From mathcomp Require Import all_ssreflect all_algebra finmap generic_quotient.
From mathcomp Require Import boolp classical_sets functions.
From mathcomp Require Import cardinality mathcomp_extra fsbigop.
Require Import reals signed.
# Filters and basic topological notions
This file develops tools for the manipulation of filters and basic
topological notions.
The development of topological notions builds on "filtered types". They
are types equipped with an interface that associates to each element a
set of sets, intended to represent a filter. The notions of limit and
convergence are defined for filtered types and in the documentation below
we call "canonical filter" of an element the set of sets associated to it
by the interface of filtered types.
We used these topological notions to prove, e.g., Tychonoff's Theorem,
which states that any product of compact sets is compact according to the
product topology or Arzela-Ascoli's theorem.
Table of contents of the documentation:
1. Filters
- Structure of filter
- Theory of filters
- Near notations and tactics
+ Notations
+ Tactics
2. Basic topological notions
- Mathematical structures
+ Topology
+ Uniform spaces
+ Pseudometric spaces
+ Complete uniform spaces
+ Complete pseudometric spaces
+ Function space topologies
+ Subspaces of topological spaces
# 1. Filters
## Structure of filter
```
filteredType U == interface type for types whose
elements represent sets of sets on U.
These sets are intended to be filters
on U but this is not enforced yet.
FilteredType U T m == packs the function m: T -> set (set U)
to build a filtered type of type
filteredType U
T must have a pointedType structure.
[filteredType U of T for cT] == T-clone of the filteredType U
structure cT
[filteredType U of T] == clone of a canonical structure of
filteredType U on T
Filtered.source Y Z == structure that records types X such
that there is a function mapping
functions of type X -> Y to filters on
Z
Allows to infer the canonical filter
associated to a function by looking
looking at its source type.
Filtered.Source F == if F : (X -> Y) -> set (set Z), packs
X with F in a Filtered.source Y Z
structure
```
We endow several standard types with the structure of filter, e.g.:
- products: filtered_prod
- matrices: matrix_filtered
- natural numbers: nat_filteredType
## Theory of filters
```
nbhs p == set of sets associated to p (in a
filtered type)
filter_from D B == set of the supersets of the elements
of the family of sets B whose indices
are in the domain D
This is a filter if (B_i)_(i in D)
forms a filter base.
filter_prod F G == product of the filters F and G
[filter of x] == canonical filter associated to x
F `=>` G <-> G is included in F
F and G are sets of sets.
F --> G <-> the canonical filter associated to G
is included in the canonical filter
associated to F
lim F == limit of the canonical filter
associated with F if there is such a
limit, i.e., an element l such that
the canonical filter associated to l
is a subset of F
[lim F in T] == limit of the canonical filter
associated to F in T where T has type
filteredType U
[cvg F in T] <-> the canonical filter associated to F
converges in T
cvg F <-> same as [cvg F in T] where T is
inferred from the type of the
canonical filter associated to F
Filter F == type class proving that the set of
sets F is a filter
ProperFilter F == type class proving that the set of
sets F is a proper filter
UltraFilter F == type class proving that the set of
sets F is an ultrafilter
filter_on T == interface type for sets of sets on T
that are filters
FilterType F FF == packs the set of sets F with the proof
FF of Filter F to build a filter_on T
structure
pfilter_on T == interface type for sets of sets on T
that are proper filters
PFilterPack F FF == packs the set of sets F with the proof
FF of ProperFilter F to build a
pfilter_on T structure
fmap f F == image of the filter F by the function
f
E @[x --> F] == image of the canonical filter
associated to F by the function
(fun x => E)
f @ F == image of the canonical filter
associated to F by the function f
fmapi f F == image of the filter F by the relation
f
E `@[x --> F] == image of the canonical filter
associated to F by the relation
(fun x => E)
f `@ F == image of the canonical filter
associated to F by the relation f
globally A == filter of the sets containing A
@frechet_filter T := [set S : set T | finite_set (~` S)]
a.k.a. cofinite filter
at_point a == filter of the sets containing a
within D F == restriction of the filter F to the
domain D
principal_filter x == filter containing every superset of x
subset_filter F D == similar to within D F, but with
dependent types
powerset_filter_from F == the filter of downward closed subsets
of F.
Enables use of near notation to pick
suitably small members of F
in_filter F == interface type for the sets that
belong to the set of sets F
InFilter FP == packs a set P with a proof of F P to
build a in_filter F structure
\oo == "eventually" filter on nat: set of
predicates on natural numbers that are
eventually true
clopen U == U is both open and closed
```
## Near notations and tactics
The purpose of the near notations and tactics is to make the manipulation
of filters easier. Instead of proving $F\; G$, one can prove $G\; x$ for
$x$ "near F", i.e., for x such that H x for H arbitrarily precise as long
as $F\; H$. The near tactics allow for a delayed introduction of $H$:
$H$ is introduced as an existential variable and progressively
instantiated during the proof process.
### Notations
```
{near F, P} == the property P holds near the
canonical filter associated to F
P must have the form forall x, Q x.
Equivalent to F Q.
\forall x \near F, P x <-> F (fun x => P x).
\near x, P x := \forall y \near x, P y.
{near F & G, P} == same as {near H, P}, where H is the
product of the filters F and G
\forall x \near F & y \near G, P x y := {near F & G, forall x y, P x y}
\forall x & y \near F, P x y == same as before, with G = F
\near x & y, P x y := \forall z \near x & t \near y, P x y
x \is_near F == x belongs to a set P : in_filter F
```
### Tactics
- near=> x introduces x:
On the goal \forall x \near F, G x, introduces the variable x and an
"existential", and an unaccessible hypothesis ?H x and asks the user to
prove (G x) in this context.
Under the hood, it delays the proof of F ?H and waits for near: x.
Also exists under the form near=> x y.
- near: x discharges x:
On the goal H_i x, and where x \is_near F, it asks the user to prove
that (\forall x \near F, H_i x), provided that H_i x does not depend on
variables introduced after x.
Under the hood, it refines by intersection the existential variable ?H
attached to x, computes the intersection with F, and asks the user to
prove F H_i, right now.
- end_near should be used to close remaining existentials trivially.
- near F => x poses a variable near F, where F is a proper filter
It adds to the context a variable x that \is_near F, i.e., one may
assume H x for any H in F. This new variable x can be dealt with using
near: x, as for variables introduced by near=>.
# 2. Basic topological notions
## Mathematical structures
### Topology
```
topologicalType == interface type for topological space
structure.
TopologicalType T m == packs the mixin m to build a
topologicalType
T must have a canonical structure of
filteredType T.
TopologicalMixin nbhs_filt nbhsE == builds the mixin for a topological
space from the proofs that nbhs
outputs proper filters and defines the
same notion of neighbourhood as the
open sets.
[topologicalType of T for cT] == T-clone of the topologicalType
structure cT
[topologicalType of T] == clone of a canonical structure of
topologicalType on T
open == set of open sets
open_nbhs p == set of open neighbourhoods of p
basis B == a family of open sets that converges
to each point
second_countable T == T has a countable basis
continuous f <-> f is continuous w.r.t the topology
[locally P] := forall a, A a -> G (within A (nbhs x))
if P is convertible to G (globally A)
topologyOfFilterMixin nbhs_filt nbhs_sing nbhs_nbhs == topology defined by
a filter
It builds the mixin for a topological
space from the properties of nbhs and
hence assumes that the carrier is a
filterType.
topologyOfOpenMixin opT opI op_bigU == topology defined by open sets
It builds the mixin for a topological
space from the properties of open
sets, assuming the carrier is a
pointed type. nbhs_of_open must be
used to declare a filterType.
topologyOfBaseMixin b_cover b_join == topology defined by a base of open
sets
It builds the mixin for a topological
space from the properties of a base of
open sets; the type of indices must be
a pointedType, as well as the carrier.
nbhs_of_open \o open_from must be
used to declare a filterType.
filterI_iter F n == nth stage of recursively building the
filter of finite intersections of F
finI_from D f == set of \bigcap_(i in E) f i where E is
a finite subset of D
topologyOfSubbaseMixin D b == topology defined by a subbase of open
sets
It builds the mixin for a topological
space from a subbase of open sets b
indexed on domain D; the type of
indices must be a pointedType.
We endow several standard types with the structure of topology, e.g.:
- products: prod_topologicalType
- matrices: matrix_topologicalType
- natural numbers: nat_topologicalType
weak_topologicalType f == weak topology by a function f : S -> T
on S
S must be a pointedType and T a
topologicalType.
sup_topologicalType Tc == supremum topology of the family of
topologicalType structures Tc on T
T must be a pointedType.
product_topologicalType T == product topology of the family of
topologicalTypes T.
quotient_topology Q == the quotient topology corresponding to
quotient Q : quotType T. where T has
type topologicalType
x^' == set of neighbourhoods of x where x is
excluded (a "deleted neighborhood")
closure A == closure of the set A.
limit_point E == the set of limit points of E
closed == set of closed sets.
cluster F == set of cluster points of F
compact == set of compact sets w.r.t. the filter-
based definition of compactness
hausdorff_space T <-> T is a Hausdorff space (T2)
compact_near F == the filter F contains a closed comapct
set
precompact A == the set A is contained in a closed and
compact set
locally_compact A == every point in A has a compact
(and closed) neighborhood
discrete_space T <-> every nbhs is a principal filter
finite_subset_cover D F A == the family of sets F is a cover of A
for a finite number of indices in D
cover_compact == set of compact sets w.r.t. the open
cover-based definition of compactness
near_covering == a reformulation of covering compact
better suited for use with `near`
near_covering_within == equivalent definition of near_covering
kolmogorov_space T <-> T is a Kolmogorov space (T0)
accessible_space T <-> T is an accessible space (T1)
close x y <-> x and y are arbitrarily close w.r.t.
to balls
connected A <-> the only non empty subset of A which
is both open and closed in A is A
separated A B == the two sets A and B are separated
connected_component x == the connected component of point x
perfect_set A == A is closed, and is every point in A
is a limit point of A
totally_disconnected A == the only connected subsets of A are
empty or singletons
zero_dimensional T == points are separable by a clopen set
set_nbhs A == filter from open sets containing A
```
We used these topological notions to prove Tychonoff's Theorem, which
states that any product of compact sets is compact according to the
product topology.
### Uniform spaces
```
nbhs_ ent == neighbourhoods defined using entourages
uniformType == interface type for uniform spaces: a
type equipped with entourages
UniformMixin efilter erefl einv esplit nbhse == builds the mixin for a
uniform space from the properties of
entourages and the compatibility between
entourages and nbhs
UniformType T m == packs the uniform space mixin into a
uniformType. T must have a canonical
structure of topologicalType
[uniformType of T for cT] == T-clone of the uniformType structure cT
[uniformType of T] == clone of a canonical structure of
uniformType on T
topologyOfEntourageMixin umixin == builds the mixin for a topological
space from a mixin for a uniform space
entourage == set of entourages in a uniform space
split_ent E == when E is an entourage, split_ent E is
an entourage E' such that E' \o E' is
included in E when seen as a relation
countable_uniformity T == T's entourage has a countable base
This is equivalent to `T` being
metrizable.
unif_continuous f <-> f is uniformly continuous
entourage_ ball == entourages defined using balls
weak_uniformType == the uniform space for weak topologies
sup_uniformType == the uniform space for sup topologies
discrete_ent == entourages for the discrete topology
```
We endow several standard types with the structure of uniform space, e.g.:
- products: prod_uniformType
- matrices: matrix_uniformType
### PseudoMetric spaces
```
entourage_ ball == entourages defined using balls
pseudoMetricType == interface type for pseudo metric space
structure: a type equipped with balls
PseudoMetricMixin brefl bsym btriangle nbhsb == builds the mixin for a
pseudo metric space from the properties
of balls and the compatibility between
balls and entourages
PseudoMetricType T m == packs the pseudo metric space mixin into
a pseudoMetricType
T must have a canonical structure of
uniformType.
[pseudoMetricType R of T for cT] == T-clone of the pseudoMetricType
structure cT, with R the ball radius
[pseudoMetricType R of T] == clone of a canonical structure of
pseudoMetricType on T, with R the ball
radius
uniformityOfBallMixin umixin == builds the mixin for a topological space
from a mixin for a pseudoMetric space.
ball x e == ball of center x and radius e.
nbhs_ball_ ball == nbhs defined using the given balls
nbhs_ball == nbhs defined using balls in a
pseudometric space
discrete_ball == singleton balls for the discrete
topology
```
We endow several standard types with the structure of pseudometric space,
e.g.:
- products: prod_pseudoMetricType
- matrices: matrix_pseudoMetricType
- weak_pseudoMetricType (the metric space for weak topologies)
- sup_pseudoMetricType
- product_pseudoMetricType
### Complete uniform spaces
```
cauchy F <-> the set of sets F is a cauchy filter
(entourage definition)
completeType == interface type for a complete uniform
space structure
CompleteType T cvgCauchy == packs the proof that every proper cauchy
filter on T converges into a
completeType structure
T must have a canonical structure of
uniformType.
[completeType of T for cT] == T-clone of the completeType structure
cT
[completeType of T] == clone of a canonical structure of
completeType on T
```
We endow several standard types with the structure of complete uniform
space, e.g.:
- matrices: matrix_completeType
- functions: fun_completeType
### Complete pseudometric spaces
```
cauchy_ex F <-> the set of sets F is a cauchy filter
(epsilon-delta definition)
cauchy_ball F <-> the set of sets F is a cauchy filter
(using the near notations)
completePseudoMetricType == interface type for a complete
pseudometric space structure
CompletePseudoMetricType T cvgCauchy == packs the proof that every proper
cauchy filter on T converges into a
completePseudoMetricType structure
T must have a canonical structure of
pseudoMetricType.
[completePseudoMetricType of T for cT] == T-clone of the
completePseudoMetricType structure cT.
[completePseudoMetricType of T] == clone of a canonical structure of
completePseudoMetricType on T.
ball_ N == balls defined by the norm/absolute
value N
```
We endow several standard types with the structure of complete
pseudometric space, e.g.:
- matrices: matrix_completePseudoMetricType
- functions: fct_completePseudoMetricType
We endow numFieldType with the types of topological notions
(accessible with "Import numFieldTopology.Exports."):
- numField_filteredType
- numField_topologicalType
- numField_uniformType
- numField_pseudoMetricType
### Function space topologies
```
{uniform` A -> V} == the space U -> V, equipped with the topology
of uniform convergence from a set A to V, where
V is a uniformType
{uniform U -> V} := {uniform` [set: U] -> V}
{uniform A, F --> f} == F converges to f in {uniform A -> V}
{uniform, F --> f} := {uniform setT, F --> f}
{ptws U -> V} == the space U -> V, equipped with the topology of
pointwise convergence from U to V, where V is
a topologicalType
This is a notation for @fct_Pointwise U V.
{ptws, F --> f} == F converges to f in {ptws U -> V}
{family fam, U -> V} == the space U -> V, equipped with the supremum
topology of {uniform A -> f} for each A in
'fam'
In particular {family compact, U -> V} is the
topology of compact convergence.
{family fam, F --> f} == F converges to f in {family fam, U -> V}
{compact_open, U -> V} == compact-open topology
{compact_open, F --> f} == F converges to f in {compact_open, U -> V}
dense S == the set (S : set T) is dense in T, with T of
type topologicalType
weak_pseudoMetricType == the metric space for weak topologies
```
### Subspaces of topological spaces
```
subspace A == for (A : set T), this is a copy of T with a
topology that ignores points outside A
incl_subspace x == with x of type subspace A with (A : set T),
inclusion of subspace A into T
separate_points_from_closed f == for a closed set U and point x outside
some member of the family f, it sends f_i(x)
outside (closure (f_i @` U))
Used together with join_product.
join_product f == the function (x => f ^~ x)
When the family f separates points from closed
sets, join_product is an embedding.
singletons T := [set [set x] | x in [set: T]]
gauge E == for an entourage E, gauge E is a filter which
includes `iter n split_ent E`
Critically, `gauge E` forms a uniform space
with a countable uniformity.
gauge_pseudoMetricType E == the pseudoMetricType associated with the
`gauge E`
normal_space X == X is normal (sometimes called T4)
regular_space X == X is regular (sometimes called T3)
equicontinuous W x == the set (W : X -> Y) is equicontinuous at x
pointwise_precompact W == for each (x : X), the set of images
[f x | f in W] is precompact
```
Reserved Notation "{ 'near' x , P }" (at level 0, format "{ 'near' x , P }").
Reserved Notation "'\forall' x '\near' x_0 , P"
(
at level 200, x name, P at level 200,
format "'\forall' x '\near' x_0 , P").
Reserved Notation "'\near' x , P"
(
at level 200, x at level 99, P at level 200,
format "'\near' x , P", only parsing).
Reserved Notation "{ 'near' x & y , P }"
(
at level 0, format "{ 'near' x & y , P }").
Reserved Notation "'\forall' x '\near' x_0 & y '\near' y_0 , P"
(
at level 200, x name, y name, P at level 200,
format "'\forall' x '\near' x_0 & y '\near' y_0 , P").
Reserved Notation "'\forall' x & y '\near' z , P"
(
at level 200, x name, y name, P at level 200,
format "'\forall' x & y '\near' z , P").
Reserved Notation "'\near' x & y , P"
(
at level 200, x, y at level 99, P at level 200,
format "'\near' x & y , P", only parsing).
Reserved Notation "[ 'filter' 'of' x ]" (format "[ 'filter' 'of' x ]").
Reserved Notation "F `=>` G" (at level 70, format "F `=>` G").
Reserved Notation "F --> G" (at level 70, format "F --> G").
Reserved Notation "[ 'lim' F 'in' T ]" (format "[ 'lim' F 'in' T ]").
Reserved Notation "[ 'cvg' F 'in' T ]" (format "[ 'cvg' F 'in' T ]").
Reserved Notation "x \is_near F" (at level 10, format "x \is_near F").
Reserved Notation "E @[ x --> F ]"
(
at level 60, x name, format "E @[ x --> F ]").
Reserved Notation "f @ F" (at level 60, format "f @ F").
Reserved Notation "E `@[ x --> F ]"
(
at level 60, x name, format "E `@[ x --> F ]").
Reserved Notation "f `@ F" (at level 60, format "f `@ F").
Reserved Notation "
A ^°
" (at level 1, format "A ^°").
Reserved Notation "[ 'locally' P ]" (at level 0, format "[ 'locally' P ]").
Reserved Notation "x ^'" (at level 2, format "x ^'").
Reserved Notation "{ 'within' A , 'continuous' f }"
(
at level 70, A at level 69, format "{ 'within' A , 'continuous' f }").
Reserved Notation "{ 'uniform`' A -> V }"
(
at level 0, A at level 69, format "{ 'uniform`' A -> V }").
Reserved Notation "{ 'uniform' U -> V }"
(
at level 0, U at level 69, format "{ 'uniform' U -> V }").
Reserved Notation "{ 'uniform' A , F --> f }"
(
at level 0, A at level 69, F at level 69,
format "{ 'uniform' A , F --> f }").
Reserved Notation "{ 'uniform' , F --> f }"
(
at level 0, F at level 69,
format "{ 'uniform' , F --> f }").
Reserved Notation "{ 'ptws' U -> V }"
(
at level 0, U at level 69, format "{ 'ptws' U -> V }").
Reserved Notation "{ 'ptws' , F --> f }"
(
at level 0, F at level 69, format "{ 'ptws' , F --> f }").
Reserved Notation "{ 'family' fam , U -> V }"
(
at level 0, U at level 69, format "{ 'family' fam , U -> V }").
Reserved Notation "{ 'family' fam , F --> f }"
(
at level 0, F at level 69, format "{ 'family' fam , F --> f }").
Reserved Notation "{ 'compact-open' , U -> V }"
(
at level 0, U at level 69, format "{ 'compact-open' , U -> V }").
Reserved Notation "{ 'compact-open' , F --> f }"
(
at level 0, F at level 69, format "{ 'compact-open' , F --> f }").
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Obligation Tactic := idtac.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Section bigmaxmin.
Local Notation max := Order.max.
Local Notation min := Order.min.
Local Open Scope order_scope.
Variables (
d : unit) (
T : orderType d) (
x : T) (
I : finType) (
P : pred I)
(
m : T) (
F : I -> T).
Lemma bigmax_geP : reflect (
m <= x \/ exists2 i, P i & m <= F i)
(
m <= \big[max/x]_(
i | P i)
F i).
Proof.
apply: (
iffP idP)
=> [|[mx|[i Pi mFi]]].
- rewrite leNgt => /bigmax_ltP /not_andP[/negP|]; first by rewrite -leNgt; left.
by move=> /existsNP[i /not_implyP[Pi /negP]]; rewrite -leNgt; right; exists i.
- by rewrite bigmax_idl le_maxr mx.
- by rewrite (
bigmaxD1 i)
// le_maxr mFi.
Qed.
Lemma bigmax_gtP : reflect (
m < x \/ exists2 i, P i & m < F i)
(
m < \big[max/x]_(
i | P i)
F i).
Proof.
apply: (
iffP idP)
=> [|[mx|[i Pi mFi]]].
- rewrite ltNge => /bigmax_leP /not_andP[/negP|]; first by rewrite -ltNge; left.
by move=> /existsNP[i /not_implyP[Pi /negP]]; rewrite -ltNge; right; exists i.
- by rewrite bigmax_idl lt_maxr mx.
- by rewrite (
bigmaxD1 i)
// lt_maxr mFi.
Qed.
Lemma bigmin_leP : reflect (
x <= m \/ exists2 i, P i & F i <= m)
(
\big[min/x]_(
i | P i)
F i <= m).
Proof.
apply: (
iffP idP)
=> [|[xm|[i Pi Fim]]].
- rewrite leNgt => /bigmin_gtP /not_andP[/negP|]; first by rewrite -leNgt; left.
by move=> /existsNP[i /not_implyP[Pi /negP]]; rewrite -leNgt; right; exists i.
- by rewrite bigmin_idl le_minl xm.
- by rewrite (
bigminD1 i)
// le_minl Fim.
Qed.
Lemma bigmin_ltP : reflect (
x < m \/ exists2 i, P i & F i < m)
(
\big[min/x]_(
i | P i)
F i < m).
Proof.
apply: (
iffP idP)
=> [|[xm|[i Pi Fim]]].
- rewrite ltNge => /bigmin_geP /not_andP[/negP|]; first by rewrite -ltNge; left.
by move=> /existsNP[i /not_implyP[Pi /negP]]; rewrite -ltNge; right; exists i.
- by rewrite bigmin_idl lt_minl xm.
- by rewrite (
bigminD1 _ _ _ Pi)
lt_minl Fim.
Qed.
End bigmaxmin.
Lemma and_prop_in (
T : Type) (
p : mem_pred T) (
P Q : T -> Prop)
:
{in p, forall x, P x /\ Q x} <->
{in p, forall x, P x} /\ {in p, forall x, Q x}.
Proof.
split=> [cnd|[cnd1 cnd2] x xin]; first by split=> x xin; case: (cnd x xin).
by split; [apply: cnd1 | apply: cnd2].
Qed.
Lemma mem_inc_segment d (
T : porderType d) (
a b : T) (
f : T -> T)
:
{in `[a, b] &, {mono f : x y / (
x <= y)
%O}} ->
{homo f : x / x \in `[a, b] >-> x \in `[f a, f b]}.
Proof.
move=> fle x xab; have leab : (
a <= b)
%O by rewrite (
itvP xab).
by rewrite in_itv/= !fle ?(
itvP xab).
Qed.
Lemma mem_dec_segment d (
T : porderType d) (
a b : T) (
f : T -> T)
:
{in `[a, b] &, {mono f : x y /~ (
x <= y)
%O}} ->
{homo f : x / x \in `[a, b] >-> x \in `[f b, f a]}.
Proof.
move=> fge x xab; have leab : (
a <= b)
%O by rewrite (
itvP xab).
by rewrite in_itv/= !fge ?(
itvP xab).
Qed.
Section Linear1.
Context (
R : ringType) (
U : lmodType R) (
V : zmodType) (
s : R -> V -> V).
Canonical linear_eqType := EqType {linear U -> V | s} gen_eqMixin.
Canonical linear_choiceType := ChoiceType {linear U -> V | s} gen_choiceMixin.
End Linear1.
Section Linear2.
Context (
R : ringType) (
U : lmodType R) (
V : zmodType) (
s : R -> V -> V)
(
s_law : GRing.Scale.law s).
Canonical linear_pointedType := PointedType {linear U -> V | GRing.Scale.op s_law}
(
@GRing.
null_fun_linear R U V s s_law).
End Linear2.
Module Filtered.
Definition nbhs_of U T := T -> set (
set U).
Record class_of U T := Class {
base : Pointed.class_of T;
nbhs_op : nbhs_of U T
}.
Section ClassDef.
Variable U : Type.
Structure type := Pack { sort; _ : class_of U sort }.
Local Coercion sort : type >-> Sortclass.
Variables (
T : Type) (
cT : type).
Definition class := let: Pack _ c := cT return class_of U cT in c.
Definition clone c of phant_id class c := @Pack T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (
class : class_of U xT).
Local Coercion base : class_of >-> Pointed.class_of.
Definition pack m :=
fun bT b of phant_id (
Pointed.class bT)
b => @Pack T (
Class b m).
Definition eqType := @Equality.
Pack cT xclass.
Definition choiceType := @Choice.
Pack cT xclass.
Definition fpointedType := @Pointed.
Pack cT xclass.
End ClassDef.
Structure source Z Y := Source {
source_type :> Type;
_ : (
source_type -> Z)
-> set (
set Y)
}.
Definition source_filter Z Y (
F : source Z Y)
: (
F -> Z)
-> set (
set Y)
:=
let: Source X f := F in f.
Module Exports.
Coercion sort : type >-> Sortclass.
Coercion base : class_of >-> Pointed.class_of.
Coercion nbhs_op : class_of >-> nbhs_of.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion fpointedType : type >-> Pointed.type.
Canonical fpointedType.
Notation filteredType := type.
Notation FilteredType U T m := (
@pack U T m _ _ idfun).
Notation "[ 'filteredType' U 'of' T 'for' cT ]" := (
@clone U T cT _ idfun)
(
at level 0, format "[ 'filteredType' U 'of' T 'for' cT ]")
: form_scope.
Notation "[ 'filteredType' U 'of' T ]" := (
@clone U T _ _ id)
(
at level 0, format "[ 'filteredType' U 'of' T ]")
: form_scope.
Canonical default_arrow_filter Y (
Z : pointedType) (
X : source Z Y)
:=
FilteredType Y (
X -> Z) (
@source_filter _ _ X).
Canonical source_filter_filter Y :=
@Source Prop _ (
_ -> Prop) (
fun x : (
set (
set Y))
=> x).
Canonical source_filter_filter' Y :=
@Source Prop _ (
set _) (
fun x : (
set (
set Y))
=> x).
End Exports.
End Filtered.
Export Filtered.Exports.
Definition nbhs {U} {T : filteredType U} : T -> set (
set U)
:=
Filtered.nbhs_op (
Filtered.class T).
Arguments nbhs {U T} _ _ : simpl never.
Definition filter_from {I T : Type} (
D : set I) (
B : I -> set T)
: set (
set T)
:=
[set P | exists2 i, D i & B i `<=` P].
Canonical matrix_filtered m n X (
Z : filteredType X)
: filteredType 'M[X]_(
m, n)
:=
FilteredType 'M[X]_(
m, n)
'M[Z]_(
m, n) (
fun mx => filter_from
[set P | forall i j, nbhs (
mx i j) (
P i j)
]
(
fun P => [set my : 'M[X]_(
m, n)
| forall i j, P i j (
my i j)
])).
Definition filter_prod {T U : Type}
(
F : set (
set T)) (
G : set (
set U))
: set (
set (
T * U))
:=
filter_from (
fun P => F P.
1 /\ G P.
2) (
fun P => P.
1 `*` P.
2).
Section Near.
Local Notation "{ 'all1' P }" := (
forall x, P x : Prop) (
at level 0).
Local Notation "{ 'all2' P }" := (
forall x y, P x y : Prop) (
at level 0).
Local Notation "{ 'all3' P }" := (
forall x y z, P x y z: Prop) (
at level 0).
Local Notation ph := (
phantom _).
Definition prop_near1 {X} {fX : filteredType X} (
x : fX)
P (
phP : ph {all1 P})
:= nbhs x P.
Definition prop_near2 {X X'} {fX : filteredType X} {fX' : filteredType X'}
(
x : fX) (
x' : fX')
:= fun P of ph {all2 P} =>
filter_prod (
nbhs x) (
nbhs x') (
fun x => P x.
1 x.
2).
End Near.
Notation "{ 'near' x , P }" := (
@prop_near1 _ _ x _ (
inPhantom P))
: type_scope.
Notation "'\forall' x '\near' x_0 , P" := {near x_0, forall x, P} : type_scope.
Notation "'\near' x , P" := (
\forall x \near x, P)
: type_scope.
Notation "{ 'near' x & y , P }" :=
(
@prop_near2 _ _ _ _ x y _ (
inPhantom P))
: type_scope.
Notation "'\forall' x '\near' x_0 & y '\near' y_0 , P" :=
{near x_0 & y_0, forall x y, P} : type_scope.
Notation "'\forall' x & y '\near' z , P" :=
{near z & z, forall x y, P} : type_scope.
Notation "'\near' x & y , P" := (
\forall x \near x & y \near y, P)
: type_scope.
Arguments prop_near1 : simpl never.
Arguments prop_near2 : simpl never.
Lemma nearE {T} {F : set (
set T)
} (
P : set T)
: (
\forall x \near F, P x)
= F P.
Proof.
by []. Qed.
Lemma eq_near {T} {F : set (
set T)
} (
P Q : set T)
:
(
forall x, P x <-> Q x)
->
(
\forall x \near F, P x)
= (
\forall x \near F, Q x).
Proof.
by move=> /predeqP ->. Qed.
Definition filter_of X (
fX : filteredType X) (
x : fX)
of phantom fX x :=
nbhs x.
Notation "[ 'filter' 'of' x ]" :=
(
@filter_of _ _ _ (
Phantom _ x))
: classical_set_scope.
Arguments filter_of _ _ _ _ _ /.
Lemma filter_of_filterE {T : Type} (
F : set (
set T))
: [filter of F] = F.
Proof.
by []. Qed.
Lemma nbhs_filterE {T : Type} (
F : set (
set T))
: nbhs F = F.
Proof.
by []. Qed.
Module Export NbhsFilter.
Definition nbhs_simpl := (
@filter_of_filterE, @nbhs_filterE).
End NbhsFilter.
Definition cvg_to {T : Type} (
F G : set (
set T))
:= G `<=` F.
Notation "F `=>` G" := (
cvg_to F G)
: classical_set_scope.
Lemma cvg_refl T (
F : set (
set T))
: F `=>` F.
Proof.
exact. Qed.
Arguments cvg_refl {T F}.
#[global] Hint Resolve cvg_refl : core.
Lemma cvg_trans T (
G F H : set (
set T))
:
(
F `=>` G)
-> (
G `=>` H)
-> (
F `=>` H).
Proof.
by move=> FG GH P /GH /FG. Qed.
Notation "F --> G" := (
cvg_to [filter of F] [filter of G])
: classical_set_scope.
Definition type_of_filter {T} (
F : set (
set T))
:= T.
Definition lim_in {U : Type} (
T : filteredType U)
:=
fun F : set (
set U)
=> get (
fun l : T => F --> l).
Notation "[ 'lim' F 'in' T ]" := (
@lim_in _ T [filter of F])
: classical_set_scope.
Notation lim F := [lim F in [filteredType _ of @type_of_filter _ [filter of F]]].
Notation "[ 'cvg' F 'in' T ]" := (
F --> [lim F in T])
: classical_set_scope.
Notation cvg F := [cvg F in [filteredType _ of @type_of_filter _ [filter of F]]].
Section FilteredTheory.
Canonical filtered_prod X1 X2 (
Z1 : filteredType X1)
(
Z2 : filteredType X2)
: filteredType (
X1 * X2)
:=
FilteredType (
X1 * X2) (
Z1 * Z2)
(
fun x => filter_prod (
nbhs x.
1) (
nbhs x.
2)).
Lemma cvg_prod T {U U' V V' : filteredType T} (
x : U) (
l : U') (
y : V) (
k : V')
:
x --> l -> y --> k -> (
x, y)
--> (
l, k).
Proof.
move=> xl yk X [[X1 X2] /= [HX1 HX2] H]; exists (X1, X2) => //=.
split; [exact: xl | exact: yk].
Qed.
Lemma cvg_ex {U : Type} (
T : filteredType U) (
F : set (
set U))
:
[cvg F in T] <-> (
exists l : T, F --> l).
Proof.
by split=> [cvg|/getPex//]; exists [lim F in T]. Qed.
Lemma cvgP {U : Type} (
T : filteredType U) (
F : set (
set U)) (
l : T)
:
F --> l -> [cvg F in T].
Proof.
by move=> Fl; apply/cvg_ex; exists l. Qed.
Lemma cvg_toP {U : Type} (
T : filteredType U) (
F : set (
set U)) (
l : T)
:
[cvg F in T] -> [lim F in T] = l -> F --> l.
Proof.
by move=> /[swap]->. Qed.
Lemma dvgP {U : Type} (
T : filteredType U) (
F : set (
set U))
:
~ [cvg F in T] -> [lim F in T] = point.
Proof.
by rewrite /lim_in /=; case xgetP. Qed.
Lemma cvgNpoint {U} (
T : filteredType U) (
F : set (
set U))
:
[lim F in T] != point -> [cvg F in T].
Proof.
End FilteredTheory.
Arguments cvgP {U T F} l.
Arguments dvgP {U} T {F}.
Lemma nbhs_nearE {U} {T : filteredType U} (
x : T) (
P : set U)
:
nbhs x P = \near x, P x.
Proof.
by []. Qed.
Lemma near_nbhs {U} {T : filteredType U} (
x : T) (
P : set U)
:
(
\forall x \near nbhs x, P x)
= \near x, P x.
Proof.
by []. Qed.
Lemma near2_curry {U V} (
F : set (
set U)) (
G : set (
set V)) (
P : U -> set V)
:
{near F & G, forall x y, P x y} = {near (
F, G)
, forall x, P x.
1 x.
2}.
Proof.
by []. Qed.
Lemma near2_pair {U V} (
F : set (
set U)) (
G : set (
set V)) (
P : set (
U * V))
:
{near F & G, forall x y, P (
x, y)
} = {near (
F, G)
, forall x, P x}.
Proof.
by symmetry; congr (
nbhs _)
; rewrite predeqE => -[]. Qed.
Definition near2E := (
@near2_curry, @near2_pair).
Lemma filter_of_nearI (
X : Type) (
fX : filteredType X)
(
x : fX) (
ph : phantom fX x)
: forall P,
@filter_of X fX x ph P = @prop_near1 X fX x P (
inPhantom (
forall x, P x)).
Proof.
by []. Qed.
Module Export NearNbhs.
Definition near_simpl := (
@near_nbhs, @nbhs_nearE, filter_of_nearI).
Ltac near_simpl := rewrite ?near_simpl.
End NearNbhs.
Lemma near_swap {U V} (
F : set (
set U)) (
G : set (
set V)) (
P : U -> set V)
:
(
\forall x \near F & y \near G, P x y)
= (
\forall y \near G & x \near F, P x y).
Proof.
rewrite propeqE; split => -[[/=A B] [FA FB] ABP];
by exists (
B, A)
=> // -[x y] [/=Bx Ay]; apply: (
ABP (
y, x)).
Qed.
Filters
Class Filter {T : Type} (
F : set (
set T))
:= {
filterT : F setT ;
filterI : forall P Q : set T, F P -> F Q -> F (
P `&` Q)
;
filterS : forall P Q : set T, P `<=` Q -> F P -> F Q
}.
Global Hint Mode Filter - ! : typeclass_instances.
Class ProperFilter' {T : Type} (
F : set (
set T))
:= {
filter_not_empty : not (
F (
fun _ => False))
;
filter_filter' : Filter F
}.
Global Existing Instance filter_filter'.
Global Hint Mode ProperFilter' - ! : typeclass_instances.
Arguments filter_not_empty {T} F {_}.
Notation ProperFilter := ProperFilter'.
Lemma filter_setT (
T' : Type)
: Filter [set: set T'].
Proof.
by constructor. Qed.
