRing.R [variable, in mathcomp.algebra.ssrnum]
Num.isNumRing.ler_def [projection, in mathcomp.algebra.ssrnum]
Num.isNumRing.normrM [projection, in mathcomp.algebra.ssrnum]
Num.isNumRing.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.isNumRing.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.le [abbreviation, in mathcomp.algebra.ssrnum]
Num.leif [abbreviation, in mathcomp.algebra.ssrnum]
Num.ler_def [definition, in mathcomp.algebra.ssrnum]
Num.ler_normD [definition, in mathcomp.algebra.ssrnum]
Num.lt [abbreviation, in mathcomp.algebra.ssrnum]
Num.lteif [abbreviation, in mathcomp.algebra.ssrnum]
Num.max [abbreviation, in mathcomp.algebra.ssrnum]
Num.min [abbreviation, in mathcomp.algebra.ssrnum]
Num.nat [abbreviation, in mathcomp.algebra.archimedean]
Num.nat [abbreviation, in mathcomp.algebra.ssrnum]
Num.nat_num_subproof [definition, in mathcomp.algebra.ssrnum]
Num.nat_num_subdef [definition, in mathcomp.algebra.ssrnum]
Num.neg [abbreviation, in mathcomp.algebra.ssrnum]
Num.nneg [abbreviation, in mathcomp.algebra.ssrnum]
Num.norm [definition, in mathcomp.algebra.ssrnum]
Num.normCK [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule [module, in mathcomp.algebra.ssrnum]
Num.NormedZmoduleExports [module, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.class [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.HB_unnamed_mixin_16 [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.HB_unnamed_factory_10 [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.hb_instance_9.M [variable, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.hb_instance_9.R [variable, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.hb_instance_9 [section, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.Num_NormedZmodule__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.Num_NormedZmodule__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.Num_NormedZmodule__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.Num_NormedZmodule__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.Num_NormedZmodule__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.EtaAndMixinExports.structures_eta__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports [module, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Exports.Num_NormedZmodule_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.sort [projection, in mathcomp.algebra.ssrnum]
Num.NormedZmodule.type [record, in mathcomp.algebra.ssrnum]
Num.normrM [definition, in mathcomp.algebra.ssrnum]
Num.normrMn [definition, in mathcomp.algebra.ssrnum]
Num.normrN [definition, in mathcomp.algebra.ssrnum]
Num.normr0_eq0 [definition, in mathcomp.algebra.ssrnum]
Num.npos [abbreviation, in mathcomp.algebra.ssrnum]
Num.NumDomain [module, in mathcomp.algebra.ssrnum]
Num.NumDomainExports [module, in mathcomp.algebra.ssrnum]
[ numDomainType of _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
[ numDomainType of _ for _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.archi_bound_subproof [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_Order_isPOrder [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean.R [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean.NumDomain_bounded_isArchimedean [section, in mathcomp.algebra.ssrnum]
Num.NumDomain_bounded_isArchimedean [module, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.real [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_Order_isPOrder [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal.R [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal.NumDomain_isReal [section, in mathcomp.algebra.ssrnum]
Num.NumDomain_isReal [module, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.int_num_subproof [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.nat_num_subproof [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.trunc_subproof [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.int_num_subdef [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.nat_num_subdef [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.trunc_subdef [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_Order_isPOrder [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean.R [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean.NumDomain_isArchimedean [section, in mathcomp.algebra.ssrnum]
Num.NumDomain_isArchimedean [module, in mathcomp.algebra.ssrnum]
Num.NumDomain.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumDomain.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.class [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.HB_unnamed_mixin_31 [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.HB_unnamed_factory_19 [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.hb_instance_18.R [variable, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.hb_instance_18 [section, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.Num_NumDomain__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.EtaAndMixinExports.structures_eta__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_POrderedZmodule_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_POrderedZmodule_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_POrderedZmodule_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Order_POrder_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Order_POrder_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Order_POrder_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_IntegralDomain_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_IntegralDomain_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_IntegralDomain_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComUnitRing_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComUnitRing_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComUnitRing_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComRing_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComRing_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComRing_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComSemiRing_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComSemiRing_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_GRing_ComSemiRing_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.join_Num_NumDomain_between_Num_NormedZmodule_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.Exports.Num_NumDomain_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.NumDomain.sort [projection, in mathcomp.algebra.ssrnum]
Num.NumDomain.type [record, in mathcomp.algebra.ssrnum]
Num.NumField [module, in mathcomp.algebra.ssrnum]
Num.NumFieldExports [module, in mathcomp.algebra.ssrnum]
[ numFieldType of _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.normCK [projection, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.sqrCi [projection, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.conj_op [projection, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.imaginary [projection, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_UnitRing_isField [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_Order_isPOrder [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary.R [variable, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary.NumField_isImaginary [section, in mathcomp.algebra.ssrnum]
Num.NumField_isImaginary [module, in mathcomp.algebra.ssrnum]
Num.NumField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.NumField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.class [projection, in mathcomp.algebra.ssrnum]
Num.NumField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.HB_unnamed_factory_50 [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.hb_instance_49.R [variable, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.hb_instance_49 [section, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__GRing_UnitRing_isField [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.Num_NumField__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.EtaAndMixinExports.structures_eta__canonical__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports [module, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.join_Num_NumField_between_GRing_Field_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.join_Num_NumField_between_GRing_Field_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.join_Num_NumField_between_GRing_Field_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.join_Num_NumField_between_GRing_Field_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.NumField.Exports.Num_NumField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.NumField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.NumField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.NumField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.NumField.sort [projection, in mathcomp.algebra.ssrnum]
Num.NumField.type [record, in mathcomp.algebra.ssrnum]
Num.poly_ivt_subproof [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule [module, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.class [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.HB_unnamed_factory_2 [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.hb_instance_1.R [variable, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.hb_instance_1 [section, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.Num_POrderedZmodule__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.Num_POrderedZmodule__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.Num_POrderedZmodule__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.Num_POrderedZmodule__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.Num_POrderedZmodule__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.EtaAndMixinExports.structures_eta__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports [module, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.join_Num_POrderedZmodule_between_Order_POrder_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.join_Num_POrderedZmodule_between_GRing_Nmodule_and_Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Exports.Num_POrderedZmodule_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.sort [projection, in mathcomp.algebra.ssrnum]
Num.POrderedZmodule.type [record, in mathcomp.algebra.ssrnum]
Num.pos [abbreviation, in mathcomp.algebra.ssrnum]
Num.PredInstances [module, in mathcomp.algebra.archimedean]
Num.PredInstances [module, in mathcomp.algebra.ssrnum]
Num.real [abbreviation, in mathcomp.algebra.ssrnum]
Num.RealClosedField [module, in mathcomp.algebra.ssrnum]
Num.RealClosedFieldExports [module, in mathcomp.algebra.ssrnum]
[ rcfType of _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
[ rcfType of _ for _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
Num.RealClosedField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.RealClosedField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.class [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.HB_unnamed_mixin_136 [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.HB_unnamed_factory_119 [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.hb_instance_118.R [variable, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.hb_instance_118 [section, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__Num_RealField_isClosed [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__GRing_UnitRing_isField [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.Num_RealClosedField__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.EtaAndMixinExports.structures_eta__canonical__Num_RealClosedField [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports [module, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_RealField_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Exports.Num_RealClosedField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Num_RealField_isClosed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_Lattice_Meet_isDistrLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_POrder_isLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.RealClosedField.sort [projection, in mathcomp.algebra.ssrnum]
Num.RealClosedField.type [record, in mathcomp.algebra.ssrnum]
Num.RealDomain [module, in mathcomp.algebra.ssrnum]
Num.RealDomainExports [module, in mathcomp.algebra.ssrnum]
[ realDomainType of _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
Num.RealDomain.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.RealDomain.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.class [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.HB_unnamed_factory_84 [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.hb_instance_83.R [variable, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.hb_instance_83 [section, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.Num_RealDomain__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.EtaAndMixinExports.structures_eta__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports [module, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Total_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Total_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_DistrLattice_and_GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Order_Lattice_and_GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Num_NumDomain_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Num_POrderedZmodule_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_IntegralDomain_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_IntegralDomain_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComUnitRing_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComUnitRing_and_Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComUnitRing_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComRing_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComRing_and_Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComRing_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComSemiRing_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComSemiRing_and_Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_ComSemiRing_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_Ring_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_Num_NormedZmodule_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_SemiRing_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.join_Num_RealDomain_between_GRing_Nmodule_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.Exports.Num_RealDomain_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_Lattice_Meet_isDistrLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_POrder_isLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.RealDomain.sort [projection, in mathcomp.algebra.ssrnum]
Num.RealDomain.type [record, in mathcomp.algebra.ssrnum]
Num.RealField [module, in mathcomp.algebra.ssrnum]
Num.RealFieldExports [module, in mathcomp.algebra.ssrnum]
[ realFieldType of _ ] (form_scope) [notation, in mathcomp.algebra.ssrnum]
Num.RealField_isArchimedean [abbreviation, in mathcomp.algebra.ssrnum]
Num.RealField_isArchimedean.Build [abbreviation, in mathcomp.algebra.ssrnum]
Num.RealField_isArchimedean [module, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.Exports [module, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.poly_ivt_subproof [projection, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Num_isNumRing [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Num_Zmodule_isNormed [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_ComUnitRing_isIntegral [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_UnitRing_isField [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_Ring_hasMulInverse [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_SemiRing_hasCommutativeMul [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_Nmodule_isSemiRing [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_DistrLattice_isTotal [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_Lattice_Meet_isDistrLattice [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_POrder_isLattice [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_Order_isPOrder [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed_R__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed.R [variable, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed.RealField_isClosed [section, in mathcomp.algebra.ssrnum]
Num.RealField_isClosed [module, in mathcomp.algebra.ssrnum]
Num.RealField.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.RealField.choice_hasChoice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.class [projection, in mathcomp.algebra.ssrnum]