Lemma filterP_strong T (
F : set (
set T))
{FF : Filter F} (
P : set T)
:
(
exists Q : set T, exists FQ : F Q, forall x : T, Q x -> P x)
<-> F P.
Proof.
split; last by exists P.
by move=> [Q [FQ QP]]; apply: (
filterS QP).
Qed.
Structure filter_on T := FilterType {
filter :> (
T -> Prop)
-> Prop;
_ : Filter filter
}.
Definition filter_class T (
F : filter_on T)
: Filter F :=
let: FilterType _ class := F in class.
Arguments FilterType {T} _ _.
#[global] Existing Instance filter_class.
Coercion filter_filter' : ProperFilter >-> Filter.
Structure pfilter_on T := PFilterPack {
pfilter :> (
T -> Prop)
-> Prop;
_ : ProperFilter pfilter
}.
Definition pfilter_class T (
F : pfilter_on T)
: ProperFilter F :=
let: PFilterPack _ class := F in class.
Arguments PFilterPack {T} _ _.
#[global] Existing Instance pfilter_class.
Canonical pfilter_filter_on T (
F : pfilter_on T)
:=
FilterType F (
pfilter_class F).
Coercion pfilter_filter_on : pfilter_on >-> filter_on.
Definition PFilterType {T} (
F : (
T -> Prop)
-> Prop)
{fF : Filter F} (
fN0 : not (
F set0))
:=
PFilterPack F (
Build_ProperFilter' fN0 fF).
Arguments PFilterType {T} F {fF} fN0.
Canonical filter_on_eqType T := EqType (
filter_on T)
gen_eqMixin.
Canonical filter_on_choiceType T :=
ChoiceType (
filter_on T)
gen_choiceMixin.
Canonical filter_on_PointedType T :=
PointedType (
filter_on T) (
FilterType _ (
filter_setT T)).
Canonical filter_on_FilteredType T :=
FilteredType T (
filter_on T) (
@filter T).
Global Instance filter_on_Filter T (
F : filter_on T)
: Filter F.
Proof.
by case: F. Qed.
Global Instance pfilter_on_ProperFilter T (
F : pfilter_on T)
: ProperFilter F.
Proof.
by case: F. Qed.
Lemma nbhs_filter_onE T (
F : filter_on T)
: nbhs F = nbhs (
filter F).
Proof.
by []. Qed.
Definition nbhs_simpl := (
@nbhs_simpl, @nbhs_filter_onE).
Lemma near_filter_onE T (
F : filter_on T) (
P : set T)
:
(
\forall x \near F, P x)
= \forall x \near filter F, P x.
Proof.
by []. Qed.
Definition near_simpl := (
@near_simpl, @near_filter_onE).
Program Definition trivial_filter_on T := FilterType [set setT : set T] _.
Next Obligation.
split=> // [_ _ -> ->|Q R sQR QT]; first by rewrite setIT.
by move; rewrite eqEsubset; split => // ? _; apply/sQR; rewrite QT.
Qed.
Canonical trivial_filter_on.
Lemma filter_nbhsT {T : Type} (
F : set (
set T))
:
Filter F -> nbhs F setT.
Proof.
#[global] Hint Resolve filter_nbhsT : core.
Lemma nearT {T : Type} (
F : set (
set T))
: Filter F -> \near F, True.
Proof.
#[global] Hint Resolve nearT : core.
Lemma filter_not_empty_ex {T : Type} (
F : set (
set T))
:
(
forall P, F P -> exists x, P x)
-> ~ F set0.
Proof.
by move=> /(
_ set0)
ex /ex []. Qed.
Definition Build_ProperFilter {T : Type} (
F : set (
set T))
(
filter_ex : forall P, F P -> exists x, P x)
(
filter_filter : Filter F)
:=
Build_ProperFilter' (
filter_not_empty_ex filter_ex) (
filter_filter).
Lemma filter_ex_subproof {T : Type} (
F : set (
set T))
:
~ F set0 -> (
forall P, F P -> exists x, P x).
Proof.
move=> NFset0 P FP; apply: contra_notP NFset0 => nex; suff <- : P = set0 by [].
by rewrite funeqE => x; rewrite propeqE; split=> // Px; apply: nex; exists x.
Qed.
Definition filter_ex {T : Type} (
F : set (
set T))
{FF : ProperFilter F} :=
filter_ex_subproof (
filter_not_empty F).
Arguments filter_ex {T F FF _}.
Lemma filter_getP {T : pointedType} (
F : set (
set T))
{FF : ProperFilter F}
(
P : set T)
: F P -> P (
get P).
Proof.
by move=> /filter_ex /getPex. Qed.
Record in_filter T (
F : set (
set T))
:= InFilter {
prop_in_filter_proj : T -> Prop;
prop_in_filterP_proj : F prop_in_filter_proj
}.
Module Type PropInFilterSig.
Axiom t : forall (
T : Type) (
F : set (
set T))
, in_filter F -> T -> Prop.
Axiom tE : t = prop_in_filter_proj.
End PropInFilterSig.
Module PropInFilter : PropInFilterSig.
Definition t := prop_in_filter_proj.
Lemma tE : t = prop_in_filter_proj
Proof.
by []. Qed.
End PropInFilter.
Notation prop_of := PropInFilter.t.
Definition prop_ofE := PropInFilter.tE.
Notation "x \is_near F" := (
@PropInFilter.
t _ F _ x).
Definition is_nearE := prop_ofE.
Lemma prop_ofP T F (
iF : @in_filter T F)
: F (
prop_of iF).
Proof.
Definition in_filterT T F (
FF : Filter F)
: @in_filter T F :=
InFilter (
filterT).
Canonical in_filterI T F (
FF : Filter F) (
P Q : @in_filter T F)
:=
InFilter (
filterI (
prop_in_filterP_proj P) (
prop_in_filterP_proj Q)).
Lemma filter_near_of T F (
P : @in_filter T F) (
Q : set T)
: Filter F ->
(
forall x, prop_of P x -> Q x)
-> F Q.
Proof.
by move: P => [P FP] FF /=; rewrite prop_ofE /= => /filterS; apply.
Qed.
Fact near_key : unit
Proof.
exact. Qed.
Lemma mark_near (
P : Prop)
: locked_with near_key P -> P.
Proof.
Lemma near_acc T F (
P : @in_filter T F) (
Q : set T) (
FF : Filter F)
(
FQ : \forall x \near F, Q x)
:
locked_with near_key (
forall x, prop_of (
in_filterI FF P (
InFilter FQ))
x -> Q x).
Proof.
by rewrite unlock => x /=; rewrite !prop_ofE /= => -[Px]. Qed.
Lemma near_skip_subproof T F (
P Q : @in_filter T F) (
G : set T) (
FF : Filter F)
:
locked_with near_key (
forall x, prop_of P x -> G x)
->
locked_with near_key (
forall x, prop_of (
in_filterI FF P Q)
x -> G x).
Proof.
rewrite !unlock => FG x /=; rewrite !prop_ofE /= => -[Px Qx].
by have /= := FG x; apply; rewrite prop_ofE.
Qed.
Tactic Notation "near=>" ident(
x)
:= apply: filter_near_of => x ?.
Ltac just_discharge_near x :=
tryif match goal with Hx : x \is_near _ |- _ => move: (
x) (
Hx)
; apply: mark_near end
then idtac else fail "the variable" x "is not a ""near"" variable".
Ltac near_skip :=
match goal with |- locked_with near_key (
forall _, @PropInFilter.
t _ _ ?P _ -> _)
=>
tryif is_evar P then fail "nothing to skip" else apply: near_skip_subproof end.
Tactic Notation "near:" ident(
x)
:=
just_discharge_near x;
tryif do ![apply: near_acc; first shelve|near_skip]
then idtac
else fail "the goal depends on variables introduced after" x.
Ltac under_near i tac := near=> i; tac; near: i.
Tactic Notation "near=>" ident(i) "do" tactic3(
tac)
:= under_near i ltac:(
tac).
Tactic Notation "near=>" ident(i) "do" "[" tactic4(tac) "]" := near=> i do tac.
Tactic Notation "near" "do" tactic3(
tac)
:=
let i := fresh "i" in under_near i ltac:(
tac).
Tactic Notation "near" "do" "[" tactic4(tac) "]" := near do tac.
Ltac end_near := do ?exact: in_filterT.
Ltac done :=
trivial; hnf; intros; solve
[ do ![solve [trivial | apply: sym_equal; trivial]
| discriminate | contradiction | split]
| case not_locked_false_eq_true; assumption
| match goal with H : ~ _ |- _ => solve [case H; trivial] end
| match goal with |- ?x \is_near _ => near: x; apply: prop_ofP end ].
Lemma have_near (
U : Type) (
fT : filteredType U) (
x : fT) (
P : Prop)
:
ProperFilter (
nbhs x)
-> (
\forall x \near x, P)
-> P.
Proof.
by move=> FF nP; have [] := @filter_ex _ _ FF (
fun=> P). Qed.
Arguments have_near {U fT} x.
Tactic Notation "near" constr(F) "=>" ident(
x)
:=
apply: (
have_near F)
; near=> x.
Lemma near T (
F : set (
set T))
P (
FP : F P) (
x : T)
(
Px : prop_of (
InFilter FP)
x)
: P x.
Proof.
Arguments near {T F P} FP x Px.
Lemma nearW {T : Type} {F : set (
set T)
} (
P : T -> Prop)
:
Filter F -> (
forall x, P x)
-> (
\forall x \near F, P x).
Proof.
Lemma filterE {T : Type} {F : set (
set T)
} :
Filter F -> forall P : set T, (
forall x, P x)
-> F P.
Proof.
by move=> [FT _ +] P fP => /(
_ setT)
; apply. Qed.
Lemma filter_app (
T : Type) (
F : set (
set T))
:
Filter F -> forall P Q : set T, F (
fun x => P x -> Q x)
-> F P -> F Q.
Proof.
by move=> FF P Q subPQ FP; near=> x do suff: P x.
Unshelve. all: by end_near. Qed.
Lemma filter_app2 (
T : Type) (
F : set (
set T))
:
Filter F -> forall P Q R : set T, F (
fun x => P x -> Q x -> R x)
->
F P -> F Q -> F R.
Proof.
Lemma filter_app3 (
T : Type) (
F : set (
set T))
:
Filter F -> forall P Q R S : set T, F (
fun x => P x -> Q x -> R x -> S x)
->
F P -> F Q -> F R -> F S.
Proof.
Lemma filterS2 (
T : Type) (
F : set (
set T))
:
Filter F -> forall P Q R : set T, (
forall x, P x -> Q x -> R x)
->
F P -> F Q -> F R.
Proof.
Lemma filterS3 (
T : Type) (
F : set (
set T))
:
Filter F -> forall P Q R S : set T, (
forall x, P x -> Q x -> R x -> S x)
->
F P -> F Q -> F R -> F S.
Proof.
Lemma filter_const {T : Type} {F} {FF: @ProperFilter T F} (
P : Prop)
:
F (
fun=> P)
-> P.
Proof.
Lemma in_filter_from {I T : Type} (
D : set I) (
B : I -> set T) (
i : I)
:
D i -> filter_from D B (
B i).
Proof.
by exists i. Qed.
Lemma near_andP {T : Type} F (
b1 b2 : T -> Prop)
: Filter F ->
(
\forall x \near F, b1 x /\ b2 x)
<->
(
\forall x \near F, b1 x)
/\ (
\forall x \near F, b2 x).
Proof.
move=> FF; split=> [H|[H1 H2]]; first by split; apply: filterS H => ? [].
by apply: filterS2 H1 H2.
Qed.
Lemma nearP_dep {T U} {F : set (
set T)
} {G : set (
set U)
}
{FF : Filter F} {FG : Filter G} (
P : T -> U -> Prop)
:
(
\forall x \near F & y \near G, P x y)
->
\forall x \near F, \forall y \near G, P x y.
Proof.
move=> [[Q R] [/=FQ GR]] QRP.
by apply: filterS FQ => x Q1x; apply: filterS GR => y Q2y; apply: (
QRP (
_, _)).
Qed.
Lemma filter2P T U (
F : set (
set T)) (
G : set (
set U))
{FF : Filter F} {FG : Filter G} (
P : set (
T * U))
:
(
exists2 Q : set T * set U, F Q.
1 /\ G Q.
2
& forall (
x : T) (
y : U)
, Q.
1 x -> Q.
2 y -> P (
x, y))
<-> \forall x \near (
F, G)
, P x.
Proof.
split=> [][[A B] /=[FA GB] ABP]; exists (A, B) => //=.
by move=> [a b] [/=Aa Bb]; apply: ABP.
by move=> a b Aa Bb; apply: (ABP (_, _)).
Qed.
Lemma filter_ex2 {T U : Type} (
F : set (
set T)) (
G : set (
set U))
{FF : ProperFilter F} {FG : ProperFilter G} (
P : set T) (
Q : set U)
:
F P -> G Q -> exists x : T, exists2 y : U, P x & Q y.
Proof.
by move=> /filter_ex [x Px] /filter_ex [y Qy]; exists x, y. Qed.
Arguments filter_ex2 {T U F G FF FG _ _}.
Lemma filter_fromP {I T : Type} (
D : set I) (
B : I -> set T) (
F : set (
set T))
:
Filter F -> F `=>` filter_from D B <-> forall i, D i -> F (
B i).
Proof.
split; first by move=> FB i ?; apply/FB/in_filter_from.
by move=> FB P [i Di BjP]; apply: (
filterS BjP)
; apply: FB.
Qed.
Lemma filter_fromTP {I T : Type} (
B : I -> set T) (
F : set (
set T))
:
Filter F -> F `=>` filter_from setT B <-> forall i, F (
B i).
Proof.
by move=> FF; rewrite filter_fromP; split=> [P i|P i _]; apply: P. Qed.
Lemma filter_from_filter {I T : Type} (
D : set I) (
B : I -> set T)
:
(
exists i : I, D i)
->
(
forall i j, D i -> D j -> exists2 k, D k & B k `<=` B i `&` B j)
->
Filter (
filter_from D B).
Proof.
move=> [i0 Di0] Binter; constructor; first by exists i0.
move=> P Q [i Di BiP] [j Dj BjQ]; have [k Dk BkPQ]:= Binter _ _ Di Dj.
by exists k => // x /BkPQ [/BiP ? /BjQ].
by move=> P Q subPQ [i Di BiP]; exists i => //; apply: subset_trans subPQ.
Qed.
Lemma filter_fromT_filter {I T : Type} (
B : I -> set T)
:
(
exists _ : I, True)
->
(
forall i j, exists k, B k `<=` B i `&` B j)
->
Filter (
filter_from setT B).
Proof.
move=> [i0 _] BI; apply: filter_from_filter; first by exists i0.
by move=> i j _ _; have [k] := BI i j; exists k.
Qed.
Lemma filter_from_proper {I T : Type} (
D : set I) (
B : I -> set T)
:
Filter (
filter_from D B)
->
(
forall i, D i -> B i !=set0)
->
ProperFilter (
filter_from D B).
Proof.
move=> FF BN0; apply: Build_ProperFilter=> P [i Di BiP].
by have [x Bix] := BN0 _ Di; exists x; apply: BiP.
Qed.
Lemma filter_bigI T (
I : choiceType) (
D : {fset I}) (
f : I -> set T)
(
F : set (
set T))
:
Filter F -> (
forall i, i \in D -> F (
f i))
->
F (
\bigcap_(
i in [set` D])
f i).
Proof.
Lemma filter_forall T (
I : finType) (
f : I -> set T) (
F : set (
set T))
:
Filter F -> (
forall i : I, \forall x \near F, f i x)
->
\forall x \near F, forall i, f i x.
Proof.
move=> FF fIF; apply: filterS (
@filter_bigI T I [fset x in I]%fset f F FF _).
by move=> x fIx i; have := fIx i; rewrite /= inE/=; apply.
by move=> i; rewrite inE/= => _; apply: (
fIF i).
Qed.
Lemma filter_imply [T : Type] [P : Prop] [f : set T] [F : set (
set T)
] :
Filter F -> (
P -> \near F, f F)
-> \near F, P -> f F.
Proof.
Limits expressed with filters
Definition fmap {T U : Type} (
f : T -> U) (
F : set (
set T))
:=
[set P | F (
f @^-1` P)
].
Arguments fmap _ _ _ _ _ /.
Lemma fmapE {U V : Type} (
f : U -> V)
(
F : set (
set U)) (
P : set V)
: fmap f F P = F (
f @^-1` P).
Proof.
by []. Qed.
Notation "E @[ x --> F ]" :=
(
fmap (
fun x => E)
[filter of F])
: classical_set_scope.
Notation "f @ F" := (
fmap f [filter of F])
: classical_set_scope.
Global Instance fmap_filter T U (
f : T -> U) (
F : set (
set T))
:
Filter F -> Filter (
f @ F).
Proof.
move=> FF; constructor => [|P Q|P Q PQ]; rewrite ?fmapE ?filter_ofE //=.
- exact: filterT.
- exact: filterI.
- by apply: filterS=> ?/PQ.
Qed.
Global Instance fmap_proper_filter T U (
f : T -> U) (
F : set (
set T))
:
ProperFilter F -> ProperFilter (
f @ F).
Proof.
Definition fmap_proper_filter' := fmap_proper_filter.
Definition fmapi {T U : Type} (
f : T -> set U) (
F : set (
set T))
:=
[set P | \forall x \near F, exists y, f x y /\ P y].
Notation "E `@[ x --> F ]" :=
(
fmapi (
fun x => E)
[filter of F])
: classical_set_scope.
Notation "f `@ F" := (
fmapi f [filter of F])
: classical_set_scope.
Lemma fmapiE {U V : Type} (
f : U -> set V)
(
F : set (
set U)) (
P : set V)
:
fmapi f F P = \forall x \near F, exists y, f x y /\ P y.
Proof.
by []. Qed.
Global Instance fmapi_filter T U (
f : T -> set U) (
F : set (
set T))
:
infer {near F, is_totalfun f} -> Filter F -> Filter (
f `@ F).
Proof.
move=> f_totalfun FF; rewrite /fmapi; apply: Build_Filter.
- by apply: filterS f_totalfun => x [[y Hy] H]; exists y.
- move=> /= P Q FP FQ; near=> x.
have [//|y [fxy Py]] := near FP x.
have [//|z [fxz Qz]] := near FQ x.
have [//|_ fx_prop] := near f_totalfun x.
by exists y; split => //; split => //; rewrite [y](
fx_prop _ z).
- move=> /= P Q subPQ FP; near=> x.
by have [//|y [fxy /subPQ Qy]] := near FP x; exists y.
Unshelve.
all: by end_near. Qed.
#[global] Typeclasses Opaque fmapi.
Global Instance fmapi_proper_filter
T U (
f : T -> U -> Prop) (
F : set (
set T))
:
infer {near F, is_totalfun f} ->
ProperFilter F -> ProperFilter (
f `@ F).
Proof.
move=> f_totalfun FF; apply: Build_ProperFilter.
by move=> P; rewrite /fmapi/= => /filter_ex [x [y [??]]]; exists y.
Qed.
Definition filter_map_proper_filter' := fmapi_proper_filter.
Lemma cvg_id T (
F : set (
set T))
: x @[x --> F] --> F.
Proof.
exact. Qed.
Arguments cvg_id {T F}.
Lemma fmap_comp {A B C} (
f : B -> C) (
g : A -> B)
F:
Filter F -> (
f \o g)
%FUN @ F = f @ (
g @ F).
Proof.
by []. Qed.
Lemma appfilter U V (
f : U -> V) (
F : set (
set U))
:
f @ F = [set P : set _ | \forall x \near F, P (
f x)
].
Proof.
by []. Qed.
Lemma cvg_app U V (
F G : set (
set U)) (
f : U -> V)
:
F --> G -> f @ F --> f @ G.
Proof.
by move=> FG P /=; exact: FG. Qed.
Arguments cvg_app {U V F G} _.
Lemma cvgi_app U V (
F G : set (
set U)) (
f : U -> set V)
:
F --> G -> f `@ F --> f `@ G.
Proof.
by move=> FG P /=; exact: FG. Qed.
Lemma cvg_comp T U V (
f : T -> U) (
g : U -> V)
(
F : set (
set T)) (
G : set (
set U)) (
H : set (
set V))
:
f @ F `=>` G -> g @ G `=>` H -> g \o f @ F `=>` H.
Proof.
by move=> fFG gGH; apply: cvg_trans gGH => P /fFG. Qed.
Lemma cvgi_comp T U V (
f : T -> U) (
g : U -> set V)
(
F : set (
set T)) (
G : set (
set U)) (
H : set (
set V))
:
f @ F `=>` G -> g `@ G `=>` H -> g \o f `@ F `=>` H.
Proof.
by move=> fFG gGH; apply: cvg_trans gGH => P /fFG. Qed.
Lemma near_eq_cvg {T U} {F : set (
set T)
} {FF : Filter F} (
f g : T -> U)
:
{near F, f =1 g} -> g @ F `=>` f @ F.
Proof.
by move=> eq_fg P /=; apply: filterS2 eq_fg => x /= <-. Qed.
Lemma eq_cvg (
T T' : Type) (
F : set (
set T)) (
f g : T -> T') (
x : set (
set T'))
:
f =1 g -> (
f @ F --> x)
= (
g @ F --> x).
Proof.
by move=> /funext->. Qed.
Lemma eq_is_cvg (
T T' : Type) (
fT : filteredType T') (
F : set (
set T)) (
f g : T -> T')
:
f =1 g -> [cvg (
f @ F)
in fT] = [cvg (
g @ F)
in fT].
Proof.
by move=> /funext->. Qed.
Lemma neari_eq_loc {T U} {F : set (
set T)
} {FF : Filter F} (
f g : T -> set U)
:
{near F, f =2 g} -> g `@ F `=>` f `@ F.
Proof.
move=> eq_fg P /=; apply: filterS2 eq_fg => x eq_fg [y [fxy Py]].
by exists y; rewrite -eq_fg.
Qed.
Lemma cvg_near_const (
T U : Type) (
f : T -> U) (
F : set (
set T)) (
G : set (
set U))
:
Filter F -> ProperFilter G ->
(
\forall y \near G, \forall x \near F, f x = y)
-> f @ F --> G.
Proof.
move=> FF FG fFG P /= GP; rewrite !near_simpl; apply: (
have_near G).
by apply: filter_app fFG; near do apply: filterS => x /= ->.
Unshelve.
all: by end_near. Qed.
Definition globally {T : Type} (
A : set T)
: set (
set T)
:=
[set P : set T | forall x, A x -> P x].
Arguments globally {T} A _ /.
Lemma globally0 {T : Type} (
A : set T)
: globally set0 A
Proof.
by []. Qed.
Global Instance globally_filter {T : Type} (
A : set T)
:
Filter (
globally A).
Proof.
constructor => //= P Q; last by move=> PQ AP x /AP /PQ.
by move=> AP AQ x Ax; split; [apply: AP|apply: AQ].
Qed.
Global Instance globally_properfilter {T : Type} (
A : set T)
a :
infer (
A a)
-> ProperFilter (
globally A).
Proof.
Specific filters
Section frechet_filter.
Variable T : Type.
Definition frechet_filter := [set S : set T | finite_set (
~` S)
].
Global Instance frechet_properfilter : infinite_set [set: T] ->
ProperFilter frechet_filter.
Proof.
move=> infT; rewrite /frechet_filter.
constructor; first by rewrite /= setC0; exact: infT.
constructor; first by rewrite /= setCT.
- by move=> ? ?; rewrite /= setCI finite_setU.
- by move=> P Q PQ; exact/sub_finite_set/subsetC.
Qed.
End frechet_filter.
Global Instance frechet_properfilter_nat : ProperFilter (
@frechet_filter nat).
Proof.
Section at_point.
Context {T : Type}.
Definition at_point (
a : T) (
P : set T)
: Prop := P a.
Global Instance at_point_filter (
a : T)
: ProperFilter (
at_point a).
Proof.
by constructor=> //; constructor=> // P Q subPQ /subPQ. Qed.
Typeclasses Opaque at_point.
End at_point.
Filters for pairs
Global Instance filter_prod_filter T U (
F : set (
set T)) (
G : set (
set U))
:
Filter F -> Filter G -> Filter (
filter_prod F G).
Proof.
Canonical prod_filter_on T U (
F : filter_on T) (
G : filter_on U)
:=
FilterType (
filter_prod F G) (
filter_prod_filter _ _).
Global Instance filter_prod_proper {T1 T2 : Type}
{F : (
T1 -> Prop)
-> Prop} {G : (
T2 -> Prop)
-> Prop}
{FF : ProperFilter F} {FG : ProperFilter G} :
ProperFilter (
filter_prod F G).
Proof.
Definition filter_prod_proper' := @filter_prod_proper.
Lemma filter_prod1 {T U} {F : set (
set T)
} {G : set (
set U)
}
{FG : Filter G} (
P : set T)
:
(
\forall x \near F, P x)
-> \forall x \near F & _ \near G, P x.
Proof.
move=> FP; exists (
P, setT)
=> //= [|[?? []//]].
by split=> //; apply: filterT.
Qed.
Lemma filter_prod2 {T U} {F : set (
set T)
} {G : set (
set U)
}
{FF : Filter F} (
P : set U)
:
(
\forall y \near G, P y)
-> \forall _ \near F & y \near G, P y.
Proof.
move=> FP; exists (
setT, P)
=> //= [|[?? []//]].
by split=> //; apply: filterT.
Qed.
Program Definition in_filter_prod {T U} {F : set (
set T)
} {G : set (
set U)
}
(
P : in_filter F) (
Q : in_filter G)
: in_filter (
filter_prod F G)
:=
@InFilter _ _ (
fun x => prop_of P x.
1 /\ prop_of Q x.
2)
_.
Next Obligation.
Lemma near_pair {T U} {F : set (
set T)
} {G : set (
set U)
}
{FF : Filter F} {FG : Filter G}
(
P : in_filter F) (
Q : in_filter G)
x :
prop_of P x.
1 -> prop_of Q x.
2 -> prop_of (
in_filter_prod P Q)
x.
Proof.
by case: x=> x y; do ?rewrite prop_ofE /=; split. Qed.
Lemma cvg_fst {T U F G} {FG : Filter G} :
(
@fst T U)
@ filter_prod F G --> F.
Proof.
Lemma cvg_snd {T U F G} {FF : Filter F} :
(
@snd T U)
@ filter_prod F G --> G.
Proof.
Lemma near_map {T U} (
f : T -> U) (
F : set (
set T)) (
P : set U)
:
(
\forall y \near f @ F, P y)
= (
\forall x \near F, P (
f x)).
Proof.
by []. Qed.
Lemma near_map2 {T T' U U'} (
f : T -> U) (
g : T' -> U')
(
F : set (
set T)) (
G : set (
set T')) (
P : U -> set U')
:
Filter F -> Filter G ->
(
\forall y \near f @ F & y' \near g @ G, P y y')
=
(
\forall x \near F & x' \near G , P (
f x) (
g x')).
Proof.
move=> FF FG; rewrite propeqE; split=> -[[A B] /= [fFA fGB] ABP].
exists (
f @^-1` A, g @^-1` B)
=> //= -[x y /=] xyAB.
by apply: (
ABP (
_, _))
; apply: xyAB.
exists (
f @` A, g @` B)
=> //=; last first.
by move=> -_ [/= [x Ax <-] [x' Bx' <-]]; apply: (
ABP (
_, _)).
rewrite !nbhs_simpl /fmap /=; split.
by apply: filterS fFA=> x Ax; exists x.
by apply: filterS fGB => x Bx; exists x.
Qed.
Lemma near_mapi {T U} (
f : T -> set U) (
F : set (
set T)) (
P : set U)
:
(
\forall y \near f `@ F, P y)
= (
\forall x \near F, exists y, f x y /\ P y).
Proof.
by []. Qed.
Lemma filter_pair_set (
T T' : Type) (
F : set (
set T)) (
F' : set (
set T'))
:
Filter F -> Filter F' ->
forall (
P : set T) (
P' : set T') (
Q : set (
T * T'))
,
(
forall x x', P x -> P' x' -> Q (
x, x'))
-> F P /\ F' P' ->
filter_prod F F' Q.
Proof.
by move=> FF FF' P P' Q PQ [FP FP'];
near=> x do [have := PQ x.
1 x.
2; rewrite -surjective_pairing; apply];
[apply: cvg_fst | apply: cvg_snd].
Unshelve.
all: by end_near. Qed.
Lemma filter_pair_near_of (
T T' : Type) (
F : set (
set T)) (
F' : set (
set T'))
:
Filter F -> Filter F' ->
forall (
P : @in_filter T F) (
P' : @in_filter T' F') (
Q : set (
T * T'))
,
(
forall x x', prop_of P x -> prop_of P' x' -> Q (
x, x'))
->
filter_prod F F' Q.
Proof.
move=> FF FF' [P FP] [P' FP'] Q PQ; rewrite prop_ofE in FP FP' PQ.
by exists (
P, P')
=> //= -[t t'] [] /=; exact: PQ.
Qed.
Tactic Notation "near=>" ident(
x)
ident(
y)
:=
(
apply: filter_pair_near_of => x y ? ?).
Tactic Notation "near" constr(F) "=>" ident(
x)
ident(
y)
:=
apply: (
have_near F)
; near=> x y.
Module Export NearMap.
Definition near_simpl := (
@near_simpl, @near_map, @near_mapi, @near_map2).
Ltac near_simpl := rewrite ?near_simpl.
End NearMap.
Lemma cvg_pair {T U V F} {G : set (
set U)
} {H : set (
set V)
}
{FF : Filter F} {FG : Filter G} {FH : Filter H} (
f : T -> U) (
g : T -> V)
:
f @ F --> G -> g @ F --> H ->
(
f x, g x)
@[x --> F] --> (
G, H).
Proof.
move=> fFG gFH P; rewrite !near_simpl => -[[A B] /=[GA HB] ABP]; near=> x.
by apply: (ABP (_, _)); split=> //=; near: x; [apply: fFG|apply: gFH].
Unshelve. all: by end_near. Qed.
Lemma cvg_comp2 {T U V W}
{F : set (
set T)
} {G : set (
set U)
} {H : set (
set V)
} {I : set (
set W)
}
{FF : Filter F} {FG : Filter G} {FH : Filter H}
(
f : T -> U) (
g : T -> V) (
h : U -> V -> W)
:
f @ F --> G -> g @ F --> H ->
h (
fst x) (
snd x)
@[x --> (
G, H)
] --> I ->
h (
f x) (
g x)
@[x --> F] --> I.
Proof.
by move=> fFG gFH hGHI P /= IP; apply: cvg_pair (
hGHI _ IP). Qed.
Arguments cvg_comp2 {T U V W F G H I FF FG FH f g h} _ _ _.
Definition cvg_to_comp_2 := @cvg_comp2.
Restriction of a filter to a domain
Section within.
Context {T : Type}.
Implicit Types (
D : set T) (
F : set (
set T)).
Definition within D F (
P : set T)
:= {near F, D `<=` P}.
Arguments within : simpl never.
Lemma near_withinE D F (
P : set T)
:
(
\forall x \near within D F, P x)
= {near F, D `<=` P}.
Proof.
by []. Qed.
Lemma withinT F D : Filter F -> within D F D.
Proof.
by move=> FF; rewrite /within; apply: filterE. Qed.
Lemma near_withinT F D : Filter F -> \forall x \near within D F, D x.
Proof.
Lemma cvg_within {F} {FF : Filter F} D : within D F --> F.
Proof.
Lemma withinET {F} {FF : Filter F} : within setT F = F.
Proof.
End within.
Global Instance within_filter T D F : Filter F -> Filter (
@within T D F).
Proof.
move=> FF; rewrite /within; constructor.
- by apply: filterE.
- by move=> P Q; apply: filterS2 => x DP DQ Dx; split; [apply: DP|apply: DQ].
- by move=> P Q subPQ; apply: filterS => x DP /DP /subPQ.
Qed.
#[global] Typeclasses Opaque within.
Canonical within_filter_on T D (
F : filter_on T)
:=
FilterType (
within D F) (
within_filter _ _).
Lemma filter_bigI_within T (
I : choiceType) (
D : {fset I}) (
f : I -> set T)
(
F : set (
set T)) (
P : set T)
:
Filter F -> (
forall i, i \in D -> F [set j | P j -> f i j])
->
F (
[set j | P j -> (
\bigcap_(
i in [set` D])
f i)
j]).
Proof.
move=> FF FfD; exact: (
@filter_bigI T I D f _ (
within_filter P FF)). Qed.
Definition subset_filter {T} (
F : set (
set T)) (
D : set T)
:=
[set P : set {x | D x} | F [set x | forall Dx : D x, P (
exist _ x Dx)
]].
Arguments subset_filter {T} F D _.
Global Instance subset_filter_filter T F (
D : set T)
:
Filter F -> Filter (
subset_filter F D).
Proof.
move=> FF; constructor; rewrite /subset_filter/=.
- exact: filterE.
- by move=> P Q; apply: filterS2=> x PD QD Dx; split.
- by move=> P Q subPQ; apply: filterS => R PD Dx; apply: subPQ.
Qed.
#[global] Typeclasses Opaque subset_filter.
Lemma subset_filter_proper {T F} {FF : Filter F} (
D : set T)
:
(
forall P, F P -> ~ ~ exists x, D x /\ P x)
->
ProperFilter (
subset_filter F D).
Proof.
move=> DAP; apply: Build_ProperFilter'; rewrite /subset_filter => subFD.
by have /(
_ subFD)
:= DAP (
~` D)
; apply => -[x [dx /(
_ dx)
]].
Qed.
Section NearSet.
Context {Y : Type}.
Context (
F : set (
set Y)) (
PF : ProperFilter F).
Definition powerset_filter_from : set (
set (
set Y))
:= filter_from
[set M | [/\ M `<=` F,
(
forall E1 E2, M E1 -> F E2 -> E2 `<=` E1 -> M E2)
& M !=set0 ] ]
id.
Global Instance powerset_filter_from_filter : ProperFilter powerset_filter_from.
Proof.
split.
rewrite (
_ : xpredp0 = set0)
; last by rewrite eqEsubset; split.
by move=> [W [_ _ [N +]]]; rewrite subset0 => /[swap] ->; apply.
apply: filter_from_filter.
by exists F; split => //; exists setT; exact: filterT.
move=> M N /= [entM subM [M0 MM0]] [entN subN [N0 NN0]].
exists [set E | exists P Q, [/\ M P, N Q & E = P `&` Q] ]; first split.
- by move=> ? [? [? [? ? ->]]]; apply: filterI; [exact: entM | exact: entN].
- move=> ? E2 [P [Q [MP MQ ->]]] entE2 E2subPQ; exists E2, E2.
split; last by rewrite setIid.
+ by apply: (
subM _ _ MP)
=> // ? /E2subPQ [].
+ by apply: (
subN _ _ MQ)
=> // ? /E2subPQ [].
- by exists (
M0 `&` N0)
, M0, N0.
- move=> E /= [P [Q [MP MQ ->]]]; have entPQ : F (
P `&` Q).
by apply: filterI; [exact: entM | exact: entN].
by split; [apply: (
subM _ _ MP)
| apply: (
subN _ _ MQ)
] => // ? [].
Qed.
Lemma near_small_set : \forall E \near powerset_filter_from, F E.
Proof.
by exists F => //; split => //; exists setT; exact: filterT. Qed.
Lemma small_set_sub (
E : set Y)
: F E ->
\forall E' \near powerset_filter_from, E' `<=` E.
Proof.
move=> entE; exists [set E' | F E' /\ E' `<=` E]; last by move=> ? [].
split; [by move=> E' [] | | by exists E; split].
by move=> E1 E2 [] ? sub ? ?; split => //; exact: subset_trans sub.
Qed.
Lemma near_powerset_filter_fromP (
P : set Y -> Prop)
:
(
forall A B, A `<=` B -> P B -> P A)
->
(
\forall U \near powerset_filter_from, P U)
<-> exists2 U, F U & P U.
Proof.
move=> Psub; split=> [[M [FM ? [U MU]]] MsubP|[U FU PU]].
by exists U; [exact: FM | exact: MsubP].
exists [set V | F V /\ V `<=` U]; last by move=> V [_] /Psub; exact.
split=> [E [] //| |]; last by exists U; split.
by move=> E1 E2 [F1 E1U F2 E2subE1]; split => //; exact: subset_trans E1U.
Qed.
Lemma powerset_filter_fromP C :
F C -> powerset_filter_from [set W | F W /\ W `<=` C].