Num.RealField.eqtype_hasDecEq_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports [module, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.HB_unnamed_factory_101 [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.hb_instance_100.R [variable, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.hb_instance_100 [section, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__Num_isNumRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__Num_Zmodule_isNormed [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__GRing_ComUnitRing_isIntegral [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__GRing_UnitRing_isField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__GRing_Ring_hasMulInverse [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__GRing_Nmodule_isZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__GRing_SemiRing_hasCommutativeMul [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__GRing_Nmodule_isSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__Order_DistrLattice_isTotal [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__Order_Lattice_Meet_isDistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__Order_POrder_isLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__Order_isPOrder [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__eqtype_hasDecEq [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__choice_hasChoice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.Num_RealField__to__GRing_isNmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.EtaAndMixinExports.structures_eta__canonical__Num_RealField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports [module, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Order_DistrLattice_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Order_DistrLattice_and_GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Order_Lattice_and_Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Num_NumField_and_Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_Num_NumField_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_GRing_Field_and_Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_GRing_Field_and_Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.join_Num_RealField_between_GRing_Field_and_Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_RealDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_RealDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_Total [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_Total_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_DistrLattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_DistrLattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_Lattice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_Lattice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_NumField [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_NumField_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_NumDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_NumDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_POrderedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_POrderedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Order_POrder [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Order_POrder_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_Field [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_Field_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_IntegralDomain [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_IntegralDomain_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_ComUnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_ComUnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_ComRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_ComRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_ComSemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_ComSemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_UnitRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_UnitRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_Ring [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_Ring_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__Num_NormedZmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__Num_NormedZmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_Zmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_SemiRing [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_SemiRing_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__GRing_Nmodule_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__choice_Choice_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField__to__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.RealField.Exports.Num_RealField_class__to__eqtype_Equality_class [definition, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_ComUnitRing_isIntegral_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_UnitRing_isField_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_Ring_hasMulInverse_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_Nmodule_isZmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_SemiRing_hasCommutativeMul_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_Nmodule_isSemiRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.GRing_isNmodule_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Num_isNumRing_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Num_Zmodule_isNormed_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_DistrLattice_isTotal_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_Lattice_Meet_isDistrLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_POrder_isLattice_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.Order_isPOrder_mixin [projection, in mathcomp.algebra.ssrnum]
Num.RealField.pack_ [definition, in mathcomp.algebra.ssrnum]
Num.RealField.phant_on_ [definition, in mathcomp.algebra.ssrnum]
Num.RealField.phant_clone [definition, in mathcomp.algebra.ssrnum]
Num.RealField.sort [projection, in mathcomp.algebra.ssrnum]
Num.RealField.type [record, in mathcomp.algebra.ssrnum]
Num.real_closed_axiom [definition, in mathcomp.algebra.ssrnum]
Num.real_axiom [definition, in mathcomp.algebra.ssrnum]
Num.sg [abbreviation, in mathcomp.algebra.ssrnum]
Num.sqrCi [definition, in mathcomp.algebra.ssrnum]
Num.sqrt [abbreviation, in mathcomp.algebra.ssrnum]
Num.Syntax [module, in mathcomp.algebra.ssrnum]
><%R (fun_scope) [notation, in mathcomp.algebra.ssrnum]
>=<%R (fun_scope) [notation, in mathcomp.algebra.ssrnum]
<?<=%R (fun_scope) [notation, in mathcomp.algebra.ssrnum]
<?=%R (fun_scope) [notation, in mathcomp.algebra.ssrnum]
>%R (fun_scope) [notation, in mathcomp.algebra.ssrnum]
<%R (fun_scope) [notation, in mathcomp.algebra.ssrnum]
>=%R (fun_scope) [notation, in mathcomp.algebra.ssrnum]
<=%R (fun_scope) [notation, in mathcomp.algebra.ssrnum]
_ >< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>< _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ >=< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>=< _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>=< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ ?<= if _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ ?<= if _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ ?= iff _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ ?= iff _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ > _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ > _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ < _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ >= _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ >= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ <= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
> _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
< _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
< _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>= _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
>= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
<= _ :> _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
<= _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
`| _ | (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Theory [module, in mathcomp.algebra.archimedean]
Num.Theory [module, in mathcomp.algebra.ssrnum]
Num.Theory.addC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_maxr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_maxl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_minr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_minl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_max_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_min_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_ss_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.addr_gt0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ArchiClosedFieldTheory [section, in mathcomp.algebra.archimedean]
Num.Theory.ArchiClosedFieldTheory.R [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiDomainTheory [section, in mathcomp.algebra.archimedean]
Num.Theory.ArchiDomainTheory.R [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory [section, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory.f [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory.R [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory.U [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumDomainTheory.V [variable, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumFieldTheory [section, in mathcomp.algebra.archimedean]
Num.Theory.ArchiNumFieldTheory.R [variable, in mathcomp.algebra.archimedean]
Num.Theory.archi_boundP [definition, in mathcomp.algebra.archimedean]
Num.Theory.archi_boundP [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.argCle [definition, in mathcomp.algebra.ssrnum]
Num.Theory.aut_intr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.aut_natr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.bigmax_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.bigmin_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.big_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Cauchy_root_bound [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ceil [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.ceilD [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilM [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilN [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceilX [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_le [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_le_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_def [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil_itv [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ceil1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.char_num [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.argCleP [variable, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.C [variable, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.neg_unity_root [variable, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.nz2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.ClosedFieldTheory.Re2 [variable, in mathcomp.algebra.ssrnum]
'Im _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
'Re _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ .-root (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Theory.comparablerE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.comparabler_trans [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.comparabler0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.comparable0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.comparer [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerEq [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerEq0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerGt [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerGt0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerLt [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ComparerLt0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.comparer0 [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.conjCi [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjCN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conjC1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conj_intr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.conj_natr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.conj_normC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.conj_Creal [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.cprD [definition, in mathcomp.algebra.ssrnum]
Num.Theory.cpr_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.CrealE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.CrealJ [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.CrealP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Creal_ReP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Creal_ImP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Creal_Im [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Creal_Re [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Crect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave [section, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConcave.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex [section, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealClosedConvex.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave [section, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConcave.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex [section, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Degle2PolyRealConvex.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.deg_le2_poly_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.deg_le2_poly_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.deg_le2_poly_delta_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.deg_le2_poly_delta_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.distrC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.divC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.divC_Crect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.divr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.divr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqCP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqC_semipolar [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqrMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqrXn2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_sqrtC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_rootC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_sqrt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_norm2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_muln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_pmuln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_expn2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_norm_idVN [definition, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_normN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_norm_id [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.eqr_pMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_odd_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_odd_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_odd_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_odd_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_even_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_even_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_even_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_even_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_cp1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_egte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_egt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ege1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ilte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ilt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ile1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_gte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.exprn_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.expr_gte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.expr_gt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.expr_ge1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.expr_lte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.expr_lt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.expr_le1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.FinGroup [section, in mathcomp.algebra.ssrnum]
Num.Theory.FinGroup.gT [variable, in mathcomp.algebra.ssrnum]
Num.Theory.FinGroup.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.floor [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.floorD [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorM [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorN [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorpK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorpP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floorX [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor_le [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor_ge_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor_def [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor_itv [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.floor1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.geC0_unit_exp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.geC0_conj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gerBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gerB_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gerDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gerDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.GerNotLt [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ger_nmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ger_nmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ger_pmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ger_pmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ger_sub_real [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ger_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ger_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ger_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger_leVge [definition, in mathcomp.algebra.ssrnum]
Num.Theory.Ger0NotLt0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ger0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_xor_lt0 [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_le_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger0_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ger1_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ge_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.ge0_cp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.GRing_isSubringClosed__to__GRing_isAddClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSubringClosed__to__GRing_isOppClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSubringClosed__to__GRing_isMul2Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSubringClosed__to__GRing_isMul1Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSemiringClosed__to__GRing_isAddClosed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSemiringClosed__to__GRing_isMul1Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isSemiringClosed__to__GRing_isMul2Closed [definition, in mathcomp.algebra.archimedean]
Num.Theory.GRing_isAdditive__to__GRing_isSemiAdditive__268 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.GRing_isAdditive__to__GRing_isSemiAdditive [definition, in mathcomp.algebra.ssrnum]
Num.Theory.gtrBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.GtrNotLe [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_nmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_nmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_pmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_pmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_opp [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Gtr0NotGt0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.gtr0_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr0_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr0_le_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gtr0_norm [definition, in mathcomp.algebra.ssrnum]
Num.Theory.gt_pred_ceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.gt_ge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.gt0_cp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.HB_unnamed_factory_5 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_factory_1 [definition, in mathcomp.algebra.archimedean]