Proof.
move=> FC; exists [set W | F W /\ W `<=` C] => //; split; first by move=> ? [].
by move=> A B [_ AC] FB /subset_trans/(
_ AC).
by exists C; split.
Qed.
End NearSet.
Lemma near_powerset_map {T U : Type} (
f : T -> U) (
F : set (
set T))
(
P : set U -> Prop)
:
ProperFilter F ->
(
\forall y \near powerset_filter_from (
f x @[x --> F])
, P y)
->
(
\forall y \near powerset_filter_from F, P (
f @` y)).
Proof.
Lemma near_powerset_map_monoE {T U : Type} (
f : T -> U) (
F : set (
set T))
(
P : set U -> Prop)
:
(
forall X Y, X `<=` Y -> P Y -> P X)
->
ProperFilter F ->
(
\forall y \near powerset_filter_from F, P (
f @` y))
=
(
\forall y \near powerset_filter_from (
f x @[x --> F])
, P y).
Proof.
Section PrincipalFilters.
Definition principal_filter {X : Type} (
x : X)
: set (
set X)
:=
globally [set x].
Lemma principal_filterP {X} (
x : X) (
W : set X)
: principal_filter x W <-> W x.
Proof.
by split=> [|? ? ->]; [exact|]. Qed.
Lemma principal_filter_proper {X} (
x : X)
: ProperFilter (
principal_filter x).
Proof.
Canonical bool_discrete_filter := FilteredType bool bool principal_filter.
End PrincipalFilters.
Topological spaces
Module Topological.
Record mixin_of (
T : Type) (
nbhs : T -> set (
set T))
:= Mixin {
open : set (
set T)
;
nbhs_pfilter : forall p : T, ProperFilter (
nbhs p)
;
nbhsE : forall p : T, nbhs p =
[set A : set T | exists B : set T, [/\ open B, B p & B `<=` A] ] ;
openE : open = [set A : set T | A `<=` nbhs^~ A ]
}.
Record class_of (
T : Type)
:= Class {
base : Filtered.class_of T T;
mixin : mixin_of (
Filtered.nbhs_op base)
}.
Section ClassDef.
Structure type := Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.
Variables (
T : Type) (
cT : type).
Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone c of phant_id class c := @Pack T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (
class : class_of xT).
Local Coercion base : class_of >-> Filtered.class_of.
Local Coercion mixin : class_of >-> mixin_of.
Definition pack nbhs' (
m : @mixin_of T nbhs')
:=
fun bT (
b : Filtered.class_of T T)
of phant_id (
@Filtered.
class T bT)
b =>
fun m' of phant_id m (
m' : @mixin_of T (
Filtered.nbhs_op b))
=>
@Pack T (
@Class _ b m').
Definition eqType := @Equality.
Pack cT xclass.
Definition choiceType := @Choice.
Pack cT xclass.
Definition pointedType := @Pointed.
Pack cT xclass.
Definition filteredType := @Filtered.
Pack cT cT xclass.
End ClassDef.
Module Exports.
Coercion sort : type >-> Sortclass.
Coercion base : class_of >-> Filtered.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion pointedType : type >-> Pointed.type.
Canonical pointedType.
Coercion filteredType : type >-> Filtered.type.
Canonical filteredType.
Notation topologicalType := type.
Notation TopologicalType T m := (
@pack T _ m _ _ idfun _ idfun).
Notation TopologicalMixin := Mixin.
Notation "[ 'topologicalType' 'of' T 'for' cT ]" := (
@clone T cT _ idfun)
(
at level 0, format "[ 'topologicalType' 'of' T 'for' cT ]")
: form_scope.
Notation "[ 'topologicalType' 'of' T ]" := (
@clone T _ _ id)
(
at level 0, format "[ 'topologicalType' 'of' T ]")
: form_scope.
End Exports.
End Topological.
Export Topological.Exports.
Section Topological1.
Context {T : topologicalType}.
Definition open := Topological.open (
Topological.class T).
Definition open_nbhs (
p : T) (
A : set T)
:= open A /\ A p.
Definition basis (
B : set (
set T))
:=
B `<=` open /\ forall x, filter_from [set U | B U /\ U x] id --> x.
Definition second_countable := exists2 B, countable B & basis B.
Global Instance nbhs_pfilter (
p : T)
: ProperFilter (
nbhs p).
Proof.
Typeclasses Opaque nbhs.
Lemma nbhs_filter (
p : T)
: Filter (
nbhs p).
Proof.
exact: (@nbhs_pfilter). Qed.
Canonical nbhs_filter_on (
x : T)
:= FilterType (
nbhs x) (
@nbhs_filter x).
Lemma nbhsE (
p : T)
:
nbhs p = [set A : set T | exists2 B : set T, open_nbhs p B & B `<=` A].
Proof.
Lemma open_nbhsE (
p : T) (
A : set T)
: open_nbhs p A = (
open A /\ nbhs p A).
Proof.
by rewrite nbhsE propeqE; split=> [[? ?]|[? [B [? ?] BA]]]; split => //;
[exists A | exact: BA].
Qed.
Definition interior (
A : set T)
:= (
@nbhs _ T)
^~ A.
Local Notation "
A ^°"
:= (
interior A).
Lemma interior_subset (
A : set T)
: A^°
`<=` A.
Proof.
by move=> p; rewrite /interior nbhsE => -[? [? ?]]; apply.
Qed.
Lemma openE : open = [set A : set T | A `<=` A^°
].
Proof.
Lemma nbhs_singleton (
p : T) (
A : set T)
: nbhs p A -> A p.
Proof.
by rewrite nbhsE => - [? [_ ?]]; apply. Qed.
Lemma nbhs_interior (
p : T) (
A : set T)
: nbhs p A -> nbhs p A^°.
Proof.
rewrite nbhsE /open_nbhs openE => - [B [Bop Bp] sBA].
by exists B => // q Bq; apply: filterS sBA _; apply: Bop.
Qed.
Lemma open0 : open set0.
Proof.
Lemma openT : open setT.
Proof.
Lemma openI (
A B : set T)
: open A -> open B -> open (
A `&` B).
Proof.
rewrite openE => Aop Bop p [Ap Bp].
by apply: filterI; [apply: Aop|apply: Bop].
Qed.
Lemma bigcup_open (
I : Type) (
D : set I) (
f : I -> set T)
:
(
forall i, D i -> open (
f i))
-> open (
\bigcup_(
i in D)
f i).
Proof.
rewrite openE => fop p [i Di].
by have /fop fiop := Di; move/fiop; apply: filterS => ??; exists i.
Qed.
Lemma openU (
A B : set T)
: open A -> open B -> open (
A `|` B).
Proof.
by rewrite openE => Aop Bop p [/Aop|/Bop]; apply: filterS => ??; [left|right].
Qed.
Lemma open_subsetE (
A B : set T)
: open A -> (
A `<=` B)
= (
A `<=` B^°).
Proof.
rewrite openE => Aop; rewrite propeqE; split.
by move=> sAB p Ap; apply: filterS sAB _; apply: Aop.
by move=> sAB p /sAB /interior_subset.
Qed.
Lemma open_interior (
A : set T)
: open A^°.
Proof.
Lemma interior_bigcup I (
D : set I) (
f : I -> set T)
:
\bigcup_(
i in D) (
f i)
^°
`<=` (
\bigcup_(
i in D)
f i)
^°.
Proof.
move=> p [i Di]; rewrite /interior nbhsE => - [B [Bop Bp] sBfi].
by exists B => // ? /sBfi; exists i.
Qed.
Lemma open_nbhsT (
p : T)
: open_nbhs p setT.
Proof.
by split=> //; apply: openT. Qed.
Lemma open_nbhsI (
p : T) (
A B : set T)
:
open_nbhs p A -> open_nbhs p B -> open_nbhs p (
A `&` B).
Proof.
by move=> [Aop Ap] [Bop Bp]; split; [apply: openI|split]. Qed.
Lemma open_nbhs_nbhs (
p : T) (
A : set T)
: open_nbhs p A -> nbhs p A.
Proof.
by rewrite nbhsE => p_A; exists A. Qed.
Lemma interiorI (
A B:set T)
: (
A `&` B)
^°
= A^°
`&` B^°.
Proof.
rewrite /interior predeqE => //= x; rewrite nbhsE; split => [[B0 ?] | []].
- by rewrite subsetI => // -[? ?]; split; exists B0.
- by move=> -[B0 ? ?] [B1 ? ?]; exists (
B0 `&` B1)
;
[exact: open_nbhsI | rewrite subsetI; split; apply: subIset; [left|right]].
Qed.
End Topological1.
#[global] Hint Extern 0 (
Filter (
nbhs _))
=>
solve [apply: nbhs_filter] : typeclass_instances.
#[global] Hint Extern 0 (
ProperFilter (
nbhs _))
=>
solve [apply: nbhs_pfilter] : typeclass_instances.
Notation "
A ^°"
:= (
interior A)
: classical_set_scope.
Notation continuous f := (
forall x, f%function @ x --> f%function x).
Lemma near_fun (
T T' : topologicalType) (
f : T -> T') (
x : T) (
P : T' -> Prop)
:
{for x, continuous f} ->
(
\forall y \near f x, P y)
-> (
\near x, P (
f x)).
Proof.
exact. Qed.
Arguments near_fun {T T'} f x.
Lemma continuousP (
S T : topologicalType) (
f : S -> T)
:
continuous f <-> forall A, open A -> open (
f @^-1` A).
Proof.
split=> fcont; first by rewrite !openE => A Aop ? /Aop /fcont.
move=> s A; rewrite nbhs_simpl /= !nbhsE => - [B [Bop Bfs] sBA].
by exists (
f @^-1` B)
; [split=> //; apply/fcont|move=> ? /sBA].
Qed.
Lemma continuous_comp (
R S T : topologicalType) (
f : R -> S) (
g : S -> T)
x :
{for x, continuous f} -> {for (
f x)
, continuous g} ->
{for x, continuous (
g \o f)
}.
Proof.
Lemma open_comp {T U : topologicalType} (
f : T -> U) (
D : set U)
:
{in f @^-1` D, continuous f} -> open D -> open (
f @^-1` D).
Proof.
rewrite !openE => fcont Dop x /= Dfx.
by apply: fcont; [rewrite inE|apply: Dop].
Qed.
Lemma cvg_fmap {T: topologicalType} {U : topologicalType}
(
F : set (
set T))
x (
f : T -> U)
:
{for x, continuous f} -> F --> x -> f @ F --> f x.
Proof.
by move=> cf fx P /cf /fx. Qed.
Lemma near_join (
T : topologicalType) (
x : T) (
P : set T)
:
(
\near x, P x)
-> \near x, \near x, P x.
Proof.
Lemma near_bind (
T : topologicalType) (
P Q : set T) (
x : T)
:
(
\near x, (
\near x, P x)
-> Q x)
-> (
\near x, P x)
-> \near x, Q x.
Proof.
move=> PQ xP; near=> y; apply: (
near PQ y)
=> //;
by apply: (
near (
near_join xP)
y).
Unshelve.
all: by end_near. Qed.
Lemma continuous_cvg {T : Type} {V U : topologicalType}
(
F : set (
set T)) (
FF : Filter F)
(
f : T -> V) (
h : V -> U) (
a : V)
:
{for a, continuous h} ->
f @ F --> a -> (
h \o f)
@ F --> h a.
Proof.
move=> h_continuous fa fb; apply: (
cvg_trans _ h_continuous).
exact: (
@cvg_comp _ _ _ _ h _ _ _ fa).
Qed.
Lemma continuous_is_cvg {T : Type} {V U : topologicalType} [F : set (
set T)
]
(
FF : Filter F) (
f : T -> V) (
h : V -> U)
:
(
forall l, f x @[x --> F] --> l -> {for l, continuous h})
->
cvg (
f x @[x --> F])
-> cvg ((
h \o f)
x @[x --> F]).
Proof.
move=> ach /cvg_ex[l fxl]; apply/cvg_ex; exists (
h l).
by apply: continuous_cvg => //; exact: ach.
Qed.
Lemma continuous2_cvg {T : Type} {V W U : topologicalType}
(
F : set (
set T)) (
FF : Filter F)
(
f : T -> V) (
g : T -> W) (
h : V -> W -> U) (
a : V) (
b : W)
:
h z.
1 z.
2 @[z --> (
a, b)
] --> h a b ->
f @ F --> a -> g @ F --> b -> (
fun x => h (
f x) (
g x))
@ F --> h a b.
Proof.
move=> h_continuous fa fb; apply: (
cvg_trans _ h_continuous).
exact: (
@cvg_comp _ _ _ _ (
fun x => h x.
1 x.
2)
_ _ _ (
cvg_pair fa fb)).
Qed.
Lemma cvg_near_cst (
T : Type) (
U : topologicalType)
(
l : U) (
f : T -> U) (
F : set (
set T))
{FF : Filter F} :
(
\forall x \near F, f x = l)
-> f @ F --> l.
Proof.
Arguments cvg_near_cst {T U} l {f F FF}.
Lemma is_cvg_near_cst (
T : Type) (
U : topologicalType)
(
l : U) (
f : T -> U) (
F : set (
set T))
{FF : Filter F} :
(
\forall x \near F, f x = l)
-> cvg (
f @ F).
Proof.
by move=> /cvg_near_cst/cvgP. Qed.
Arguments is_cvg_near_cst {T U} l {f F FF}.
Lemma near_cst_continuous (
T U : topologicalType)
(
l : U) (
f : T -> U) (
x : T)
:
(
\forall y \near x, f y = l)
-> {for x, continuous f}.
Proof.
Arguments near_cst_continuous {T U} l [f x].
Lemma cvg_cst (
U : topologicalType) (
x : U) (
T : Type)
(
F : set (
set T))
{FF : Filter F} :
(
fun _ : T => x)
@ F --> x.
Proof.
by apply: cvg_near_cst; near=> x0.
Unshelve.
all: by end_near. Qed.
Arguments cvg_cst {U} x {T F FF}.
#[global] Hint Resolve cvg_cst : core.
Lemma is_cvg_cst (
U : topologicalType) (
x : U) (
T : Type)
(
F : set (
set T))
{FF : Filter F} :
cvg ((
fun _ : T => x)
@ F).
Proof.
Arguments is_cvg_cst {U} x {T F FF}.
#[global] Hint Resolve is_cvg_cst : core.
Lemma cst_continuous {T U : topologicalType} (
x : U)
:
continuous (
fun _ : T => x).
Proof.
Section within_topologicalType.
Context {T : topologicalType} (
A : set T).
Implicit Types B : set T.
Lemma within_nbhsW (
x : T)
: A x -> within A (
nbhs x)
`=>` globally A.
Proof.
move=> Ax P AP; rewrite /within; near=> y; apply: AP.
Unshelve. all: by end_near. Qed.
Definition locally_of (
P : set (
set T)
-> Prop)
of phantom Prop (
P (
globally A))
:= forall x, A x -> P (
within A (
nbhs x)).
Local Notation "[ 'locally' P ]" := (
@locally_of _ _ _ (
Phantom _ P)).
Lemma within_interior (
x : T)
: A^°
x -> within A (
nbhs x)
= nbhs x.
Proof.
Lemma within_subset B F : Filter F -> A `<=` B -> within A F `=>` within B F.
Proof.
Lemma withinE F : Filter F ->
within A F = [set U | exists2 V, F V & U `&` A = V `&` A].
Proof.
move=> FF; rewrite eqEsubset; split=> U.
move=> Wu; exists [set x | A x -> U x] => //.
by rewrite eqEsubset; split => t [L R]; split=> //; apply: L.
move=> [V FV AU]; rewrite /within /prop_near1 nbhs_simpl; near=> w => Aw.
by have []// : (
U `&` A)
w; rewrite AU; split => //; apply: (
near FV).
Unshelve.
all: by end_near. Qed.
Lemma fmap_within_eq {S : topologicalType} (
F : set (
set T)) (
f g : T -> S)
:
Filter F -> {in A, f =1 g} -> f @ within A F --> g @ within A F.
Proof.
move=> FF feq U /=; near_simpl; apply: filter_app.
rewrite ?nbhs_simpl; near_simpl; near=> w; rewrite (
feq w)
// inE.
exact: (
near (
withinT A FF)
w).
Unshelve.
all: by end_near. Qed.
End within_topologicalType.
Notation "[ 'locally' P ]" := (
@locally_of _ _ _ (
Phantom _ P)).
Topology defined by a filter
Section TopologyOfFilter.
Context {T : Type} {nbhs' : T -> set (
set T)
}.
Hypothesis (
nbhs'_filter : forall p : T, ProperFilter (
nbhs' p)).
Hypothesis (
nbhs'_singleton : forall (
p : T) (
A : set T)
, nbhs' p A -> A p).
Hypothesis (
nbhs'_nbhs' : forall (
p : T) (
A : set T)
, nbhs' p A -> nbhs' p (
nbhs'^~ A)).
Definition open_of_nbhs := [set A : set T | A `<=` nbhs'^~ A].
Program Definition topologyOfFilterMixin : Topological.mixin_of nbhs' :=
@Topological.
Mixin T nbhs' open_of_nbhs _ _ _.
Next Obligation.
move=> p; rewrite predeqE => A; split=> [p_A|]; last first.
by move=> [B [Bop Bp sBA]]; apply: filterS sBA _; apply: Bop.
exists (
nbhs'^~ A)
; split => //; first by move=> ?; apply: nbhs'_nbhs'.
by move=> q /nbhs'_singleton.
Qed.
Next Obligation.
done. Qed.
End TopologyOfFilter.
Topology defined by open sets
Section TopologyOfOpen.
Variable (
T : Type) (
op : set T -> Prop).
Hypothesis (
opT : op setT).
Hypothesis (
opI : forall (
A B : set T)
, op A -> op B -> op (
A `&` B)).
Hypothesis (
op_bigU : forall (
I : Type) (
f : I -> set T)
,
(
forall i, op (
f i))
-> op (
\bigcup_i f i)).
Definition nbhs_of_open (
p : T) (
A : set T)
:=
exists B, [/\ op B, B p & B `<=` A].
Program Definition topologyOfOpenMixin : Topological.mixin_of nbhs_of_open :=
@Topological.
Mixin T nbhs_of_open op _ _ _.
Next Obligation.
move=> p; apply: Build_ProperFilter.
by move=> A [B [_ Bp sBA]]; exists p; apply: sBA.
split; first by exists setT.
move=> A B [C [Cop Cp sCA]] [D [Dop Dp sDB]].
exists (
C `&` D)
; split => //; first exact: opI.
by move=> q [/sCA Aq /sDB Bq].
move=> A B sAB [C [Cop p_C sCA]].
by exists C; split=> //; apply: subset_trans sAB.
Qed.
Next Obligation.
done. Qed.
Next Obligation.
End TopologyOfOpen.
Topology defined by a base of open sets
Section TopologyOfBase.
Definition open_from I T (
D : set I) (
b : I -> set T)
:=
[set \bigcup_(
i in D')
b i | D' in subset^~ D].
Lemma open_fromT I T (
D : set I) (
b : I -> set T)
:
\bigcup_(
i in D)
b i = setT -> open_from D b setT.
Proof.
by move=> ?; exists D. Qed.
Variable (
I : pointedType) (
T : Type) (
D : set I) (
b : I -> (
set T)).
Hypothesis (
b_cover : \bigcup_(
i in D)
b i = setT).
Hypothesis (
b_join : forall i j t, D i -> D j -> b i t -> b j t ->
exists k, [/\ D k, b k t & b k `<=` b i `&` b j]).
Program Definition topologyOfBaseMixin :=
@topologyOfOpenMixin _ (
open_from D b) (
open_fromT b_cover)
_ _.
Next Obligation.
move=> A B [DA sDAD AeUbA] [DB sDBD BeUbB].
have ABU : forall t, (
A `&` B)
t ->
exists it, D it /\ b it t /\ b it `<=` A `&` B.
move=> t [At Bt].
have [iA [DiA [biAt sbiA]]] : exists i, D i /\ b i t /\ b i `<=` A.
move: At; rewrite -AeUbA => - [i DAi bit]; exists i.
by split; [apply: sDAD|split=> // ?; exists i].
have [iB [DiB [biBt sbiB]]] : exists i, D i /\ b i t /\ b i `<=` B.
move: Bt; rewrite -BeUbB => - [i DBi bit]; exists i.
by split; [apply: sDBD|split=> // ?; exists i].
have [i [Di bit sbiAB]] := b_join DiA DiB biAt biBt.
by exists i; split=> //; split=> // s /sbiAB [/sbiA ? /sbiB].
set Dt := fun t => [set it | D it /\ b it t /\ b it `<=` A `&` B].
exists [set get (
Dt t)
| t in A `&` B].
by move=> _ [t ABt <-]; have /ABU/getPex [] := ABt.
rewrite predeqE => t; split=> [[_ [s ABs <-] bDtst]|ABt].
by have /ABU/getPex [_ [_]] := ABs; apply.
by exists (
get (
Dt t))
; [exists t| have /ABU/getPex [? []]:= ABt].
Qed.
Next Obligation.
move=> I0 f.
set fop := fun j => [set Dj | Dj `<=` D /\ f j = \bigcup_(
i in Dj)
b i].
exists (
\bigcup_j get (
fop j)).
move=> i [j _ fopji].
suff /getPex [/(
_ _ fopji)
] : exists Dj, fop j Dj by [].
by have [Dj] := H j; exists Dj.
rewrite predeqE => t; split=> [[i [j _ fopji bit]]|[j _]].
exists j => //; suff /getPex [_ ->] : exists Dj, fop j Dj by exists i.
by have [Dj] := H j; exists Dj.
have /getPex [_ ->] : exists Dj, fop j Dj by have [Dj] := H j; exists Dj.
by move=> [i]; exists i => //; exists j.
Qed.
End TopologyOfBase.
Section filter_supremums.
Global Instance smallest_filter_filter {T : Type} (
F : set (
set T))
:
Filter (
smallest Filter F).
Proof.
split.
- by move=> G [? _]; apply: filterT.
- by move=> ? ? sFP sFQ ? [? ?]; apply: filterI; [apply: sFP | apply: sFQ].
- by move=> ? ? /filterS + sFP ? [? ?]; apply; apply: sFP.
Qed.
Fixpoint filterI_iter {T : Type} (
F : set (
set T)) (
n : nat)
:=
if n is m.
+1
then [set P `&` Q |
P in filterI_iter F m & Q in filterI_iter F m]
else setT |` F.
Lemma filterI_iter_sub {T : Type} (
F : set (
set T))
:
{homo filterI_iter F : i j / (
i <= j)
%N >-> i `<=` j}.
Proof.
move=> + j; elim: j; first by move=> i; rewrite leqn0 => /eqP ->.
move=> j IH i; rewrite leq_eqVlt => /predU1P[->//|].
by move=> /IH/subset_trans; apply=> A ?; do 2 exists A => //; rewrite setIid.
Qed.
Lemma filterI_iterE {T : Type} (
F : set (
set T))
:
smallest Filter F = filter_from (
\bigcup_n (
filterI_iter F n))
id.
Proof.
rewrite eqEsubset; split.
apply: smallest_sub => //; first last.
by move=> A FA; exists A => //; exists O => //; right.
apply: filter_from_filter; first by exists setT; exists O => //; left.
move=> P Q [i _ sFP] [j _ sFQ]; exists (
P `&` Q)
=> //.
exists (
maxn i j).
+1 => //=; exists P.
by apply: filterI_iter_sub; first exact: leq_maxl.
by exists Q => //; apply: filterI_iter_sub; first exact: leq_maxr.
move=> + [+ [n _]]; elim: n => [A B|n IH/= A B].
move=> [-> /[!(
@subTset T)
] ->|]; first exact: filterT.
by move=> FB /filterS; apply; apply: sub_gen_smallest.
move=> [P sFP] [Q sFQ] PQB /filterS; apply; rewrite -PQB.
by apply: (
filterI _ _)
; [exact: (
IH _ _ sFP)
|exact: (
IH _ _ sFQ)
].
Qed.
Topology defined by a subbase of open sets
Definition finI_from (
I : choiceType)
T (
D : set I) (
f : I -> set T)
:=
[set \bigcap_(
i in [set` D'])
f i |
D' in [set A : {fset I} | {subset A <= D}]].
Lemma finI_from_cover (
I : choiceType)
T (
D : set I) (
f : I -> set T)
:
\bigcup_(
A in finI_from D f)
A = setT.
Proof.
Lemma finI_from1 (
I : choiceType)
T (
D : set I) (
f : I -> set T)
i :
D i -> finI_from D f (
f i).
Proof.
Lemma finI_from_countable (
I : pointedType)
T (
D : set I) (
f : I -> set T)
:
countable D -> countable (
finI_from D f).
Proof.
Lemma finI_fromI {I : choiceType} T D (
f : I -> set T)
A B :
finI_from D f A -> finI_from D f B -> finI_from D f (
A `&` B)
.
Proof.
case=> N ND <- [M MD <-]; exists (
N `|` M)
%fset.
by move=> ?; rewrite inE => /orP[/ND | /MD].
by rewrite -bigcap_setU set_fsetU.
Qed.
Lemma filterI_iter_finI {I : choiceType} T D (
f : I -> set T)
:
finI_from D f = \bigcup_n (
filterI_iter (
f @` D)
n).
Proof.
rewrite eqEsubset; split.
move=> A [N /= + <-]; have /finite_setP[n] := finite_fset N; elim: n N.
move=> ?; rewrite II0 card_eq0 => /eqP -> _; rewrite bigcap_set0.
by exists O => //; left.
move=> n IH N /eq_cardSP[x Ax + ND]; rewrite -set_fsetD1 => Nxn.
have NxD : {subset (
N `\ x)
%fset <= D}.
by move=> ?; rewrite ?inE => /andP [_ /ND /set_mem].
have [r _ xr] := IH _ Nxn NxD; exists r.
+1 => //; exists (
f x).
apply: (
@filterI_iter_sub _ _ O)
=> //; right; exists x => //.
by rewrite -inE; apply: ND.
exists (
\bigcap_(
i in [set` (
N `\ x)
%fset])
f i)
=> //.
by rewrite -bigcap_setU1 set_fsetD1 setD1K.
move=> A [n _]; elim: n A.
move=> a [-> |[i Di <-]]; [exists fset0 | exists [fset i]%fset] => //.
- by rewrite set_fset0 bigcap_set0.
- by move=> ?; rewrite !inE => /eqP ->.
- by rewrite set_fset1 bigcap_set1.
by move=> n IH A /= [B snB [C snC <-]]; apply: finI_fromI; apply: IH.
Qed.
Lemma smallest_filter_finI {T : choiceType} (
D : set T)
f :
filter_from (
finI_from D f)
id = smallest (
@Filter T) (
f @` D).
Proof.
End filter_supremums.
Section TopologyOfSubbase.
Variable (
I : pointedType) (
T : Type) (
D : set I) (
b : I -> set T).
Program Definition topologyOfSubbaseMixin :=
@topologyOfBaseMixin _ _ (
finI_from D b)
id (
finI_from_cover D b)
_.
Next Obligation.
move=> A B t [DA sDAD AeIbA] [DB sDBD BeIbB] At Bt.
exists (
A `&` B)
; split => //.
exists (
DA `|` DB)
%fset; first by move=> i /fsetUP [/sDAD|/sDBD].
rewrite predeqE => s; split=> [Ifs|[As Bs] i /fsetUP].
split; first by rewrite -AeIbA => i DAi; apply: Ifs; rewrite /= inE DAi.
by rewrite -BeIbB => i DBi; apply: Ifs; rewrite /= inE DBi orbC.
by move=> [DAi|DBi];
[have := As; rewrite -AeIbA; apply|have := Bs; rewrite -BeIbB; apply].
Qed.
End TopologyOfSubbase.
Topology on nat
Section nat_topologicalType.
Let D : set nat := setT.
Let b : nat -> set nat := fun i => [set i].
Let bT : \bigcup_(
i in D)
b i = setT.
Proof.
by rewrite predeqE => i; split => // _; exists i. Qed.
Let bD : forall i j t, D i -> D j -> b i t -> b j t ->
exists k, [/\ D k, b k t & b k `<=` b i `&` b j].
Proof.
by move=> i j t _ _ -> ->; exists j. Qed.
Definition nat_topologicalTypeMixin := topologyOfBaseMixin bT bD.
Canonical nat_filteredType := FilteredType nat nat (
nbhs_of_open (
open_from D b)).
Canonical nat_topologicalType := TopologicalType nat nat_topologicalTypeMixin.
End nat_topologicalType.
Definition eventually := filter_from setT (
fun N => [set n | (
N <= n)
%N]).
Notation "'\oo'" := eventually : classical_set_scope.
Canonical eventually_filter_source X :=
@Filtered.
Source X _ nat (
fun f => f @ \oo).
Global Instance eventually_filter : ProperFilter eventually.
Proof.
eapply @filter_from_proper; last by move=> i _; exists i => /=.
apply: filter_fromT_filter; first by exists 0%N.
move=> i j; exists (
maxn i j)
=> n //=.
by rewrite geq_max => /andP[ltin ltjn].
Qed.
Canonical eventually_filterType := FilterType eventually _.
Canonical eventually_pfilterType := PFilterType eventually (
filter_not_empty _).
Lemma nbhs_infty_gt N : \forall n \near \oo, (
N < n)
%N.
Proof.
by exists N.+1. Qed.
#[global] Hint Resolve nbhs_infty_gt : core.
Lemma nbhs_infty_ge N : \forall n \near \oo, (
N <= n)
%N.
Proof.
by exists N. Qed.
Lemma cvg_addnl N : addn N @ \oo --> \oo.
Proof.
by move=> P [n _ Pn]; exists (
n - N)
%N => // m; rewrite /= leq_subLR => /Pn.
Qed.
Lemma cvg_addnr N : addn^~ N --> \oo.
Proof.
Lemma cvg_subnr N : subn^~ N --> \oo.
Proof.
Lemma cvg_mulnl N : (
N > 0)
%N -> muln N --> \oo.
Proof.
case: N => N // _ P [n _ Pn]; exists (
n %/ N.
+1).
+1 => // m.
by rewrite /= ltn_divLR// => n_lt; apply: Pn; rewrite mulnC /= ltnW.
Qed.
Lemma cvg_mulnr N :(
N > 0)
%N -> muln^~ N --> \oo.
Proof.
by move=> N_gt0; under [muln^~ N]funext => n do rewrite mulnC; apply: cvg_mulnl.
Qed.
Lemma cvg_divnr N : (
N > 0)
%N -> divn^~ N --> \oo.
Proof.
move=> N_gt0 P [n _ Pn]; exists (
n * N)
%N => //= m.
by rewrite /= -leq_divRL//; apply: Pn.
Qed.
Lemma near_inftyS (
P : set nat)
:
(
\forall x \near \oo, P (
S x))
-> (
\forall x \near \oo, P x).
Proof.
case=> N _ NPS; exists (
S N)
=> // [[]]; rewrite /= ?ltn0 //. Qed.
Section infty_nat.
Local Open Scope nat_scope.
Let cvgnyP {F : set (
set nat)
} {FF : Filter F} : [<->
F --> \oo;
forall A, \forall x \near F, A <= x;
forall A, \forall x \near F, A < x;
\forall A \near \oo, \forall x \near F, A < x;
\forall A \near \oo, \forall x \near F, A <= x ].
Proof.
tfae; first by move=> Foo A; apply: Foo; apply: nbhs_infty_ge.
- move=> AF A; near \oo => B; near=> x.
suff : (
B <= x)
%N by apply: leq_trans; near: B; apply: nbhs_infty_gt.
by near: x; apply: AF; near: B.
- by move=> Foo; near do apply: Foo.
- by apply: filterS => ?; apply: filterS => ?; apply: ltnW.
case=> [A _ AF] P [n _ Pn]; near \oo => B; near=> m; apply: Pn => /=.
suff: (
B <= m)
%N by apply: leq_trans; near: B; apply: nbhs_infty_ge.
by near: m; apply: AF; near: B; apply: nbhs_infty_ge.
Unshelve.
all: end_near. Qed.
Section map.
Context {I : Type} {F : set (
set I)
} {FF : Filter F} (
f : I -> nat).
Lemma cvgnyPge :
f @ F --> \oo <-> forall A, \forall x \near F, A <= f x.
Proof.
Lemma cvgnyPgt :
f @ F --> \oo <-> forall A, \forall x \near F, A < f x.
Proof.
Lemma cvgnyPgty :
f @ F --> \oo <-> \forall A \near \oo, \forall x \near F, A < f x.
Proof.
Lemma cvgnyPgey :
f @ F --> \oo <-> \forall A \near \oo, \forall x \near F, A <= f x.
Proof.
End map.
End infty_nat.
Topology on the product of two spaces
Section Prod_Topology.
Context {T U : topologicalType}.
Let prod_nbhs (
p : T * U)
:= filter_prod (
nbhs p.
1) (
nbhs p.
2).
Lemma prod_nbhs_filter (
p : T * U)
: ProperFilter (
prod_nbhs p).
Proof.
Lemma prod_nbhs_singleton (
p : T * U) (
A : set (
T * U))
: prod_nbhs p A -> A p.
Proof.
by move=> [QR [/nbhs_singleton Qp1 /nbhs_singleton Rp2]]; apply.
Qed.
Lemma prod_nbhs_nbhs (
p : T * U) (
A : set (
T * U))
:
prod_nbhs p A -> prod_nbhs p (
prod_nbhs^~ A).
Proof.
move=> [QR [/nbhs_interior p1_Q /nbhs_interior p2_R] sQRA].
by exists (
QR.
1^°
, QR.
2^°)
=> // ??; exists QR.
Qed.
Definition prod_topologicalTypeMixin :=
topologyOfFilterMixin prod_nbhs_filter prod_nbhs_singleton prod_nbhs_nbhs.
Canonical prod_topologicalType :=
TopologicalType (
T * U)
prod_topologicalTypeMixin.
End Prod_Topology.
Topology on matrices
Lemma fst_open {U V : topologicalType} (
A : set (
U * V))
:
open A -> open (
fst @` A).
Proof.
rewrite !openE => oA z [[a b/=] Aab <-]; rewrite /interior.
have [[P Q] [Pa Qb] pqA] := oA _ Aab; apply: (
@filterS _ _ _ P)
=> // p Pp.
by exists (
p, b)
=> //=; apply: pqA; split=> //=; exact: nbhs_singleton.
Qed.
Lemma snd_open {U V : topologicalType} (
A : set (
U * V))
:
open A -> open (
snd @` A).
Proof.
rewrite !openE => oA z [[a b/=] Aab <-]; rewrite /interior.
have [[P Q] [Pa Qb] pqA] := oA _ Aab; apply: (
@filterS _ _ _ Q)
=> // q Qq.
by exists (
a, q)
=> //=; apply: pqA; split => //; exact: nbhs_singleton.
Qed.
Section matrix_Topology.
Variables (
m n : nat) (
T : topologicalType).
Implicit Types M : 'M[T]_(
m, n).
Lemma mx_nbhs_filter M : ProperFilter (
nbhs M).
Proof.
Lemma mx_nbhs_singleton M (
A : set 'M[T]_(
m, n))
: nbhs M A -> A M.
Proof.
Lemma mx_nbhs_nbhs M (
A : set 'M[T]_(
m, n))
: nbhs M A -> nbhs M (
nbhs^~ A).
Proof.
move=> [P M_P sPA]; exists (
fun i j => (
P i j)
^°).
by move=> ? ?; apply: nbhs_interior.
by move=> ? ?; exists P.
Qed.
Definition matrix_topologicalTypeMixin :=
topologyOfFilterMixin mx_nbhs_filter mx_nbhs_singleton mx_nbhs_nbhs.
Canonical matrix_topologicalType :=
TopologicalType 'M[T]_(
m, n)
matrix_topologicalTypeMixin.
End matrix_Topology.
Weak topology by a function
Section Weak_Topology.
Variable (
S : pointedType) (
T : topologicalType) (
f : S -> T).
Definition wopen := [set f @^-1` A | A in open].
Lemma wopT : wopen setT.
Proof.
Lemma wopI (
A B : set S)
: wopen A -> wopen B -> wopen (
A `&` B).
Proof.
by move=> [C Cop <-] [D Dop <-]; exists (
C `&` D)
=> //; apply: openI.
Qed.
Lemma wop_bigU (
I : Type) (
g : I -> set S)
:
(
forall i, wopen (
g i))
-> wopen (
\bigcup_i g i).
Proof.
move=> gop.
set opi := fun i => [set Ui | open Ui /\ g i = f @^-1` Ui].
exists (
\bigcup_i get (
opi i)).
apply: bigcup_open => i.
by have /getPex [] : exists U, opi i U by have [U] := gop i; exists U.
have g_preim i : g i = f @^-1` (
get (
opi i)).
by have /getPex [] : exists U, opi i U by have [U] := gop i; exists U.
rewrite predeqE => s; split=> [[i _]|[i _]]; last by rewrite g_preim; exists i.
by rewrite -[_ _]/((
f @^-1` _)
_)
-g_preim; exists i.
Qed.
Definition weak_topologicalTypeMixin := topologyOfOpenMixin wopT wopI wop_bigU.
Let S_filteredClass := Filtered.Class (
Pointed.class S) (
nbhs_of_open wopen).
Definition weak_topologicalType :=
Topological.Pack (
@Topological.
Class _ S_filteredClass
weak_topologicalTypeMixin).
Lemma weak_continuous : continuous (
f : weak_topologicalType -> T).
Proof.
by apply/continuousP => A ?; exists A. Qed.
Lemma cvg_image (
F : set (
set S)) (
s : S)
:
Filter F -> f @` setT = setT ->
F --> (
s : weak_topologicalType)
<-> [set f @` A | A in F] --> f s.
Proof.
End Weak_Topology.
Supremum of a family of topologies
Section Sup_Topology.
Variable (
T : pointedType) (
I : Type) (
Tc : I -> Topological.class_of T).
Let TS := fun i => Topological.Pack (
Tc i).
Definition sup_subbase := \bigcup_i (
@open (
TS i)
: set (
set T)).
Definition sup_topologicalTypeMixin := topologyOfSubbaseMixin sup_subbase id.
Definition sup_topologicalType :=
Topological.Pack (
@Topological.
Class _ (
Filtered.Class (
Pointed.class T)
_)
sup_topologicalTypeMixin).
Lemma cvg_sup (
F : set (
set T)) (
t : T)
:
Filter F -> F --> (
t : sup_topologicalType)
<-> forall i, F --> (
t : TS i).
Proof.
move=> Ffilt; split=> cvFt.
move=> i A /=; rewrite (
@nbhsE (
TS i))
=> - [B [Bop Bt] sBA].
apply: cvFt; exists B; split=> //; exists [set B]; last first.
by rewrite predeqE => ?; split=> [[_ ->]|] //; exists B.
move=> _ ->; exists [fset B]%fset.
by move=> ?; rewrite inE inE => /eqP->; exists i.
by rewrite predeqE=> ?; split=> [|??]; [apply|]; rewrite /= inE // =>/eqP->.
move=> A /=; rewrite (
@nbhsE sup_topologicalType).
move=> [_ [[B sB <-] [C BC Ct] sUBA]].
rewrite nbhs_filterE; apply: filterS sUBA _; apply: (
@filterS _ _ _ C).
by move=> ? ?; exists C.
have /sB [D sD IDeC] := BC; rewrite -IDeC; apply: filter_bigI => E DE.
have /sD := DE; rewrite inE => - [i _]; rewrite openE => Eop.
by apply: (
cvFt i)
; apply: Eop; move: Ct; rewrite -IDeC => /(
_ _ DE).
Qed.
End Sup_Topology.
Product topology
Section Product_Topology.
Variable (
I : Type) (
T : I -> topologicalType).
Definition product_topologicalType :=
sup_topologicalType (
fun i => Topological.class
(
weak_topologicalType (
fun f : dep_arrow_pointedType T => f i))).
End Product_Topology.
deleted neighborhood
Definition dnbhs {T : topologicalType} (
x : T)
:=
within (
fun y => y != x) (
nbhs x).
Notation "x ^'" := (
dnbhs x)
: classical_set_scope.
Lemma nbhs_dnbhs_neq {T : topologicalType} (
p : T)
:
\forall x \near nbhs p^', x != p.
Proof.
Lemma dnbhsE (
T : topologicalType) (
x : T)
: nbhs x = x^' `&` at_point x.
Proof.
rewrite predeqE => A; split=> [x_A|[x_A Ax]].
split; last exact: nbhs_singleton.
move: x_A; rewrite nbhsE => -[B [oB x_B sBA]]; rewrite /dnbhs nbhsE.
by exists B => // ? /sBA.
move: x_A; rewrite /dnbhs !nbhsE => -[B [oB x_B sBA]]; exists B => //.
by move=> y /sBA Ay; case: (
eqVneq y x)
=> [->|].
Qed.
Global Instance dnbhs_filter {T : topologicalType} (
x : T)
: Filter x^'.
Proof.
#[global] Typeclasses Opaque dnbhs.
Canonical dnbhs_filter_on (
T : topologicalType) (
x : T)
:=
FilterType x^' (
dnbhs_filter _).
Lemma cvg_fmap2 (
T U : Type) (
f : T -> U)
:
forall (
F G : set (
set T))
, G `=>` F -> f @ G `=>` f @ F.
Proof.
by move=> F G H A fFA ; exact: H (
preimage f A)
fFA. Qed.
Lemma cvg_within_filter {T U} {f : T -> U} (
F : set (
set T))
{FF : (
Filter F)
}
(
G : set (
set U))
: forall (
D : set T)
, (
f @ F)
--> G -> (
f @ within D F)
--> G.
Proof.
Lemma cvg_app_within {T} {U : topologicalType} (
f : T -> U) (
F : set (
set T))
(
D : set T)
: Filter F -> cvg (
f @ F)
-> cvg (
f @ within D F).
Proof.
Lemma nbhs_dnbhs {T : topologicalType} (
x : T)
: x^' `=>` nbhs x.
Proof.
meets
Lemma meets_openr {T : topologicalType} (
F : set (
set T)) (
x : T)
:
F `#` nbhs x = F `#` open_nbhs x.
Proof.
rewrite propeqE; split; [exact/meetsSr/open_nbhs_nbhs|].
by move=> P A B {}/P P; rewrite nbhsE => -[B' /P + sB]; apply: subsetI_neq0.
Qed.
Lemma meets_openl {T : topologicalType} (
F : set (
set T)) (
x : T)
:
nbhs x `#` F = open_nbhs x `#` F.
Proof.
Lemma meets_globallyl T (
A : set T)
G :
globally A `#` G = forall B, G B -> A `&` B !=set0.
Proof.
Lemma meets_globallyr T F (
B : set T)
:
F `#` globally B = forall A, F A -> A `&` B !=set0.
Proof.
Lemma meetsxx T (
F : set (
set T)) (
FF : Filter F)
: F `#` F = ~ (
F set0).
Proof.
rewrite propeqE; split => [FmF F0|]; first by have [x []] := FmF _ _ F0 F0.
move=> FN0 A B /filterI FAI {}/FAI FAB; apply/set0P/eqP => AB0.
by rewrite AB0 in FAB.
Qed.
Lemma proper_meetsxx T (
F : set (
set T)) (
FF : ProperFilter F)
: F `#` F.
Proof.
Closed sets in topological spaces
Section Closed.
Context {T : topologicalType}.
Definition closure (
A : set T)
:=
[set p : T | forall B, nbhs p B -> A `&` B !=set0].
Lemma closure0 : closure set0 = set0 :> set T.
Proof.
Lemma closureEnbhs A : closure A = [set p | globally A `#` nbhs p].
Proof.
Lemma closureEonbhs A : closure A = [set p | globally A `#` open_nbhs p].
Proof.
Lemma subset_closure (
A : set T)
: A `<=` closure A.
Proof.
Lemma closure_eq0 (
A : set T)
: closure A = set0 -> A = set0.
Proof.
by move=> A0; apply/seteqP; split => //; rewrite -A0; exact: subset_closure.
Qed.
Lemma closureI (
A B : set T)
: closure (
A `&` B)
`<=` closure A `&` closure B.
Proof.
by move=> p clABp; split=> ? /clABp [q [[]]]; exists q. Qed.
Definition limit_point E := [set t : T |
forall U, nbhs t U -> exists y, [/\ y != t, E y & U y]].
Lemma limit_pointEnbhs E :
limit_point E = [set p | globally (
E `\ p)
`#` nbhs p].
Proof.
under eq_fun do rewrite meets_globallyl; rewrite funeqE => p /=.
apply/eq_forall2 => x px; apply/eq_exists => y.
by rewrite propeqE; split => [[/eqP ? ?]|[[? /eqP ?]]]; do 2?split.
Qed.
Lemma limit_pointEonbhs E :
limit_point E = [set p | globally (
E `\ p)
`#` open_nbhs p].
Proof.
Lemma subset_limit_point E : limit_point E `<=` closure E.
Proof.
by move=> t Et U tU; have [p [? ? ?]] := Et _ tU; exists p. Qed.
Lemma closure_limit_point E : closure E = E `|` limit_point E.
Proof.
Definition closed (
D : set T)
:= closure D `<=` D.
Lemma open_closedC (
D : set T)
: open D -> closed (
~` D).
Proof.
by rewrite openE => Dop p clNDp /Dop /clNDp [? []]. Qed.
Lemma closed_bigI {I} (
D : set I) (
f : I -> set T)
:
(
forall i, D i -> closed (
f i))
-> closed (
\bigcap_(
i in D)
f i).
Proof.
move=> fcl t clft i Di; have /fcl := Di; apply.
by move=> A /clft [s [/(_ i Di)]]; exists s.
Qed.
Lemma closedI (
D E : set T)
: closed D -> closed E -> closed (
D `&` E).
Proof.
by move=> Dcl Ecl p clDEp; split; [apply: Dcl|apply: Ecl];
move=> A /clDEp [q [[]]]; exists q.
Qed.
Lemma closedT : closed setT
Proof.
by []. Qed.
Lemma closed0 : closed set0.
Proof.
Lemma closedE : closed = [set A : set T | forall p, ~ (
\near p, ~ A p)
-> A p].
Proof.
rewrite predeqE => A; split=> Acl p; last first.
by move=> clAp; apply: Acl; rewrite -nbhs_nearE => /clAp [? []].
rewrite -nbhs_nearE nbhsE => /asboolP.
rewrite asbool_neg => /forallp_asboolPn2 clAp.
apply: Acl => B; rewrite nbhsE => - [C [oC pC]].
have /asboolP := clAp C.
rewrite asbool_or 2!asbool_neg => /orP[/asboolP/not_andP[]//|/existsp_asboolPn [q]].
move/asboolP; rewrite asbool_neg => /imply_asboolPn[+ /contrapT Aq sCB] => /sCB.
by exists q.
Qed.
Lemma closed_openC (
D : set T)
: closed D -> open (
~` D).
Proof.
Lemma closedC (
D : set T)
: closed (
~` D)
= open D.
Proof.
Lemma openC (
D : set T)
: open (
~`D)
= closed (
D).
Proof.
by rewrite -closedC setCK. Qed.
Lemma closed_closure (
A : set T)
: closed (
closure A).
Proof.
by move=> p clclAp B /nbhs_interior /clclAp [q [clAq /clAq]]. Qed.
End Closed.
Lemma closed_comp {T U : topologicalType} (
f : T -> U) (
D : set U)
:
{in ~` f @^-1` D, continuous f} -> closed D -> closed (
f @^-1` D).
Proof.
rewrite !closedE=> f_continuous D_cl x /= xDf.
apply: D_cl; apply: contra_not xDf => fxD.
have NDfx : ~ D (
f x).
by move: fxD; rewrite -nbhs_nearE nbhsE => - [A [? ?]]; apply.
by apply: f_continuous fxD; rewrite inE.
Qed.
Lemma closed_cvg {T} {V : topologicalType} {F} {FF : ProperFilter F}
(
u_ : T -> V) (
A : V -> Prop)
:
closed A -> (
\forall n \near F, A (
u_ n))
->
forall l, u_ @ F --> l -> A l.
Proof.
move=> + FAu_ l u_Fl; apply => B /u_Fl /=; rewrite nbhs_filterE.
by move=> /(
filterI FAu_)
=> /filter_ex[t [Au_t u_Bt]]; exists (
u_ t).
Qed.
Arguments closed_cvg {T V F FF u_} _ _ _ _ _.
Lemma continuous_closedP (
S T : topologicalType) (
f : S -> T)
:
continuous f <-> forall A, closed A -> closed (
f @^-1` A).
Proof.
Lemma closedU (
T : topologicalType) (
D E : set T)
:
closed D -> closed E -> closed (
D `|` E).
Proof.
Lemma closed_bigsetU (
T : topologicalType) (
I : eqType) (
s : seq I)
(
F : I -> set T)
: (
forall x, x \in s -> closed (
F x))
->
closed (
\big[setU/set0]_(
x <- s)
F x).
Proof.
Lemma closed_bigcup (
T : topologicalType) (
I : choiceType) (
A : set I)
(
F : I -> set T)
:
finite_set A -> (
forall i, A i -> closed (
F i))
->
closed (
\bigcup_(
i in A)
F i).
Proof.
Section closure_lemmas.
Variable T : topologicalType.
Implicit Types E A B U : set T.
Lemma closure_subset A B : A `<=` B -> closure A `<=` closure B.
Proof.
by move=> ? ? CAx ?; move/CAx; exact/subsetI_neq0. Qed.
Lemma closureE A : closure A = smallest closed A.
Proof.
Lemma closureC E :
~` closure E = \bigcup_(
x in [set U | open U /\ U `<=` ~` E])
x.
Proof.
Lemma closure_id E : closed E <-> E = closure E.
Proof.
End closure_lemmas.
Compact sets
Section Compact.
Context {T : topologicalType}.
Definition cluster (
F : set (
set T))
:= [set p : T | F `#` nbhs p].
Lemma cluster_nbhs t : cluster (
nbhs t)
t.
Proof.
by move=> A B /nbhs_singleton At /nbhs_singleton Bt; exists t. Qed.
Lemma clusterEonbhs F : cluster F = [set p | F `#` open_nbhs p].
Proof.
by under eq_fun do rewrite -meets_openr. Qed.
Lemma clusterE F : cluster F = \bigcap_(
A in F) (
closure A).
Proof.
by rewrite predeqE => p; split=> cF ????; apply: cF. Qed.
Lemma closureEcluster E : closure E = cluster (
globally E).
Proof.
Lemma cvg_cluster F G : F --> G -> cluster F `<=` cluster G.
Proof.
by move=> sGF p Fp P Q GP Qp; apply: Fp Qp; apply: sGF. Qed.
Lemma cluster_cvgE F :
Filter F ->
cluster F = [set p | exists2 G, ProperFilter G & G --> p /\ F `<=` G].
Proof.
Lemma closureEcvg (
E : set T)
:
closure E =
[set p | exists2 G, ProperFilter G & G --> p /\ globally E `<=` G].
Proof.
Definition compact A := forall (
F : set (
set T))
,
ProperFilter F -> F A -> A `&` cluster F !=set0.
Lemma compact0 : compact set0.
Proof.
by move=> F FF /filter_ex []. Qed.
Lemma subclosed_compact (
A B : set T)
:
closed A -> compact B -> A `<=` B -> compact A.
Proof.
move=> Acl Bco sAB F Fproper FA.
have [|p [Bp Fp]] := Bco F; first exact: filterS FA.
by exists p; split=> //; apply: Acl=> C Cp; apply: Fp.
Qed.
Definition hausdorff_space := forall p q : T, cluster (
nbhs p)
q -> p = q.
Typeclasses Opaque within.
Global Instance within_nbhs_proper (
A : set T)
p :
infer (
closure A p)
-> ProperFilter (
within A (
nbhs p)).
Proof.
move=> clAp; apply: Build_ProperFilter => B.
by move=> /clAp [q [Aq AqsoBq]]; exists q; apply: AqsoBq.
Qed.
Lemma compact_closed (
A : set T)
: hausdorff_space -> compact A -> closed A.
Proof.
move=> hT Aco p clAp; have pA := !! @withinT _ (
nbhs p)
A _.
have [q [Aq clsAp_q]] := !! Aco _ _ pA; rewrite (
hT p q)
//.
by apply: cvg_cluster clsAp_q; apply: cvg_within.
Qed.
Lemma compact_set1 (
x : T)
: compact [set x].
Proof.
move=> F PF Fx; exists x; split; first by [].
move=> P B nbhsB; exists x; split; last exact: nbhs_singleton.
suff [y [Py <-//]] : P `&` [set x] !=set0.
by apply: filter_ex; [exact: PF| exact: filterI].
Qed.
End Compact.
Arguments hausdorff_space : clear implicits.
Section ClopenSets.
Implicit Type T : topologicalType.
Definition clopen {T} (
A : set T)
:= open A /\ closed A.
Lemma clopenI {T} (
A B : set T)
: clopen A -> clopen B -> clopen (
A `&` B).
Proof.
by case=> ? ? [] ? ?; split; [exact: openI | exact: closedI]. Qed.
Lemma clopenU {T} (
A B : set T)
: clopen A -> clopen B -> clopen (
A `|` B).
Proof.
by case=> ? ? [] ? ?; split; [exact: openU | exact: closedU]. Qed.
Lemma clopenC {T} (
A B : set T)
: clopen A -> clopen (
~`A).
Proof.
Lemma clopen0 {T} : @clopen T set0.
Proof.
Lemma clopenT {T} : clopen [set: T].
Proof.
Lemma clopen_comp {T U : topologicalType} (
f : T -> U) (
A : set U)
:
clopen A -> continuous f -> clopen (
f @^-1` A).
Proof.
End ClopenSets.
Section near_covering.
Context {X : topologicalType}.
Definition near_covering (
K : set X)
:=
forall (
I : Type) (
F : set (
set I)) (
P : I -> X -> Prop)
,
Filter F ->
(
forall x, K x -> \forall x' \near x & i \near F, P i x')
->
\near F, K `<=` P F.
Let near_covering_compact : near_covering `<=` compact.
Proof.
move=> K locK F PF FK; apply/set0P/eqP=> KclstF0; case: (
PF)
=> + FF; apply.
rewrite (
_ : xpredp0 = set0)
// -(
setICr K)
; apply: filterI => //.
have /locK : forall x, K x ->
\forall x' \near x & i \near powerset_filter_from F, (
~` i)
x'.
move=> x Kx; have : ~ cluster F x.
by apply: contraPnot KclstF0 => clstFx; apply/eqP/set0P; exists x.
move=> /existsNP [U /existsNP [V /not_implyP [FU /not_implyP [nbhsV]]]] UV0.
near=> x' W => //= => Wx'; apply: UV0; exists x'.
by split; [exact: (
near (
small_set_sub FU)
W)
| exact: (
near nbhsV x')
].
case=> G [GF Gdown [U GU]] GP; apply: (
@filterS _ _ _ U)
; last exact: GF.
by move=> y Uy Ky; exact: (
GP _ GU y Ky).
Unshelve.
all: end_near. Qed.
Let compact_near_covering : compact `<=` near_covering.
Proof.
move=> K cptK I F P FF cover.
pose badPoints := fun U => K `\` [set x | K x /\ U `<=` P ^~ x].
pose G := filter_from F badPoints.
have FG : Filter G.
apply: filter_from_filter; first by exists setT; exact: filterT.
move=> L R FL FR; exists (
L `&` R)
; first exact: filterI.
rewrite /badPoints /= !setDIr !setDv !set0U -setDUr; apply: setDS.
by move=> ? [|] => + ? [? ?]; exact.
have [[V FV]|G0] := pselect (
G set0).
rewrite subset0 setD_eq0 => subK.
by apply: (
@filterS _ _ _ V)
=> // ? ? ? /subK [?]; exact.
have PG : ProperFilter G by [].
have GK : G K by exists setT; [exact: filterT | move=> ? []].
case: (
cptK _ PG GK)
=> x [Kx].
have [[/= U1 U2] [U1x FU2 subP]] := cover x Kx.
have GP : G (
badPoints (
P ^~ x `&` U2)).
apply: filterI => //; exists (
P ^~ x `&` U2)
; last by move=> ? [].
near=> i; split; last exact: (
near FU2 i).
by apply: (
subP (
x, i))
; split; [exact: nbhs_singleton|exact: (
near FU2 i)
].
move=> /(
_ _ _ GP U1x)
=> [[x'[]]][] Kx' /[swap] U1x'.
by case; split => // i [? ?]; exact: (
subP (
x', i)).
Unshelve.
end_near. Qed.
Lemma compact_near_coveringP A : compact A <-> near_covering A.
Proof.
Definition near_covering_within (
K : set X)
:=
forall (
I : Type) (
F : set (
set I)) (
P : I -> X -> Prop)
,
Filter F ->
(
forall x, K x -> \forall x' \near x & i \near F, K x' -> P i x')
->
\near F, K `<=` P F.
Lemma near_covering_withinP (
K : set X)
:
near_covering_within K <-> near_covering K.
Proof.
split => cvrW I F P FF cvr; near=> i;
(
suff: K `<=` fun q : X => K q -> P i q by move=> + k Kk; exact)
; near: i.
by apply: cvrW => x /cvr; apply: filter_app; near=> j.
have := cvrW _ _ (
fun i q => K q -> P i q)
FF.
by apply => x /cvr; apply: filter_app; near=> j => + ?; apply.
Unshelve.
all: by end_near. Qed.
End near_covering.
Lemma compact_setM {U V : topologicalType} (
P : set U) (
Q : set V)
:
compact P -> compact Q -> compact (
P `*` Q).
Proof.
rewrite !compact_near_coveringP => cptP cptQ I F Pr Ff cvfPQ.
have := cptP I F (
fun i u => forall q, Q q -> Pr i (
u, q))
Ff.
set R := (
R in (
R -> _)
-> _)
; suff R' : R.
by move/(
_ R')
; apply:filter_app; near=> i => + [a b] [Pa Qb]; apply.
rewrite /R => x Px; apply: (
@cptQ _ (
filter_prod _ _))
=> v Qv.
case: (
cvfPQ (
x, v))
=> // [[N G]] /= [[[N1 N2 /= [N1x N2v]]]] N1N2N FG ngPr.
exists (
N2, N1`*`G)
; first by split => //; exists (
N1, G).
case=> a [b i] /= [N2a [N1b]] Gi.
by apply: (
ngPr (
b, a, i))
; split => //; exact: N1N2N.
Unshelve.
all: by end_near. Qed.
Section Tychonoff.
Class UltraFilter T (
F : set (
set T))
:= {
ultra_proper :> ProperFilter F ;
max_filter : forall G : set (
set T)
, ProperFilter G -> F `<=` G -> G = F
}.
Lemma ultra_cvg_clusterE (
T : topologicalType) (
F : set (
set T))
:
UltraFilter F -> cluster F = [set p | F --> p].
Proof.
Lemma ultraFilterLemma T (
F : set (
set T))
:
ProperFilter F -> exists G, UltraFilter G /\ F `<=` G.
Proof.
Lemma compact_ultra (
T : topologicalType)
:
compact = [set A | forall F : set (
set T)
,
UltraFilter F -> F A -> A `&` [set p | F --> p] !=set0].
Proof.
Lemma filter_image (
T U : Type) (
f : T -> U) (
F : set (
set T))
:
Filter F -> f @` setT = setT -> Filter [set f @` A | A in F].
Proof.
move=> FF fsurj; split.
- by exists setT => //; apply: filterT.
- move=> _ _ [A FA <-] [B FB <-].
exists (
f @^-1` (
f @` A `&` f @` B))
; last by rewrite image_preimage.
have sAB : A `&` B `<=` f @^-1` (
f @` A `&` f @` B).
by move=> x [Ax Bx]; split; exists x.
by apply: filterS sAB _; apply: filterI.
- move=> A B sAB [C FC fC_eqA].
exists (
f @^-1` B)
; last by rewrite image_preimage.
by apply: filterS FC => p Cp; apply: sAB; rewrite -fC_eqA; exists p.
Qed.
Lemma proper_image (
T U : Type) (
f : T -> U) (
F : set (
set T))
:
ProperFilter F -> f @` setT = setT -> ProperFilter [set f @` A | A in F].
Proof.
Lemma principal_filter_ultra {T : Type} (
x : T)
:
UltraFilter (
principal_filter x).
Proof.
Lemma in_ultra_setVsetC T (
F : set (
set T)) (
A : set T)
:
UltraFilter F -> F A \/ F (
~` A).
Proof.
Lemma ultra_image (
T U : Type) (
f : T -> U) (
F : set (
set T))
:
UltraFilter F -> f @` setT = setT -> UltraFilter [set f @` A | A in F].
Proof.
Lemma tychonoff (
I : eqType) (
T : I -> topologicalType)
(
A : forall i, set (
T i))
:
(
forall i, compact (
A i))
->
@compact (
product_topologicalType T)
[set f : forall i, T i | forall i, A i (
f i)
].
Proof.
move=> Aco; rewrite compact_ultra => F FU FA.
set subst_coord := fun (
i : I) (
pi : T i) (
f : forall x : I, T x) (
j : I)
=>
if eqP is ReflectT e then ecast i (
T i) (
esym e)
pi else f j.
have subst_coordT i pi f : subst_coord i pi f i = pi.
rewrite /subst_coord; case eqP => // e.
by rewrite (
eq_irrelevance e (
erefl _)).
have subst_coordN i pi f j : i != j -> subst_coord i pi f j = f j.
move=> inej; rewrite /subst_coord; case: eqP => // e.
by move: inej; rewrite {1}e => /negP.
have pr_surj i : @^~ i @` [set: forall i, T i] = setT.
rewrite predeqE => pi; split=> // _.
by exists (
subst_coord i pi (
fun _ => point))
=> //; rewrite subst_coordT.
set pF := fun i => [set @^~ i @` B | B in F].
have pFultra : forall i, UltraFilter (
pF i).
by move=> i; apply: ultra_image (
pr_surj i).
have pFA : forall i, pF i (
A i).
move=> i; exists [set g | forall i, A i (
g i)
] => //.
rewrite predeqE => pi; split; first by move=> [g Ag <-]; apply: Ag.
move=> Aipi; have [f Af] := filter_ex FA.
exists (
subst_coord i pi f)
; last exact: subst_coordT.
move=> j; case: (
eqVneq i j)
; first by case: _ /; rewrite subst_coordT.
by move=> /subst_coordN ->; apply: Af.
have cvpFA i : A i `&` [set p | pF i --> p] !=set0.
by rewrite -ultra_cvg_clusterE; apply: Aco.
exists (
fun i => get (
A i `&` [set p | pF i --> p])).
split=> [i|]; first by have /getPex [] := cvpFA i.
by apply/cvg_sup => i; apply/cvg_image=> //; have /getPex [] := cvpFA i.
Qed.
End Tychonoff.
Lemma compact_cluster_set1 {T : topologicalType} (
x : T)
F V :
hausdorff_space T -> compact V -> nbhs x V ->
ProperFilter F -> F V -> cluster F = [set x] -> F --> x.
Proof.
Section Precompact.
Context {X : topologicalType}.
Lemma compactU (
A B : set X)
: compact A -> compact B -> compact (
A `|` B).
Proof.
Lemma bigsetU_compact I (
F : I -> set X) (
s : seq I) (
P : pred I)
:
(
forall i, P i -> compact (
F i))
->
compact (
\big[setU/set0]_(
i <- s | P i)
F i).
Proof.
by move=> ?; elim/big_ind : _ =>//; [exact:compact0|exact:compactU]. Qed.
Definition compact_near (
F : set (
set X))
:=
exists2 U, F U & compact U /\ closed U.
Definition precompact (
C : set X)
:= compact_near (
globally C).
Lemma precompactE (
C : set X)
: precompact C = compact (
closure C).
Proof.
Lemma precompact_subset (
A B : set X)
:
A `<=` B -> precompact B -> precompact A.
Proof.
by move=> AsubB [B' B'subB cptB']; exists B' => // ? ?; exact/B'subB/AsubB.
Qed.
Lemma compact_precompact (
A : set X)
:
hausdorff_space X -> compact A -> precompact A.
Proof.
Lemma precompact_closed (
A : set X)
: closed A -> precompact A = compact A.
Proof.
move=> clA; rewrite propeqE; split=> [[B AsubB [ + _ ]]|].
by move=> /subclosed_compact; exact.
by rewrite {1}(
_ : A = closure A)
?precompactE// -closure_id.
Qed.
Definition locally_compact (
A : set X)
:= [locally precompact A].
End Precompact.
Section product_spaces.
Context {I : eqType} {K : I -> topologicalType}.
Let PK := product_topologicalType K.
Lemma proj_continuous i : continuous (
proj i : PK -> K i).
Proof.
Lemma dfwith_continuous g (
i : I)
: continuous (
dfwith g _ : K i -> PK).
Proof.
move=> z U [] P [] [] Q QfinP <- [] V JV Vpz.
move/(
@preimage_subset _ _ (
dfwith g i))
/filterS; apply.
apply: (
@filterS _ _ _ ((
dfwith g i)
@^-1` V))
; first by exists V.
have [L Lsub /[dup] VL <-] := QfinP _ JV; rewrite preimage_bigcap.
apply: filter_bigI => /= M /[dup] LM /Lsub /set_mem [] w _ [+] + /[dup] + <-.
have [->|wnx] := eqVneq w i => N oN NM.
apply: (
@filterS _ _ _ N)
; first by move=> ? ?; rewrite /= dfwithin.
apply: open_nbhs_nbhs; split => //; move: Vpz.
by rewrite -VL => /(
_ _ LM)
; rewrite -NM /= dfwithin.
apply: nearW => y /=; move: Vpz.
by rewrite -VL => /(
_ _ LM)
; rewrite -NM /= ? dfwithout // eq_sym.
Qed.
Lemma proj_open i (
A : set PK)
: open A -> open (
proj i @` A).
Proof.
Lemma hausdorff_product :
(
forall x, hausdorff_space (
K x))
-> hausdorff_space PK.
Proof.
End product_spaces.
Definition finI (
I : choiceType)
T (
D : set I) (
f : I -> set T)
:=
forall D' : {fset I}, {subset D' <= D} ->
\bigcap_(
i in [set i | i \in D'])
f i !=set0.
Lemma finI_filter (
I : choiceType)
T (
D : set I) (
f : I -> set T)
:
finI D f -> ProperFilter (
filter_from (
finI_from D f)
id).
Proof.
move=> finIf; apply: (
filter_from_proper (
filter_from_filter _ _)).
- by exists setT; exists fset0 => //; rewrite predeqE.
- move=> A B [DA sDA IfA] [DB sDB IfB]; exists (
A `&` B)
=> //.
exists (
DA `|` DB)
%fset.
by move=> ?; rewrite inE => /orP [/sDA|/sDB].
rewrite -IfA -IfB predeqE => p; split=> [Ifp|[IfAp IfBp] i].
by split=> i Di; apply: Ifp; rewrite /= inE Di // orbC.
by rewrite /= inE => /orP []; [apply: IfAp|apply: IfBp].
- by move=> _ [?? <-]; apply: finIf.
Qed.
Lemma filter_finI (
T : pointedType) (
F : set (
set T)) (
D : set (
set T))
(
f : set T -> set T)
:
ProperFilter F -> (
forall A, D A -> F (
f A))
-> finI D f.
Proof.
move=> FF sDFf D' sD; apply: (
@filter_ex _ F)
; apply: filter_bigI.
by move=> A /sD; rewrite inE => /sDFf.
Qed.
Definition finite_subset_cover (
I : choiceType) (
D : set I)
U (
F : I -> set U) (
A : set U)
:=
exists2 D' : {fset I}, {subset D' <= D} & A `<=` cover [set` D'] F.
Section Covers.
Variable T : topologicalType.
Definition cover_compact (
A : set T)
:=
forall (
I : choiceType) (
D : set I) (
f : I -> set T)
,
(
forall i, D i -> open (
f i))
-> A `<=` cover D f ->
finite_subset_cover D f A.
Definition open_fam_of (
A : set T)
I (
D : set I) (
f : I -> set T)
:=
exists2 g : I -> set T, (
forall i, D i -> open (
g i))
&
forall i, D i -> f i = A `&` g i.
Lemma cover_compactE : cover_compact =
[set A | forall (
I : choiceType) (
D : set I) (
f : I -> set T)
,
open_fam_of A D f ->
A `<=` cover D f -> finite_subset_cover D f A].
Proof.
rewrite predeqE => A; split=> [Aco I D f [g gop feAg] fcov|Aco I D f fop fcov].
have gcov : A `<=` \bigcup_(
i in D)
g i.
by move=> p /fcov [i Di]; rewrite feAg // => - []; exists i.
have [D' sD sgcov] := Aco _ _ _ gop gcov.
exists D' => // p Ap; have /sgcov [i D'i gip] := Ap.
by exists i => //; rewrite feAg //; have /sD := D'i; rewrite inE.
have Afcov : A `<=` \bigcup_(
i in D) (
A `&` f i).
by move=> p Ap; have /fcov [i ??] := Ap; exists i.
have Afop : open_fam_of A D (
fun i => A `&` f i)
by exists f.
have [D' sD sAfcov] := Aco _ _ _ Afop Afcov.
by exists D' => // p /sAfcov [i ? []]; exists i.
Qed.
Definition closed_fam_of (
A : set T)
I (
D : set I) (
f : I -> set T)
:=
exists2 g : I -> set T, (
forall i, D i -> closed (
g i))
&
forall i, D i -> f i = A `&` g i.
Lemma compact_In0 :
compact = [set A | forall (
I : choiceType) (
D : set I) (
f : I -> set T)
,
closed_fam_of A D f -> finI D f -> \bigcap_(
i in D)
f i !=set0].
Proof.
rewrite predeqE => A; split=> [Aco I D f [g gcl feAg] finIf|Aco F FF FA].
case: (
pselect (
exists i, D i))
=> [[i Di] | /asboolP]; last first.
by rewrite asbool_neg => /forallp_asboolPn D0; exists point => ? /D0.
have [|p [Ap clfinIfp]] := Aco _ (
finI_filter finIf).
by exists (
f i)
; [apply: finI_from1|rewrite feAg // => ? []].
exists p => j Dj; rewrite feAg //; split=> //; apply: gcl => // B.
by apply: clfinIfp; exists (
f j)
; [apply: finI_from1|rewrite feAg // => ? []].
have finIAclF : finI F (
fun B => A `&` closure B).
apply: (
@filter_finI _ F)
=> B FB.
by apply: filterI => //; apply: filterS FB; apply: subset_closure.
have [|p AclFIp] := Aco _ _ _ _ finIAclF.
by exists closure=> //; move=> ??; apply: closed_closure.
exists p; split=> [|B C FB p_C]; first by have /AclFIp [] := FA.
by have /AclFIp [_] := FB; move=> /(
_ _ p_C).
Qed.
Lemma compact_cover : compact = cover_compact.
Proof.
rewrite compact_In0 cover_compactE predeqE => A.
split=> [Aco I D f [g gop feAg] fcov|Aco I D f [g gcl feAg]].
case: (
pselect (
exists i, D i))
=> [[j Dj] | /asboolP]; last first.
rewrite asbool_neg => /forallp_asboolPn D0.
by exists fset0 => // ? /fcov [? /D0].
apply/exists2P; apply: contrapT.
move=> /asboolP; rewrite asbool_neg => /forallp_asboolPn sfncov.
suff [p IAnfp] : \bigcap_(
i in D) (
A `\` f i)
!=set0.
by have /IAnfp [Ap _] := Dj; have /fcov [k /IAnfp [_]] := Ap.
apply: Aco.
exists (
fun i => ~` g i)
=> i Di; first exact/open_closedC/gop.
rewrite predeqE => p; split=> [[Ap nfip] | [Ap ngip]]; split=> //.
by move=> gip; apply: nfip; rewrite feAg.
by rewrite feAg // => - [].
move=> D' sD.
have /asboolP : ~ A `<=` cover [set` D'] f by move=> sAIf; exact: (
sfncov D').
rewrite asbool_neg => /existsp_asboolPn [p /asboolP].
rewrite asbool_neg => /imply_asboolPn [Ap nUfp].
by exists p => i D'i; split=> // fip; apply: nUfp; exists i.
case: (
pselect (
exists i, D i))
=> [[j Dj] | /asboolP]; last first.
by rewrite asbool_neg => /forallp_asboolPn D0 => _; exists point => ? /D0.
apply: contraPP => /asboolP; rewrite asbool_neg => /forallp_asboolPn If0.
apply/asboolP; rewrite asbool_neg; apply/existsp_asboolPn.
have Anfcov : A `<=` \bigcup_(
i in D) (
A `\` f i).
move=> p Ap; have /asboolP := If0 p; rewrite asbool_neg => /existsp_asboolPn.
move=> [i /asboolP]; rewrite asbool_neg => /imply_asboolPn [Di nfip].
by exists i.
have Anfop : open_fam_of A D (
fun i => A `\` f i).
exists (
fun i => ~` g i)
=> i Di; first exact/closed_openC/gcl.
rewrite predeqE => p; split=> [[Ap nfip] | [Ap ngip]]; split=> //.
by move=> gip; apply: nfip; rewrite feAg.
by rewrite feAg // => - [].
have [D' sD sAnfcov] := Aco _ _ _ Anfop Anfcov.
wlog [k D'k] : D' sD sAnfcov / exists i, i \in D'.
move=> /(
_ (
D' `|` [fset j])
%fset)
; apply.