Num.Theory.HB_unnamed_mixin_269 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.HB_unnamed_factory_266 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.HB_unnamed_mixin_265 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.HB_unnamed_factory_263 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ieexprIn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ieexprn_weq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im [definition, in mathcomp.algebra.ssrnum]
Num.Theory.imaginaryCE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImMil [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImMir [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ImV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_rootC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_div [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_conj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_i [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_is_additive [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Im_lock [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.intrE [definition, in mathcomp.algebra.archimedean]
Num.Theory.intrEceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrEfloor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrEge0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrEsign [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrKceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrKfloor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intrP [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_aut [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_ler_sqr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_normK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.intr_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.int_num_subring [lemma, in mathcomp.algebra.archimedean]
Num.Theory.int_num1 [definition, in mathcomp.algebra.archimedean]
Num.Theory.int_num0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.int_num [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.invCi [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invC_Crect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invC_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_cp1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invf_lte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invf_lt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_le1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_gte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invf_ge1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invf_gt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_cp1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_lte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_lt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_le1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_gte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_ge1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_gt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_lte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_gte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.invr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.invr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.IsNoSqrtr [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.IsSqrtr [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.lef_ninv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lef_pinv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lef_nV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lef_pV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leifBLR [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leifBRL [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leifD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_rootC_AGM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_Re_Creal [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_normC_Re_Creal [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_AGM2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_mean_square [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_AGM2_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_mean_square_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_AGM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_subRL [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.leif_subLR [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.leif_nmul [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.leif_pmul [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.leif_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.leif_AGM_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_pprod [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_nM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_pM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_0_sum [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_sum [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.leif_nat_r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerBDl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lerBDr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lerBlDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerBlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerBrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerBrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerB_dist [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerB_normD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerB_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerD2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lerD2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerD2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerNl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerNnormlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.LerNotGt [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.lerNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lern0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lern1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerN10 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerN2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lerXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlC_subl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distl_subl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlC_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distl_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_norm_sub [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_norm_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sqrtC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_rootC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_rootCl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sqrt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_psqrt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wsqrtr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlCBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlCDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distlC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normlP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivr_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivl_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivr_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivl_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivr_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivl_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivr_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivl_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_addgt0Pl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_addgt0Pr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ndivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pdivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_naddr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_paddr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_naddl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_paddl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nmuln2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_muln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnmuln2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wmuln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpmuln2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pmuln2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pmuln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nimulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pimulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nimull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pimull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_weexpn2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wiexpn2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_eexpr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_iexpr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nemulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pemulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nemull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pemull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_eexpn2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_iexpn2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pexpn2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ninv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pinv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pmul [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_expn2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sub_real [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sub_dist [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sub_norm_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_dist_norm_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_dist_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sub_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_subr_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_subl_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sub_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_subr_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_subl_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_lt_sub [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sub [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_lt_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_add2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_add2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_add2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_oppl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_oppr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_opp2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nnorml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_dist_normD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_dist_dist [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_distD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_norm_sum [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sqr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_eXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_iXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_weXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wiXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_eXnr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_iXnr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_niMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_piMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_niMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_piMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_neMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_peMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_neMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_peMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_prod [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_nM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_pM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sum_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_sum [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wnDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_wpDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ltB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_ltD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_xor_gt [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ler_leVge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler_def [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ler_normD [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ler0n [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Ler0NotLe0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ler0N1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_sqrtr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_xor_gt0 [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_ge_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler0_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler01 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler1n [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler1_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ler10 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.le_ceil [lemma, in mathcomp.algebra.archimedean]
Num.Theory.le0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.le0_cp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltef_ninv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltef_pinv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltef_nV2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltef_pV2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBDl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBDr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBlDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifBrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifD2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteifD2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifD2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifNl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifNr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteifN2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivr_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivl_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivr_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivl_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivr_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivl_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivr_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivl_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_ndivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pdivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_nmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_nmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_oppr0 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_0oppr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_oppr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_oppl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_sub_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_subr_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_subl_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_sub_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_subr_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_subl_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_add2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_add2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_add2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_opp2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_nnormr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_nM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_nM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_pM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif_oppE [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lteif0Nr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lteif01 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lterBDl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterBDr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterD2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterNE [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterNl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterNr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterN2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lterXn2r [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_distlC [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_distl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_normr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_norml [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivr_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivl_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivr_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivl_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivr_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivl_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivr_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivl_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivrMl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivlMl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivrMr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_ndivlMr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivrMl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivlMl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivrMr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pdivlMr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_expr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_eexpr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_iexpr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_eexpn2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_iexpn2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pexpn2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_nmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_nmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_expn2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_oppE [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_sub_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_sub_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_add2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_oppl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_oppr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_opp2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.lter_nnormr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pXn2r [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_eXn2l [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_iXn2l [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_Xnr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_eXnr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_iXnr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_nM2r [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_nM2l [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pM2r [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter_pM2l [definition, in mathcomp.algebra.ssrnum]
Num.Theory.lter01 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltf_ninv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltf_pinv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltf_nV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltf_pV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBDl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBDr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBlDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrBrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrD2 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltrD2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrD2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrgtP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrgt0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrNl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrNnormlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.LtrNotGe [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ltrNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrn0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrn1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrN10 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrN2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltrXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlC_subl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distl_subl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlC_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distl_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sqrtC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_rootC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_rootCl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sqrt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlCBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlCDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distlC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_normlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_normlP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivr_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivl_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivr_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivl_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivr_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivl_mull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivr_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivl_mulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ndivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivrMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivlMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivrMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pdivlMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_snsaddr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_snaddr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_naddr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_spsaddr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_spaddr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_paddr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_snsaddl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_snaddl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_naddl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_spsaddl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_spaddl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_paddl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nmuln2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pmuln2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_muln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpmuln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wmuln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pmuln2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_eexpr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_iexpr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_eexpn2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_iexpn2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pexpn2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpexpn2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pmul2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pmul2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_ninv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pinv [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pmul [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_expn2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sub_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_subr_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_subl_addl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sub_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_subr_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_subl_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sub [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_le_sub [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_le_add [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_add2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_add2r [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_add2l [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_oppl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_oppr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_opp2 [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nnorml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pV2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_sqr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpXn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_eXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_iXn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_eXnr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_iXnr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_prod_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_prod [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pMn2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pMn2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pM2r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pM2l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nwDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wnDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pwDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_nwDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wnDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_pwDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_wpDl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_leB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_leD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr_xor_ge [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0n [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Ltr0NotGe0 [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0N1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0Sn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_sqrtr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_ge_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_norm [definition, in mathcomp.algebra.ssrnum]
Num.Theory.ltr0_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr01 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr1n [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ltr10 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lt_succ_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.lt_le [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lt0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lt0r_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.lt0_cp [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_nmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_nmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_pmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_pmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.maxr_to_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.max_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Exports [module, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_SubringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_ZmodClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_SemiringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_Semiring2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_AddClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_mixin_285 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_SmulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_OppClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_mixin_284 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_MulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_mixin_283 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_int_num_subdef__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_mixin_282 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.GRing_isSubringClosed__to__GRing_isAddClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.GRing_isSubringClosed__to__GRing_isOppClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.GRing_isSubringClosed__to__GRing_isMul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.GRing_isSubringClosed__to__GRing_isMul1Closed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_factory_277 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.int_num_subring [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.int_num1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.intrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_nat_num_subdef__canonical__GRing_SemiringClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_nat_num_subdef__canonical__GRing_Semiring2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_nat_num_subdef__canonical__GRing_AddClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_mixin_276 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_nat_num_subdef__canonical__GRing_MulClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_mixin_275 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.Num_nat_num_subdef__canonical__GRing_Mul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_mixin_274 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.GRing_isSemiringClosed__to__GRing_isAddClosed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.GRing_isSemiringClosed__to__GRing_isMul1Closed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.GRing_isSemiringClosed__to__GRing_isMul2Closed [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.HB_unnamed_factory_270 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.nat_num_semiring [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.nat_num1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.nat_num0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.natrP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.natr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.natrK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.trunc_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.natrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.int_num [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.nat_num [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.ArchiNumDomainTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.ArchiNumDomainTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.upper_nthrootP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0.archi_boundP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mc_2_0 [module, in mathcomp.algebra.ssrnum]
Num.Theory.mid [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.midf_lte [definition, in mathcomp.algebra.ssrnum]
Num.Theory.midf_lt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.midf_le [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_nmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.minr_nmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.minr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_pmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.minr_pmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.minr_pMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_pMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.minr_to_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.min_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.monic_Cauchy_bound [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulCii [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrIn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_wlt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_wgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_wle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulrn_wge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sg_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_Nsign_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sign_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sign_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sg_eqN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_sg_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_cp1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_egte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_egt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ege1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ilte1 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ilt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ile1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ge0_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_le0_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ge0_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mulr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mul_conjC_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mul_conjC_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.mul_conjC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.naddr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natf_indexg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natf_div [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natrE [definition, in mathcomp.algebra.archimedean]
Num.Theory.natrEint [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natrG_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natrG_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natrK [definition, in mathcomp.algebra.archimedean]
Num.Theory.natrP [definition, in mathcomp.algebra.archimedean]
Num.Theory.natr_aut [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_exp_even [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_norm_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_prod_eq1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_mul_eq1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_sum_eq1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_gt0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_ge0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_normK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.natr_nat [definition, in mathcomp.algebra.archimedean]
Num.Theory.natr_indexg_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.natr_indexg_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nat_num_semiring [definition, in mathcomp.algebra.archimedean]
Num.Theory.nat_num1 [definition, in mathcomp.algebra.archimedean]
Num.Theory.nat_num0 [definition, in mathcomp.algebra.archimedean]
Num.Theory.nat_num [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.negrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.neqr0_sign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.neq0Ci [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.neq0_mulr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulrn_rle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulrn_rge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulrn_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_lle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_llt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_lge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_lgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_rle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_rlt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_rge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nmulr_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nnegIm [definition, in mathcomp.algebra.ssrnum]
Num.Theory.nnegrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nonRealCi [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normCBeq [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normCDeq [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normCi [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normCK [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normCKC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_sub_eq [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.normC_add_eq [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.normC_sum_upper [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_sum_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_sum_eq [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_Re_Im [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC2_Re_Im [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normC2_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normfV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normf_div [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrE [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normrEsg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrM [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normrMn [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normrMsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrN [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normrN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normrX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_sign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_nneg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_id [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_eq0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normr_unit [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_prod [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr_idP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.normr0_eq0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.normr1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.norm_intr_ge1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.norm_natr [lemma, in mathcomp.algebra.archimedean]