- by move=> k; rewrite !inE => /orP [/sD|/eqP->] //; rewrite inE.
- by move=> p /sAnfcov [i D'i Anfip]; exists i => //=; rewrite !inE D'i.
- by exists j; rewrite !inE orbC eq_refl.
exists D' => /(
_ sD)
[p Ifp].
have /Ifp := D'k; rewrite feAg; last by have /sD := D'k; rewrite inE.
by move=> [/sAnfcov [i D'i [_ nfip]] _]; have /Ifp := D'i.
Qed.
End Covers.
Lemma finite_compact {X : topologicalType} (
A : set X)
:
finite_set A -> compact A.
Proof.
Lemma clopen_countable {T : topologicalType}:
compact [set: T] -> @second_countable T -> countable (
@clopen T).
Proof.
Section set_nbhs.
Context {T : topologicalType} (
A : set T).
Definition set_nbhs := \bigcap_(
x in A)
nbhs x.
Global Instance set_nbhs_filter : Filter set_nbhs.
Proof.
split => P Q; first by exact: filterT.
by move=> Px Qx x Ax; apply: filterI; [exact: Px | exact: Qx].
by move=> PQ + x Ax => /(
_ _ Ax)
/filterS; exact.
Qed.
Global Instance set_nbhs_pfilter : A!=set0 -> ProperFilter set_nbhs.
Proof.
case=> x Ax; split; last exact: set_nbhs_filter.
by move/(
_ x Ax)
/nbhs_singleton.
Qed.
Lemma set_nbhsP (
B : set T)
:
set_nbhs B <-> (
exists C, [/\ open C, A `<=` C & C `<=` B]).
Proof.
End set_nbhs.
Section separated_topologicalType.
Variable T : topologicalType.
Implicit Types x y : T.
Local Open Scope classical_set_scope.
Definition kolmogorov_space := forall x y, x != y ->
exists A : set T, (
A \in nbhs x /\ y \in ~` A)
\/ (
A \in nbhs y /\ x \in ~` A).
Definition accessible_space := forall x y, x != y ->
exists A : set T, open A /\ x \in A /\ y \in ~` A.
Lemma accessible_closed_set1 : accessible_space -> forall x, closed [set x].
Proof.
Lemma accessible_kolmogorov : accessible_space -> kolmogorov_space.
Proof.
move=> T1 x y /T1 [A [oA [xA yA]]]; exists A; left; split=> //.
by rewrite nbhsE inE; exists A => //; rewrite inE in xA.
Qed.
Lemma accessible_finite_set_closed :
accessible_space <-> forall A : set T, finite_set A -> closed A.
Proof.
Definition close x y : Prop := forall M, open_nbhs y M -> closure M x.
Lemma closeEnbhs x : close x = cluster (
nbhs x).
Proof.
Lemma closeEonbhs x : close x = [set y | open_nbhs x `#` open_nbhs y].
Proof.
Lemma close_sym x y : close x y -> close y x.
Proof.
by rewrite !closeEnbhs /cluster/= meetsC. Qed.
Lemma cvg_close {F} {FF : ProperFilter F} x y : F --> x -> F --> y -> close x y.
Proof.
by move=> /sub_meets sx /sx; rewrite closeEnbhs; apply; apply/proper_meetsxx.
Qed.
Lemma close_refl x : close x x.
Proof.
exact: (
@cvg_close (
nbhs x)). Qed.
Hint Resolve close_refl : core.
Lemma close_cvg (
F1 F2 : set (
set T))
{FF2 : ProperFilter F2} :
F1 --> F2 -> F2 --> F1 -> close (
lim F1) (
lim F2).
Proof.
Lemma cvgx_close x y : x --> y -> close x y.
Proof.
Lemma cvgi_close T' {F} {FF : ProperFilter F} (
f : T' -> set T) (
l l' : T)
:
{near F, is_fun f} -> f `@ F --> l -> f `@ F --> l' -> close l l'.
Proof.
Definition cvg_toi_locally_close := @cvgi_close.
Lemma open_hausdorff : hausdorff_space T =
forall x y, x != y ->
exists2 AB, (
x \in AB.
1 /\ y \in AB.
2)
&
[/\ open AB.
1, open AB.
2 & AB.
1 `&` AB.
2 == set0].
Proof.
rewrite propeqE; split => [T_filterT2|T_openT2] x y.
have := contra_not (
T_filterT2 x y)
; rewrite (
rwP eqP) (
rwP negP).
move=> /[apply] /asboolPn/existsp_asboolPn[A]; rewrite -existsNE => -[B].
rewrite [nbhs _ _ -> _](
rwP imply_asboolP)
=> /negP.
rewrite asbool_imply !negb_imply => /andP[/asboolP xA] /andP[/asboolP yB].
move=> /asboolPn; rewrite -set0P => /negP; rewrite negbK => /eqP AIB_eq0.
move: xA yB; rewrite !nbhsE.
move=> - [oA [oA_open oAx] oAA] [oB [oB_open oBx] oBB].
by exists (
oA, oB)
; rewrite ?inE; split => //; apply: subsetI_eq0 AIB_eq0.
apply: contraPP => /eqP /T_openT2[[/=A B]].
rewrite !inE => - [xA yB] [Aopen Bopen /eqP AIB_eq0].
move=> /(
_ A B (
open_nbhs_nbhs _) (
open_nbhs_nbhs _)).
by rewrite -set0P => /(
_ _ _)
/negP; apply.
Qed.
Definition hausdorff_accessible : hausdorff_space T -> accessible_space.
Proof.
rewrite open_hausdorff => hsdfT => x y /hsdfT [[U V] [xU yV]] [/= ? ? /eqP].
rewrite setIC => /disjoints_subset VUc; exists U; repeat split => //.
by rewrite inE; apply: VUc; rewrite -inE.
Qed.
Definition normal_space :=
forall A : set T, closed A ->
filter_from (
set_nbhs A)
closure `=>` set_nbhs A.
Definition regular_space :=
forall a : T, filter_from (
nbhs a)
closure --> a.
Hypothesis sep : hausdorff_space T.
Lemma closeE x y : close x y = (
x = y).
Proof.
Lemma close_eq x y : close x y -> x = y.
Proof.
Lemma cvg_unique {F} {FF : ProperFilter F} : is_subset1 [set x : T | F --> x].
Proof.
move=> Fx Fy; rewrite -closeE //; exact: (@cvg_close F). Qed.
Lemma cvg_eq x y : x --> y -> x = y.
Proof.
by rewrite -closeE //; apply: cvg_close. Qed.
Lemma lim_id x : lim x = x.
Proof.
by apply/esym/cvg_eq/cvg_ex; exists x. Qed.
Lemma cvg_lim {U : Type} {F} {FF : ProperFilter F} (
f : U -> T) (
l : T)
:
f @ F --> l -> lim (
f @ F)
= l.
Proof.
by move=> /[dup] /cvgP /cvg_unique; apply. Qed.
Lemma lim_near_cst {U} {F} {FF : ProperFilter F} (
l : T) (
f : U -> T)
:
(
\forall x \near F, f x = l)
-> lim (
f @ F)
= l.
Proof.
by move=> /cvg_near_cst/cvg_lim. Qed.
Lemma lim_cst {U} {F} {FF : ProperFilter F} (
k : T)
:
lim ((
fun _ : U => k)
@ F)
= k.
Proof.
Lemma cvgi_unique {U : Type} {F} {FF : ProperFilter F} (
f : U -> set T)
:
{near F, is_fun f} -> is_subset1 [set x : T | f `@ F --> x].
Proof.
by move=> ffun fx fy; rewrite -closeE //; exact: cvgi_close. Qed.
Lemma cvgi_lim {U} {F} {FF : ProperFilter F} (
f : U -> T -> Prop) (
l : T)
:
F (
fun x : U => is_subset1 (
f x))
->
f `@ F --> l -> lim (
f `@ F)
= l.
Proof.
Lemma compact_regular (
x : T)
V : compact V -> nbhs x V -> {for x, regular_space}.
Proof.
move=> cptv Vx; apply: (
@compact_cluster_set1 T x _ V)
=> //.
- apply: filter_from_proper => //; first last.
by move=> ? /nbhs_singleton/subset_closure ?; exists x.
apply: filter_from_filter; first by exists setT; exact: filterT.
move=> P Q Px Qx; exists (
P `&` Q)
; [exact: filterI | exact: closureI].
- by exists V => //; have /closure_id <- : closed V by exact: compact_closed.
rewrite eqEsubset; split; first last.
move=> _ -> A B [C Cx CA /nbhs_singleton Bx]; exists x; split => //.
by apply/CA/subset_closure; exact: nbhs_singleton.
move=> y /=; apply: contraPeq; move: sep; rewrite open_hausdorff => /[apply].
move=> [[B A]]/=; rewrite ?inE; case=> By Ax [oB oA BA0].
apply/existsNP; exists (
closure A)
; apply/existsNP; exists B; apply/not_implyP.
split; first by exists A => //; exact: open_nbhs_nbhs.
apply/not_implyP; split; first exact: open_nbhs_nbhs.
apply/set0P/negP; rewrite negbK; apply/eqP/disjoints_subset.
have /closure_id -> : closed (
~` B)
; first by exact: open_closedC.
by apply/closure_subset/disjoints_subset; rewrite setIC.
Qed.
End separated_topologicalType.
#[deprecated(
since="mathcomp-analysis 0.6.0", note="renamed to `cvg_lim`")
]
Notation cvg_map_lim := cvg_lim (
only parsing).
#[deprecated(
since="mathcomp-analysis 0.6.0", note="renamed to `cvgi_lim`")
]
Notation cvgi_map_lim := cvgi_lim (
only parsing).
Section connected_sets.
Variable T : topologicalType.
Implicit Types A B C D : set T.
Definition connected A :=
forall B, B !=set0 -> (
exists2 C, open C & B = A `&` C)
->
(
exists2 C, closed C & B = A `&` C)
-> B = A.
Lemma connected0 : connected (
@set0 T).
Proof.
by move=> ? ? [? ?]; rewrite set0I. Qed.
Definition separated A B :=
(
closure A)
`&` B = set0 /\ A `&` (
closure B)
= set0.
Lemma separatedC A B : separated A B = separated B A.
Proof.
Lemma separated_disjoint A B : separated A B -> A `&` B = set0.
Proof.
move=> AB; rewrite predeqE => x; split => // -[Ax Bx].
by move: AB; rewrite /separated => -[<- _]; split => //; apply: subset_closure.
Qed.
Lemma connectedPn A : ~ connected A <->
exists E : bool -> set T, [/\ forall b, E b !=set0,
A = E false `|` E true & separated (
E false) (
E true)
].
Proof.
rewrite -propeqE; apply: notLR; rewrite propeqE.
split=> [conE [E [E0 EU [E1 E2]]]|conE B B0 [C oC BAC] [D cD BAD]].
suff : E true = A.
move/esym/(
congr1 (
setD^~ (
closure (
E true))))
; rewrite EU setDUl.
have := @subset_closure _ (
E true)
; rewrite -setD_eq0 => ->; rewrite setU0.
by move/setDidPl : E2 => ->; exact/eqP/set0P.
apply: (
conE _ (
E0 true)).
- exists (
~` (
closure (
E false)))
; first exact/closed_openC/closed_closure.
rewrite EU setIUl.
have /subsets_disjoint -> := @subset_closure _ (
E false)
; rewrite set0U.
by apply/esym/setIidPl/disjoints_subset; rewrite setIC.
- exists (
closure (
E true))
; first exact: closed_closure.
by rewrite EU setIUl E2 set0U; exact/esym/setIidPl/subset_closure.
apply: contrapT => AF; apply: conE.
exists (
fun i => if i is false then A `\` C else A `&` C)
; split.
- case=> /=; first by rewrite -BAC.
apply/set0P/eqP => /disjoints_subset; rewrite setCK => EC.
by apply: AF; rewrite BAC; exact/setIidPl.
- by rewrite setDE -setIUr setUCl setIT.
- split.
+ rewrite setIC; apply/disjoints_subset; rewrite closureC => x [? ?].
by exists C => //; split=> //; rewrite setDE setCI setCK; right.
+ apply/disjoints_subset => y -[Ay Cy].
rewrite -BAC BAD => /closureI[_]; move/closure_id : cD => <- Dy.
by have : B y; [by rewrite BAD; split|rewrite BAC => -[]].
Qed.
Lemma connectedP A : connected A <->
forall E : bool -> set T, ~ [/\ forall b, E b !=set0,
A = E false `|` E true & separated (
E false) (
E true)
].
Proof.
Lemma connected_subset A B C : separated A B -> C `<=` A `|` B ->
connected C -> C `<=` A \/ C `<=` B.
Proof.
move=> AB CAB; have -> : C = (
C `&` A)
`|` (
C `&` B).
rewrite predeqE => x; split=> [Cx|[] [] //].
by have [Ax|Bx] := CAB _ Cx; [left|right].
move/connectedP/(
_ (
fun b => if b then C `&` B else C `&` A))
=> /not_and3P[]//.
by move/existsNP => [b /set0P/negP/negPn]; case: b => /eqP ->;
rewrite !(
setU0,set0U)
; [left|right]; apply: subIset; right.
case/not_andP => /eqP/set0P[x []].
- move=> /closureI[cCx cAx] [Cx Bx]; exfalso.
by move: AB; rewrite /separated => -[] + _; apply/eqP/set0P; exists x.
- move=> [Cx Ax] /closureI[cCx cBx]; exfalso.
by move: AB; rewrite /separated => -[] _; apply/eqP/set0P; exists x.
Qed.
Lemma connected1 x : connected [set x].
Proof.
move=> X [y +] [O Oopen XO] [C Cclosed XC]; rewrite XO.
by move=> [{y}-> Ox]; apply/seteqP; split=> y => [[->//]|->].
Qed.
Hint Resolve connected1 : core.
Lemma bigcup_connected I (
A : I -> set T) (
P : I -> Prop)
:
\bigcap_(
i in P) (
A i)
!=set0 -> (
forall i, P i -> connected (
A i))
->
connected (
\bigcup_(
i in P) (
A i)).
Proof.
move=> [c AIc] cA; have [[i Pi]|] := pselect (
exists i, P i)
; last first.
move/forallNP => P0.
rewrite (
_ : P = set0)
?bigcup_set0; first exact: connected0.
by rewrite predeqE => x; split => //; exact: P0.
apply/connectedP => [E [E0 EU sE]].
wlog E0c : E E0 EU sE / E false c.
move=> G; have : (
\bigcup_(
i in P)
A i)
c by exists i => //; exact: AIc.
rewrite EU => -[E0c|E1c]; first exact: G.
by apply: (
G (
E \o negb))
=> //;
[case => /=|rewrite EU setUC|rewrite separatedC].
move: (
E0 true)
=> /set0P/eqP; apply.
have [/eqP //|/set0P[d E1d]] := boolP (
E true == set0).
have : \bigcup_(
i in P)
A i `<=` E false.
suff AE : forall i, P i -> A i `<=` E false by move=> x [j ? ?]; exact: (
AE j).
move=> j Pj.
move: (
@connected_subset _ _ (
A j)
sE).
rewrite -EU => /(
_ (
bigcup_sup _) (
cA _ Pj))
[//| | AjE1]; first exact.
exfalso; have E1c := AjE1 _ (
AIc _ Pj).
by move/separated_disjoint : sE; apply/eqP/set0P; exists c.
rewrite EU subUset => -[_] /(
_ _ E1d)
E0d; exfalso.
by move/separated_disjoint : sE; apply/eqP/set0P; exists d.
Qed.
Lemma connectedU A B : A `&` B !=set0 -> connected A -> connected B ->
connected (
A `|` B).
Proof.
move=> [x [Ax Bx]] Ac Bc; rewrite -bigcup2inE; apply: bigcup_connected.
by exists x => //= -[|[|[]]].
by move=> [|[|[]]].
Qed.
Lemma connected_closure A : connected A -> connected (
closure A).
Proof.
move=> ctdA U U0 [C1 oC1 C1E] [C2 cC2 C2E]; rewrite eqEsubset C2E; split => //.
suff : A `<=` U.
move/closure_subset; rewrite [_ `&` _](
iffLR (
closure_id _))
?C2E//.
by apply: closedI => //; exact: closed_closure.
rewrite -setIidPl; apply: ctdA.
- move: U0; rewrite C1E => -[z [clAx C1z]]; have [] := clAx C1.
exact: open_nbhs_nbhs.
by move=> w [Aw C1w]; exists w; rewrite setIA (
setIidl (
@subset_closure _ _)).
- by exists C1 => //; rewrite C1E setIA (
setIidl (
@subset_closure _ _)).
- by exists C2 => //; rewrite C2E setIA (
setIidl (
@subset_closure _ _)).
Qed.
Definition connected_component (
A : set T) (
x : T)
:=
\bigcup_(
A in [set C : set T | [/\ C x, C `<=` A & connected C]])
A.
Lemma component_connected A x : connected (
connected_component A x).
Proof.
Lemma connected_component_sub A x : connected_component A x `<=` A.
Proof.
by move=> y [B [_ + _]] => /[apply]. Qed.
Lemma connected_component_id A x :
A x -> connected A -> connected_component A x = A.
Proof.
move=> Ax Ac; apply/seteqP; split; first exact: connected_component_sub.
by move=> y Ay; exists A => //; split.
Qed.
Lemma connected_component_out A x :
~ A x -> connected_component A x = set0.
Proof.
by move=> NAx; rewrite -subset0 => y [B [/[swap]/[apply]]]. Qed.
Lemma connected_component_max A B x : B x -> B `<=` A ->
connected B -> B `<=` connected_component A x.
Proof.
by move=> Bx BA Bc y By; exists B. Qed.
Lemma connected_component_refl A x : A x -> connected_component A x x.
Proof.
by move=> Ax; exists [set x] => //; split => // _ ->. Qed.
Lemma connected_component_cover A :
\bigcup_(
A in connected_component A @` A)
A = A.
Proof.
Lemma connected_component_sym A x y :
connected_component A x y -> connected_component A y x.
Proof.
by move=> [B [*]]; exists B. Qed.
Lemma connected_component_trans A y x z :
connected_component A x y -> connected_component A y z ->
connected_component A x z.
Proof.
move=> [B [Bx BA Ac Ay]] [C [Cy CA Cc Cz]]; exists (
B `|` C)
; last by right.
by split; [left | rewrite subUset | apply: connectedU=> //; exists y].
Qed.
Lemma same_connected_component A x y : connected_component A x y ->
connected_component A x = connected_component A y.
Proof.
Lemma component_closed A x : closed A -> closed (
connected_component A x).
Proof.
Lemma clopen_separatedP A : clopen A <-> separated A (
~` A).
Proof.
End connected_sets.
Arguments connected {T}.
Arguments connected_component {T}.
Section DiscreteTopology.
Section DiscreteMixin.
Context {X : Type}.
Lemma discrete_sing (
p : X) (
A : set X)
: principal_filter p A -> A p.
Proof.
by move=> /principal_filterP. Qed.
Lemma discrete_nbhs (
p : X) (
A : set X)
:
principal_filter p A -> principal_filter p (
principal_filter^~ A).
Proof.
by move=> ?; exact/principal_filterP. Qed.
Definition discrete_topological_mixin :=
topologyOfFilterMixin principal_filter_proper discrete_sing discrete_nbhs.
End DiscreteMixin.
Definition discrete_space (
X : topologicalType)
:=
@nbhs X _ = @principal_filter X.
Context {X : topologicalType} {dsc: discrete_space X}.
Lemma discrete_open (
A : set X)
: open A.
Proof.
by rewrite openE => ? ?; rewrite /interior dsc; exact/principal_filterP.
Qed.
Lemma discrete_set1 (
x : X)
: nbhs x [set x].
Proof.
Lemma discrete_closed (
A : set X)
: closed A.
Proof.
Lemma discrete_cvg (
F : set (
set X)) (
x : X)
:
Filter F -> F --> x <-> F [set x].
Proof.
rewrite /filter_of dsc nbhs_simpl; split; first by exact.
by move=> Fx U /principal_filterP ?; apply: filterS Fx => ? ->.
Qed.
Lemma discrete_hausdorff : hausdorff_space X.
Proof.
Canonical bool_discrete_topology : topologicalType :=
TopologicalType bool discrete_topological_mixin.
Lemma discrete_bool : discrete_space bool_discrete_topology.
Proof.
by []. Qed.
Lemma bool_compact : compact [set: bool].
Proof.
End DiscreteTopology.
#[global] Hint Resolve discrete_bool : core.
Section perfect_sets.
Implicit Types (
T : topologicalType).
Definition perfect_set {T} (
A : set T)
:= closed A /\ limit_point A = A.
Lemma perfectTP {T} : perfect_set [set: T] <-> forall x : T, ~ open [set x].
Proof.
split.
case=> _; rewrite eqEsubset; case=> _ + x Ox => /(
_ x I [set x]).
by case; [by apply: open_nbhs_nbhs; split |] => y [+ _] => /[swap] -> /eqP.
move=> NOx; split; [exact: closedT |]; rewrite eqEsubset; split => x // _.
move=> U; rewrite nbhsE; case=> V [] oV Vx VU.
have Vnx: V != [set x] by apply/eqP => M; apply: (
NOx x)
; rewrite -M.
have /existsNP [y /existsNP [Vy Ynx]] : ~ forall y, V y -> y = x.
move/negP: Vnx; apply: contra_not => Vxy; apply/eqP; rewrite eqEsubset.
by split => // ? ->.
by exists y; split => //; [exact/eqP | exact: VU].
Qed.
Lemma perfect_prod {I : Type} (
i : I) (
K : I -> topologicalType)
:
perfect_set [set: K i] -> perfect_set [set: product_topologicalType K].
Proof.
move=> /perfectTP KPo; apply/perfectTP => f oF; apply: (
KPo (
f i)).
rewrite (
_ : [set f i] = proj i @` [set f]).
by apply: (
@proj_open (
classicType_choiceType I)
_ i)
; exact: oF.
by rewrite eqEsubset; split => ? //; [move=> -> /=; exists f | case=> g ->].
Qed.
Lemma perfect_diagonal (
K : nat_topologicalType -> topologicalType)
:
(
forall i, exists (
xy: K i * K i)
, xy.
1 != xy.
2)
->
perfect_set [set: product_topologicalType K].
Proof.
move=> npts; split; first exact: closedT.
rewrite eqEsubset; split => f // _.
pose distincts (
i : nat)
:= projT1 (
sigW (
npts i)).
pose derange (
i : nat) (
z : K i)
:=
if z == (
distincts i).
1 then (
distincts i).
2 else (
distincts i).
1.
pose g (
N i : nat)
:= if (
i < N)
%nat then f i else derange _ (
f i).
have gcvg : g @ \oo --> (
f : product_topologicalType K).
apply/(
@cvg_sup (
product_topologicalType K))
=> N U [V] [][W] oW <- WfN WU.
by apply: (
filterS WU)
; rewrite nbhs_simpl /g; exists N.
+1 => // i /= ->.
move=> A /gcvg; rewrite nbhs_simpl; case=> N _ An.
exists (
g N)
; split => //; last by apply: An; rewrite /= ?leqnn //.
apply/eqP => M; suff: g N N != f N by rewrite M; move/eqP.
rewrite /g ltnn /derange eq_sym; case: (
eqVneq (
f N) (
distincts N).
1)
=> //.
by move=> ->; have := projT2 (
sigW (
npts N)).
Qed.
Lemma perfect_set2 {T} : perfect_set [set: T] <->
forall (
U : set T)
, open U -> U !=set0 ->
exists x y, [/\ U x, U y & x != y] .
Proof.
apply: iff_trans; first exact: perfectTP; split.
move=> nx1 U oU [] x Ux; exists x.
have : U <> [set x] by move=> Ux1; apply: (
nx1 x)
; rewrite -Ux1.
apply: contra_notP; move/not_existsP/contrapT=> Uyx; rewrite eqEsubset.
(
split => //; last by move=> ? ->)
; move=> y Uy; have /not_and3P := Uyx y.
by case => // /negP; rewrite negbK => /eqP ->.
move=> Unxy x Ox; have [] := Unxy _ Ox; first by exists x.
by move=> y [] ? [->] -> /eqP.
Qed.
End perfect_sets.
Section totally_disconnected.
Implicit Types T : topologicalType.
Definition totally_disconnected {T} (
A : set T)
:=
forall x, A x -> connected_component A x = [set x].
Definition zero_dimensional T :=
(
forall x y, x != y -> exists U : set T, [/\ clopen U, U x & ~ U y]).
Lemma zero_dimension_prod (
I : choiceType) (
T : I -> topologicalType)
:
(
forall i, zero_dimensional (
T i))
->
zero_dimensional (
product_topologicalType T).
Proof.
move=> dctTI x y /eqP xneqy.
have [i/eqP/dctTI [U [clU Ux nUy]]] : exists i, x i <> y i.
by apply/existsNP=> W; exact/xneqy/functional_extensionality_dep.
exists (
proj i @^-1` U)
; split => //; apply: clopen_comp => //.
exact/proj_continuous.
Qed.
Lemma discrete_zero_dimension {T} : discrete_space T -> zero_dimensional T.
Proof.
Lemma zero_dimension_totally_disconnected {T} :
zero_dimensional T -> totally_disconnected [set: T].
Proof.
move=> zdA x _; rewrite eqEsubset.
split=> [z [R [Rx _ ctdR Rz]]|_ ->]; last exact: connected_component_refl.
apply: contrapT => /eqP znx; have [U [[oU cU] Uz Ux]] := zdA _ _ znx.
suff : R `&` U = R by move: Rx => /[swap] <- [].
by apply: ctdR; [exists z|exists U|exists U].
Qed.
Lemma totally_disconnected_cvg {T : topologicalType} (
x : T)
:
hausdorff_space T -> zero_dimensional T -> compact [set: T] ->
filter_from [set D : set T | D x /\ clopen D] id --> x.
Proof.
End totally_disconnected.
Uniform spaces
Local Notation "A ^-1" := (
[set xy | A (
xy.
2, xy.
1)
])
: classical_set_scope.
Local Notation "'to_set' A x" := (
[set y | A (
x, y)
])
(
at level 0, A at level 0)
: classical_set_scope.
Definition nbhs_ {T T'} (
ent : set (
set (
T * T'))) (
x : T)
:=
filter_from ent (
fun A => to_set A x).
Lemma nbhs_E {T T'} (
ent : set (
set (
T * T')))
x :
nbhs_ ent x = filter_from ent (
fun A => to_set A x).
Proof.
by []. Qed.
Module Uniform.
Record mixin_of (
M : Type) (
nbhs : M -> set (
set M))
:= Mixin {
entourage : (
M * M -> Prop)
-> Prop ;
entourage_filter : Filter entourage ;
entourage_refl : forall A, entourage A -> [set xy | xy.
1 = xy.
2] `<=` A ;
entourage_inv : forall A, entourage A -> entourage (
A^-1)
%classic ;
entourage_split_ex :
forall A, entourage A -> exists2 B, entourage B & B \; B `<=` A ;
nbhsE : nbhs = nbhs_ entourage
}.
Record class_of (
M : Type)
:= Class {
base : Topological.class_of M;
mixin : mixin_of (
Filtered.nbhs_op base)
}.
Section ClassDef.
Structure type := Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.
Variables (
T : Type) (
cT : type).
Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone c of phant_id class c := @Pack T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (
class : class_of xT).
Local Coercion base : class_of >-> Topological.class_of.
Local Coercion mixin : class_of >-> mixin_of.
Definition pack nbhs (
m : @mixin_of T nbhs)
:=
fun bT (
b : Topological.class_of T)
of phant_id (
@Topological.
class bT)
b =>
fun m' of phant_id m (
m' : @mixin_of T (
Filtered.nbhs_op b))
=>
@Pack T (
@Class _ b m').
Definition eqType := @Equality.
Pack cT xclass.
Definition choiceType := @Choice.
Pack cT xclass.
Definition pointedType := @Pointed.
Pack cT xclass.
Definition filteredType := @Filtered.
Pack cT cT xclass.
Definition topologicalType := @Topological.
Pack cT xclass.
End ClassDef.
Module Exports.
Coercion sort : type >-> Sortclass.
Coercion base : class_of >-> Topological.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion pointedType : type >-> Pointed.type.
Canonical pointedType.
Coercion filteredType : type >-> Filtered.type.
Canonical filteredType.
Coercion topologicalType : type >-> Topological.type.
Canonical topologicalType.
Notation uniformType := type.
Notation UniformType T m := (
@pack T _ m _ _ idfun _ idfun).
Notation UniformMixin := Mixin.
Notation "[ 'uniformType' 'of' T 'for' cT ]" := (
@clone T cT _ idfun)
(
at level 0, format "[ 'uniformType' 'of' T 'for' cT ]")
: form_scope.
Notation "[ 'uniformType' 'of' T ]" := (
@clone T _ _ id)
(
at level 0, format "[ 'uniformType' 'of' T ]")
: form_scope.
End Exports.
End Uniform.
Export Uniform.Exports.
Section UniformTopology.
Program Definition topologyOfEntourageMixin (
T : Type)
(
nbhs : T -> set (
set T)) (
m : Uniform.mixin_of nbhs)
:
Topological.mixin_of nbhs := topologyOfFilterMixin _ _ _.
Next Obligation.
Next Obligation.
Next Obligation.
move=> T nbhsT m p A; rewrite (
Uniform.nbhsE m)
nbhs_E => - [B entB sBpA].
have /Uniform.
entourage_split_ex [C entC sC2B] := entB.
exists C => // q Cpq; rewrite nbhs_E; exists C => // r Cqr.
by apply/sBpA/sC2B; exists q.
Qed.
End UniformTopology.
Definition entourage {M : uniformType} := Uniform.entourage (
Uniform.class M).
Lemma nbhs_entourageE {M : uniformType} : nbhs_ (
@entourage M)
= nbhs.
Proof.
by case: M=> [?[?[]]]. Qed.
Lemma entourage_sym {X Y : Type} E (
x : X) (
y : Y)
:
E (
x, y)
<-> (
E ^-1)
%classic (
y, x).
Proof.
by []. Qed.
Lemma filter_from_entourageE {M : uniformType} x :
filter_from (
@entourage M) (
fun A => to_set A x)
= nbhs x.
Proof.
by rewrite -nbhs_entourageE. Qed.
Module Export NbhsEntourage.
Definition nbhs_simpl :=
(
nbhs_simpl,@filter_from_entourageE,@nbhs_entourageE).
End NbhsEntourage.
Lemma nbhsP {M : uniformType} (
x : M)
P : nbhs x P <-> nbhs_ entourage x P.
Proof.
Lemma filter_inv {T : Type} (
F : set (
set (
T * T)))
:
Filter F -> Filter [set (
V^-1)
%classic | V in F].
Proof.
move=> FF; split => /=.
- by exists [set: T * T] => //; exact: filterT.
- by move=> P Q [R FR <-] [S FS <-]; exists (
R `&` S)
=> //; exact: filterI.
- move=> P Q PQ [R FR RP]; exists Q^-1%classic => //; first last.
by rewrite eqEsubset; split; case.
by apply: filterS FR; case=> ? ? /= ?; apply: PQ; rewrite -RP.
Qed.
Section uniformType1.
Context {M : uniformType}.
Lemma entourage_refl (
A : set (
M * M))
x : entourage A -> A (
x, x).
Proof.
Global Instance entourage_pfilter : ProperFilter (
@entourage M).
Proof.
Lemma entourageT : entourage [set: M * M].
Proof.
Lemma entourage_inv (
A : set (
M * M))
: entourage A -> entourage (
A^-1)
%classic.
Proof.
Lemma entourage_split_ex (
A : set (
M * M))
:
entourage A -> exists2 B, entourage B & B \; B `<=` A.
Proof.
Definition split_ent (
A : set (
M * M))
:=
get (
entourage `&` [set B | B \; B `<=` A]).
Lemma split_entP (
A : set (
M * M))
: entourage A ->
entourage (
split_ent A)
/\ split_ent A \; split_ent A `<=` A.
Proof.
by move/entourage_split_ex/exists2P/getPex. Qed.
Lemma entourage_split_ent (
A : set (
M * M))
: entourage A ->
entourage (
split_ent A).
Proof.
by move=> /split_entP []. Qed.
Lemma subset_split_ent (
A : set (
M * M))
: entourage A ->
split_ent A \; split_ent A `<=` A.
Proof.
by move=> /split_entP []. Qed.
Lemma entourage_split (
z x y : M)
A : entourage A ->
split_ent A (
x,z)
-> split_ent A (
z,y)
-> A (
x,y).
Proof.
by move=> /subset_split_ent sA ??; apply: sA; exists z. Qed.
Lemma nbhs_entourage (
x : M)
A : entourage A -> nbhs x (
to_set A x).
Proof.
by move=> ?; apply/nbhsP; exists A. Qed.
Lemma cvg_entourageP F (
FF : Filter F) (
p : M)
:
F --> p <-> forall A, entourage A -> \forall q \near F, A (
p, q).
Proof.
by rewrite -filter_fromP !nbhs_simpl. Qed.
Lemma cvg_entourage {F} {FF : Filter F} (
y : M)
:
F --> y -> forall A, entourage A -> \forall y' \near F, A (
y,y').
Proof.
by move/cvg_entourageP. Qed.
Lemma cvg_app_entourageP T (
f : T -> M)
F (
FF : Filter F)
p :
f @ F --> p <-> forall A, entourage A -> \forall t \near F, A (
p, f t).
Proof.
Lemma entourage_invI (
E : set (
M * M))
:
entourage E -> entourage (
E `&` E^-1)
%classic.
Proof.
Lemma split_ent_subset (
E : set (
M * M))
: entourage E -> split_ent E `<=` E.
Proof.
End uniformType1.
#[global]
Hint Extern 0 (
entourage (
split_ent _))
=> exact: entourage_split_ent : core.
#[global]
Hint Extern 0 (
entourage (
get _))
=> exact: entourage_split_ent : core.
#[global]
Hint Extern 0 (
entourage (
_^-1)
%classic)
=> exact: entourage_inv : core.
Arguments entourage_split {M} z {x y A}.
#[global]
Hint Extern 0 (
nbhs _ (
to_set _ _))
=> exact: nbhs_entourage : core.
Lemma ent_closure {M : uniformType} (
x : M)
E : entourage E ->
closure (
to_set (
split_ent E)
x)
`<=` to_set E x.
Proof.
Lemma continuous_withinNx {U V : uniformType} (
f : U -> V)
x :
{for x, continuous f} <-> f @ x^' --> f x.
Proof.
Definition countable_uniformity (
T : uniformType)
:=
exists R : set (
set (
T * T))
, [/\
countable R,
R `<=` entourage &
forall P, entourage P -> exists2 Q, R Q & Q `<=` P].
Lemma countable_uniformityP {T : uniformType} :
countable_uniformity T <-> exists2 f : nat -> set (
T * T)
,
(
forall A, entourage A -> exists N, f N `<=` A)
&
(
forall n, entourage (
f n)).
Proof.
split=> [[M []]|[f fsubE entf]].
move=> /pfcard_geP[-> _ /(
_ _ entourageT)
[]//|/unsquash f eM Msub].
exists f; last by move=> n; apply: eM; exact: funS.
by move=> ? /Msub [Q + ?] => /(
@surj _ _ _ _ f)
[n _ fQ]; exists n; rewrite fQ.
exists (
range f)
; split; first exact: card_image_le.
by move=> E [n _] <-; exact: entf.
by move=> E /fsubE [n fnA]; exists (
f n)
=> //; exists n.
Qed.
Section uniform_closeness.
Variable (
U : uniformType).
Lemma open_nbhs_entourage (
x : U) (
A : set (
U * U))
:
entourage A -> open_nbhs x (
to_set A x)
^°.
Proof.
Lemma entourage_close (
x y : U)
: close x y = forall A, entourage A -> A (
x, y).
Proof.
Lemma close_trans (
y x z : U)
: close x y -> close y z -> close x z.
Proof.
rewrite !entourage_close => cxy cyz A entA.
exact: entourage_split (
cxy _ _) (
cyz _ _).
Qed.
Lemma close_cvgxx (
x y : U)
: close x y -> x --> y.
Proof.
Lemma cvg_closeP (
F : set (
set U)) (
l : U)
: ProperFilter F ->
F --> l <-> (
[cvg F in U] /\ close (
lim F)
l).
Proof.
move=> FF; split=> [Fl|[cvF]Cl].
by have /cvgP := Fl; split=> //; apply: (
@cvg_close _ F).
by apply: cvg_trans (
close_cvgxx Cl).
Qed.
End uniform_closeness.
Definition unif_continuous (
U V : uniformType) (
f : U -> V)
:=
(
fun xy => (
f xy.
1, f xy.
2))
@ entourage --> entourage.
product of two uniform spaces
Section prod_Uniform.
Context {U V : uniformType}.
Implicit Types A : set ((
U * V)
* (
U * V)).
Definition prod_ent :=
[set A : set ((
U * V)
* (
U * V))
|
filter_prod (
@entourage U) (
@entourage V)
[set ((
xy.
1.
1,xy.
2.
1)
,(
xy.
1.
2,xy.
2.
2))
| xy in A]].
Lemma prod_entP (
A : set (
U * U)) (
B : set (
V * V))
:
entourage A -> entourage B ->
prod_ent [set xy | A (
xy.
1.
1, xy.
2.
1)
/\ B (
xy.
1.
2, xy.
2.
2)
].
Proof.
move=> entA entB; exists (
A,B)
=> // xy ABxy.
by exists ((
xy.
1.
1, xy.
2.
1)
,(
xy.
1.
2,xy.
2.
2))
; rewrite /= -!surjective_pairing.
Qed.
Lemma prod_ent_filter : Filter prod_ent.
Proof.
have prodF := filter_prod_filter (
@entourage_pfilter U) (
@entourage_pfilter V).
split; rewrite /prod_ent; last 1 first.
- by move=> A B sAB /=; apply: filterS => ? [xy /sAB ??]; exists xy.
- by rewrite -setMTT; apply: prod_entP filterT filterT.
move=> A B /= entA entB; apply: filterS (
filterI entA entB)
=> xy [].
move=> [zt Azt ztexy] [zt' Bzt' zt'exy]; exists zt => //; split=> //.
move/eqP: ztexy; rewrite -zt'exy !xpair_eqE.
by rewrite andbACA -!xpair_eqE -!surjective_pairing => /eqP->.
Qed.
Lemma prod_ent_refl A : prod_ent A -> [set xy | xy.
1 = xy.
2] `<=` A.
Proof.
move=> [B [entB1 entB2] sBA] xy /eqP.
rewrite [_.
1]surjective_pairing [xy.
2]surjective_pairing xpair_eqE.
move=> /andP [/eqP xy1e /eqP xy2e].
have /sBA : (
B.
1 `*` B.
2) ((
xy.
1.
1, xy.
2.
1)
, (
xy.
1.
2, xy.
2.
2)).
by rewrite xy1e xy2e; split=> /=; apply: entourage_refl.
move=> [zt Azt /eqP]; rewrite !xpair_eqE.
by rewrite andbACA -!xpair_eqE -!surjective_pairing => /eqP<-.
Qed.
Lemma prod_ent_inv A : prod_ent A -> prod_ent (
A^-1)
%classic.
Proof.
move=> [B [/entourage_inv entB1 /entourage_inv entB2] sBA].
have:= prod_entP entB1 entB2; rewrite /prod_ent/=; apply: filterS.
move=> _ [p /(
sBA (
_,_))
[[x y] ? xyE] <-]; exists (
y,x)
=> //; move/eqP: xyE.
by rewrite !xpair_eqE => /andP[/andP[/eqP-> /eqP->] /andP[/eqP-> /eqP->]].
Qed.
Lemma prod_ent_split A : prod_ent A -> exists2 B, prod_ent B & B \; B `<=` A.
Proof.
move=> [B [entB1 entB2]] sBA; exists [set xy | split_ent B.
1 (
xy.
1.
1,xy.
2.
1)
/\
split_ent B.
2 (
xy.
1.
2,xy.
2.
2)
].
by apply: prod_entP; apply: entourage_split_ent.
move=> xy [uv /= [hB1xyuv1 hB2xyuv1] [hB1xyuv2 hB2xyuv2]].
have /sBA : (
B.
1 `*` B.
2) ((
xy.
1.
1, xy.
2.
1)
,(
xy.
1.
2,xy.
2.
2)).
by split=> /=; apply: subset_split_ent => //; [exists uv.
1|exists uv.
2].
move=> [zt Azt /eqP]; rewrite !xpair_eqE andbACA -!xpair_eqE.
by rewrite -!surjective_pairing => /eqP<-.
Qed.
Lemma prod_ent_nbhsE : nbhs = nbhs_ prod_ent.
Proof.
rewrite predeq2E => xy A; split=> [[B []] | [B [C [entC1 entC2] sCB] sBA]].
rewrite -!nbhs_entourageE => - [C1 entC1 sCB1] [C2 entC2 sCB2] sBA.
exists [set xy | C1 (
xy.
1.
1, xy.
2.
1)
/\ C2 (
xy.
1.
2, xy.
2.
2)
].
exact: prod_entP.
by move=> uv [/= /sCB1 Buv1 /sCB2 /(
conj Buv1)
/sBA].
exists (
to_set (
C.
1) (
xy.
1)
, to_set (
C.
2) (
xy.
2)).
by rewrite -!nbhs_entourageE; split; [exists C.
1|exists C.
2].
move=> uv [/= Cxyuv1 Cxyuv2]; apply: sBA.
have /sCB : (
C.
1 `*` C.
2) ((
xy.
1,uv.
1)
,(
xy.
2,uv.
2))
by [].
move=> [zt Bzt /eqP]; rewrite !xpair_eqE andbACA -!xpair_eqE.
by rewrite /= -!surjective_pairing => /eqP<-.
Qed.
Definition prod_uniformType_mixin :=
Uniform.Mixin prod_ent_filter prod_ent_refl prod_ent_inv prod_ent_split
prod_ent_nbhsE.
End prod_Uniform.
Canonical prod_uniformType (
U V : uniformType)
:=
UniformType (
U * V) (
@prod_uniformType_mixin U V).
Matrices
Section matrix_Uniform.
Variables (
m n : nat) (
T : uniformType).
Implicit Types A : set (
'M[T]_(
m, n)
* 'M[T]_(
m, n)).
Definition mx_ent :=
filter_from
[set P : 'I_m -> 'I_n -> set (
T * T)
| forall i j, entourage (
P i j)
]
(
fun P => [set MN : 'M[T]_(
m, n)
* 'M[T]_(
m, n)
|
forall i j, P i j (
MN.
1 i j, MN.
2 i j)
]).
Lemma mx_ent_filter : Filter mx_ent.
Proof.
apply: filter_from_filter => [|A B entA entB].
by exists (
fun _ _ => setT)
=> _ _; apply: filterT.
exists (
fun i j => A i j `&` B i j)
; first by move=> ??; apply: filterI.
by move=> MN ABMN; split=> i j; have [] := ABMN i j.
Qed.
Lemma mx_ent_refl A : mx_ent A -> [set MN | MN.
1 = MN.
2] `<=` A.
Proof.
move=> [B entB sBA] MN MN1e2; apply: sBA => i j.
by rewrite MN1e2; apply: entourage_refl.
Qed.
Lemma mx_ent_inv A : mx_ent A -> mx_ent (
A^-1)
%classic.
Proof.
move=> [B entB sBA]; exists (
fun i j => ((
B i j)
^-1)
%classic).
by move=> i j; apply: entourage_inv.
by move=> MN BMN; apply: sBA.
Qed.
Lemma mx_ent_split A : mx_ent A -> exists2 B, mx_ent B & B \; B `<=` A.
Proof.
Lemma mx_ent_nbhsE : nbhs = nbhs_ mx_ent.
Proof.
rewrite predeq2E => M A; split.
move=> [B]; rewrite -nbhs_entourageE => M_B sBA.
set sB := fun i j => [set C | entourage C /\ to_set C (
M i j)
`<=` B i j].
have {}M_B : forall i j, sB i j !=set0 by move=> ??; apply/exists2P/M_B.
exists [set MN : 'M[T]_(
m, n)
* 'M[T]_(
m, n)
| forall i j,
get (
sB i j) (
MN.
1 i j, MN.
2 i j)
].
by exists (
fun i j => get (
sB i j))
=> // i j; have /getPex [] := M_B i j.
move=> N CMN; apply/sBA => i j; have /getPex [_] := M_B i j; apply.
exact/CMN.
move=> [B [C entC sCB] sBA]; exists (
fun i j => to_set (
C i j) (
M i j)).
by rewrite -nbhs_entourageE => i j; exists (
C i j).
by move=> N CMN; apply/sBA/sCB.
Qed.
Definition matrix_uniformType_mixin :=
Uniform.Mixin mx_ent_filter mx_ent_refl mx_ent_inv mx_ent_split
mx_ent_nbhsE.
Canonical matrix_uniformType :=
UniformType 'M[T]_(
m, n)
matrix_uniformType_mixin.
End matrix_Uniform.
Lemma cvg_mx_entourageP (
T : uniformType)
m n (
F : set (
set 'M[T]_(
m,n)))
(
FF : Filter F) (
M : 'M[T]_(
m,n))
:
F --> M <->
forall A, entourage A -> \forall N \near F,
forall i j, A (
M i j, (
N : 'M[T]_(
m,n))
i j).
Proof.
Functional metric spaces
Section fct_Uniform.
Variable (
T : choiceType) (
U : uniformType).
Definition fct_ent :=
filter_from
(
@entourage U)
(
fun P => [set fg | forall t : T, P (
fg.
1 t, fg.
2 t)
]).
Lemma fct_ent_filter : Filter fct_ent.
Proof.
Lemma fct_ent_refl A : fct_ent A -> [set fg | fg.
1 = fg.
2] `<=` A.
Proof.
move=> [B entB sBA] fg feg; apply/sBA => t; rewrite feg.
exact: entourage_refl.
Qed.
Lemma fct_ent_inv A : fct_ent A -> fct_ent (
A^-1)
%classic.
Proof.
move=> [B entB sBA]; exists (
B^-1)
%classic; first exact: entourage_inv.
by move=> fg Bgf; apply/sBA.
Qed.
Lemma fct_ent_split A : fct_ent A -> exists2 B, fct_ent B & B \; B `<=` A.
Proof.
Definition fct_uniformType_mixin :=
UniformMixin fct_ent_filter fct_ent_refl fct_ent_inv fct_ent_split erefl.
Definition fct_topologicalTypeMixin :=
topologyOfEntourageMixin fct_uniformType_mixin.
Canonical generic_source_filter := @Filtered.
Source _ _ _ (
nbhs_ fct_ent).
Canonical fct_topologicalType :=
TopologicalType (
T -> U)
fct_topologicalTypeMixin.
Canonical fct_uniformType := UniformType (
T -> U)
fct_uniformType_mixin.
End fct_Uniform.
Lemma cvg_fct_entourageP (
T : choiceType) (
U : uniformType)
(
F : set (
set (
T -> U))) (
FF : Filter F) (
f : T -> U)
:
F --> f <->
forall A, entourage A ->
\forall g \near F, forall t, A (
f t, g t).
Proof.
split.
move=> /cvg_entourageP Ff A entA.
by apply: (
Ff [set fg | forall t : T, A (
fg.
1 t, fg.
2 t)
])
; exists A.
move=> Ff; apply/cvg_entourageP => A [P entP sPA].
by near=> g do apply: sPA; apply: Ff.
Unshelve.
all: by end_near. Qed.
Definition entourage_set (
U : uniformType) (
A : set ((
set U)
* (
set U)))
:=
exists2 B, entourage B & forall PQ, A PQ -> forall p q,
PQ.
1 p -> PQ.
2 q -> B (
p,q).
Canonical set_filter_source (
U : uniformType)
:=
@Filtered.
Source Prop _ U (
fun A => nbhs_ (
@entourage_set U)
A).
PseudoMetric spaces defined using balls
Definition entourage_ {R : numDomainType} {T T'} (
ball : T -> R -> set T')
:=
@filter_from R _ [set x | 0 < x] (
fun e => [set xy | ball xy.
1 e xy.
2]).
Lemma entourage_E {R : numDomainType} {T T'} (
ball : T -> R -> set T')
:
entourage_ ball =
@filter_from R _ [set x | 0 < x] (
fun e => [set xy | ball xy.
1 e xy.
2]).
Proof.
by []. Qed.
Definition map_pair {S U} (
f : S -> U) (
x : (
S * S))
: (
U * U)
:=
(
f x.
1, f x.
2).
Section weak_uniform.
Variable (
pS : pointedType) (
U : uniformType) (
f : pS -> U).
Let S := weak_topologicalType f.
Definition weak_ent : set (
set (
S * S))
:=
filter_from (
@entourage U) (
fun V => (
map_pair f)
@^-1` V).
Lemma weak_ent_filter : Filter weak_ent.
Proof.
Lemma weak_ent_refl A : weak_ent A -> [set fg | fg.
1 = fg.
2] `<=` A.
Proof.
by move=> [B ? sBA] [x y] /= ->; apply/sBA; exact: entourage_refl.
Qed.
Lemma weak_ent_inv A : weak_ent A -> weak_ent (
A^-1)
%classic.
Proof.
move=> [B ? sBA]; exists (
B^-1)
%classic; first exact: entourage_inv.
by move=> ??; exact/sBA.
Qed.
Lemma weak_ent_split A : weak_ent A -> exists2 B, weak_ent B & B \; B `<=` A.
Proof.
move=> [B entB sBA]; have : exists C, entourage C /\ C \; C `<=` B.
exact/exists2P/entourage_split_ex.
case=> C [entC CsubB]; exists ((
map_pair f)
@^-1` C)
; first by exists C.
by case=> x y [a ? ?]; apply/sBA/CsubB; exists (
f a).
Qed.
Lemma weak_ent_nbhs : nbhs = nbhs_ weak_ent.
Proof.
rewrite predeq2E => x V; split.
case=> [? [[B ? <-] ? BsubV]]; have: nbhs (
f x)
B by apply: open_nbhs_nbhs.
move=> /nbhsP [W ? WsubB]; exists ((
map_pair f)
@^-1` W)
; first by exists W.
by move=>??; exact/BsubV/WsubB.
case=> W [V' entV' V'subW] /filterS; apply.
have : nbhs (
f x)
to_set V' (
f x)
by apply/nbhsP; exists V'.
rewrite (
@nbhsE U)
=> [[O [openU Ofx Osub]]].
(
exists (
f @^-1` O)
; repeat split => //)
; first by exists O => //.
by move=> w ? ; apply: V'subW; exact: Osub.
Qed.
Definition weak_uniform_mixin :=
@UniformMixin S nbhs weak_ent
weak_ent_filter weak_ent_refl weak_ent_inv weak_ent_split weak_ent_nbhs.
Definition weak_uniformType :=
UniformType S weak_uniform_mixin.
End weak_uniform.
Section sup_uniform.
Variable (
T : pointedType) (
Ii : Type) (
Tc : Ii -> Uniform.class_of T).
Let I : choiceType := classicType_choiceType Ii.
Let TS := fun i => Uniform.Pack (
Tc i).
Let Tt := @sup_topologicalType T I Tc.
Let ent_of (
p : I * set (
T * T))
:= `[< @entourage (
TS p.
1)
p.
2>].
Let IEnt := ChoiceType {p : (
I * set (
T * T))
| ent_of p} (
sig_choiceMixin _).
Local Lemma IEnt_pointT (
i : I)
: ent_of (
i, setT).
Proof.
Definition sup_ent : (
set (
set (
T * T)))
:=
filter_from (
finI_from [set: IEnt] (
fun p => (
projT1 p).
2))
id.
Ltac IEntP := move=> [[ /= + + /[dup] /asboolP]].
Definition sup_ent_filter : Filter sup_ent.
Proof.
Lemma sup_ent_refl A : sup_ent A -> [set fg | fg.
1 = fg.
2] `<=` A.
Proof.
by move=> [B [F ? <-] BA] [??] /= ->; apply/BA; IEntP => i w /= /entourage_refl.
Qed.
Lemma sup_ent_inv A : sup_ent A -> sup_ent (
A^-1)
%classic.
Proof.
move=> [B [F ? FB] BA]; exists (
B^-1)
%classic; last by move=> ?; exact: BA.
have inv : forall ie : IEnt, ent_of ((
projT1 ie).
1, ((
projT1 ie).
2)
^-1)
%classic.
by IEntP=> ?? /entourage_inv ??; exact/asboolP.
exists [fset (
fun x => @exist (
I * set (
T * T))
_ _ (
inv x))
w | w in F]%fset.
by move=> ? /imfsetP; IEntP => ???? ->; exact: in_setT.
rewrite -FB eqEsubset; split; case=> x y + ie.
by move=> /(
_ (
exist ent_of _ (
inv ie)))
+ ?; apply; apply/imfsetP; exists ie.
by move=> + /imfsetP [v vW ->]; exact.
Qed.
Lemma sup_ent_split A : sup_ent A -> exists2 B, sup_ent B & B \; B `<=` A.
Proof.
have spt : (
forall ie : IEnt, ent_of ((
projT1 ie).
1,
((
@split_ent (
TS (
projT1 ie).
1) (
projT1 ie).
2)))).
by case=> [[/= ??] /asboolP/entourage_split_ent ?]; exact/asboolP.
pose g : (
IEnt -> IEnt)
:= fun x => exist ent_of _ (
spt x).
case => W [F _ <-] sA; exists (
\bigcap_(
x in [set` F]) (
projT1 (
g x)).
2).
exists (
\bigcap_(
ie in [set`F]) (
projT1 (
g ie)).
2)
=> //.
exists [fset (
g ie)
| ie in F]%fset; first by move=> /= ??; exact: in_setT.
rewrite eqEsubset; split; case=> x y Igxy ie.
by move => ?; apply/(
Igxy (
g ie))
/imfsetP; exists ie.
by move=> /imfsetP [?? ->]; exact: Igxy.
case => ?? [z Fxz Fzy]; apply: sA; IEntP=> i e ? ? eF.
apply: ((
@entourage_split (
TS i))
z)
=> //.
exact: (
Fxz _ eF).
exact: (
Fzy _ eF).
Qed.
Lemma sup_ent_nbhs : @nbhs Tt Tt = nbhs_ sup_ent.
Proof.
Definition sup_uniform_mixin:=
@UniformMixin Tt nbhs
sup_ent sup_ent_filter sup_ent_refl sup_ent_inv sup_ent_split sup_ent_nbhs.
Definition sup_uniformType := UniformType Tt sup_uniform_mixin.
Lemma countable_sup_ent :
countable [set: Ii] -> (
forall n, countable_uniformity (
TS n))
->
countable_uniformity sup_uniformType.
Proof.
End sup_uniform.
Section product_uniform.
Variable (
I : choiceType) (
T : I -> uniformType).
Definition product_uniformType :=
sup_uniformType (
fun i => Uniform.class
(
weak_uniformType (
fun f : dep_arrow_pointedType T => f i))).
End product_uniform.
Section discrete_uniform.
Context {T : topologicalType} {dsc: discrete_space T}.
Definition discrete_ent : set (
set (
T * T))
:=
globally (
range (
fun x => (
x, x))).
Program Definition discrete_uniform_mixin :=
@UniformMixin T nbhs discrete_ent _ _ _ _ _.
Next Obligation.
by move=> ? + x x12; apply; exists x.1; rewrite // {2}x12 -surjective_pairing.
Qed.
Next Obligation.
by move=> ? dA x [i _ <-]; apply: dA; exists i.
Qed.
Next Obligation.
Next Obligation.
rewrite dsc predeq2E => x V; split => [].
move=> Px; exists (
range (
fun x => (
x, x)))
=> //.
by move=> z [i _] [+ <-] => ->; exact/principal_filterP.
by case=> U dV UV; apply/principal_filterP/UV/dV; exists x.
Qed.
Definition discrete_uniformType := UniformType T discrete_uniform_mixin.
End discrete_uniform.
Module PseudoMetric.
Record mixin_of (
R : numDomainType) (
M : Type)
(
entourage : set (
set (
M * M)))
:= Mixin {
ball : M -> R -> M -> Prop ;
ball_center : forall x (
e : R)
, 0 < e -> ball x e x ;
ball_sym : forall x y (
e : R)
, ball x e y -> ball y e x ;
ball_triangle :
forall x y z e1 e2, ball x e1 y -> ball y e2 z -> ball x (
e1 + e2)
z;
entourageE : entourage = entourage_ ball
}.
Record class_of (
R : numDomainType) (
M : Type)
:= Class {
base : Uniform.class_of M;
mixin : mixin_of R (
Uniform.entourage base)
}.
Section ClassDef.
Variable R : numDomainType.
Structure type := Pack { sort; _ : class_of R sort }.
Local Coercion sort : type >-> Sortclass.
Variables (
T : Type) (
cT : type).
Definition class := let: Pack _ c := cT return class_of R cT in c.
Definition clone c of phant_id class c := @Pack T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (
class : class_of R xT).
Local Coercion base : class_of >-> Uniform.class_of.
Local Coercion mixin : class_of >-> mixin_of.
Definition pack ent (
m : @mixin_of R T ent)
:=
fun bT (
b : Uniform.class_of T)
of phant_id (
@Uniform.
class bT)
b =>
fun m' of phant_id m (
m' : @mixin_of R T (
Uniform.entourage b))
=>
@Pack T (
@Class R _ b m').
Definition eqType := @Equality.
Pack cT xclass.
Definition choiceType := @Choice.
Pack cT xclass.
Definition pointedType := @Pointed.
Pack cT xclass.
Definition filteredType := @Filtered.
Pack cT cT xclass.
Definition topologicalType := @Topological.
Pack cT xclass.
Definition uniformType := @Uniform.
Pack cT xclass.
End ClassDef.
Module Exports.
Coercion sort : type >-> Sortclass.
Coercion base : class_of >-> Uniform.class_of.
Coercion mixin : class_of >-> mixin_of.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion pointedType : type >-> Pointed.type.
Canonical pointedType.
Coercion filteredType : type >-> Filtered.type.
Canonical filteredType.
Coercion topologicalType : type >-> Topological.type.
Canonical topologicalType.
Coercion uniformType : type >-> Uniform.type.
Canonical uniformType.
Notation pseudoMetricType := type.
Notation PseudoMetricType T m := (
@pack _ T _ m _ _ idfun _ idfun).
Notation PseudoMetricMixin := Mixin.
Notation "[ 'pseudoMetricType' R 'of' T 'for' cT ]" := (
@clone R T cT _ idfun)
(
at level 0, format "[ 'pseudoMetricType' R 'of' T 'for' cT ]")
: form_scope.
Notation "[ 'pseudoMetricType' R 'of' T ]" := (
@clone R T _ _ id)
(
at level 0, format "[ 'pseudoMetricType' R 'of' T ]")
: form_scope.
End Exports.
End PseudoMetric.
Export PseudoMetric.Exports.
Section PseudoMetricUniformity.
Let ball_le (
R : numDomainType) (
M : Type) (
ent : set (
set (
M * M)))
(
m : PseudoMetric.mixin_of R ent)
:
forall (
x : M)
, {homo PseudoMetric.ball m x : e1 e2 / e1 <= e2 >-> e1 `<=` e2}.
Proof.
Program Definition uniformityOfBallMixin (
R : numFieldType) (
T : Type)
(
ent : set (
set (
T * T))) (
nbhs : T -> set (
set T)) (
nbhsE : nbhs = nbhs_ ent)
(
m : PseudoMetric.mixin_of R ent)
: Uniform.mixin_of nbhs :=
UniformMixin _ _ _ _ nbhsE.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
End PseudoMetricUniformity.
Definition ball {R : numDomainType} {M : pseudoMetricType R} :=
PseudoMetric.ball (
PseudoMetric.class M).
Lemma entourage_ballE {R : numDomainType} {M : pseudoMetricType R}
: entourage_ (
@ball R M)
= entourage.
Proof.
by case: M=> [?[?[]]]. Qed.
Lemma entourage_from_ballE {R : numDomainType} {M : pseudoMetricType R} :
@filter_from R _ [set x : R | 0 < x]
(
fun e => [set xy | @ball R M xy.
1 e xy.
2])
= entourage.
Proof.
by rewrite -entourage_ballE. Qed.
Lemma entourage_ball {R : numDomainType} (
M : pseudoMetricType R)
(
e : {posnum R})
: entourage [set xy : M * M | ball xy.
1 e%:num xy.
2].
Proof.
by rewrite -entourage_ballE; exists e%:num => /=. Qed.
#[global] Hint Resolve entourage_ball : core.
Definition nbhs_ball_ {R : numDomainType} {T T'} (
ball : T -> R -> set T')
(
x : T)
:= @filter_from R _ [set e | e > 0] (
ball x).
Definition nbhs_ball {R : numDomainType} {M : pseudoMetricType R} :=
nbhs_ball_ (
@ball R M).
Lemma nbhs_ballE {R : numDomainType} {M : pseudoMetricType R} : (
@nbhs_ball R M)
= nbhs.
Proof.
rewrite predeq2E => x P; rewrite -nbhs_entourageE; split.
by move=> [_/posnumP[e] sbxeP]; exists [set xy | ball xy.
1 e%:num xy.
2].
rewrite -entourage_ballE; move=> [A [e egt0 sbeA] sAP].
by exists e => // ??; apply/sAP/sbeA.
Qed.
Lemma filter_from_ballE {R : numDomainType} {M : pseudoMetricType R} x :
@filter_from R _ [set x : R | 0 < x] (
@ball R M x)
= nbhs x.
Proof.
by rewrite -nbhs_ballE. Qed.
Module Export NbhsBall.
Definition nbhs_simpl := (
nbhs_simpl,@filter_from_ballE,@nbhs_ballE).
End NbhsBall.
Lemma nbhs_ballP {R : numDomainType} {M : pseudoMetricType R} (
x : M)
P :
nbhs x P <-> nbhs_ball x P.
Proof.
Lemma ball_center {R : numDomainType} (
M : pseudoMetricType R) (
x : M)
(
e : {posnum R})
: ball x e%:num x.
Proof.
#[global] Hint Resolve ball_center : core.
Section pseudoMetricType_numDomainType.
Context {R : numDomainType} {M : pseudoMetricType R}.
Lemma ballxx (
x : M) (
e : R)
: 0 < e -> ball x e x.
Proof.
Lemma ball_sym (
x y : M) (
e : R)
: ball x e y -> ball y e x.
Proof.
Lemma ball_symE (
x y : M) (
e : R)
: ball x e y = ball y e x.
Proof.
by rewrite propeqE; split; exact/ball_sym. Qed.
Lemma ball_triangle (
y x z : M) (
e1 e2 : R)
:
ball x e1 y -> ball y e2 z -> ball x (
e1 + e2)
z.
Proof.
Lemma nbhsx_ballx (
x : M) (
eps : R)
: 0 < eps -> nbhs x (
ball x eps).
Proof.
by move=> e0; apply/nbhs_ballP; exists eps. Qed.
Lemma open_nbhs_ball (
x : M) (
eps : {posnum R})
: open_nbhs x ((
ball x eps%:num)
^°).
Proof.
Lemma le_ball (
x : M) (
e1 e2 : R)
: e1 <= e2 -> ball x e1 `<=` ball x e2.
Proof.
move=> le12 y.
case: comparableP le12 => [lte12 _|//|//|->//].
by rewrite -[e2](
subrK e1)
; apply/ball_triangle/ballxx; rewrite subr_gt0.
Qed.
Global Instance entourage_proper_filter : ProperFilter (
@entourage M).
Proof.
Lemma near_ball (
y : M) (
eps : R)
: 0 < eps -> \forall y' \near y, ball y eps y'.
Proof.
Lemma dnbhs_ball (
a : M) (
e : R)
: (
0 < e)
%R -> a^' (
ball a e `\ a).
Proof.
move: e => _/posnumP[e]; rewrite /dnbhs /within; near=> r => ra.
split => //=; last exact/eqP.
by near: r; rewrite near_simpl; exact: near_ball.
Unshelve.
all: by end_near. Qed.
Lemma fcvg_ballP {F} {FF : Filter F} (
y : M)
:
F --> y <-> forall eps : R, 0 < eps -> \forall y' \near F, ball y eps y'.
Proof.
by rewrite -filter_fromP !nbhs_simpl /=. Qed.
Lemma __deprecated__cvg_ballPpos {F} {FF : Filter F} (
y : M)
:
F --> y <-> forall eps : {posnum R}, \forall y' \near F, ball y eps%:num y'.
Proof.
split => [/fcvg_ballP + eps|pos]; first exact.
by apply/fcvg_ballP=> _/posnumP[eps] //.
Qed.
#[deprecated(
since="mathcomp-analysis 0.6.0",
note="use a combination of `cvg_ballP` and `posnumP`")
]
Notation cvg_ballPpos := __deprecated__cvg_ballPpos (
only parsing).
Lemma fcvg_ball {F} {FF : Filter F} (
y : M)
:
F --> y -> forall eps : R, 0 < eps -> \forall y' \near F, ball y eps y'.
Proof.
by move/fcvg_ballP. Qed.
Lemma cvg_ballP {T} {F} {FF : Filter F} (
f : T -> M)
y :
f @ F --> y <-> forall eps : R, 0 < eps -> \forall x \near F, ball y eps (
f x).
Proof.
Lemma cvg_ball {T} {F} {FF : Filter F} (
f : T -> M)
y :
f @ F --> y -> forall eps : R, 0 < eps -> \forall x \near F, ball y eps (
f x).
Proof.
Lemma cvgi_ballP T {F} {FF : Filter F} (
f : T -> M -> Prop)
y :
f `@ F --> y <->
forall eps : R, 0 < eps -> \forall x \near F, exists z, f x z /\ ball y eps z.
Proof.
split=> [Fy _/posnumP[eps] |Fy P] /=; first exact/Fy/nbhsx_ballx.
move=> /nbhs_ballP[_ /posnumP[eps] subP].
rewrite near_simpl near_mapi; near=> x.
have [//|z [fxz yz]] := near (
Fy _ (
gt0 eps))
x.
by exists z => //; split => //; apply: subP.
Unshelve.
all: end_near. Qed.
Definition cvg_toi_locally := @cvgi_ballP.
Lemma cvgi_ball T {F} {FF : Filter F} (
f : T -> M -> Prop)
y :
f `@ F --> y ->
forall eps : R, 0 < eps -> F [set x | exists z, f x z /\ ball y eps z].
Proof.
by move/cvgi_ballP. Qed.
End pseudoMetricType_numDomainType.
#[global] Hint Resolve nbhsx_ballx : core.
#[global] Hint Resolve close_refl : core.
Arguments close_cvg {T} F1 F2 {FF2} _.
Arguments nbhsx_ballx {R M} x eps.
Arguments near_ball {R M} y eps.
#[deprecated(
since="mathcomp-analysis 0.6.0", note="renamed `cvg_ball`")
]
Notation app_cvg_locally := cvg_ball (
only parsing).
Section pseudoMetricType_numFieldType.
Context {R : numFieldType} {M : pseudoMetricType R}.
Lemma ball_split (
z x y : M) (
e : R)
:
ball x (
e / 2)
z -> ball z (
e / 2)
y -> ball x e y.
Proof.
by move=> /ball_triangle h /h; rewrite -splitr. Qed.
Lemma ball_splitr (
z x y : M) (
e : R)
:
ball z (
e / 2)
x -> ball z (
e / 2)
y -> ball x e y.
Proof.
by move=> /ball_sym /ball_split; apply. Qed.
Lemma ball_splitl (
z x y : M) (
e : R)
:
ball x (
e / 2)
z -> ball y (
e / 2)
z -> ball x e y.
Proof.
Lemma ball_close (
x y : M)
:
close x y = forall eps : {posnum R}, ball x eps%:num y.
Proof.
End pseudoMetricType_numFieldType.
Section ball_hausdorff.
Variables (
R : numDomainType) (
T : pseudoMetricType R).
Lemma ball_hausdorff : hausdorff_space T =
forall (
a b : T)
, a != b ->
exists r : {posnum R} * {posnum R},
ball a r.
1%:num `&` ball b r.
2%:num == set0.
Proof.
End ball_hausdorff.
Section entourages.
Variable R : numDomainType.
Lemma unif_continuousP (
U V : pseudoMetricType R) (
f : U -> V)
:
unif_continuous f <->
forall e, e > 0 -> exists2 d, d > 0 &
forall x, ball x.
1 d x.
2 -> ball (
f x.
1)
e (
f x.
2).
Proof.
End entourages.
Lemma countable_uniformity_metric {R : realType} {T : pseudoMetricType R} :
countable_uniformity T.
Proof.
Specific pseudoMetric spaces
matrices
Section matrix_PseudoMetric.
Variables (
m n : nat) (
R : numDomainType) (
T : pseudoMetricType R).
Implicit Types x y : 'M[T]_(
m, n).
Definition mx_ball x (
e : R)
y := forall i j, ball (
x i j)
e (
y i j).
Lemma mx_ball_center x (
e : R)
: 0 < e -> mx_ball x e x.
Proof.
by move=> ???; apply: ballxx. Qed.
Lemma mx_ball_sym x y (
e : R)
: mx_ball x e y -> mx_ball y e x.
Proof.
by move=> xe_y ??; apply/ball_sym/xe_y. Qed.
Lemma mx_ball_triangle x y z (
e1 e2 : R)
:
mx_ball x e1 y -> mx_ball y e2 z -> mx_ball x (
e1 + e2)
z.
Proof.
by move=> xe1_y ye2_z ??; apply: ball_triangle; [apply: xe1_y| apply: ye2_z].
Qed.
Lemma mx_entourage : entourage = entourage_ mx_ball.
Proof.
Definition matrix_pseudoMetricType_mixin :=
PseudoMetric.Mixin mx_ball_center mx_ball_sym mx_ball_triangle mx_entourage.
Canonical matrix_pseudoMetricType :=
PseudoMetricType 'M[T]_(
m, n)
matrix_pseudoMetricType_mixin.
End matrix_PseudoMetric.
product of two pseudoMetric spaces
Section prod_PseudoMetric.
Context {R : numDomainType} {U V : pseudoMetricType R}.
Implicit Types (
x y : U * V).
Definition prod_point : U * V := (
point, point).
Definition prod_ball x (
eps : R)
y :=
ball (
fst x)
eps (
fst y)
/\ ball (
snd x)
eps (
snd y).
Lemma prod_ball_center x (
eps : R)
: 0 < eps -> prod_ball x eps x.
Proof.
by move=> /posnumP[?]. Qed.
Lemma prod_ball_sym x y (
eps : R)
: prod_ball x eps y -> prod_ball y eps x.
Proof.
by move=> [bxy1 bxy2]; split; apply: ball_sym. Qed.
Lemma prod_ball_triangle x y z (
e1 e2 : R)
:
prod_ball x e1 y -> prod_ball y e2 z -> prod_ball x (
e1 + e2)
z.
Proof.
by move=> [bxy1 bxy2] [byz1 byz2]; split; apply: ball_triangle; eassumption.
Qed.
Lemma prod_entourage : entourage = entourage_ prod_ball.
Proof.
rewrite predeqE => P; split; last first.
move=> [_/posnumP[e] sbeP].
exists (
[set xy | ball xy.
1 e%:num xy.
2],
[set xy | ball xy.
1 e%:num xy.
2])
=> //=.
move=> [[a b] [c d]] [bab bcd]; exists ((
a, c)
, (
b, d))
=> //=.
exact: sbeP.
move=> [[A B]] /=; rewrite -!entourage_ballE.
move=> [[_/posnumP[eA] sbA] [_/posnumP[eB] sbB] sABP].
exists (
Num.min eA eB)
%:num => //= -[[a b] [c d] [/= bac bbd]].
suff /sABP [] : (
A `*` B) ((
a, c)
, (
b, d))
by move=> [[??] [??]] ? [<-<-<-<-].
split; [apply: sbA|apply: sbB] => /=.
by apply: le_ball bac; rewrite -leEsub le_minl lexx.
by apply: le_ball bbd; rewrite -leEsub le_minl lexx orbT.