Num.Theory.norm_conjC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.norm_rootC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nposrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Nreal_gtF [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Nreal_ltF [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Nreal_geF [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Nreal_leF [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.nthroot [definition, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.D [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.f [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.f' [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainMonotonyTheoryForReals.R' [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.NormedZmoduleTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.NormedZmoduleTheory.V [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.RealDomainArgExtremum [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumDomainOperationTheory.RealDomainArgExtremum.F_real [variable, in mathcomp.algebra.ssrnum]
Num.Theory.numEsg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.numEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.NumFieldTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumFieldTheory.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumIntegralDomainTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumIntegralDomainTheory.NormedZmoduleTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.NumIntegralDomainTheory.NormedZmoduleTheory.V [variable, in mathcomp.algebra.ssrnum]
Num.Theory.NumIntegralDomainTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.numNEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.num_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_cp0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_lte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_gte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.oppr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.paddr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2 [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.deg2_poly_root2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.deg2_poly_root1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.deg2_poly_factor [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.monicp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosedMonic.Pdeg2NumClosedMonic.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.deg2_poly_root2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.deg2_poly_root1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.deg2_poly_factor [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.NumClosed.Pdeg2NumClosed.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic [module, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_le0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_ge0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_ge0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_lt0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_gt0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_gt0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_noroot [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_root2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_root1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_factor [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_minE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.deg2_poly_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.a1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.deltam [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.monicp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.nz2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealClosedMonic.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.a1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.a2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.a4 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.deltam [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.monicp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.RealMonic.Pdeg2RealMonic.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_ge0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_le0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_le0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_gt0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_lt0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_lt0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_le0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_ge0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_ge0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_lt0m [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_gt0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_gt0l [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_noroot [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_root2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_root1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_factor [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_maxE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_minE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.deg2_poly_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.ale0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.aNge0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.degpN [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.deltaN [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.r1N [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConcave.r2N [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.aa4gt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.age0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.agt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.aneq0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.a2gt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.a4gt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.nz2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.pneq0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.r1 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.r2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.sqa2 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2RealClosed.Pdeg2RealClosedConvex.xb4 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.ale0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.b2a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.degpN [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.deltaN [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConcave.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex [section, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.a [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.age0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.agt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.aneq0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.a4gt0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.b [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.c [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.degp [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.delta [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.Pdeg2.Real.Pdeg2Real.Pdeg2RealConvex.pneq0 [variable, in mathcomp.algebra.ssrnum]
Num.Theory.pexpIrn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pexprn_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pexpr_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrnI [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_rle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_rge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_rlt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_lle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_lge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_llt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulrn_lgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_lle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_llt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_lge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_lgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_rle0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_rlt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_rge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pmulr_rgt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pnatr_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.pnatr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.poly_ivt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.poly_itv_bound [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.poly_disk_bound [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.posrE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.prodr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.prodr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.prod_truncK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.prod_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.psumr_neq0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.psumr_neq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.psumr_eq0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.psumr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.raddfZ_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.raddfZ_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.Re [definition, in mathcomp.algebra.ssrnum]
Num.Theory.realB [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realBC [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.RealClosedFieldTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealClosedFieldTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.realD [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.MinMax [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.numR_real [variable, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.PolyBounds [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.PolyBounds.p [variable, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainOperations.R [variable, in mathcomp.algebra.ssrnum]
[ arg max_ ( _ > _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg max_ ( _ > _ in _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg max_ ( _ > _ | _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg min_ ( _ < _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg min_ ( _ < _ in _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
[ arg min_ ( _ < _ | _ ) _ ] (ring_scope) [notation, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainTheory [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealDomainTheory.R [variable, in mathcomp.algebra.ssrnum]
Num.Theory.realE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realEsg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realEsqr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.RealField [section, in mathcomp.algebra.ssrnum]
Num.Theory.RealField.F [variable, in mathcomp.algebra.ssrnum]
Num.Theory.RealField.x [variable, in mathcomp.algebra.ssrnum]
Num.Theory.RealField.y [variable, in mathcomp.algebra.ssrnum]
Num.Theory.realM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realNEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn_nmono_in [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn_mono_in [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn_nmono [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realn_mono [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realrM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realrMn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.realX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_AGM2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_mean_square [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_nmono_in [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_mono_in [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_nmono [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_mono [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlC_subl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlC_subl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distl_subl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distl_subl [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlC_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlC_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distl_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distl_addr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxr_nmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_minr_nmull [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_minr_nmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxr_nmulr [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_AGM2_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_mean_square_scaled [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lteif_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lteif_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lteif_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lteifNE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leif_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_mulr_Nsign_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_mulr_sign_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_normrEsign [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_normK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_odd_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_odd_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_odd_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_odd_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_even_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_even_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_even_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_exprn_even_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlCBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlCBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlBl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlCDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlCDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distlDr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lter_distl [definition, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_distl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lerNnormlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_normlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltrNnormlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_normlW [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lter_normr [definition, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_normr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_normlP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_lter_norml [definition, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltr_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_eqr_norm2 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_eqr_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_normlP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_norml [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ler_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_arg_maxP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_arg_minP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_minNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_minrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxNr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_minr_nMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_minr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_maxr_nMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_addr_maxr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_addr_maxl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_addr_minr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_addr_minl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_oppr_min [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_oppr_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_wlog_ltr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_wlog_ler [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_neqr_lt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltgt0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_le0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ge0P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltgtP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leNgt [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltNge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_ltP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_comparable [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real_leVge [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.real1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rectC_mull [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rectC_mulr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReE [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReMil [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReMir [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.ReV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_div [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_conj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_i [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_is_additive [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Re_lock [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCMl [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCMr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCpX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.RootCspec [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.rootCV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootCX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_lt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_le1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_gt1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_ge1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_Re_max [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_inj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_subproof [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC_spec [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.rootC0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rootC1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.root0C [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.root1C [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.rpredZ_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.rpredZ_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.rpred_int_num [lemma, in mathcomp.algebra.archimedean]
Num.Theory.rpred_nat_num [lemma, in mathcomp.algebra.archimedean]
Num.Theory.Rreal_int [lemma, in mathcomp.algebra.archimedean]
Num.Theory.Rreal_nat [lemma, in mathcomp.algebra.archimedean]
Num.Theory.sgrE [definition, in mathcomp.algebra.ssrnum]
Num.Theory.sgrM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgrMn [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgrN [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.SgrNeg [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.SgrNull [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.sgrN1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgrP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.SgrPos [constructor, in mathcomp.algebra.ssrnum]
Num.Theory.sgrV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgrX [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_smul [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_val [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_cp0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_norm [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_id [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_nat [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_odd [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr_def [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sgr1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_inj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.signr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.splitr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrCi [definition, in mathcomp.algebra.ssrnum]
Num.Theory.sqrCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrCK_P [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrn_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrp_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtCK [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtCM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_inj [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtC1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtrM [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtrP [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtrV [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_eq0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_sqr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_spec [inductive, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqrtr1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqr_intr_ge1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.sqr_sqrtr [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqr_norm_eq1 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sqr_sg [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subC_rect [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lteif0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lteif0r [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lteifr0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_comparable0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_cp0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.subr_gte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lte0 [definition, in mathcomp.algebra.ssrnum]
Num.Theory.subr_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_le0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.subr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sumr_ge0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.sum_truncK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.sum_real [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.Theory_Im__canonical__GRing_Additive [definition, in mathcomp.algebra.ssrnum]
Num.Theory.Theory_Re__canonical__GRing_Additive [definition, in mathcomp.algebra.ssrnum]
Num.Theory.trunc [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.truncD [lemma, in mathcomp.algebra.archimedean]
Num.Theory.truncK [lemma, in mathcomp.algebra.archimedean]
Num.Theory.truncM [lemma, in mathcomp.algebra.archimedean]
Num.Theory.truncX [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc_floor [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc_gt0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc_def [definition, in mathcomp.algebra.archimedean]
Num.Theory.trunc_itv [definition, in mathcomp.algebra.archimedean]
Num.Theory.trunc0 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc0Pn [lemma, in mathcomp.algebra.archimedean]
Num.Theory.trunc1 [lemma, in mathcomp.algebra.archimedean]
Num.Theory.unitf_lt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.unitf_gt0 [lemma, in mathcomp.algebra.ssrnum]
Num.Theory.upper_nthrootP [definition, in mathcomp.algebra.archimedean]
Num.Theory.upper_nthrootP [abbreviation, in mathcomp.algebra.ssrnum]
Num.Theory.ZnatP [abbreviation, in mathcomp.algebra.archimedean]
Num.Theory.ZnatPred [section, in mathcomp.algebra.archimedean]
Num.Theory.Znat_def [abbreviation, in mathcomp.algebra.archimedean]
'Im _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
'Re _ (ring_scope) [notation, in mathcomp.algebra.ssrnum]
'i (ring_scope) [notation, in mathcomp.algebra.ssrnum]
'i (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ ^* (ring_scope) [notation, in mathcomp.algebra.ssrnum]
_ .-root [notation, in mathcomp.algebra.ssrnum]
Num.trunc [abbreviation, in mathcomp.algebra.archimedean]
Num.trunc [abbreviation, in mathcomp.algebra.ssrnum]
Num.trunc_subproof [definition, in mathcomp.algebra.ssrnum]
Num.trunc_subdef [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Exports [module, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.identity_builder [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.phant_axioms [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.phant_Build [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.normrN [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.normrMn [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.normr0_eq0 [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.ler_normD [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.norm [projection, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.axioms_ [record, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed_M__canonical__GRing_Zmodule [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.local_mixin_GRing_Nmodule_isZmodule [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed_M__canonical__GRing_Nmodule [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed_M__canonical__choice_Choice [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed_M__canonical__eqtype_Equality [definition, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.local_mixin_eqtype_hasDecEq [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.local_mixin_choice_hasChoice [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.local_mixin_GRing_isNmodule [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.M [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed.R [variable, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed.Zmodule_isNormed [section, in mathcomp.algebra.ssrnum]
Num.Zmodule_isNormed [module, in mathcomp.algebra.ssrnum]
nuQn:6 [binder, in mathcomp.character.integral_char]
nux:531 [binder, in mathcomp.algebra.ssrint]
nu0:109 [binder, in mathcomp.field.algnum]
nu0:98 [binder, in mathcomp.field.algnum]
nu:104 [binder, in mathcomp.field.algnum]
nu:1050 [binder, in mathcomp.algebra.ssralg]
nu:108 [binder, in mathcomp.character.integral_char]
nu:108 [binder, in mathcomp.field.algnum]
nu:109 [binder, in mathcomp.character.integral_char]
nu:110 [binder, in mathcomp.character.integral_char]
nu:111 [binder, in mathcomp.character.integral_char]
nu:112 [binder, in mathcomp.character.integral_char]
nu:167 [binder, in mathcomp.algebra.archimedean]
nu:168 [binder, in mathcomp.algebra.archimedean]
nu:173 [binder, in mathcomp.algebra.archimedean]
nu:175 [binder, in mathcomp.algebra.archimedean]
nu:190 [binder, in mathcomp.field.algnum]
nu:212 [binder, in mathcomp.character.integral_char]
nu:213 [binder, in mathcomp.character.integral_char]
nu:214 [binder, in mathcomp.character.integral_char]
nu:236 [binder, in mathcomp.field.algC]
nu:237 [binder, in mathcomp.field.algC]
nu:239 [binder, in mathcomp.field.algC]
nu:242 [binder, in mathcomp.field.algC]
nu:244 [binder, in mathcomp.field.algC]
nu:245 [binder, in mathcomp.field.algC]
nu:246 [binder, in mathcomp.field.algC]
nu:247 [binder, in mathcomp.field.algC]
nu:248 [binder, in mathcomp.field.algC]
nu:249 [binder, in mathcomp.field.algC]
nu:250 [binder, in mathcomp.field.algC]
nu:271 [binder, in mathcomp.character.vcharacter]
nu:272 [binder, in mathcomp.character.vcharacter]
nu:302 [binder, in mathcomp.field.algnum]
nu:333 [binder, in mathcomp.field.algC]
nu:334 [binder, in mathcomp.field.algC]
nu:335 [binder, in mathcomp.field.algC]
nu:337 [binder, in mathcomp.field.algC]
nu:506 [binder, in mathcomp.character.classfun]
nu:7 [binder, in mathcomp.character.integral_char]
nu:95 [binder, in mathcomp.field.algnum]
nx1:626 [binder, in mathcomp.algebra.ssrint]
nx:177 [binder, in mathcomp.algebra.rat]
ny:179 [binder, in mathcomp.algebra.rat]
nzA:548 [binder, in mathcomp.algebra.mxpoly]
nzV:1360 [binder, in mathcomp.character.mxrepresentation]
nz_row_eq0 [lemma, in mathcomp.algebra.matrix]
nz_row [definition, in mathcomp.algebra.matrix]
nz_x:4 [binder, in mathcomp.field.finfield]
nz_socle [lemma, in mathcomp.character.mxrepresentation]
nz_row_mxsimple [lemma, in mathcomp.character.mxrepresentation]
nz_row_sub [lemma, in mathcomp.algebra.mxalgebra]
n_act_add [lemma, in mathcomp.solvable.primitive_action]
n_act0 [lemma, in mathcomp.solvable.primitive_action]
n_act_dtuple [lemma, in mathcomp.solvable.primitive_action]
n_act_action [definition, in mathcomp.solvable.primitive_action]
n_act_is_action [lemma, in mathcomp.solvable.primitive_action]
n_act [definition, in mathcomp.solvable.primitive_action]
n_comp_connect [lemma, in mathcomp.ssreflect.fingraph]
n_comp_closure2 [lemma, in mathcomp.ssreflect.fingraph]
n_compC [lemma, in mathcomp.ssreflect.fingraph]
n_comp [abbreviation, in mathcomp.ssreflect.fingraph]
n_comp_mem [definition, in mathcomp.ssreflect.fingraph]
n_gt0:217 [binder, in mathcomp.solvable.cyclic]
n' [abbreviation, in mathcomp.character.mxabelem]
n':1040 [binder, in mathcomp.algebra.matrix]
n':105 [binder, in mathcomp.algebra.matrix]
n':112 [binder, in mathcomp.algebra.matrix]
n':124 [binder, in mathcomp.algebra.mxpoly]
n':1401 [binder, in mathcomp.algebra.matrix]
n':1441 [binder, in mathcomp.character.mxrepresentation]
n':1608 [binder, in mathcomp.algebra.matrix]
n':1623 [binder, in mathcomp.algebra.matrix]
n':1648 [binder, in mathcomp.ssreflect.order]
n':166 [binder, in mathcomp.algebra.matrix]
n':1661 [binder, in mathcomp.ssreflect.order]
n':1674 [binder, in mathcomp.ssreflect.order]
n':1689 [binder, in mathcomp.ssreflect.order]
n':171 [binder, in mathcomp.algebra.mxpoly]
n':174 [binder, in mathcomp.algebra.matrix]
n':179 [binder, in mathcomp.algebra.matrix]
n':186 [binder, in mathcomp.algebra.matrix]
n':190 [binder, in mathcomp.algebra.matrix]
n':1937 [binder, in mathcomp.algebra.matrix]
n':1939 [binder, in mathcomp.algebra.matrix]
n':194 [binder, in mathcomp.algebra.matrix]
n':198 [binder, in mathcomp.algebra.matrix]
n':2015 [binder, in mathcomp.algebra.matrix]
n':2059 [binder, in mathcomp.algebra.matrix]
n':22 [binder, in mathcomp.algebra.rat]
n':2263 [binder, in mathcomp.algebra.matrix]
n':2271 [binder, in mathcomp.algebra.matrix]
n':2355 [binder, in mathcomp.algebra.matrix]
n':2397 [binder, in mathcomp.algebra.matrix]
n':2484 [binder, in mathcomp.algebra.matrix]
n':2487 [binder, in mathcomp.ssreflect.bigop]
n':2501 [binder, in mathcomp.ssreflect.bigop]
n':2527 [binder, in mathcomp.algebra.matrix]
n':2574 [binder, in mathcomp.algebra.matrix]
n':2578 [binder, in mathcomp.algebra.matrix]
n':258 [binder, in mathcomp.algebra.matrix]
n':281 [binder, in mathcomp.algebra.matrix]
n':3064 [binder, in mathcomp.algebra.matrix]
n':3071 [binder, in mathcomp.algebra.matrix]
n':3150 [binder, in mathcomp.algebra.matrix]
n':3157 [binder, in mathcomp.algebra.matrix]
n':335 [binder, in mathcomp.ssreflect.div]
n':339 [binder, in mathcomp.algebra.mxpoly]
n':565 [binder, in mathcomp.algebra.matrix]
n':66 [binder, in mathcomp.algebra.matrix]
n':72 [binder, in mathcomp.algebra.matrix]
n':782 [binder, in mathcomp.algebra.matrix]
n':791 [binder, in mathcomp.algebra.matrix]
n':834 [binder, in mathcomp.algebra.matrix]
n':844 [binder, in mathcomp.algebra.matrix]
n':847 [binder, in mathcomp.algebra.matrix]
n':85 [binder, in mathcomp.solvable.extraspecial]
n':859 [binder, in mathcomp.algebra.mxpoly]
n':86 [binder, in mathcomp.solvable.extraspecial]
n':904 [binder, in mathcomp.algebra.matrix]
n':914 [binder, in mathcomp.algebra.matrix]
n':917 [binder, in mathcomp.algebra.matrix]
n0:114 [binder, in mathcomp.solvable.burnside_app]
n0:1195 [binder, in mathcomp.ssreflect.ssrnat]
n0:1200 [binder, in mathcomp.ssreflect.ssrnat]
n0:357 [binder, in mathcomp.algebra.ssrint]
n0:361 [binder, in mathcomp.algebra.ssrint]
n0:365 [binder, in mathcomp.algebra.ssrint]
n0:369 [binder, in mathcomp.algebra.ssrint]
n0:372 [binder, in mathcomp.algebra.ssrint]
n0:375 [binder, in mathcomp.algebra.ssrint]
n0:378 [binder, in mathcomp.algebra.ssrint]
n0:381 [binder, in mathcomp.algebra.ssrint]
n0:384 [binder, in mathcomp.algebra.ssrint]
n0:387 [binder, in mathcomp.algebra.ssrint]
n0:390 [binder, in mathcomp.algebra.ssrint]
n0:393 [binder, in mathcomp.algebra.ssrint]
n0:680 [binder, in mathcomp.algebra.ssrint]
n0:682 [binder, in mathcomp.algebra.ssrint]
N1op_subproof:1026 [binder, in mathcomp.algebra.ssralg]
n1:1058 [binder, in mathcomp.algebra.matrix]
n1:1061 [binder, in mathcomp.algebra.matrix]
n1:1090 [binder, in mathcomp.algebra.matrix]
n1:1097 [binder, in mathcomp.algebra.matrix]
n1:1100 [binder, in mathcomp.algebra.matrix]
n1:1115 [binder, in mathcomp.algebra.matrix]
n1:1128 [binder, in mathcomp.algebra.matrix]
N1:113 [binder, in mathcomp.solvable.jordanholder]
n1:1139 [binder, in mathcomp.algebra.matrix]
n1:1221 [binder, in mathcomp.algebra.matrix]
n1:1226 [binder, in mathcomp.algebra.matrix]
n1:1231 [binder, in mathcomp.algebra.matrix]
n1:1236 [binder, in mathcomp.algebra.matrix]
n1:1241 [binder, in mathcomp.algebra.matrix]
n1:1246 [binder, in mathcomp.algebra.matrix]
n1:1251 [binder, in mathcomp.algebra.matrix]
n1:1262 [binder, in mathcomp.character.mxrepresentation]
n1:1280 [binder, in mathcomp.algebra.matrix]
n1:1343 [binder, in mathcomp.algebra.matrix]
n1:1360 [binder, in mathcomp.algebra.matrix]
n1:1379 [binder, in mathcomp.ssreflect.seq]
n1:14 [binder, in mathcomp.character.character]
n1:1417 [binder, in mathcomp.character.mxrepresentation]
n1:1419 [binder, in mathcomp.algebra.matrix]
n1:1422 [binder, in mathcomp.algebra.matrix]
n1:1435 [binder, in mathcomp.algebra.matrix]
n1:1446 [binder, in mathcomp.algebra.matrix]
n1:1490 [binder, in mathcomp.algebra.matrix]
n1:1495 [binder, in mathcomp.algebra.matrix]
n1:164 [binder, in mathcomp.ssreflect.seq]
n1:1673 [binder, in mathcomp.ssreflect.bigop]
n1:1696 [binder, in mathcomp.ssreflect.bigop]
n1:18 [binder, in mathcomp.character.character]
n1:180 [binder, in mathcomp.ssreflect.ssrnat]
n1:1807 [binder, in mathcomp.algebra.matrix]
n1:181 [binder, in mathcomp.character.character]
n1:1824 [binder, in mathcomp.algebra.matrix]
n1:1836 [binder, in mathcomp.algebra.matrix]
n1:1847 [binder, in mathcomp.algebra.matrix]
n1:207 [binder, in mathcomp.algebra.matrix]
n1:2077 [binder, in mathcomp.algebra.matrix]
n1:2080 [binder, in mathcomp.algebra.matrix]
n1:2100 [binder, in mathcomp.algebra.matrix]
n1:2113 [binder, in mathcomp.algebra.matrix]
n1:218 [binder, in mathcomp.algebra.matrix]
n1:224 [binder, in mathcomp.algebra.matrix]
n1:2278 [binder, in mathcomp.algebra.matrix]
n1:23 [binder, in mathcomp.character.character]
n1:230 [binder, in mathcomp.algebra.matrix]
n1:2308 [binder, in mathcomp.ssreflect.bigop]
n1:2330 [binder, in mathcomp.ssreflect.bigop]
n1:238 [binder, in mathcomp.algebra.matrix]
n1:244 [binder, in mathcomp.algebra.matrix]
n1:244 [binder, in mathcomp.algebra.mxalgebra]
n1:2463 [binder, in mathcomp.algebra.matrix]
n1:2468 [binder, in mathcomp.algebra.matrix]
n1:2517 [binder, in mathcomp.algebra.matrix]
n1:2522 [binder, in mathcomp.algebra.matrix]
n1:262 [binder, in mathcomp.algebra.matrix]
n1:275 [binder, in mathcomp.algebra.matrix]
n1:2799 [binder, in mathcomp.ssreflect.bigop]
n1:28 [binder, in mathcomp.character.character]
n1:2805 [binder, in mathcomp.ssreflect.bigop]
n1:298 [binder, in mathcomp.ssreflect.ssrnat]
n1:3 [binder, in mathcomp.character.character]
n1:306 [binder, in mathcomp.ssreflect.seq]
n1:310 [binder, in mathcomp.character.character]
n1:316 [binder, in mathcomp.character.character]
n1:318 [binder, in mathcomp.algebra.matrix]
n1:32 [binder, in mathcomp.character.character]
n1:354 [binder, in mathcomp.algebra.matrix]
n1:36 [binder, in mathcomp.character.character]
n1:365 [binder, in mathcomp.character.character]
n1:368 [binder, in mathcomp.ssreflect.ssrnat]
n1:375 [binder, in mathcomp.ssreflect.ssrnat]
n1:378 [binder, in mathcomp.ssreflect.ssrnat]
n1:391 [binder, in mathcomp.ssreflect.ssrnat]
n1:394 [binder, in mathcomp.ssreflect.ssrnat]
n1:396 [binder, in mathcomp.algebra.matrix]
n1:397 [binder, in mathcomp.ssreflect.ssrnat]