Qed.
Definition prod_pseudoMetricType_mixin :=
PseudoMetric.Mixin prod_ball_center prod_ball_sym prod_ball_triangle prod_entourage.
End prod_PseudoMetric.
Canonical prod_pseudoMetricType (
R : numDomainType) (
U V : pseudoMetricType R)
:=
PseudoMetricType (
U * V) (
@prod_pseudoMetricType_mixin R U V).
Section Nbhs_fct2.
Context {T : Type} {R : numDomainType} {U V : pseudoMetricType R}.
Lemma fcvg_ball2P {F : set (
set U)
} {G : set (
set V)
}
{FF : Filter F} {FG : Filter G} (
y : U) (
z : V)
:
(
F, G)
--> (
y, z)
<->
forall eps : R, eps > 0 -> \forall y' \near F & z' \near G,
ball y eps y' /\ ball z eps z'.
Proof.
Lemma cvg_ball2P {I J} {F : set (
set I)
} {G : set (
set J)
}
{FF : Filter F} {FG : Filter G} (
f : I -> U) (
g : J -> V) (
y : U) (
z : V)
:
(
f @ F, g @ G)
--> (
y, z)
<->
forall eps : R, eps > 0 -> \forall i \near F & j \near G,
ball y eps (
f i)
/\ ball z eps (
g j).
Proof.
End Nbhs_fct2.
Functional metric spaces
Section fct_PseudoMetric.
Variable (
T : choiceType) (
R : numFieldType) (
U : pseudoMetricType R).
Definition fct_ball (
x : T -> U) (
eps : R) (
y : T -> U)
:=
forall t : T, ball (
x t)
eps (
y t).
Lemma fct_ball_center (
x : T -> U) (
e : R)
: 0 < e -> fct_ball x e x.
Proof.
by move=> /posnumP[{}e] ?. Qed.
Lemma fct_ball_sym (
x y : T -> U) (
e : R)
: fct_ball x e y -> fct_ball y e x.
Proof.
Lemma fct_ball_triangle (
x y z : T -> U) (
e1 e2 : R)
:
fct_ball x e1 y -> fct_ball y e2 z -> fct_ball x (
e1 + e2)
z.
Proof.
by move=> xy yz t; apply: (@ball_triangle _ _ (y t)). Qed.
Lemma fct_entourage : entourage = entourage_ fct_ball.
Proof.
rewrite predeqE => A; split; last first.
by move=> [_/posnumP[e] sbeA]; exists [set xy | ball xy.
1 e%:num xy.
2].
move=> [P]; rewrite -entourage_ballE => -[_/posnumP[e] sbeP] sPA.
by exists e%:num => //= fg fg_e; apply: sPA => t; apply: sbeP; apply: fg_e.
Qed.
Definition fct_pseudoMetricType_mixin :=
PseudoMetricMixin fct_ball_center fct_ball_sym fct_ball_triangle fct_entourage.
Canonical fct_pseudoMetricType := PseudoMetricType (
T -> U)
fct_pseudoMetricType_mixin.
End fct_PseudoMetric.
Definition quotient_topology (
T : topologicalType) (
Q : quotType T)
:= Q.
Section quotients.
Local Open Scope quotient_scope.
Context {T : topologicalType} {Q0 : quotType T}.
Let Q := quotient_topology Q0.
Canonical quotient_subtype := [subType Q of T by %/].
Canonical quotient_eq := EqType Q [eqMixin of Q by <:].
Canonical quotient_choice := ChoiceType Q [choiceMixin of Q by <:].
Canonical quotient_pointed := PointedType Q (
\pi_Q point).
Definition quotient_open U := open (
\pi_Q @^-1` U).
Program Definition quotient_topologicalType_mixin :=
@topologyOfOpenMixin Q quotient_open _ _ _.
Next Obligation.
Next Obligation.
by move=> ? ? ? ?; exact: openI. Qed.
Next Obligation.
by move=> I f ofi; apply: bigcup_open => i _; exact: ofi. Qed.
Let quotient_filtered := Filtered.Class (
Pointed.class quotient_pointed)
(
nbhs_of_open quotient_open).
Canonical quotient_topologicalType := @Topological.
Pack Q
(
@Topological.
Class _ quotient_filtered quotient_topologicalType_mixin).
Let Q' := quotient_topologicalType.
Lemma pi_continuous : continuous (
\pi_Q : T -> Q').
Proof.
exact/continuousP. Qed.
Lemma quotient_continuous {Z : topologicalType} (
f : Q' -> Z)
:
continuous f <-> continuous (
f \o \pi_Q).
Proof.
split => /continuousP /= cts; apply/continuousP => A oA; last exact: cts.
by rewrite comp_preimage; move/continuousP: pi_continuous; apply; exact: cts.
Qed.
Lemma repr_comp_continuous (
Z : topologicalType) (
g : T -> Z)
:
continuous g -> {homo g : a b / a == b %[mod Q] >-> a == b} ->
continuous (
g \o repr : Q' -> Z).
Proof.
move=> /continuousP ctsG rgE; apply/continuousP => A oA.
rewrite /open/= /quotient_open (
_ : _ @^-1` _ = g @^-1` A)
; first exact: ctsG.
have greprE x : g (
repr (
\pi_Q x))
= g x by apply/eqP; rewrite rgE// reprK.
by rewrite eqEsubset; split => x /=; rewrite greprE.
Qed.
End quotients.
Section discrete_pseudoMetric.
Context {R : numDomainType} {T : topologicalType} {dsc : discrete_space T}.
Definition discrete_ball (
x : T) (
eps : R)
y : Prop := x = y.
Lemma discrete_ball_center x (
eps : R)
: 0 < eps -> discrete_ball x eps x.
Proof.
by []. Qed.
Program Definition discrete_pseudoMetricType_mixin :=
@PseudoMetric.
Mixin R T discrete_ent discrete_ball _ _ _ _.
Next Obligation.
by done. Qed.
Next Obligation.
by move=> ? ? ? ->. Qed.
Next Obligation.
by move=> ? ? ? ? ? -> ->. Qed.
Next Obligation.
rewrite predeqE => P; split; last by case=> e _ + [a b] [i _] [-> ->]; apply.
move=> entP; exists 1 => //= z z12; apply: entP; exists z.
1 => //.
by rewrite {2}z12 -surjective_pairing.
Qed.
Definition discrete_pseudoMetricType := PseudoMetricType
(
@discrete_uniformType _ dsc)
discrete_pseudoMetricType_mixin.
End discrete_pseudoMetric.
Definition pseudoMetric_bool {R : realType} :=
@discrete_pseudoMetricType R [topologicalType of bool] discrete_bool.
Complete uniform spaces
Definition cauchy {T : uniformType} (
F : set (
set T))
:= (
F, F)
--> entourage.
Lemma cvg_cauchy {T : uniformType} (
F : set (
set T))
: Filter F ->
[cvg F in T] -> cauchy F.
Proof.
move=> FF cvF A entA; have /entourage_split_ex [B entB sB2A] := entA.
exists (
to_set ((
B^-1)
%classic) (
lim F)
, to_set B (
lim F)).
split=> /=; apply: cvF; rewrite /= -nbhs_entourageE; last by exists B.
by exists (
B^-1)
%classic => //; apply: entourage_inv.
by move=> ab [/= Balima Blimb]; apply: sB2A; exists (
lim F).
Qed.
Module Complete.
Definition axiom (
T : uniformType)
:=
forall (
F : set (
set T))
, ProperFilter F -> cauchy F -> F --> lim F.
Section ClassDef.
Record class_of (
T : Type)
:= Class {
base : Uniform.class_of T ;
mixin : axiom (
Uniform.Pack base)
}.
Local Coercion base : class_of >-> Uniform.class_of.
Local Coercion mixin : class_of >-> Complete.axiom.
Structure type := Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.
Variables (
T : Type) (
cT : type).
Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone c of phant_id class c := @Pack T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (
class : class_of xT).
Definition pack b0 (
m0 : axiom (
@Uniform.
Pack T b0))
:=
fun bT b of phant_id (
@Uniform.
class bT)
b =>
fun m of phant_id m m0 => @Pack T (
@Class T b m).
Definition eqType := @Equality.
Pack cT xclass.
Definition choiceType := @Choice.
Pack cT xclass.
Definition pointedType := @Pointed.
Pack cT xclass.
Definition filteredType := @Filtered.
Pack cT cT xclass.
Definition topologicalType := @Topological.
Pack cT xclass.
Definition uniformType := @Uniform.
Pack cT xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> Uniform.class_of.
Coercion mixin : class_of >-> axiom.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion pointedType : type >-> Pointed.type.
Canonical pointedType.
Coercion filteredType : type >-> Filtered.type.
Canonical filteredType.
Coercion topologicalType : type >-> Topological.type.
Canonical topologicalType.
Coercion uniformType : type >-> Uniform.type.
Canonical uniformType.
Notation completeType := type.
Notation "[ 'completeType' 'of' T 'for' cT ]" := (
@clone T cT _ idfun)
(
at level 0, format "[ 'completeType' 'of' T 'for' cT ]")
: form_scope.
Notation "[ 'completeType' 'of' T ]" := (
@clone T _ _ id)
(
at level 0, format "[ 'completeType' 'of' T ]")
: form_scope.
Notation CompleteType T m := (
@pack T _ m _ _ idfun _ idfun).
End Exports.
End Complete.
Export Complete.Exports.
Section completeType1.
Context {T : completeType}.
Lemma cauchy_cvg (
F : set (
set T)) (
FF : ProperFilter F)
:
cauchy F -> cvg F.
Proof.
by case: T F FF => [? [?]]. Qed.
Lemma cauchy_cvgP (
F : set (
set T)) (
FF : ProperFilter F)
: cauchy F <-> cvg F.
Proof.
by split=> [/cauchy_cvg|/cvg_cauchy]. Qed.
End completeType1.
Arguments cauchy_cvg {T} F {FF} _.
Arguments cauchy_cvgP {T} F {FF}.
Section matrix_Complete.
Variables (
T : completeType) (
m n : nat).
Lemma mx_complete (
F : set (
set 'M[T]_(
m, n)))
:
ProperFilter F -> cauchy F -> cvg F.
Proof.
move=> FF Fc.
have /(
_ _ _)
/cauchy_cvg /cvg_app_entourageP cvF :
cauchy ((
fun M : 'M[T]_(
m, n)
=> M _ _)
@ F).
move=> i j A /= entA; rewrite near_simpl -near2E near_map2.
by apply: Fc; exists (
fun _ _ => A).
apply/cvg_ex.
set Mlim := \matrix_(
i, j) (
lim ((
fun M : 'M[T]_(
m, n)
=> M i j)
@ F)
: T).
exists Mlim; apply/cvg_mx_entourageP => A entA; near=> M => i j; near F => M'.
apply: subset_split_ent => //; exists (
M' i j)
=> /=.
by near: M'; rewrite mxE; apply: cvF.
move: (
i) (
j)
; near: M'; near: M; apply: nearP_dep; apply: Fc.
by exists (
fun _ _ => (
split_ent A)
^-1%classic)
=> ?? //; apply: entourage_inv.
Unshelve.
all: by end_near. Qed.
Canonical matrix_completeType := CompleteType 'M[T]_(
m, n)
mx_complete.
End matrix_Complete.
Section fun_Complete.
Context {T : choiceType} {U : completeType}.
Lemma fun_complete (
F : set (
set (
T -> U)))
{FF : ProperFilter F} : cauchy F -> cvg F.
Proof.
move=> Fc.
have /(
_ _)
/cauchy_cvg /cvg_app_entourageP cvF : cauchy (
@^~_ @ F).
move=> t A /= entA; rewrite near_simpl -near2E near_map2.
by apply: Fc; exists A.
apply/cvg_ex; exists (
fun t => lim (
@^~t @ F)).
apply/cvg_fct_entourageP => A entA; near=> f => t; near F => g.
apply: (
entourage_split (
g t))
=> //; first by near: g; apply: cvF.
move: (
t)
; near: g; near: f; apply: nearP_dep; apply: Fc.
exists ((
split_ent A)
^-1)
%classic=> //=.
Unshelve.
all: by end_near. Qed.
Canonical fun_completeType := CompleteType (
T -> U)
fun_complete.
End fun_Complete.
Limit switching
Section Cvg_switch.
Context {T1 T2 : choiceType}.
Lemma cvg_switch_1 {U : uniformType}
F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2}
(
f : T1 -> T2 -> U) (
g : T2 -> U) (
h : T1 -> U) (
l : U)
:
f @ F1 --> g -> (
forall x1, f x1 @ F2 --> h x1)
-> h @ F1 --> l ->
g @ F2 --> l.
Proof.
move=> fg fh hl; apply/cvg_app_entourageP => A entA.
near F1 => x1; near=> x2; apply: (
entourage_split (
h x1))
=> //.
by near: x1; apply/(
hl (
to_set _ l))
=> /=.
apply: (
entourage_split (
f x1 x2))
=> //.
by near: x2; apply/(
fh x1 (
to_set _ _))
=> /=.
move: (
x2)
; near: x1; have /cvg_fct_entourageP /(
_ (
_^-1%classic))
:= fg; apply.
exact: entourage_inv.
Unshelve.
all: by end_near. Qed.
Lemma cvg_switch_2 {U : completeType}
F1 {FF1 : ProperFilter F1} F2 {FF2 : ProperFilter F2}
(
f : T1 -> T2 -> U) (
g : T2 -> U) (
h : T1 -> U)
:
f @ F1 --> g -> (
forall x, f x @ F2 --> h x)
->
[cvg h @ F1 in U].
Proof.
Lemma cvg_switch {U : completeType}
F1 (
FF1 : ProperFilter F1)
F2 (
FF2 : ProperFilter F2)
(
f : T1 -> T2 -> U) (
g : T2 -> U) (
h : T1 -> U)
:
f @ F1 --> g -> (
forall x1, f x1 @ F2 --> h x1)
->
exists l : U, h @ F1 --> l /\ g @ F2 --> l.
Proof.
End Cvg_switch.
Complete pseudoMetric spaces
Definition cauchy_ex {R : numDomainType} {T : pseudoMetricType R} (
F : set (
set T))
:=
forall eps : R, 0 < eps -> exists x, F (
ball x eps).
Definition cauchy_ball {R : numDomainType} {T : pseudoMetricType R} (
F : set (
set T))
:=
forall e, e > 0 -> \forall x & y \near F, ball x e y.
Lemma cauchy_ballP (
R : numDomainType) (
T : pseudoMetricType R)
(
F : set (
set T)) (
FF : Filter F)
:
cauchy_ball F <-> cauchy F.
Proof.
split=> cauchyF; last first.
by move=> _/posnumP[eps]; apply/cauchyF/entourage_ball.
move=> U; rewrite -entourage_ballE => - [_/posnumP[eps] xyepsU].
by near do apply: xyepsU; apply: cauchyF.
Unshelve. all: by end_near. Qed.
Arguments cauchy_ballP {R T} F {FF}.
Lemma cauchy_exP (
R : numFieldType) (
T : pseudoMetricType R)
(
F : set (
set T)) (
FF : Filter F)
:
cauchy_ex F -> cauchy F.
Proof.
move=> Fc A; rewrite !nbhs_simpl /= -entourage_ballE => -[_/posnumP[e] sdeA].
have /Fc [z /= Fze] := [gt0 of e%:num / 2]; near=> x y; apply: sdeA => /=.
by apply: (
@ball_splitr _ _ z)
; [near: x|near: y].
Unshelve.
all: by end_near. Qed.
Arguments cauchy_exP {R T} F {FF}.
Lemma cauchyP (
R : numFieldType) (
T : pseudoMetricType R)
(
F : set (
set T)) (
PF : ProperFilter F)
:
cauchy F <-> cauchy_ex F.
Proof.
split=> [Fcauchy _/posnumP[e] |/cauchy_exP//].
near F => x; exists x; near: x; apply: (@nearP_dep _ _ F F).
exact/Fcauchy/entourage_ball.
Unshelve. all: by end_near. Qed.
Arguments cauchyP {R T} F {PF}.
Lemma compact_cauchy_cvg {T : uniformType} (
U : set T) (
F : set (
set T))
:
ProperFilter F -> cauchy F -> F U -> compact U -> cvg F.
Proof.
Module CompletePseudoMetric.
Section ClassDef.
Variable R : numDomainType.
Record class_of (
T : Type)
:= Class {
base : PseudoMetric.class_of R T;
mixin : Complete.axiom (
Uniform.Pack base)
}.
Local Coercion base : class_of >-> PseudoMetric.class_of.
Definition base2 T m := Complete.Class (
@mixin T m).
Local Coercion base2 : class_of >-> Complete.class_of.
Structure type := Pack { sort; _ : class_of sort }.
Local Coercion sort : type >-> Sortclass.
Variables (
T : Type) (
cT : type).
Definition class := let: Pack _ c := cT return class_of cT in c.
Definition clone c of phant_id class c := @Pack T c.
Let xT := let: Pack T _ := cT in T.
Notation xclass := (
class : class_of xT).
Definition pack :=
fun bT b & phant_id (
@PseudoMetric.
class R bT) (
b : PseudoMetric.class_of R T)
=>
fun mT m & phant_id (
Complete.class mT) (
@Complete.
Class T b m)
=>
Pack (
@Class T b m).
Definition eqType := @Equality.
Pack cT xclass.
Definition choiceType := @Choice.
Pack cT xclass.
Definition pointedType := @Pointed.
Pack cT xclass.
Definition filteredType := @Filtered.
Pack cT cT xclass.
Definition topologicalType := @Topological.
Pack cT xclass.
Definition uniformType := @Uniform.
Pack cT xclass.
Definition completeType := @Complete.
Pack cT xclass.
Definition pseudoMetricType := @PseudoMetric.
Pack R cT xclass.
Definition pseudoMetric_completeType := @Complete.
Pack pseudoMetricType xclass.
End ClassDef.
Module Exports.
Coercion base : class_of >-> PseudoMetric.class_of.
Coercion mixin : class_of >-> Complete.axiom.
Coercion base2 : class_of >-> Complete.class_of.
Coercion sort : type >-> Sortclass.
Coercion eqType : type >-> Equality.type.
Canonical eqType.
Coercion choiceType : type >-> Choice.type.
Canonical choiceType.
Coercion pointedType : type >-> Pointed.type.
Canonical pointedType.
Coercion filteredType : type >-> Filtered.type.
Canonical filteredType.
Coercion topologicalType : type >-> Topological.type.
Canonical topologicalType.
Coercion uniformType : type >-> Uniform.type.
Canonical uniformType.
Coercion completeType : type >-> Complete.type.
Canonical completeType.
Coercion pseudoMetricType : type >-> PseudoMetric.type.
Canonical pseudoMetricType.
Canonical pseudoMetric_completeType.
Notation completePseudoMetricType := type.
Notation "[ 'completePseudoMetricType' 'of' T 'for' cT ]" := (
@clone T cT _ idfun)
(
at level 0, format "[ 'completePseudoMetricType' 'of' T 'for' cT ]")
: form_scope.
Notation "[ 'completePseudoMetricType' 'of' T ]" := (
@clone T _ _ id)
(
at level 0, format "[ 'completePseudoMetricType' 'of' T ]")
: form_scope.
Notation CompletePseudoMetricType T m := (
@pack _ T _ _ id _ _ id).
End Exports.
End CompletePseudoMetric.
Export CompletePseudoMetric.Exports.
Canonical matrix_completePseudoMetricType (
R : numFieldType)
(
T : completePseudoMetricType R) (
m n : nat)
:=
CompletePseudoMetricType 'M[T]_(
m, n)
mx_complete.
Canonical fct_completePseudoMetricType (
T : choiceType) (
R : numFieldType)
(
U : completePseudoMetricType R)
:=
CompletePseudoMetricType (
T -> U)
fun_complete.
Definition pointed_of_zmodule (
R : zmodType)
: pointedType := PointedType R 0.
Definition ball_
(
R : numDomainType) (
V : zmodType) (
norm : V -> R) (
x : V) (
e : R)
:=
[set y | norm (
x - y)
< e].
Arguments ball_ {R} {V} norm x e%R y /.
Lemma subset_ball_prop_in_itv (
R : realDomainType) (
x : R)
e P :
(
ball_ Num.Def.normr x e `<=` P)
%classic <->
{in `](
x - e)
, (
x + e)
[, forall y, P y}.
Proof.
Lemma subset_ball_prop_in_itvcc (
R : realDomainType) (
x : R)
e P : 0 < e ->
(
ball_ Num.Def.normr x (
2 * e)
`<=` P)
%classic ->
{in `[(
x - e)
, (
x + e)
], forall y, P y}.
Proof.
Global Instance ball_filter (
R : realDomainType) (
t : R)
: Filter
[set P | exists2 i : R, 0 < i & ball_ Num.norm t i `<=` P].
Proof.
#[global] Hint Extern 0 (
Filter [set P | exists2 i, _ & ball_ _ _ i `<=` P])
=>
(
apply: ball_filter)
: typeclass_instances.
Definition filtered_of_normedZmod (
K : numDomainType) (
R : normedZmodType K)
: filteredType R := Filtered.Pack (
Filtered.Class
(
@Pointed.
class (
pointed_of_zmodule R))
(
nbhs_ball_ (
ball_ (
fun x => `|x|)))).
Section pseudoMetric_of_normedDomain.
Variables (
K : numDomainType) (
R : normedZmodType K).
Lemma ball_norm_center (
x : R) (
e : K)
: 0 < e -> ball_ Num.norm x e x.
Proof.
Lemma ball_norm_symmetric (
x y : R) (
e : K)
:
ball_ Num.norm x e y -> ball_ Num.norm y e x.
Proof.
Lemma ball_norm_triangle (
x y z : R) (
e1 e2 : K)
:
ball_ Num.norm x e1 y -> ball_ Num.norm y e2 z -> ball_ Num.norm x (
e1 + e2)
z.
Proof.
Definition pseudoMetric_of_normedDomain
: PseudoMetric.mixin_of K (
@entourage_ K R R (
ball_ (
fun x => `|x|)))
:= PseudoMetricMixin ball_norm_center ball_norm_symmetric ball_norm_triangle erefl.
Lemma nbhs_ball_normE :
@nbhs_ball_ K R R (
ball_ Num.norm)
= nbhs_ (
entourage_ (
ball_ Num.norm)).
Proof.
End pseudoMetric_of_normedDomain.
Module regular_topology.
Section regular_topology.
Local Canonical pointedType (
R : zmodType)
: pointedType :=
[pointedType of R^o for pointed_of_zmodule R].
Local Canonical filteredType (
R : numDomainType)
: filteredType R :=
[filteredType R of R^o for filtered_of_normedZmod R].
Local Canonical topologicalType (
R : numFieldType)
: topologicalType :=
TopologicalType R^o (
topologyOfEntourageMixin (
uniformityOfBallMixin
(
@nbhs_ball_normE _ _) (
pseudoMetric_of_normedDomain _))).
Local Canonical uniformType (
R : numFieldType)
: uniformType :=
UniformType R^o (
uniformityOfBallMixin
(
@nbhs_ball_normE _ _) (
pseudoMetric_of_normedDomain _)).
Local Canonical pseudoMetricType (
R : numFieldType)
:=
PseudoMetricType R^o (
@pseudoMetric_of_normedDomain R R).
End regular_topology.
Module Exports.
Canonical pointedType.
Canonical filteredType.
Canonical topologicalType.
Canonical uniformType.
Canonical pseudoMetricType.
End Exports.
End regular_topology.
Export regular_topology.Exports.
Module numFieldTopology.
Section realType.
Variable (
R : realType).
Local Canonical real_pointedType := [pointedType of R for [pointedType of R^o]].
Local Canonical real_filteredType :=
[filteredType R of R for [filteredType R of R^o]].
Local Canonical real_topologicalType :=
[topologicalType of R for [topologicalType of R^o]].
Local Canonical real_uniformType := [uniformType of R for [uniformType of R^o]].
Local Canonical real_pseudoMetricType :=
[pseudoMetricType R of R for [pseudoMetricType R of R^o]].
End realType.
Section rcfType.
Variable (
R : rcfType).
Local Canonical rcf_pointedType := [pointedType of R for [pointedType of R^o]].
Local Canonical rcf_filteredType :=
[filteredType R of R for [filteredType R of R^o]].
Local Canonical rcf_topologicalType :=
[topologicalType of R for [topologicalType of R^o]].
Local Canonical rcf_uniformType := [uniformType of R for [uniformType of R^o]].
Local Canonical rcf_pseudoMetricType :=
[pseudoMetricType R of R for [pseudoMetricType R of R^o]].
End rcfType.
Section archiFieldType.
Variable (
R : archiFieldType).
Local Canonical archiField_pointedType :=
[pointedType of R for [pointedType of R^o]].
Local Canonical archiField_filteredType :=
[filteredType R of R for [filteredType R of R^o]].
Local Canonical archiField_topologicalType :=
[topologicalType of R for [topologicalType of R^o]].
Local Canonical archiField_uniformType :=
[uniformType of R for [uniformType of R^o]].
Local Canonical archiField_pseudoMetricType :=
[pseudoMetricType R of R for [pseudoMetricType R of R^o]].
End archiFieldType.
Section realFieldType.
Variable (
R : realFieldType).
Local Canonical realField_pointedType :=
[pointedType of R for [pointedType of R^o]].
Local Canonical realField_filteredType :=
[filteredType R of R for [filteredType R of R^o]].
Local Canonical realField_topologicalType :=
[topologicalType of R for [topologicalType of R^o]].
Local Canonical realField_uniformType :=
[uniformType of R for [uniformType of R^o]].
Local Canonical realField_pseudoMetricType :=
[pseudoMetricType R of R for [pseudoMetricType R of R^o]].
Definition pointed_latticeType := [latticeType of realField_pointedType].
Definition pointed_distrLatticeType :=
[distrLatticeType of realField_pointedType].
Definition pointed_orderType := [orderType of realField_pointedType].
Definition pointed_realDomainType :=
[realDomainType of realField_pointedType].
Definition filtered_latticeType := [latticeType of realField_filteredType].
Definition filtered_distrLatticeType :=
[distrLatticeType of realField_filteredType].
Definition filtered_orderType := [orderType of realField_filteredType].
Definition filtered_realDomainType :=
[realDomainType of realField_filteredType].
Definition topological_latticeType :=
[latticeType of realField_topologicalType].
Definition topological_distrLatticeType :=
[distrLatticeType of realField_topologicalType].
Definition topological_orderType := [orderType of realField_topologicalType].
Definition topological_realDomainType :=
[realDomainType of realField_topologicalType].
Definition uniform_latticeType := [latticeType of realField_uniformType].
Definition uniform_distrLatticeType :=
[distrLatticeType of realField_uniformType].
Definition uniform_orderType := [orderType of realField_uniformType].
Definition uniform_realDomainType := [realDomainType of realField_uniformType].
Definition pseudoMetric_latticeType :=
[latticeType of realField_pseudoMetricType].
Definition pseudoMetric_distrLatticeType :=
[distrLatticeType of realField_pseudoMetricType].
Definition pseudoMetric_orderType := [orderType of realField_pseudoMetricType].
Definition pseudoMetric_realDomainType :=
[realDomainType of realField_pseudoMetricType].
End realFieldType.
Section numClosedFieldType.
Variable (
R : numClosedFieldType).
Local Canonical numClosedField_pointedType :=
[pointedType of R for [pointedType of R^o]].
Local Canonical numClosedField_filteredType :=
[filteredType R of R for [filteredType R of R^o]].
Local Canonical numClosedField_topologicalType :=
[topologicalType of R for [topologicalType of R^o]].
Local Canonical numClosedField_uniformType :=
[uniformType of R for [uniformType of R^o]].
Local Canonical numClosedField_pseudoMetricType :=
[pseudoMetricType R of R for [pseudoMetricType R of R^o]].
Definition pointed_decFieldType :=
[decFieldType of numClosedField_pointedType].
Definition pointed_closedFieldType :=
[closedFieldType of numClosedField_pointedType].
Definition filtered_decFieldType :=
[decFieldType of numClosedField_filteredType].
Definition filtered_closedFieldType :=
[closedFieldType of numClosedField_filteredType].
Definition topological_decFieldType :=
[decFieldType of numClosedField_topologicalType].
Definition topological_closedFieldType :=
[closedFieldType of numClosedField_topologicalType].
Definition uniform_decFieldType := [decFieldType of numClosedField_uniformType].
Definition uniform_closedFieldType :=
[closedFieldType of numClosedField_uniformType].
Definition pseudoMetric_decFieldType :=
[decFieldType of numClosedField_pseudoMetricType].
Definition pseudoMetric_closedFieldType :=
[closedFieldType of numClosedField_pseudoMetricType].
End numClosedFieldType.
Section numFieldType.
Variable (
R : numFieldType).
Local Canonical numField_pointedType :=
[pointedType of R for [pointedType of R^o]].
Local Canonical numField_filteredType :=
[filteredType R of R for [filteredType R of R^o]].
Local Canonical numField_topologicalType :=
[topologicalType of R for [topologicalType of R^o]].
Local Canonical numField_uniformType :=
[uniformType of R for [uniformType of R^o]].
Local Canonical numField_pseudoMetricType :=
[pseudoMetricType R of R for [pseudoMetricType R of R^o]].
Definition pointed_ringType := [ringType of numField_pointedType].
Definition pointed_comRingType := [comRingType of numField_pointedType].
Definition pointed_unitRingType := [unitRingType of numField_pointedType].
Definition pointed_comUnitRingType := [comUnitRingType of numField_pointedType].
Definition pointed_idomainType := [idomainType of numField_pointedType].
Definition pointed_fieldType := [fieldType of numField_pointedType].
Definition pointed_porderType := [porderType of numField_pointedType].
Definition pointed_numDomainType := [numDomainType of numField_pointedType].
Definition filtered_ringType := [ringType of numField_filteredType].
Definition filtered_comRingType := [comRingType of numField_filteredType].
Definition filtered_unitRingType := [unitRingType of numField_filteredType].
Definition filtered_comUnitRingType :=
[comUnitRingType of numField_filteredType].
Definition filtered_idomainType := [idomainType of numField_filteredType].
Definition filtered_fieldType := [fieldType of numField_filteredType].
Definition filtered_porderType := [porderType of numField_filteredType].
Definition filtered_numDomainType := [numDomainType of numField_filteredType].
Definition topological_ringType := [ringType of numField_topologicalType].
Definition topological_comRingType := [comRingType of numField_topologicalType].
Definition topological_unitRingType :=
[unitRingType of numField_topologicalType].
Definition topological_comUnitRingType :=
[comUnitRingType of numField_topologicalType].
Definition topological_idomainType := [idomainType of numField_topologicalType].
Definition topological_fieldType := [fieldType of numField_topologicalType].
Definition topological_porderType := [porderType of numField_topologicalType].
Definition topological_numDomainType :=
[numDomainType of numField_topologicalType].
Definition uniform_ringType := [ringType of numField_uniformType].
Definition uniform_comRingType := [comRingType of numField_uniformType].
Definition uniform_unitRingType := [unitRingType of numField_uniformType].
Definition uniform_comUnitRingType := [comUnitRingType of numField_uniformType].
Definition uniform_idomainType := [idomainType of numField_uniformType].
Definition uniform_fieldType := [fieldType of numField_uniformType].
Definition uniform_porderType := [porderType of numField_uniformType].
Definition uniform_numDomainType := [numDomainType of numField_uniformType].
Definition pseudoMetric_ringType := [ringType of numField_pseudoMetricType].
Definition pseudoMetric_comRingType :=
[comRingType of numField_pseudoMetricType].
Definition pseudoMetric_unitRingType :=
[unitRingType of numField_pseudoMetricType].
Definition pseudoMetric_comUnitRingType :=
[comUnitRingType of numField_pseudoMetricType].
Definition pseudoMetric_idomainType :=
[idomainType of numField_pseudoMetricType].
Definition pseudoMetric_fieldType := [fieldType of numField_pseudoMetricType].
Definition pseudoMetric_porderType := [porderType of numField_pseudoMetricType].
Definition pseudoMetric_numDomainType :=
[numDomainType of numField_pseudoMetricType].
End numFieldType.
Module Exports.
Canonical real_pointedType.
Canonical real_filteredType.
Canonical real_topologicalType.
Canonical real_uniformType.
Canonical real_pseudoMetricType.
Coercion real_pointedType : realType >-> pointedType.
Coercion real_filteredType : realType >-> filteredType.
Coercion real_topologicalType : realType >-> topologicalType.
Coercion real_uniformType : realType >-> uniformType.
Coercion real_pseudoMetricType : realType >-> pseudoMetricType.
Canonical rcf_pointedType.
Canonical rcf_filteredType.
Canonical rcf_topologicalType.
Canonical rcf_uniformType.
Canonical rcf_pseudoMetricType.
Coercion rcf_pointedType : rcfType >-> pointedType.
Coercion rcf_filteredType : rcfType >-> filteredType.
Coercion rcf_topologicalType : rcfType >-> topologicalType.
Coercion rcf_uniformType : rcfType >-> uniformType.
Coercion rcf_pseudoMetricType : rcfType >-> pseudoMetricType.
Canonical archiField_pointedType.
Canonical archiField_filteredType.
Canonical archiField_topologicalType.
Canonical archiField_uniformType.
Canonical archiField_pseudoMetricType.
Coercion archiField_pointedType : archiFieldType >-> pointedType.
Coercion archiField_filteredType : archiFieldType >-> filteredType.
Coercion archiField_topologicalType : archiFieldType >-> topologicalType.
Coercion archiField_uniformType : archiFieldType >-> uniformType.
Coercion archiField_pseudoMetricType : archiFieldType >-> pseudoMetricType.
Canonical realField_pointedType.
Canonical realField_filteredType.
Canonical realField_topologicalType.
Canonical realField_uniformType.
Canonical realField_pseudoMetricType.
Canonical pointed_latticeType.
Canonical pointed_distrLatticeType.
Canonical pointed_orderType.
Canonical pointed_realDomainType.
Canonical filtered_latticeType.
Canonical filtered_distrLatticeType.
Canonical filtered_orderType.
Canonical filtered_realDomainType.
Canonical topological_latticeType.
Canonical topological_distrLatticeType.
Canonical topological_orderType.
Canonical topological_realDomainType.
Canonical uniform_latticeType.
Canonical uniform_distrLatticeType.
Canonical uniform_orderType.
Canonical uniform_realDomainType.
Canonical pseudoMetric_latticeType.
Canonical pseudoMetric_distrLatticeType.
Canonical pseudoMetric_orderType.
Canonical pseudoMetric_realDomainType.
Coercion realField_pointedType : realFieldType >-> pointedType.
Coercion realField_filteredType : realFieldType >-> filteredType.
Coercion realField_topologicalType : realFieldType >-> topologicalType.
Coercion realField_uniformType : realFieldType >-> uniformType.
Coercion realField_pseudoMetricType : realFieldType >-> pseudoMetricType.
Canonical numClosedField_pointedType.
Canonical numClosedField_filteredType.
Canonical numClosedField_topologicalType.
Canonical numClosedField_uniformType.
Canonical numClosedField_pseudoMetricType.
Canonical pointed_decFieldType.
Canonical pointed_closedFieldType.
Canonical filtered_decFieldType.
Canonical filtered_closedFieldType.
Canonical topological_decFieldType.
Canonical topological_closedFieldType.
Canonical uniform_decFieldType.
Canonical uniform_closedFieldType.
Canonical pseudoMetric_decFieldType.
Canonical pseudoMetric_closedFieldType.
Coercion numClosedField_pointedType : numClosedFieldType >-> pointedType.
Coercion numClosedField_filteredType : numClosedFieldType >-> filteredType.
Coercion numClosedField_topologicalType :
numClosedFieldType >-> topologicalType.
Coercion numClosedField_uniformType : numClosedFieldType >-> uniformType.
Coercion numClosedField_pseudoMetricType :
numClosedFieldType >-> pseudoMetricType.
Canonical numField_pointedType.
Canonical numField_filteredType.
Canonical numField_topologicalType.
Canonical numField_uniformType.
Canonical numField_pseudoMetricType.
Canonical pointed_ringType.
Canonical pointed_comRingType.
Canonical pointed_unitRingType.
Canonical pointed_comUnitRingType.
Canonical pointed_idomainType.
Canonical pointed_fieldType.
Canonical pointed_porderType.
Canonical pointed_numDomainType.