n1:40 [binder, in mathcomp.character.character]
n1:400 [binder, in mathcomp.ssreflect.ssrnat]
n1:402 [binder, in mathcomp.algebra.matrix]
n1:409 [binder, in mathcomp.algebra.matrix]
n1:415 [binder, in mathcomp.algebra.matrix]
n1:422 [binder, in mathcomp.algebra.matrix]
n1:430 [binder, in mathcomp.algebra.matrix]
n1:443 [binder, in mathcomp.algebra.matrix]
n1:45 [binder, in mathcomp.character.character]
n1:48 [binder, in mathcomp.ssreflect.seq]
N1:52 [binder, in mathcomp.solvable.jordanholder]
n1:52 [binder, in mathcomp.character.character]
n1:526 [binder, in mathcomp.algebra.matrix]
n1:530 [binder, in mathcomp.algebra.matrix]
n1:534 [binder, in mathcomp.algebra.matrix]
N1:54 [binder, in mathcomp.solvable.jordanholder]
n1:557 [binder, in mathcomp.algebra.matrix]
n1:57 [binder, in mathcomp.character.character]
n1:570 [binder, in mathcomp.algebra.matrix]
n1:572 [binder, in mathcomp.ssreflect.ssrnat]
n1:575 [binder, in mathcomp.ssreflect.ssrnat]
n1:579 [binder, in mathcomp.ssreflect.ssrnat]
n1:582 [binder, in mathcomp.ssreflect.ssrnat]
n1:585 [binder, in mathcomp.ssreflect.ssrnat]
n1:586 [binder, in mathcomp.algebra.matrix]
n1:588 [binder, in mathcomp.ssreflect.ssrnat]
n1:591 [binder, in mathcomp.ssreflect.ssrnat]
n1:594 [binder, in mathcomp.ssreflect.ssrnat]
n1:597 [binder, in mathcomp.ssreflect.ssrnat]
n1:598 [binder, in mathcomp.algebra.matrix]
n1:600 [binder, in mathcomp.ssreflect.ssrnat]
n1:603 [binder, in mathcomp.ssreflect.ssrnat]
n1:606 [binder, in mathcomp.ssreflect.ssrnat]
n1:609 [binder, in mathcomp.ssreflect.ssrnat]
n1:610 [binder, in mathcomp.algebra.matrix]
n1:616 [binder, in mathcomp.algebra.matrix]
n1:617 [binder, in mathcomp.ssreflect.ssrnat]
n1:634 [binder, in mathcomp.algebra.matrix]
n1:639 [binder, in mathcomp.ssreflect.ssrnat]
n1:645 [binder, in mathcomp.ssreflect.ssrnat]
n1:648 [binder, in mathcomp.ssreflect.ssrnat]
n1:648 [binder, in mathcomp.algebra.matrix]
n1:657 [binder, in mathcomp.ssreflect.ssrnat]
n1:660 [binder, in mathcomp.ssreflect.ssrnat]
n1:663 [binder, in mathcomp.ssreflect.ssrnat]
n1:667 [binder, in mathcomp.ssreflect.ssrnat]
n1:670 [binder, in mathcomp.ssreflect.ssrnat]
n1:705 [binder, in mathcomp.algebra.matrix]
n1:758 [binder, in mathcomp.ssreflect.bigop]
n1:789 [binder, in mathcomp.algebra.ssrint]
n1:792 [binder, in mathcomp.algebra.ssrint]
n1:794 [binder, in mathcomp.algebra.ssrint]
n1:796 [binder, in mathcomp.algebra.ssrint]
n1:801 [binder, in mathcomp.algebra.ssrint]
n1:805 [binder, in mathcomp.algebra.ssrint]
n1:814 [binder, in mathcomp.algebra.ssrint]
n1:817 [binder, in mathcomp.algebra.ssrint]
n1:82 [binder, in mathcomp.character.character]
n1:828 [binder, in mathcomp.character.mxrepresentation]
n1:836 [binder, in mathcomp.character.mxrepresentation]
n1:842 [binder, in mathcomp.character.mxrepresentation]
n1:846 [binder, in mathcomp.character.mxrepresentation]
n1:851 [binder, in mathcomp.ssreflect.bigop]
n1:852 [binder, in mathcomp.character.mxrepresentation]
n1:860 [binder, in mathcomp.ssreflect.ssrnat]
n1:861 [binder, in mathcomp.ssreflect.bigop]
n1:866 [binder, in mathcomp.ssreflect.ssrnat]
n1:866 [binder, in mathcomp.character.mxrepresentation]
n1:870 [binder, in mathcomp.character.mxrepresentation]
n1:871 [binder, in mathcomp.ssreflect.bigop]
n1:872 [binder, in mathcomp.ssreflect.fintype]
n1:875 [binder, in mathcomp.character.mxrepresentation]
n1:878 [binder, in mathcomp.ssreflect.fintype]
n1:879 [binder, in mathcomp.character.mxrepresentation]
n1:880 [binder, in mathcomp.ssreflect.bigop]
n1:881 [binder, in mathcomp.ssreflect.fintype]
n1:884 [binder, in mathcomp.ssreflect.fintype]
n1:889 [binder, in mathcomp.character.mxrepresentation]
n1:894 [binder, in mathcomp.character.mxrepresentation]
n1:90 [binder, in mathcomp.ssreflect.binomial]
n1:92 [binder, in mathcomp.character.integral_char]
n1:92 [binder, in mathcomp.character.character]
n1:952 [binder, in mathcomp.ssreflect.bigop]
n1:964 [binder, in mathcomp.ssreflect.bigop]
n1:976 [binder, in mathcomp.ssreflect.bigop]
n1:987 [binder, in mathcomp.ssreflect.bigop]
n2:1059 [binder, in mathcomp.algebra.matrix]
n2:1062 [binder, in mathcomp.algebra.matrix]
n2:1091 [binder, in mathcomp.algebra.matrix]
n2:1098 [binder, in mathcomp.algebra.matrix]
n2:1101 [binder, in mathcomp.algebra.matrix]
n2:1116 [binder, in mathcomp.algebra.matrix]
n2:1129 [binder, in mathcomp.algebra.matrix]
N2:114 [binder, in mathcomp.solvable.jordanholder]
n2:1140 [binder, in mathcomp.algebra.matrix]
n2:12 [binder, in mathcomp.character.character]
n2:1222 [binder, in mathcomp.algebra.matrix]
n2:1227 [binder, in mathcomp.algebra.matrix]
n2:1232 [binder, in mathcomp.algebra.matrix]
n2:1237 [binder, in mathcomp.algebra.matrix]
n2:1242 [binder, in mathcomp.algebra.matrix]
n2:1247 [binder, in mathcomp.algebra.matrix]
n2:1252 [binder, in mathcomp.algebra.matrix]
n2:1263 [binder, in mathcomp.character.mxrepresentation]
n2:1281 [binder, in mathcomp.algebra.matrix]
n2:1344 [binder, in mathcomp.algebra.matrix]
n2:1361 [binder, in mathcomp.algebra.matrix]
n2:1380 [binder, in mathcomp.ssreflect.seq]
n2:1418 [binder, in mathcomp.character.mxrepresentation]
n2:1420 [binder, in mathcomp.algebra.matrix]
n2:1423 [binder, in mathcomp.algebra.matrix]
n2:1436 [binder, in mathcomp.algebra.matrix]
n2:1447 [binder, in mathcomp.algebra.matrix]
n2:1491 [binder, in mathcomp.algebra.matrix]
n2:1496 [binder, in mathcomp.algebra.matrix]
n2:16 [binder, in mathcomp.character.character]
n2:166 [binder, in mathcomp.ssreflect.seq]
n2:167 [binder, in mathcomp.character.character]
n2:1675 [binder, in mathcomp.ssreflect.bigop]
n2:1698 [binder, in mathcomp.ssreflect.bigop]
n2:1808 [binder, in mathcomp.algebra.matrix]
n2:181 [binder, in mathcomp.ssreflect.ssrnat]
n2:182 [binder, in mathcomp.character.character]
n2:1825 [binder, in mathcomp.algebra.matrix]
n2:1837 [binder, in mathcomp.algebra.matrix]
n2:1848 [binder, in mathcomp.algebra.matrix]
n2:20 [binder, in mathcomp.character.character]
n2:2078 [binder, in mathcomp.algebra.matrix]
n2:2081 [binder, in mathcomp.algebra.matrix]
n2:209 [binder, in mathcomp.algebra.matrix]
n2:2101 [binder, in mathcomp.algebra.matrix]
n2:2114 [binder, in mathcomp.algebra.matrix]
n2:220 [binder, in mathcomp.algebra.matrix]
n2:226 [binder, in mathcomp.algebra.matrix]
n2:2280 [binder, in mathcomp.algebra.matrix]
n2:2310 [binder, in mathcomp.ssreflect.bigop]
n2:232 [binder, in mathcomp.algebra.matrix]
n2:2332 [binder, in mathcomp.ssreflect.bigop]
n2:240 [binder, in mathcomp.algebra.matrix]
n2:245 [binder, in mathcomp.algebra.mxalgebra]
n2:246 [binder, in mathcomp.algebra.matrix]
n2:2464 [binder, in mathcomp.algebra.matrix]
n2:2469 [binder, in mathcomp.algebra.matrix]
n2:25 [binder, in mathcomp.character.character]
n2:2518 [binder, in mathcomp.algebra.matrix]
n2:2523 [binder, in mathcomp.algebra.matrix]
n2:264 [binder, in mathcomp.algebra.matrix]
n2:277 [binder, in mathcomp.algebra.matrix]
n2:2800 [binder, in mathcomp.ssreflect.bigop]
n2:2806 [binder, in mathcomp.ssreflect.bigop]
n2:299 [binder, in mathcomp.ssreflect.ssrnat]
n2:30 [binder, in mathcomp.character.character]
n2:307 [binder, in mathcomp.ssreflect.seq]
n2:311 [binder, in mathcomp.character.character]
n2:317 [binder, in mathcomp.character.character]
n2:319 [binder, in mathcomp.algebra.matrix]
n2:34 [binder, in mathcomp.character.character]
n2:355 [binder, in mathcomp.algebra.matrix]
n2:366 [binder, in mathcomp.character.character]
n2:369 [binder, in mathcomp.ssreflect.ssrnat]
n2:371 [binder, in mathcomp.algebra.matrix]
n2:376 [binder, in mathcomp.ssreflect.ssrnat]
n2:379 [binder, in mathcomp.ssreflect.ssrnat]
n2:379 [binder, in mathcomp.algebra.matrix]
n2:38 [binder, in mathcomp.character.character]
n2:386 [binder, in mathcomp.algebra.matrix]
n2:392 [binder, in mathcomp.ssreflect.ssrnat]
n2:395 [binder, in mathcomp.ssreflect.ssrnat]
n2:397 [binder, in mathcomp.algebra.matrix]
n2:398 [binder, in mathcomp.ssreflect.ssrnat]
n2:401 [binder, in mathcomp.ssreflect.ssrnat]
n2:403 [binder, in mathcomp.algebra.matrix]
n2:410 [binder, in mathcomp.algebra.matrix]
n2:416 [binder, in mathcomp.algebra.matrix]
n2:42 [binder, in mathcomp.character.character]
n2:423 [binder, in mathcomp.algebra.matrix]
n2:431 [binder, in mathcomp.algebra.matrix]
n2:444 [binder, in mathcomp.algebra.matrix]
n2:48 [binder, in mathcomp.character.character]
n2:49 [binder, in mathcomp.ssreflect.seq]
n2:527 [binder, in mathcomp.algebra.matrix]
N2:53 [binder, in mathcomp.solvable.jordanholder]
n2:531 [binder, in mathcomp.algebra.matrix]
n2:535 [binder, in mathcomp.algebra.matrix]
N2:55 [binder, in mathcomp.solvable.jordanholder]
n2:55 [binder, in mathcomp.character.character]
n2:558 [binder, in mathcomp.algebra.matrix]
n2:571 [binder, in mathcomp.algebra.matrix]
n2:573 [binder, in mathcomp.ssreflect.ssrnat]
n2:576 [binder, in mathcomp.ssreflect.ssrnat]
n2:580 [binder, in mathcomp.ssreflect.ssrnat]
n2:583 [binder, in mathcomp.ssreflect.ssrnat]
n2:586 [binder, in mathcomp.ssreflect.ssrnat]
n2:587 [binder, in mathcomp.algebra.matrix]
n2:589 [binder, in mathcomp.ssreflect.ssrnat]
n2:592 [binder, in mathcomp.ssreflect.ssrnat]
n2:595 [binder, in mathcomp.ssreflect.ssrnat]
n2:598 [binder, in mathcomp.ssreflect.ssrnat]
n2:599 [binder, in mathcomp.algebra.matrix]
n2:6 [binder, in mathcomp.character.character]
n2:60 [binder, in mathcomp.character.character]
n2:601 [binder, in mathcomp.ssreflect.ssrnat]
n2:604 [binder, in mathcomp.ssreflect.ssrnat]
n2:607 [binder, in mathcomp.ssreflect.ssrnat]
n2:610 [binder, in mathcomp.ssreflect.ssrnat]
n2:611 [binder, in mathcomp.algebra.matrix]
n2:617 [binder, in mathcomp.algebra.matrix]
n2:618 [binder, in mathcomp.ssreflect.ssrnat]
n2:635 [binder, in mathcomp.algebra.matrix]
n2:640 [binder, in mathcomp.ssreflect.ssrnat]
n2:646 [binder, in mathcomp.ssreflect.ssrnat]
n2:649 [binder, in mathcomp.ssreflect.ssrnat]
n2:649 [binder, in mathcomp.algebra.matrix]
n2:658 [binder, in mathcomp.ssreflect.ssrnat]
n2:661 [binder, in mathcomp.ssreflect.ssrnat]
n2:664 [binder, in mathcomp.ssreflect.ssrnat]
n2:668 [binder, in mathcomp.ssreflect.ssrnat]
n2:671 [binder, in mathcomp.ssreflect.ssrnat]
n2:706 [binder, in mathcomp.algebra.matrix]
n2:76 [binder, in mathcomp.character.character]
n2:760 [binder, in mathcomp.ssreflect.bigop]
n2:790 [binder, in mathcomp.algebra.ssrint]
n2:793 [binder, in mathcomp.algebra.ssrint]
n2:795 [binder, in mathcomp.algebra.ssrint]
n2:797 [binder, in mathcomp.algebra.ssrint]
n2:802 [binder, in mathcomp.algebra.ssrint]
n2:806 [binder, in mathcomp.algebra.ssrint]
n2:815 [binder, in mathcomp.algebra.ssrint]
n2:818 [binder, in mathcomp.algebra.ssrint]
n2:830 [binder, in mathcomp.character.mxrepresentation]
n2:837 [binder, in mathcomp.character.mxrepresentation]
n2:843 [binder, in mathcomp.character.mxrepresentation]
n2:847 [binder, in mathcomp.character.mxrepresentation]
n2:852 [binder, in mathcomp.ssreflect.bigop]
n2:853 [binder, in mathcomp.character.mxrepresentation]
n2:862 [binder, in mathcomp.ssreflect.bigop]
n2:863 [binder, in mathcomp.ssreflect.ssrnat]
n2:867 [binder, in mathcomp.character.mxrepresentation]
n2:869 [binder, in mathcomp.ssreflect.ssrnat]
n2:87 [binder, in mathcomp.character.character]
n2:871 [binder, in mathcomp.character.mxrepresentation]
n2:872 [binder, in mathcomp.ssreflect.bigop]
n2:873 [binder, in mathcomp.ssreflect.fintype]
n2:876 [binder, in mathcomp.character.mxrepresentation]
n2:879 [binder, in mathcomp.ssreflect.fintype]
n2:880 [binder, in mathcomp.character.mxrepresentation]
n2:881 [binder, in mathcomp.ssreflect.bigop]
n2:882 [binder, in mathcomp.ssreflect.fintype]
n2:885 [binder, in mathcomp.ssreflect.fintype]
n2:890 [binder, in mathcomp.character.mxrepresentation]
n2:895 [binder, in mathcomp.character.mxrepresentation]
n2:91 [binder, in mathcomp.ssreflect.binomial]
n2:95 [binder, in mathcomp.character.character]
n2:953 [binder, in mathcomp.ssreflect.bigop]
n2:965 [binder, in mathcomp.ssreflect.bigop]
n2:977 [binder, in mathcomp.ssreflect.bigop]
n2:988 [binder, in mathcomp.ssreflect.bigop]
n3:211 [binder, in mathcomp.algebra.matrix]
n3:266 [binder, in mathcomp.algebra.matrix]
n3:356 [binder, in mathcomp.algebra.matrix]
n3:372 [binder, in mathcomp.algebra.matrix]
n3:572 [binder, in mathcomp.algebra.matrix]
n3:707 [binder, in mathcomp.algebra.matrix]
n3:816 [binder, in mathcomp.algebra.ssrint]
n3:848 [binder, in mathcomp.character.mxrepresentation]
n3:874 [binder, in mathcomp.ssreflect.fintype]
n:1 [binder, in mathcomp.ssreflect.binomial]
n:1 [binder, in mathcomp.ssreflect.choice]
n:1 [binder, in mathcomp.solvable.commutator]
n:10 [binder, in mathcomp.field.cyclotomic]
n:100 [binder, in mathcomp.ssreflect.binomial]
n:100 [binder, in mathcomp.algebra.ssrint]
n:100 [binder, in mathcomp.fingroup.fingroup]
n:100 [binder, in mathcomp.character.character]
n:100 [binder, in mathcomp.field.falgebra]
n:1000 [binder, in mathcomp.ssreflect.seq]
n:1000 [binder, in mathcomp.ssreflect.ssrnat]
n:1001 [binder, in mathcomp.algebra.ssrnum]
n:1002 [binder, in mathcomp.ssreflect.seq]
n:1002 [binder, in mathcomp.ssreflect.ssrnat]
n:1002 [binder, in mathcomp.character.character]
n:1003 [binder, in mathcomp.character.classfun]
n:1003 [binder, in mathcomp.algebra.ssrnum]
n:1004 [binder, in mathcomp.ssreflect.ssrnat]
n:1005 [binder, in mathcomp.algebra.polydiv]
n:1005 [binder, in mathcomp.algebra.ssrnum]
n:1006 [binder, in mathcomp.ssreflect.ssrnat]
n:1007 [binder, in mathcomp.algebra.ssrnum]
n:1007 [binder, in mathcomp.algebra.mxalgebra]
n:1008 [binder, in mathcomp.ssreflect.ssrnat]
n:1009 [binder, in mathcomp.algebra.ssrnum]
n:1009 [binder, in mathcomp.ssreflect.bigop]
n:101 [binder, in mathcomp.ssreflect.ssrnat]
n:101 [binder, in mathcomp.fingroup.fingroup]
n:101 [binder, in mathcomp.solvable.nilpotent]
n:1010 [binder, in mathcomp.ssreflect.ssrnat]
n:1011 [binder, in mathcomp.algebra.ssrnum]
n:1012 [binder, in mathcomp.ssreflect.ssrnat]
n:1013 [binder, in mathcomp.algebra.ssralg]
n:1014 [binder, in mathcomp.ssreflect.ssrnat]
n:1014 [binder, in mathcomp.algebra.ssrnum]
n:1015 [binder, in mathcomp.ssreflect.ssrnat]
n:1016 [binder, in mathcomp.algebra.ssrnum]
n:1016 [binder, in mathcomp.algebra.ssralg]
n:1016 [binder, in mathcomp.algebra.mxalgebra]
n:1017 [binder, in mathcomp.ssreflect.bigop]
n:1018 [binder, in mathcomp.ssreflect.ssrnat]
n:1018 [binder, in mathcomp.algebra.ssrnum]
n:1019 [binder, in mathcomp.ssreflect.ssrnat]
n:1019 [binder, in mathcomp.algebra.ssralg]
n:102 [binder, in mathcomp.ssreflect.binomial]
n:102 [binder, in mathcomp.ssreflect.path]
n:102 [binder, in mathcomp.field.falgebra]
n:102 [binder, in mathcomp.algebra.mxalgebra]
n:1020 [binder, in mathcomp.algebra.ssrnum]
n:1022 [binder, in mathcomp.ssreflect.ssrnat]
n:1023 [binder, in mathcomp.ssreflect.ssrnat]
n:1023 [binder, in mathcomp.algebra.ssrnum]
n:1023 [binder, in mathcomp.algebra.mxalgebra]
n:1024 [binder, in mathcomp.algebra.matrix]
n:1025 [binder, in mathcomp.algebra.ssrnum]
n:1025 [binder, in mathcomp.ssreflect.fintype]
n:1026 [binder, in mathcomp.ssreflect.ssrnat]
n:1026 [binder, in mathcomp.algebra.matrix]
n:1027 [binder, in mathcomp.ssreflect.ssrnat]
n:1028 [binder, in mathcomp.algebra.ssrnum]
n:1028 [binder, in mathcomp.ssreflect.fintype]
n:1029 [binder, in mathcomp.algebra.matrix]
n:103 [binder, in mathcomp.ssreflect.div]
n:103 [binder, in mathcomp.ssreflect.ssrnat]
n:103 [binder, in mathcomp.fingroup.fingroup]
n:1030 [binder, in mathcomp.ssreflect.ssrnat]
n:1030 [binder, in mathcomp.algebra.ssrnum]
n:1030 [binder, in mathcomp.algebra.mxalgebra]
n:1031 [binder, in mathcomp.ssreflect.fintype]
n:1032 [binder, in mathcomp.algebra.polydiv]
n:1032 [binder, in mathcomp.ssreflect.ssrnat]
n:1032 [binder, in mathcomp.algebra.matrix]
n:1032 [binder, in mathcomp.algebra.ssrnum]
n:1034 [binder, in mathcomp.ssreflect.ssrnat]
n:1034 [binder, in mathcomp.algebra.mxalgebra]
n:1035 [binder, in mathcomp.ssreflect.ssrnat]
n:1035 [binder, in mathcomp.algebra.matrix]
n:1035 [binder, in mathcomp.ssreflect.fintype]
n:1036 [binder, in mathcomp.algebra.ssrnum]
n:1038 [binder, in mathcomp.ssreflect.ssrnat]
n:1038 [binder, in mathcomp.algebra.matrix]
n:1038 [binder, in mathcomp.algebra.ssrnum]
n:1038 [binder, in mathcomp.algebra.mxalgebra]
n:104 [binder, in mathcomp.ssreflect.binomial]
n:104 [binder, in mathcomp.algebra.ssrint]
n:104 [binder, in mathcomp.ssreflect.prime]
n:1040 [binder, in mathcomp.ssreflect.ssrnat]
n:1040 [binder, in mathcomp.ssreflect.fintype]
n:1041 [binder, in mathcomp.algebra.ssrnum]
n:1042 [binder, in mathcomp.ssreflect.ssrnat]
n:1043 [binder, in mathcomp.algebra.ssrnum]
n:1043 [binder, in mathcomp.character.character]
n:1043 [binder, in mathcomp.algebra.mxalgebra]
n:1044 [binder, in mathcomp.ssreflect.ssrnat]
n:1044 [binder, in mathcomp.algebra.matrix]
n:1046 [binder, in mathcomp.ssreflect.ssrnat]
n:1046 [binder, in mathcomp.algebra.ssrnum]
n:1046 [binder, in mathcomp.ssreflect.fintype]
n:1046 [binder, in mathcomp.algebra.mxalgebra]
n:1047 [binder, in mathcomp.ssreflect.ssrnat]
n:1047 [binder, in mathcomp.algebra.matrix]
n:1048 [binder, in mathcomp.algebra.ssrnum]
n:1048 [binder, in mathcomp.algebra.mxalgebra]
n:1049 [binder, in mathcomp.ssreflect.fintype]
n:105 [binder, in mathcomp.ssreflect.ssrnat]
n:105 [binder, in mathcomp.field.algC]
n:105 [binder, in mathcomp.solvable.extremal]
n:105 [binder, in mathcomp.solvable.abelian]
n:1050 [binder, in mathcomp.ssreflect.ssrnat]
n:1050 [binder, in mathcomp.algebra.matrix]
n:1050 [binder, in mathcomp.algebra.mxalgebra]
n:1051 [binder, in mathcomp.ssreflect.ssrnat]
n:1051 [binder, in mathcomp.algebra.ssrnum]
n:1052 [binder, in mathcomp.ssreflect.fintype]
n:1053 [binder, in mathcomp.algebra.ssrnum]
n:1053 [binder, in mathcomp.algebra.vector]
n:1054 [binder, in mathcomp.ssreflect.ssrnat]
n:1054 [binder, in mathcomp.algebra.matrix]
n:1054 [binder, in mathcomp.algebra.ssrnum]
n:1054 [binder, in mathcomp.algebra.mxalgebra]
n:1055 [binder, in mathcomp.ssreflect.fintype]
n:1056 [binder, in mathcomp.ssreflect.ssrnat]
n:1057 [binder, in mathcomp.algebra.ssrnum]
n:1058 [binder, in mathcomp.ssreflect.ssrnat]
n:1058 [binder, in mathcomp.ssreflect.fintype]
n:106 [binder, in mathcomp.ssreflect.binomial]
n:106 [binder, in mathcomp.ssreflect.div]
n:106 [binder, in mathcomp.algebra.ssrint]
n:106 [binder, in mathcomp.fingroup.fingroup]
n:106 [binder, in mathcomp.solvable.abelian]
n:1060 [binder, in mathcomp.ssreflect.ssrnat]
n:1060 [binder, in mathcomp.ssreflect.fintype]
n:1060 [binder, in mathcomp.algebra.mxalgebra]
n:1062 [binder, in mathcomp.ssreflect.ssrnat]
n:1062 [binder, in mathcomp.algebra.ssrnum]
n:1063 [binder, in mathcomp.ssreflect.ssrnat]
n:1063 [binder, in mathcomp.ssreflect.bigop]
n:1064 [binder, in mathcomp.algebra.mxalgebra]
n:1065 [binder, in mathcomp.algebra.matrix]
n:1065 [binder, in mathcomp.ssreflect.fintype]
n:1066 [binder, in mathcomp.ssreflect.ssrnat]
n:1067 [binder, in mathcomp.ssreflect.ssrnat]
n:1067 [binder, in mathcomp.algebra.ssrnum]
n:1067 [binder, in mathcomp.ssreflect.fintype]
n:1068 [binder, in mathcomp.algebra.matrix]
n:1068 [binder, in mathcomp.ssreflect.bigop]
n:1068 [binder, in mathcomp.algebra.mxalgebra]
n:107 [binder, in mathcomp.ssreflect.ssrnat]
n:1070 [binder, in mathcomp.ssreflect.ssrnat]
n:1070 [binder, in mathcomp.algebra.matrix]
n:1070 [binder, in mathcomp.ssreflect.fintype]
n:1071 [binder, in mathcomp.algebra.poly]
n:1072 [binder, in mathcomp.algebra.matrix]
n:1072 [binder, in mathcomp.algebra.ssrnum]
n:1073 [binder, in mathcomp.algebra.matrix]
n:1073 [binder, in mathcomp.ssreflect.fintype]
n:1074 [binder, in mathcomp.ssreflect.ssrnat]
n:1074 [binder, in mathcomp.algebra.matrix]
n:1076 [binder, in mathcomp.ssreflect.ssrnat]
n:1076 [binder, in mathcomp.algebra.matrix]
n:1076 [binder, in mathcomp.ssreflect.fintype]
n:1076 [binder, in mathcomp.algebra.mxalgebra]
n:1077 [binder, in mathcomp.algebra.ssrnum]
n:1078 [binder, in mathcomp.ssreflect.ssrnat]
n:1078 [binder, in mathcomp.algebra.matrix]
n:1078 [binder, in mathcomp.algebra.ssrnum]
n:1079 [binder, in mathcomp.ssreflect.fintype]
n:108 [binder, in mathcomp.ssreflect.binomial]
n:108 [binder, in mathcomp.fingroup.fingroup]
n:108 [binder, in mathcomp.solvable.abelian]
n:108 [binder, in mathcomp.algebra.mxalgebra]
n:1080 [binder, in mathcomp.ssreflect.ssrnat]
n:1080 [binder, in mathcomp.algebra.ssrnum]
n:1081 [binder, in mathcomp.ssreflect.ssrnat]
n:1081 [binder, in mathcomp.algebra.matrix]
n:1082 [binder, in mathcomp.algebra.ssrnum]
n:1082 [binder, in mathcomp.ssreflect.fintype]
n:1082 [binder, in mathcomp.ssreflect.bigop]
n:1083 [binder, in mathcomp.algebra.polydiv]
n:1084 [binder, in mathcomp.ssreflect.ssrnat]
n:1084 [binder, in mathcomp.algebra.matrix]
n:1084 [binder, in mathcomp.algebra.ssrnum]
n:1084 [binder, in mathcomp.ssreflect.fintype]
n:1084 [binder, in mathcomp.algebra.mxalgebra]
n:1085 [binder, in mathcomp.ssreflect.ssrnat]
n:1086 [binder, in mathcomp.ssreflect.fintype]
n:1087 [binder, in mathcomp.algebra.matrix]
n:1087 [binder, in mathcomp.algebra.ssrnum]
n:1088 [binder, in mathcomp.ssreflect.ssrnat]
n:1089 [binder, in mathcomp.algebra.ssrnum]
n:109 [binder, in mathcomp.ssreflect.ssrnat]
n:109 [binder, in mathcomp.algebra.ssrint]
n:1090 [binder, in mathcomp.ssreflect.ssrnat]
n:1090 [binder, in mathcomp.algebra.ssrnum]
n:1090 [binder, in mathcomp.ssreflect.fintype]
n:1092 [binder, in mathcomp.ssreflect.ssrnat]
n:1094 [binder, in mathcomp.ssreflect.ssrnat]
n:1094 [binder, in mathcomp.algebra.matrix]
n:1094 [binder, in mathcomp.ssreflect.fintype]
n:1095 [binder, in mathcomp.algebra.mxalgebra]
n:1096 [binder, in mathcomp.ssreflect.ssrnat]
n:1097 [binder, in mathcomp.ssreflect.ssrnat]
n:1098 [binder, in mathcomp.ssreflect.fintype]
n:11 [binder, in mathcomp.ssreflect.binomial]
n:11 [binder, in mathcomp.algebra.intdiv]
n:11 [binder, in mathcomp.ssreflect.choice]
n:11 [binder, in mathcomp.solvable.commutator]
n:11 [binder, in mathcomp.character.mxrepresentation]
n:11 [binder, in mathcomp.algebra.fraction]
n:110 [binder, in mathcomp.algebra.archimedean]
n:110 [binder, in mathcomp.ssreflect.binomial]
n:110 [binder, in mathcomp.ssreflect.path]
n:1100 [binder, in mathcomp.ssreflect.ssrnat]
n:1101 [binder, in mathcomp.ssreflect.ssrnat]
n:1102 [binder, in mathcomp.ssreflect.fintype]
n:1102 [binder, in mathcomp.algebra.mxalgebra]
n:1104 [binder, in mathcomp.ssreflect.ssrnat]
n:1105 [binder, in mathcomp.ssreflect.fintype]
n:1106 [binder, in mathcomp.ssreflect.ssrnat]
n:1107 [binder, in mathcomp.algebra.mxalgebra]
n:1108 [binder, in mathcomp.ssreflect.ssrnat]
n:1108 [binder, in mathcomp.algebra.matrix]
n:1108 [binder, in mathcomp.ssreflect.fintype]
n:1109 [binder, in mathcomp.ssreflect.seq]
n:1109 [binder, in mathcomp.ssreflect.ssrnat]
n:111 [binder, in mathcomp.ssreflect.div]
n:111 [binder, in mathcomp.algebra.intdiv]
n:111 [binder, in mathcomp.ssreflect.ssrnat]
n:111 [binder, in mathcomp.ssreflect.finfun]
n:111 [binder, in mathcomp.algebra.ssrint]
n:111 [binder, in mathcomp.character.mxabelem]
n:111 [binder, in mathcomp.solvable.extremal]
n:1110 [binder, in mathcomp.algebra.mxalgebra]
n:1111 [binder, in mathcomp.ssreflect.seq]
n:1111 [binder, in mathcomp.algebra.poly]
n:1112 [binder, in mathcomp.ssreflect.ssrnat]
n:1114 [binder, in mathcomp.ssreflect.ssrnat]
n:1115 [binder, in mathcomp.ssreflect.fintype]
n:1115 [binder, in mathcomp.algebra.mxalgebra]
n:1116 [binder, in mathcomp.ssreflect.ssrnat]
n:1118 [binder, in mathcomp.ssreflect.ssrnat]
n:1118 [binder, in mathcomp.ssreflect.fintype]
n:112 [binder, in mathcomp.ssreflect.binomial]
n:112 [binder, in mathcomp.fingroup.fingroup]
n:112 [binder, in mathcomp.solvable.abelian]
n:112 [binder, in mathcomp.solvable.burnside_app]
n:1120 [binder, in mathcomp.ssreflect.ssrnat]
n:1121 [binder, in mathcomp.ssreflect.ssrnat]
n:1121 [binder, in mathcomp.algebra.mxalgebra]
n:1123 [binder, in mathcomp.ssreflect.seq]
n:1124 [binder, in mathcomp.ssreflect.ssrnat]
n:1125 [binder, in mathcomp.ssreflect.ssrnat]
n:1125 [binder, in mathcomp.ssreflect.fintype]
n:1126 [binder, in mathcomp.algebra.mxalgebra]
n:1128 [binder, in mathcomp.ssreflect.ssrnat]
n:1128 [binder, in mathcomp.ssreflect.fintype]
n:113 [binder, in mathcomp.ssreflect.binomial]
n:113 [binder, in mathcomp.ssreflect.seq]
n:113 [binder, in mathcomp.ssreflect.ssrnat]
n:113 [binder, in mathcomp.ssreflect.prime]
n:113 [binder, in mathcomp.solvable.nilpotent]
n:1130 [binder, in mathcomp.ssreflect.ssrnat]
n:1131 [binder, in mathcomp.algebra.poly]
n:1131 [binder, in mathcomp.algebra.mxalgebra]
n:1132 [binder, in mathcomp.ssreflect.ssrnat]
n:1132 [binder, in mathcomp.ssreflect.fintype]
n:1134 [binder, in mathcomp.ssreflect.ssrnat]
n:1134 [binder, in mathcomp.algebra.matrix]
n:1135 [binder, in mathcomp.ssreflect.fintype]
n:1136 [binder, in mathcomp.ssreflect.ssrnat]
n:1136 [binder, in mathcomp.algebra.mxalgebra]
n:1137 [binder, in mathcomp.ssreflect.ssrnat]
n:1137 [binder, in mathcomp.ssreflect.fintype]
n:114 [binder, in mathcomp.ssreflect.binomial]
n:114 [binder, in mathcomp.algebra.intdiv]
n:114 [binder, in mathcomp.character.mxabelem]
n:114 [binder, in mathcomp.solvable.abelian]
n:114 [binder, in mathcomp.field.falgebra]
n:114 [binder, in mathcomp.algebra.qpoly]
n:1140 [binder, in mathcomp.ssreflect.ssrnat]
n:1141 [binder, in mathcomp.ssreflect.ssrnat]
n:1141 [binder, in mathcomp.algebra.mxalgebra]
n:1144 [binder, in mathcomp.ssreflect.ssrnat]
n:1145 [binder, in mathcomp.ssreflect.ssrnat]
n:1146 [binder, in mathcomp.algebra.matrix]
n:1146 [binder, in mathcomp.algebra.mxalgebra]
n:1147 [binder, in mathcomp.ssreflect.ssrnat]
n:1149 [binder, in mathcomp.ssreflect.ssrnat]
n:1149 [binder, in mathcomp.algebra.matrix]
n:115 [binder, in mathcomp.ssreflect.ssrnat]
n:115 [binder, in mathcomp.field.algC]
n:115 [binder, in mathcomp.algebra.ssrint]
n:1151 [binder, in mathcomp.ssreflect.ssrnat]
n:1151 [binder, in mathcomp.algebra.mxalgebra]
n:1153 [binder, in mathcomp.ssreflect.ssrnat]
n:1154 [binder, in mathcomp.ssreflect.ssrnat]
n:1154 [binder, in mathcomp.algebra.ssralg]
n:1156 [binder, in mathcomp.ssreflect.ssrnat]
n:1156 [binder, in mathcomp.algebra.mxalgebra]
n:1157 [binder, in mathcomp.algebra.ssralg]
n:1158 [binder, in mathcomp.ssreflect.ssrnat]
n:1158 [binder, in mathcomp.algebra.matrix]
n:116 [binder, in mathcomp.ssreflect.div]
n:116 [binder, in mathcomp.ssreflect.ssrnat]
n:116 [binder, in mathcomp.ssreflect.bigop]
n:1160 [binder, in mathcomp.ssreflect.ssrnat]
n:1161 [binder, in mathcomp.algebra.mxalgebra]
n:1162 [binder, in mathcomp.algebra.matrix]
n:1164 [binder, in mathcomp.ssreflect.ssrnat]
n:1165 [binder, in mathcomp.algebra.matrix]
n:1165 [binder, in mathcomp.algebra.mxalgebra]
n:1166 [binder, in mathcomp.ssreflect.seq]
n:1169 [binder, in mathcomp.ssreflect.ssrnat]
n:1169 [binder, in mathcomp.algebra.matrix]
n:1169 [binder, in mathcomp.algebra.mxalgebra]
n:117 [binder, in mathcomp.ssreflect.binomial]
n:117 [binder, in mathcomp.algebra.intdiv]
n:117 [binder, in mathcomp.field.algC]
n:117 [binder, in mathcomp.field.closed_field]
n:117 [binder, in mathcomp.algebra.ssrint]
n:117 [binder, in mathcomp.algebra.mxalgebra]
n:1172 [binder, in mathcomp.ssreflect.ssrnat]
n:1173 [binder, in mathcomp.algebra.mxalgebra]
n:1174 [binder, in mathcomp.algebra.matrix]
n:1177 [binder, in mathcomp.ssreflect.ssrnat]
n:1177 [binder, in mathcomp.algebra.matrix]
n:1177 [binder, in mathcomp.algebra.mxalgebra]
n:1179 [binder, in mathcomp.ssreflect.ssrnat]
n:118 [binder, in mathcomp.ssreflect.seq]
n:118 [binder, in mathcomp.character.mxabelem]
n:1181 [binder, in mathcomp.algebra.mxalgebra]
n:1182 [binder, in mathcomp.ssreflect.ssrnat]
n:1184 [binder, in mathcomp.ssreflect.ssrnat]
n:1186 [binder, in mathcomp.algebra.matrix]
n:1187 [binder, in mathcomp.algebra.poly]
n:1187 [binder, in mathcomp.algebra.mxalgebra]
n:1188 [binder, in mathcomp.ssreflect.ssrnat]
n:1189 [binder, in mathcomp.algebra.poly]
n:119 [binder, in mathcomp.algebra.archimedean]
n:119 [binder, in mathcomp.ssreflect.div]
n:119 [binder, in mathcomp.ssreflect.ssrnat]
n:119 [binder, in mathcomp.field.algC]
n:119 [binder, in mathcomp.field.closed_field]
n:119 [binder, in mathcomp.algebra.ssrint]
n:1191 [binder, in mathcomp.algebra.matrix]
n:1192 [binder, in mathcomp.algebra.mxalgebra]
n:1194 [binder, in mathcomp.algebra.matrix]
n:1195 [binder, in mathcomp.algebra.poly]
n:1197 [binder, in mathcomp.algebra.mxalgebra]
n:12 [binder, in mathcomp.field.cyclotomic]
n:12 [binder, in mathcomp.algebra.ssrint]
n:12 [binder, in mathcomp.field.finfield]
n:12 [binder, in mathcomp.ssreflect.prime]
n:12 [binder, in mathcomp.ssreflect.fingraph]
n:12 [binder, in mathcomp.solvable.nilpotent]
n:120 [binder, in mathcomp.ssreflect.prime]
n:1202 [binder, in mathcomp.algebra.mxalgebra]
n:1203 [binder, in mathcomp.algebra.matrix]
n:1207 [binder, in mathcomp.algebra.mxalgebra]
n:1208 [binder, in mathcomp.algebra.matrix]
n:121 [binder, in mathcomp.ssreflect.binomial]
n:121 [binder, in mathcomp.algebra.intdiv]
n:121 [binder, in mathcomp.algebra.ssrint]
n:121 [binder, in mathcomp.character.mxabelem]
n:121 [binder, in mathcomp.algebra.mxalgebra]
n:1211 [binder, in mathcomp.algebra.matrix]
n:1211 [binder, in mathcomp.algebra.mxalgebra]
n:1212 [binder, in mathcomp.ssreflect.ssrnat]
n:1214 [binder, in mathcomp.algebra.matrix]
n:1217 [binder, in mathcomp.algebra.matrix]
n:1217 [binder, in mathcomp.algebra.mxalgebra]
n:122 [binder, in mathcomp.fingroup.perm]
n:1221 [binder, in mathcomp.ssreflect.ssrnat]
n:1223 [binder, in mathcomp.algebra.mxalgebra]
n:123 [binder, in mathcomp.ssreflect.ssrnat]
n:123 [binder, in mathcomp.algebra.ssrint]
n:1233 [binder, in mathcomp.algebra.mxalgebra]
n:1234 [binder, in mathcomp.algebra.poly]
n:1236 [binder, in mathcomp.algebra.poly]
n:124 [binder, in mathcomp.fingroup.fingroup]
n:1245 [binder, in mathcomp.algebra.ssralg]
n:1246 [binder, in mathcomp.algebra.mxalgebra]
n:125 [binder, in mathcomp.algebra.intdiv]
n:125 [binder, in mathcomp.ssreflect.seq]
n:125 [binder, in mathcomp.ssreflect.ssrnat]
n:125 [binder, in mathcomp.algebra.mxpoly]
n:125 [binder, in mathcomp.algebra.ssrint]
n:125 [binder, in mathcomp.algebra.mxalgebra]
n:1251 [binder, in mathcomp.algebra.ssralg]
n:1258 [binder, in mathcomp.algebra.matrix]
n:1259 [binder, in mathcomp.algebra.mxalgebra]
n:126 [binder, in mathcomp.ssreflect.ssrnat]
n:1261 [binder, in mathcomp.algebra.matrix]
n:1263 [binder, in mathcomp.algebra.matrix]
n:1264 [binder, in mathcomp.algebra.mxalgebra]
n:1266 [binder, in mathcomp.algebra.mxalgebra]
n:1268 [binder, in mathcomp.algebra.matrix]
n:127 [binder, in mathcomp.ssreflect.binomial]
n:127 [binder, in mathcomp.field.closed_field]
n:127 [binder, in mathcomp.algebra.ssrint]
n:127 [binder, in mathcomp.solvable.nilpotent]
n:127 [binder, in mathcomp.field.falgebra]
n:1270 [binder, in mathcomp.algebra.matrix]
n:1270 [binder, in mathcomp.algebra.mxalgebra]
n:1272 [binder, in mathcomp.algebra.matrix]
n:1273 [binder, in mathcomp.algebra.mxalgebra]
n:1274 [binder, in mathcomp.algebra.ssralg]
n:1276 [binder, in mathcomp.algebra.matrix]
n:128 [binder, in mathcomp.algebra.intdiv]
n:128 [binder, in mathcomp.ssreflect.seq]
n:128 [binder, in mathcomp.field.separable]
n:128 [binder, in mathcomp.algebra.ssrint]
n:128 [binder, in mathcomp.fingroup.fingroup]
n:128 [binder, in mathcomp.algebra.mxalgebra]
n:1282 [binder, in mathcomp.algebra.ssrnum]
n:1283 [binder, in mathcomp.algebra.mxalgebra]
n:1284 [binder, in mathcomp.algebra.ssrnum]
n:1286 [binder, in mathcomp.algebra.ssrnum]
n:1287 [binder, in mathcomp.algebra.matrix]
n:1288 [binder, in mathcomp.algebra.ssrnum]
n:129 [binder, in mathcomp.ssreflect.seq]
n:129 [binder, in mathcomp.algebra.ssrint]
n:129 [binder, in mathcomp.ssreflect.prime]
n:129 [binder, in mathcomp.ssreflect.fingraph]
n:1290 [binder, in mathcomp.algebra.matrix]
n:1290 [binder, in mathcomp.algebra.ssrnum]
n:1292 [binder, in mathcomp.algebra.matrix]
n:1292 [binder, in mathcomp.algebra.ssrnum]
n:1292 [binder, in mathcomp.algebra.poly]
n:1292 [binder, in mathcomp.algebra.mxalgebra]
n:1294 [binder, in mathcomp.algebra.ssrnum]
n:1294 [binder, in mathcomp.algebra.mxalgebra]
n:1296 [binder, in mathcomp.algebra.ssrnum]
n:1297 [binder, in mathcomp.algebra.matrix]
n:1297 [binder, in mathcomp.algebra.poly]
n:1297 [binder, in mathcomp.algebra.mxalgebra]
n:1298 [binder, in mathcomp.character.mxrepresentation]
n:1299 [binder, in mathcomp.algebra.matrix]
n:13 [binder, in mathcomp.algebra.intdiv]
n:13 [binder, in mathcomp.ssreflect.ssrnat]
n:13 [binder, in mathcomp.solvable.commutator]
n:13 [binder, in mathcomp.algebra.matrix]
n:13 [binder, in mathcomp.algebra.ssrnum]
n:13 [binder, in mathcomp.algebra.ssralg]
n:13 [binder, in mathcomp.algebra.qpoly]
n:130 [binder, in mathcomp.ssreflect.seq]
n:130 [binder, in mathcomp.ssreflect.choice]
n:130 [binder, in mathcomp.ssreflect.ssrnat]
n:130 [binder, in mathcomp.fingroup.fingroup]
n:130 [binder, in mathcomp.solvable.nilpotent]
n:1300 [binder, in mathcomp.algebra.mxalgebra]
n:1301 [binder, in mathcomp.algebra.matrix]
n:1302 [binder, in mathcomp.algebra.ssralg]
n:1302 [binder, in mathcomp.algebra.poly]
n:1302 [binder, in mathcomp.ssreflect.bigop]
n:1303 [binder, in mathcomp.algebra.mxalgebra]
n:1305 [binder, in mathcomp.algebra.matrix]
n:1306 [binder, in mathcomp.algebra.mxalgebra]
n:1307 [binder, in mathcomp.algebra.matrix]
n:1308 [binder, in mathcomp.algebra.ssralg]
n:131 [binder, in mathcomp.algebra.intdiv]
n:131 [binder, in mathcomp.algebra.mxalgebra]
n:1311 [binder, in mathcomp.algebra.matrix]
n:1313 [binder, in mathcomp.algebra.matrix]
n:1314 [binder, in mathcomp.algebra.matrix]
n:1316 [binder, in mathcomp.algebra.matrix]
n:1319 [binder, in mathcomp.algebra.matrix]
n:132 [binder, in mathcomp.ssreflect.ssrnat]
n:1320 [binder, in mathcomp.algebra.ssrnum]
n:1322 [binder, in mathcomp.algebra.ssralg]
n:1323 [binder, in mathcomp.algebra.ssrnum]
n:1324 [binder, in mathcomp.algebra.matrix]
n:1324 [binder, in mathcomp.algebra.ssrnum]
n:1326 [binder, in mathcomp.algebra.matrix]
n:133 [binder, in mathcomp.fingroup.fingroup]
n:1338 [binder, in mathcomp.algebra.ssrnum]
n:134 [binder, in mathcomp.algebra.intdiv]
n:134 [binder, in mathcomp.ssreflect.ssrnat]
n:134 [binder, in mathcomp.algebra.mxalgebra]
n:1340 [binder, in mathcomp.ssreflect.bigop]
n:135 [binder, in mathcomp.algebra.archimedean]
n:135 [binder, in mathcomp.ssreflect.div]
n:135 [binder, in mathcomp.field.algC]
N:135 [binder, in mathcomp.solvable.gseries]
n:1350 [binder, in mathcomp.ssreflect.bigop]
n:136 [binder, in mathcomp.ssreflect.seq]
n:137 [binder, in mathcomp.field.separable]
n:137 [binder, in mathcomp.ssreflect.bigop]
n:137 [binder, in mathcomp.algebra.mxalgebra]
n:1371 [binder, in mathcomp.algebra.ssralg]
n:1373 [binder, in mathcomp.ssreflect.seq]
n:1373 [binder, in mathcomp.ssreflect.finset]
n:1377 [binder, in mathcomp.ssreflect.seq]
n:138 [binder, in mathcomp.ssreflect.ssrnat]
n:1383 [binder, in mathcomp.ssreflect.seq]
n:1385 [binder, in mathcomp.algebra.matrix]
n:1386 [binder, in mathcomp.ssreflect.seq]
n:1387 [binder, in mathcomp.algebra.matrix]
n:1389 [binder, in mathcomp.ssreflect.seq]
n:139 [binder, in mathcomp.ssreflect.seq]
n:139 [binder, in mathcomp.solvable.commutator]
n:139 [binder, in mathcomp.ssreflect.path]
n:139 [binder, in mathcomp.ssreflect.bigop]
n:139 [binder, in mathcomp.algebra.qpoly]
n:1390 [binder, in mathcomp.algebra.matrix]
n:1392 [binder, in mathcomp.ssreflect.seq]
n:1393 [binder, in mathcomp.algebra.matrix]
n:1395 [binder, in mathcomp.ssreflect.seq]
n:1396 [binder, in mathcomp.algebra.matrix]
n:1398 [binder, in mathcomp.ssreflect.seq]
n:1399 [binder, in mathcomp.algebra.matrix]
n:14 [binder, in mathcomp.ssreflect.ssrnat]
n:14 [binder, in mathcomp.algebra.ssrint]
n:140 [binder, in mathcomp.ssreflect.tuple]
n:1400 [binder, in mathcomp.ssreflect.seq]
n:1403 [binder, in mathcomp.ssreflect.seq]
n:1405 [binder, in mathcomp.algebra.matrix]
n:1408 [binder, in mathcomp.algebra.matrix]
n:141 [binder, in mathcomp.solvable.commutator]
n:141 [binder, in mathcomp.field.closed_field]
n:141 [binder, in mathcomp.algebra.ssrint]
n:141 [binder, in mathcomp.algebra.mxalgebra]
n:1410 [binder, in mathcomp.ssreflect.seq]
n:1411 [binder, in mathcomp.algebra.matrix]
n:1412 [binder, in mathcomp.ssreflect.seq]
n:1414 [binder, in mathcomp.ssreflect.seq]
n:1415 [binder, in mathcomp.algebra.matrix]
n:1418 [binder, in mathcomp.ssreflect.seq]
n:142 [binder, in mathcomp.ssreflect.seq]
n:142 [binder, in mathcomp.ssreflect.ssrnat]
n:142 [binder, in mathcomp.field.separable]
n:1421 [binder, in mathcomp.character.mxrepresentation]
n:1424 [binder, in mathcomp.ssreflect.seq]
n:1426 [binder, in mathcomp.algebra.matrix]
n:1429 [binder, in mathcomp.algebra.matrix]
n:143 [binder, in mathcomp.solvable.commutator]
n:143 [binder, in mathcomp.field.separable]
n:143 [binder, in mathcomp.ssreflect.prime]
n:1431 [binder, in mathcomp.algebra.matrix]
n:1433 [binder, in mathcomp.algebra.matrix]
n:1438 [binder, in mathcomp.ssreflect.seq]
n:1438 [binder, in mathcomp.algebra.ssralg]
n:144 [binder, in mathcomp.ssreflect.tuple]
n:1440 [binder, in mathcomp.ssreflect.seq]
n:1441 [binder, in mathcomp.algebra.matrix]
n:145 [binder, in mathcomp.ssreflect.binomial]
n:145 [binder, in mathcomp.solvable.commutator]
n:145 [binder, in mathcomp.algebra.ssrint]
n:145 [binder, in mathcomp.algebra.mxalgebra]
n:1451 [binder, in mathcomp.algebra.ssralg]
n:1452 [binder, in mathcomp.algebra.matrix]
n:1453 [binder, in mathcomp.algebra.matrix]
n:146 [binder, in mathcomp.algebra.intdiv]