Canonical filtered_ringType.
Canonical filtered_comRingType.
Canonical filtered_unitRingType.
Canonical filtered_comUnitRingType.
Canonical filtered_idomainType.
Canonical filtered_fieldType.
Canonical filtered_porderType.
Canonical filtered_numDomainType.
Canonical topological_ringType.
Canonical topological_comRingType.
Canonical topological_unitRingType.
Canonical topological_comUnitRingType.
Canonical topological_idomainType.
Canonical topological_fieldType.
Canonical topological_porderType.
Canonical topological_numDomainType.
Canonical uniform_ringType.
Canonical uniform_comRingType.
Canonical uniform_unitRingType.
Canonical uniform_comUnitRingType.
Canonical uniform_idomainType.
Canonical uniform_fieldType.
Canonical uniform_porderType.
Canonical uniform_numDomainType.
Canonical pseudoMetric_ringType.
Canonical pseudoMetric_comRingType.
Canonical pseudoMetric_unitRingType.
Canonical pseudoMetric_comUnitRingType.
Canonical pseudoMetric_idomainType.
Canonical pseudoMetric_fieldType.
Canonical pseudoMetric_porderType.
Canonical pseudoMetric_numDomainType.
Coercion numField_pointedType : numFieldType >-> pointedType.
Coercion numField_filteredType : numFieldType >-> filteredType.
Coercion numField_topologicalType : numFieldType >-> topologicalType.
Coercion numField_uniformType : numFieldType >-> uniformType.
Coercion numField_pseudoMetricType : numFieldType >-> pseudoMetricType.
End Exports.
End numFieldTopology.
Import numFieldTopology.Exports.
Global Instance Proper_dnbhs_regular_numFieldType (
R : numFieldType) (
x : R^o)
:
ProperFilter x^'.
Proof.
Lemma Rhausdorff (
R : realFieldType)
: hausdorff_space R.
Proof.
Section RestrictedUniformTopology.
Context {U : choiceType} (
A : set U)
{V : uniformType} .
Definition fct_RestrictedUniform := let _ := A in U -> V.
Definition fct_RestrictedUniformTopology :=
@weak_uniformType
(
[pointedType of @fct_RestrictedUniform])
(
fct_uniformType [choiceType of { x : U | x \in A }] V)
(
@sigL U V A).
Canonical fct_RestrictUniformFilteredType:=
[filteredType fct_RestrictedUniform of
fct_RestrictedUniform for
fct_RestrictedUniformTopology].
Canonical fct_RestrictUniformTopologicalType :=
[topologicalType of fct_RestrictedUniform for fct_RestrictedUniformTopology].
Canonical fct_restrictedUniformType :=
[uniformType of fct_RestrictedUniform for fct_RestrictedUniformTopology].
Lemma uniform_nbhs (
f : fct_RestrictedUniformTopology)
P:
nbhs f P <-> (
exists E, entourage E /\
[set h | forall y, A y -> E(
f y, h y)
] `<=` P).
Proof.
split=> [[Q [[/= W oW <- /=] Wf subP]]|[E [entE subP]]].
rewrite openE /= /interior in oW.
case: (
oW _ Wf)
=> ? [ /= E entE] Esub subW.
exists E; split=> // h Eh; apply/subP/subW/Esub => /= [[u Au]].
by apply: Eh => /=; rewrite -inE.
near=> g; apply: subP => y /mem_set Ay; rewrite -!(
sigLE A).
move: (
SigSub _)
; near: g.
have := (
@cvg_image _ _ (
sigL A)
_ f (
nbhs_filter f)
(
image_sigL point)).
1 cvg_id [set h | forall y, E (
sigL A f y, h y)
].
case; first by exists [set fg | forall y, E (
fg.
1 y, fg.
2 y)
]; [exists E|].
move=> B nbhsB rBrE; apply: (
filterS _ nbhsB)
=> g Bg [y yA].
by move: rBrE; rewrite eqEsubset; case => [+ _]; apply; exists g.
Unshelve.
all: by end_near. Qed.
Lemma uniform_entourage :
@entourage fct_restrictedUniformType =
filter_from
(
@entourage V)
(
fun P => [set fg | forall t : U, A t -> P (
fg.
1 t, fg.
2 t)
]).
Proof.
rewrite eqEsubset; split => P /=.
case=> /= E [F entF FsubE EsubP]; exists F => //; case=> f g Ffg.
by apply/EsubP/FsubE=> [[x p]] /=; apply: Ffg; move/set_mem: (
p).
case=> E entE EsubP; exists [set fg | forall t, E (
fg.
1 t, fg.
2 t)
].
by exists E.
case=> f g Efg; apply: EsubP => t /mem_set At.
by move: Efg => /= /(
_ (
@exist _ (
fun x => in_mem x (
mem A))
_ At)).
Qed.
End RestrictedUniformTopology.
Notation "{ 'uniform`' A -> V }" := (
@fct_RestrictedUniform _ A V)
:
classical_set_scope.
Notation "{ 'uniform' U -> V }" := (
{uniform` [set: U] -> V})
:
classical_set_scope.
Notation "{ 'uniform' A , F --> f }" :=
(
cvg_to [filter of F]
(
filter_of (
Phantom (
fct_RestrictedUniform A)
f)))
: classical_set_scope.
Notation "{ 'uniform' , F --> f }" :=
(
cvg_to [filter of F]
(
filter_of (
Phantom (
fct_RestrictedUniform setT)
f)))
: classical_set_scope.
Lemma restricted_cvgE {U : choiceType} {V : uniformType}
(
F : set (
set (
U -> V)))
A (
f : U -> V)
:
{uniform A, F --> f} = (
F --> (
f : {uniform` A -> V})).
Proof.
by []. Qed.
Definition fct_Pointwise U (
V: topologicalType)
:= U -> V.
Definition fct_PointwiseTopology (
U : Type) (
V : topologicalType)
:=
@product_topologicalType U (
fun=> V).
Canonical fct_PointwiseFilteredType (
U : Type) (
V : topologicalType)
:=
[filteredType @fct_Pointwise U V of
@fct_Pointwise U V for
@fct_PointwiseTopology U V].
Canonical fct_PointwiseTopologicalType (
U : Type) (
V : topologicalType)
:=
[topologicalType of
@fct_Pointwise U V for
@fct_PointwiseTopology U V].
Notation "{ 'ptws' U -> V }" := (
@fct_Pointwise U V).
Notation "{ 'ptws' , F --> f }" :=
(
cvg_to [filter of F] (
filter_of (
Phantom (
@fct_Pointwise _ _)
f)))
: classical_set_scope.
Lemma pointwise_cvgE {U : Type} {V : topologicalType}
(
F : set (
set(
U -> V))) (
A : set U) (
f : U -> V)
:
{ptws, F --> f} = (
F --> (
f : {ptws U -> V})).
Proof.
by []. Qed.
Section UniformCvgLemmas.
Context {U : choiceType} {V : uniformType}.
Lemma uniform_set1 F (
f : U -> V) (
x : U)
:
Filter F -> {uniform [set x], F --> f} = ((
g x)
@[g --> F] --> f x).
Proof.
move=> FF; rewrite propeqE; split.
move=> + W => /(
_ [set t | W (
t x)
])
+; rewrite /filter_of -nbhs_entourageE.
rewrite uniform_nbhs => + [Q entQ subW].
by apply; exists Q; split => // h Qf; exact/subW/Qf.
move=> Ff W; rewrite /filter_of uniform_nbhs => [[E] [entE subW]].
apply: (
filterS subW)
; move/(
nbhs_entourage (
f x))
/Ff: entE => //=; near_simpl.
by apply: filter_app; apply: nearW=> ? ? ? ->.
Qed.
Lemma uniform_subset_nbhs (
f : U -> V) (
A B : set U)
:
B `<=` A -> nbhs (
f : {uniform` A -> V})
`=>` nbhs (
f : {uniform` B -> V}).
Proof.
move => BsubA P /uniform_nbhs [E [entE EsubP]].
apply: (
filterS EsubP)
; apply/uniform_nbhs; exists E; split => //.
by move=> h Eh y /BsubA Ay; exact: Eh.
Qed.
Lemma uniform_subset_cvg (
f : U -> V) (
A B : set U)
F :
Filter F -> B `<=` A -> {uniform A, F --> f} -> {uniform B, F --> f}.
Proof.
move => FF /uniform_subset_nbhs => /(
_ f).
by move=> nbhsF Acvg; apply: cvg_trans; [exact: Acvg|exact: nbhsF].
Qed.
Lemma pointwise_uniform_cvg (
f : U -> V) (
F : set (
set (
U -> V)))
:
Filter F -> {uniform, F --> f} -> {ptws, F --> f}.
Proof.
Lemma cvg_sigL (
A : set U) (
f : U -> V) (
F : set (
set (
U -> V)))
:
Filter F ->
{uniform A, F --> f} <->
{uniform, sigL A @ F --> sigL A f}.
Proof.
move=> FF; split.
- move=> cvgF P' /= /uniform_nbhs [ E [/= entE EsubP]].
apply: (
filterS EsubP)
; apply: cvgF => /=.
apply: (
filterS (
P:= [set h | forall y, A y -> E(
f y, h y)
])).
+ by move=> h/= Eh [y ?] _; apply: Eh; rewrite -inE.
+ by (
apply/uniform_nbhs; eexists; split; eauto).
- move=> cvgF P' /= /uniform_nbhs [ E [/= entE EsubP]].
apply: (
filterS EsubP).
move: (
cvgF [set h | (
forall y , E (
sigL A f y, h y))
])
=> /=.
set Q := (
x in (
_ -> x)
-> _)
; move=> W.
have: Q by apply W, uniform_nbhs; exists E; split => // h + ?; apply.
rewrite {}/W {}/Q; near_simpl => /= R; apply: (
filterS _ R)
=> h /=.
by rewrite forall_sig /sigL /=.
Qed.
Lemma eq_in_close (
A : set U) (
f g : {uniform` A -> V})
:
{in A, f =1 g} -> close f g.
Proof.
Lemma hausdorrf_close_eq_in (
A : set U) (
f g : {uniform` A -> V})
:
hausdorff_space V -> close f g = {in A, f =1 g}.
Proof.
Lemma uniform_restrict_cvg
(
F : set (
set (
U -> V))) (
f : U -> V)
A : Filter F ->
{uniform A, F --> f} <-> {uniform, restrict A @ F --> restrict A f}.
Proof.
move=> FF; rewrite cvg_sigL; split.
- rewrite -sigLK; move/(
cvg_app valL)
=> D.
apply: cvg_trans; first exact: D.
move=> P /uniform_nbhs [E [/=entE EsubP]]; apply: (
filterS EsubP).
apply/uniform_nbhs; exists E; split=> //= h /=.
rewrite /sigL => R u _; rewrite oinv_set_val.
by case: insubP=> /= *; [apply: R|apply: entourage_refl].
- move/(
@cvg_app _ _ _ _ (
sigL A)).
rewrite -fmap_comp sigL_restrict => D.
apply: cvg_trans; first exact: D.
move=> P /uniform_nbhs [E [/=entE EsubP]]; apply: (
filterS EsubP).
apply/uniform_nbhs; exists E; split=> //= h /=.
rewrite /sigL => R [u Au] _ /=.
by have := R u I; rewrite /patch Au.
Qed.
Lemma uniform_nbhsT (
f : U -> V)
:
(
nbhs (
f : {uniform U -> V}))
= nbhs (
f : fct_topologicalType U V).
Proof.
rewrite eqEsubset; split=> A.
case/uniform_nbhs => E [entE] /filterS; apply.
exists [set fh | forall y, E (
fh.
1 y, fh.
2 y)
]; first by exists E.
by move=> ? /=.
case => J [E entE EJ] /filterS; apply; apply/uniform_nbhs; exists E.
by split => // z /= Efz; apply: EJ => t /=; exact: Efz.
Qed.
Lemma cvg_uniformU (
f : U -> V) (
F : set (
set (
U -> V)))
A B : Filter F ->
{uniform A, F --> f} -> {uniform B, F --> f} ->
{uniform (
A `|` B)
, F --> f}.
Proof.
move=> FF AFf BFf Q /=/uniform_nbhs [E [entE EsubQ]].
apply: (
filterS EsubQ).
rewrite (
_: [set h | (
forall y : U, (
A `|` B)
y -> E (
f y, h y))
] =
[set h | forall y, A y -> E (
f y, h y)
] `&`
[set h | forall y, B y -> E (
f y, h y)
]).
- apply: filterI; [apply: AFf| apply: BFf].
+ by apply/uniform_nbhs; exists E; split.
+ by apply/uniform_nbhs; exists E; split.
- rewrite eqEsubset; split=> h.
+ by move=> R; split=> t ?; apply: R;[left| right].
+ by move=> [R1 R2] y [? | ?]; [apply: R1| apply: R2].
Qed.
Lemma cvg_uniform_set0 (
F : set (
set (
U -> V))) (
f : U -> V)
: Filter F ->
{uniform set0, F --> f}.
Proof.
Definition fct_UniformFamily (
fam : (
set U)
-> Prop)
:= U -> V.
Definition family_cvg_uniformType (
fam : set U -> Prop)
:=
@sup_uniformType _
(
sigT fam)
(
fun k => Uniform.class (
@fct_restrictedUniformType U (
projT1 k)
V)).
Canonical fct_UniformFamilyFilteredType fam :=
[filteredType fct_UniformFamily fam of
fct_UniformFamily fam for
family_cvg_uniformType fam].
Canonical fct_UniformFamilyTopologicalType fam :=
[topologicalType of
fct_UniformFamily fam for
family_cvg_uniformType fam].
Canonical fct_UniformFamilyUniformType fam :=
[uniformType of
fct_UniformFamily fam for
family_cvg_uniformType fam].
Local Notation "{ 'family' fam , F --> f }" :=
(
cvg_to [filter of F] (
filter_of (
Phantom (
fct_UniformFamily fam)
f)))
: classical_set_scope.
Lemma fam_cvgP (
fam : set U -> Prop) (
F : set (
set (
U -> V))) (
f : U -> V)
:
Filter F -> {family fam, F --> f} <->
(
forall A : set U, fam A -> {uniform A, F --> f }).
Proof.
split; first by move=> /cvg_sup + A FA; move/(
_ (
existT _ _ FA)).
by move=> famFf /=; apply/cvg_sup => [[? ?] FA]; apply: famFf.
Qed.
Lemma family_cvg_subset (
famA famB : set U -> Prop) (
F : set (
set (
U -> V)))
(
f : U -> V)
: Filter F ->
famA `<=` famB -> {family famB, F --> f} -> {family famA, F --> f}.
Proof.
by move=> FF S /fam_cvgP famBFf; apply/fam_cvgP => A ?; apply/famBFf/S.
Qed.
Lemma family_cvg_finite_covers (
famA famB : set U -> Prop)
(
F : set (
set (
U -> V))) (
f : U -> V)
: Filter F ->
(
forall P, famA P ->
exists (
I : choiceType)
f,
(
forall i, famB (
f i))
/\ finite_subset_cover [set: I] f P)
->
{family famB, F --> f} -> {family famA, F --> f}.
Proof.
End UniformCvgLemmas.
Notation "{ 'family' fam , U -> V }" := (
@fct_UniformFamily U V fam).
Notation "{ 'family' fam , F --> f }" :=
(
cvg_to [filter of F] (
filter_of (
Phantom (
fct_UniformFamily fam)
f)))
: classical_set_scope.
Lemma fam_cvgE {U : choiceType} {V : uniformType} (
F : set (
set (
U -> V)))
(
f : U -> V)
fam :
{family fam, F --> f} = (
F --> (
f : {family fam, U -> V})).
Proof.
by []. Qed.
Lemma fam_nbhs {U : choiceType} {V : uniformType} (
fam : set U -> Prop)
(
A : set U) (
E : set (
V * V)) (
f : {family fam, U -> V})
:
entourage E -> fam A -> nbhs f [set g | forall y, A y -> E (
f y, g y)
].
Proof.
move=> entE famA; have /fam_cvgP /(
_ A)
: (
nbhs f --> f)
by []; apply => //.
by apply uniform_nbhs; exists E; split.
Qed.
Lemma fam_compact_nbhs {U : topologicalType} {V : uniformType}
(
A : set U) (
O : set V) (
f : {family compact, U -> V})
:
open O -> f @` A `<=` O -> compact A -> continuous f ->
nbhs (
f : {family compact, U -> V})
[set g | forall y, A y -> O (
g y)
].
Proof.
move=> oO fAO /[dup] cA /compact_near_coveringP/near_covering_withinP cfA ctsf.
near=> z => /=; (
suff: A `<=` [set y | O (
z y)
] by exact)
; near: z.
apply: cfA => x Ax; have : O (
f x)
by exact: fAO.
move: (
oO)
; rewrite openE /= => /[apply] /[dup] /ctsf Ofx /=.
rewrite /interior -nbhs_entourageE => -[E entE EfO].
exists (
f @^-1` to_set (
split_ent E) (
f x)
,
[set g | forall w, A w -> split_ent E (
f w, g w)
]).
split => //=; last exact: fam_nbhs.
by apply: ctsf; rewrite /= -nbhs_entourageE; exists (
split_ent E).
case=> y g [/= Efxy] AEg Ay; apply: EfO; apply: subset_split_ent => //.
by exists (
f y)
=> //=; exact: AEg.
Unshelve.
all: by end_near. Qed.
It turns out `{family compact, U -> V}` can be generalized to only assume
`topologicalType` on `V`. This topology is called the compact-open topology.
This topology is special because it is the _only_ topology that will allow
`curry`/`uncurry` to be continuous.
Section compact_open.
Context {T U : topologicalType}.
Definition compact_open : Type := T -> U.
Section compact_open_setwise.
Context {K : set T}.
Definition compact_openK := let _ := K in compact_open.
Definition compact_openK_nbhs (
f : compact_openK)
:=
filter_from
[set O | f @` K `<=` O /\ open O]
(
fun O => [set g | g @` K `<=` O]).
Global Instance compact_openK_nbhs_filter (
f : compact_openK)
:
ProperFilter (
compact_openK_nbhs f).
Proof.
split; first by case=> g [gKO oO] /(
_ f)
; apply.
apply: filter_from_filter; first by exists setT; split => //; exact: openT.
move=> P Q [fKP oP] [fKQ oQ]; exists (
P `&` Q)
; first split.
- by move=> ? [z Kz M-]; split; [apply: fKP | apply: fKQ]; exists z.
- exact: openI.
by move=> g /= gPQ; split; exact: (
subset_trans gPQ).
Qed.
Program Definition compact_openK_topological_mixin :
Topological.mixin_of compact_openK_nbhs :=
@Topological.
Mixin compact_openK compact_openK_nbhs
(
@open_of_nbhs _ compact_openK_nbhs)
_ _ _.
Next Obligation.
move=> f; rewrite eqEsubset; split => A /=.
case=> B /= [fKB oB gKBA]; exists [set g | g @` K `<=` B]; split => //.
by move=> h /= hKB; exists B.
by case=> B [oB Bf /filterS]; apply; exact: oB.
Qed.
Next Obligation.
by []. Qed.
Canonical compact_openK_filter := FilteredType
compact_openK compact_openK compact_openK_nbhs.
Canonical compact_openK_topological := TopologicalType
compact_openK compact_openK_topological_mixin.
End compact_open_setwise.
Canonical compact_open_pointedType : pointedType :=
PointedType compact_open point.
Definition compact_open_topologicalType : topologicalType :=
@sup_topologicalType _ (
sigT (
@compact T))
(
fun K => Topological.class (
@compact_openK_topological (
projT1 K))).
Canonical compact_open_filtered :=
[filteredType compact_open of compact_open for compact_open_topologicalType].
Canonical compact_open_topological :=
[topologicalType of compact_open for compact_open_topologicalType].
Lemma compact_open_cvgP (
F : set (
set (
compact_open_topological)))
(
f : compact_open_topological)
:
Filter F ->
F --> f <-> forall K O, @compact T K -> @open U O -> f @` K `<=` O ->
F [set g | g @` K `<=` O].
Proof.
move=> FF; split.
by move/cvg_sup => + K O cptK ? ? => /(
_ (
existT _ _ cptK))
; apply; exists O.
move=> fko; apply/cvg_sup => -[A cptK] O /= [C /= [fAC oC]].
by move/filterS; apply; exact: fko.
Qed.
Lemma compact_open_open (
K : set T) (
O : set U)
:
compact K -> open O -> open (
[set g | g @` K `<=` O] : set compact_open).
Proof.
End compact_open.
Lemma compact_closedI {T : topologicalType} (
A B : set T)
:
compact A -> closed B -> compact (
A `&` B).
Proof.
move=> cptA clB F PF FAB; have FA : F A by move: FAB; exact: filterS.
(
have FB : F B by move: FAB; apply: filterS)
; have [x [Ax]] := cptA F PF FA.
move=> /[dup] clx; rewrite {1}clusterE => /(
_ (
closure B))
; move: clB.
by rewrite closure_id => /[dup] + <- => <- /(
_ FB)
Bx; exists x.
Qed.
Notation "{ 'compact-open' , U -> V }" := (
@compact_open U V).
Notation "{ 'compact-open' , F --> f }" :=
(
F --> (
f : @compact_open_topological _ _)).
Section compact_open_uniform.
Context {U : topologicalType} {V : uniformType}.
Let small_ent_sub := @small_set_sub _ (
@entourage V).
Lemma compact_open_fam_compactP (
f : U -> V) (
F : set (
set (
U -> V)))
:
continuous f -> Filter F ->
{compact-open, F --> f} <-> {family compact, F --> f}.
Proof.
move=> ctsf FF; split; first last.
move=> cptF; apply/compact_open_cvgP => K O cptK oO fKO.
apply: cptF; have := fam_compact_nbhs oO fKO cptK ctsf; apply: filter_app.
by near=> g => /= gKO ? [z Kx <-]; exact: gKO.
move/compact_open_cvgP=> cptOF; apply/cvg_sup => -[K cptK R].
case=> D [[E oE <-] Ekf] /filterS; apply.
move: oE; rewrite openE => /(
_ _ Ekf)
; case => A [J entJ] EKR KfE.
near=> z; apply/KfE/EKR => -[u Kp]; rewrite /= /set_val /= /eqincl /incl.
(
have Ku : K u by rewrite inE in Kp)
; move: u Ku {D Kp}; near: z.
move/compact_near_coveringP/near_covering_withinP : (
cptK)
; apply.
move=> u Ku; near (
powerset_filter_from (
@entourage V))
=> E'.
have entE' : entourage E' by exact: (
near (
near_small_set _)).
pose C := f @^-1` to_set E' (
f u).
pose B := \bigcup_(
z in K `&` closure C)
interior (
to_set E' (
f z)).
have oB : open B by apply: bigcup_open => ? ?; exact: open_interior.
have fKB : f @` (
K `&` closure C)
`<=` B.
move=> _ [z KCz <-]; exists z => //; rewrite /interior.
by rewrite -nbhs_entourageE; exists E'.
have cptKC : compact (
K `&` closure C).
by apply: compact_closedI => //; exact: closed_closure.
have := cptOF (
K `&` closure C)
B cptKC oB fKB.
exists (
C, [set g | [set g x | x in K `&` closure C] `<=` B]).
split; last exact: cptOF.
by apply: (
ctsf)
=> //; rewrite /filter_of -nbhs_entourageE; exists E'.
case=> z h /= [Cz KB Kz].
case: (
KB (
h z))
; first by exists z; split => //; exact: subset_closure.
move=> w [Kw Cw /interior_subset Jfwhz]; apply: subset_split_ent => //.
exists (
f w)
; last apply: (
near (
small_ent_sub _)
E')
=> //.
apply: subset_split_ent => //; exists (
f u).
by apply/entourage_sym; apply: (
near (
small_ent_sub _)
E').
have [] := Cw (
f@^-1` (
to_set E' (
f w))).
by apply: ctsf; rewrite /= -nbhs_entourageE; exists E'.
move=> r [Cr /= Ewr]; apply: subset_split_ent => //; exists (
f r).
exact: (
near (
small_ent_sub _)
E').
by apply/entourage_sym; apply: (
near (
small_ent_sub _)
E').
Unshelve.
all: by end_near. Qed.
End compact_open_uniform.
Definition compactly_in {U : topologicalType} (
A : set U)
:=
[set B | B `<=` A /\ compact B].
Lemma compact_cvg_within_compact {U : topologicalType} {V : uniformType}
(
C : set U) (
F : set (
set (
U -> V))) (
f : U -> V)
:
Filter F -> compact C ->
{uniform C, F --> f} <-> {family compactly_in C, F --> f}.
Proof.
move=> FF CC.
apply: (
iff_trans _ (
iff_sym (
fam_cvgP _ _ FF)))
; split.
- by move=> CFf D [/uniform_subset_cvg + _]; apply.
- by apply; split.
Qed.
Global Instance Proper_dnbhs_numFieldType (
R : numFieldType) (
x : R)
:
ProperFilter x^'.
Proof.
Definition dense (
T : topologicalType) (
S : set T)
:=
forall (
O : set T)
, O !=set0 -> open O -> O `&` S !=set0.
Lemma denseNE (
T : topologicalType) (
S : set T)
: ~ dense S ->
exists O, (
exists x, open_nbhs x O)
/\ (
O `&` S = set0).
Proof.
rewrite /dense /open_nbhs.
move=> /existsNP[X /not_implyP[[x Xx] /not_implyP[ Ox /forallNP A]]].
by exists X; split; [exists x | rewrite -subset0; apply/A].
Qed.
Lemma dense_rat (
R : realType)
: dense (
@ratr R @` setT).
Proof.
move=> A [r Ar]; rewrite openE => /(
_ _ Ar)
/nbhs_ballP[_/posnumP[e] reA].
have /rat_in_itvoo[q /itvP qre] : r < r + e%:num by rewrite ltr_addl.
exists (
ratr q)
=> //; split; last by exists q.
apply: reA; rewrite /ball /= distrC ltr_distl qre andbT.
by rewrite (
@le_lt_trans _ _ r)
// ?qre// ler_subl_addl ler_addr ltW.
Qed.
Lemma separated_open_countable
{R : realType} (
I : Type) (
B : I -> set R) (
D : set I)
:
(
forall i, open (
B i))
-> (
forall i, B i !=set0)
->
trivIset D B -> countable D.
Proof.
move=> oB B0 tB; have [f fB] :
{f : I -> rat & forall i, D i -> B i (
ratr (
f i))
}.
apply: (
@choice _ _ (
fun x y => D x -> B x (
ratr y)))
=> i.
have [r [Bir [q _ qr]]] := dense_rat (
B0 _) (
oB i).
by exists q => Di; rewrite qr.
have inj_f : {in D &, injective f}.
move=> i j /[!inE] Di Dj /(
congr1 ratr)
ratrij.
have ? : (
B i `&` B j) (
ratr (
f i)).
by split => //; [exact: fB|rewrite ratrij; exact: fB].
by apply/(
tB _ _ Di Dj)
; exists (
ratr (
f i)).
apply/pcard_injP; have /card_bijP/cid[g bijg] := card_rat.
pose nat_of_rat (
q : rat)
: nat := set_val (
g (
to_setT q)).
have inj_nat_of_rat : injective nat_of_rat.
rewrite /nat_of_rat; apply: inj_comp => //; apply: inj_comp => //.
exact/bij_inj.
by exists (
nat_of_rat \o f)
=> i j Di Dj /inj_nat_of_rat/inj_f; exact.
Qed.
Section weak_pseudoMetric.
Context {R : realType} (
pS : pointedType) (
U : pseudoMetricType R)
.
Variable (
f : pS -> U).
Let S := weak_uniformType f.
Definition weak_ball (
x : S) (
r : R) (
y : S)
:= ball (
f x)
r (
f y).
Program Definition weak_pseudoMetricType_mixin :=
@PseudoMetric.
Mixin R S entourage weak_ball
_ _ _ _.
Next Obligation.
Next Obligation.
Next Obligation.
Next Obligation.
rewrite /entourage /= /weak_ent -entourage_ballE /entourage_.
have -> : (
fun e => [set xy | ball (
f xy.
1)
e (
f xy.
2)
])
=
(
preimage (
map_pair f)
\o fun e => [set xy | ball xy.
1 e xy.
2])
%FUN.
by [].
rewrite eqEsubset; split; apply/filter_fromP.
- apply: filter_from_filter; first by exists 1 => /=.
move=> e1 e2 e1pos e2pos; wlog e1lee2 : e1 e2 e1pos e2pos / e1 <= e2.
by have [?|/ltW ?] := lerP e1 e2; [exact | rewrite setIC; exact].
exists e1 => //; rewrite -preimage_setI; apply: preimage_subset.
by move=> ? ?; split => //; apply: le_ball; first exact: e1lee2.
- by move=> E [e ?] heE; exists e => //; apply: preimage_subset.
- apply: filter_from_filter.
by exists [set xy | (
ball xy.
1 1 xy.
2)
]; exists 1 => /=.
move=> E1 E2 [e1 e1pos he1E1] [e2 e2pos he2E2].
wlog ? : E1 E2 e1 e2 e1pos e2pos he1E1 he2E2 / e1 <= e2.
have [? /(
_ _ _ e1 e2)
|/ltW ? ] := lerP e1 e2; first exact.
by rewrite setIC => /(
_ _ _ e2 e1)
; exact.
exists (
E1 `&` E2)
=> //; exists e1 => // xy /= B; split; first exact: he1E1.
by apply/he2E2/le_ball; last exact: B.
- by move=> e ?; exists (
[set xy | ball xy.
1 e xy.
2])
=> //; by exists e => /=.
Qed.
Definition weak_pseudoMetricType :=
PseudoMetricType S weak_pseudoMetricType_mixin.
Lemma weak_ballE (
e : R) (
x : weak_pseudoMetricType)
:
f@^-1` (
ball (
f x)
e)
= ball x e.
Proof.
by []. Qed.
End weak_pseudoMetric.
Lemma compact_second_countable {R : realType} {T : pseudoMetricType R} :
compact [set: T] -> @second_countable T.
Proof.
Lemma clopen_surj {R : realType} {T : pseudoMetricType R} :
compact [set: T] -> $|{surjfun [set: nat] >-> @clopen T}|.
Proof.
Section countable_uniform.
Context {R : realType} {T : uniformType}.
Hypothesis cnt_unif : @countable_uniformity T.
Let f_ := projT1 (
cid2 (
iffLR countable_uniformityP cnt_unif)).
Local Lemma countableBase : forall A, entourage A -> exists N, f_ N `<=` A.
Proof.
Let entF : forall n, entourage (
f_ n).
Proof.
Local Fixpoint g_ (
n : nat)
: set (
T * T)
:=
if n is S n then let W := split_ent (
split_ent (
g_ n))
`&` f_ n in W `&` W^-1
else [set: T*T].
Let entG (
n : nat)
: entourage (
g_ n).
Proof.
elim: n => /=; first exact: entourageT.
by move=> n entg; apply/entourage_invI; exact: filterI.
Qed.
Local Lemma symG (
n : nat)
: ((
g_ n)
^-1)
%classic = g_ n.
Proof.
by case: n => // n; rewrite eqEsubset; split; case=> ? ?; rewrite /= andC.
Qed.
Local Lemma descendG1 n : g_ n.
+1 `<=` g_ n.
Proof.
Local Lemma descendG (
n m: nat)
: (
m <= n)
%N -> g_ n `<=` g_ m.
Proof.
Local Lemma splitG3 n : g_ n.
+1 \; g_ n.
+1 \; g_ n.
+1 `<=` g_ n.
Proof.
Local Lemma gsubf n : g_ n.
+1 `<=` f_ n.
Proof.
Local Lemma countableBaseG A : entourage A -> exists N, g_ N `<=` A.
Proof.
move=> /countableBase [N] fnA; exists N.
+1.
by apply: subset_trans fnA; exact: gsubf.
Qed.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Local Definition distN (
e : R)
: nat := `|floor e^-1|%N.
Local Lemma distN0 : distN 0 = 0%N.
Proof.
Local Lemma distN_nat (
n : nat)
: distN (
n%:R^-1)
= n.
Proof.
Local Lemma distN_le e1 e2 : e1 > 0 -> e1 <= e2 -> (
distN e2 <= distN e1)
%N.
Proof.
Local Fixpoint n_step_ball n x e z :=
if n is n.
+1 then exists y d1 d2,
[/\ n_step_ball n x d1 y,
0 < d1,
0 < d2,
g_ (
distN d2) (
y, z)
&
d1 + d2 = e]
else e > 0 /\ g_ (
distN e) (
x, z).
Local Definition step_ball x e z := exists i, (
n_step_ball i x e z).
Local Lemma n_step_ball_pos n x e z : n_step_ball n x e z -> 0 < e.
Proof.
by case: n => [[]|] // n; case=> [?] [?] [?] [] ? ? ? ? <-; apply: addr_gt0.
Qed.
Local Lemma step_ball_pos x e z : step_ball x e z -> 0 < e.
Proof.
Local Lemma entourage_nball e :
0 < e -> entourage [set xy | step_ball xy.
1 e xy.
2].
Proof.
move=> epos; apply: (
@filterS _ _ _ (
g_ (
distN e)))
=> // [[x y]] ?.
by exists 0%N.
Qed.
Local Lemma n_step_ball_center x e : 0 < e -> n_step_ball 0 x e x.
Proof.
Local Lemma step_ball_center x e : 0 < e -> step_ball x e x.
Proof.
Local Lemma n_step_ball_triangle n m x y z d1 d2 :
n_step_ball n x d1 y ->
n_step_ball m y d2 z ->
n_step_ball (
n + m).
+1 x (
d1 + d2)
z.
Proof.
move: n z d2; elim: m => [n z d2 Nxy [? ?]|n IH m z d2 Oxy].
by exists y, d1, d2; split; rewrite ?addn0 // (
n_step_ball_pos Nxy).
move=> [w] [e1] [e2] [Oyw ? ? ? <-].
exists w, (
d1 + e1)
, e2; rewrite addnS addrA.
split => //; last by rewrite addr_gt0//; exact: n_step_ball_pos Oxy.
by case: (
IH m w e1 Oxy Oyw)
=> t [e3] [e4] [] Oxt ? ? ? <-; exists t, e3, e4.
Qed.
Local Lemma step_ball_triangle x y z d1 d2 :
step_ball x d1 y -> step_ball y d2 z -> step_ball x (
d1 + d2)
z.
Proof.
Local Lemma n_step_ball_sym n x y e :
n_step_ball n x e y -> n_step_ball n y e x.
Proof.
move: x y e; elim: n; first by move=> ? ? ?; rewrite /= -{1}symG.
move=> n IH x y e [t] [d1] [d2] [] /IH Oty ? ?.
rewrite addrC -symG -[n]add0n => gty <-; apply: (
n_step_ball_triangle _ Oty).
by split => //; exact: gty.
Qed.
Local Lemma step_ball_sym x y e : step_ball x e y -> step_ball y e x.
Proof.
by case=> n /n_step_ball_sym ?; exists n. Qed.
Local Lemma n_step_ball_le n x e1 e2 :
e1 <= e2 -> n_step_ball n x e1 `<=` n_step_ball n x e2.
Proof.
move: x e1 e2; elim: n.
move=> x e1 e2 e1e2 y [?] gxy; split; first exact: (
lt_le_trans _ e1e2).
by apply: descendG; last (
exact: gxy)
; exact: distN_le.
move=> n IH x e1 e2 e1e2 z [y] [d1] [d2] [] /IH P d1pos d2pos gyz d1d2e1.
have d1e1d2 : d1 = e1 - d2 by rewrite -d1d2e1 -addrA subrr addr0.
have e2d2le : e1 - d2 <= e2 - d2 by exact: ler_sub.
exists y, (
e2 - d2)
, d2; split => //.
- by apply: P; apply: le_trans e2d2le; rewrite d1e1d2.
- by apply: lt_le_trans e2d2le; rewrite -d1e1d2.
- by rewrite -addrA [-_ + _]addrC subrr addr0.
Qed.
Local Lemma step_ball_le x e1 e2 :
e1 <= e2 -> step_ball x e1 `<=` step_ball x e2.
Proof.
Local Lemma distN_half (
n : nat)
: n.
+1%:R^-1 / (
2:R)
<= n.
+2%:R^-1.
Proof.
Local Lemma split_n_step_ball n x e1 e2 z :
0 < e1 -> 0 < e2 -> n_step_ball n.
+1 x (
e1 + e2)
z ->
exists t1 t2 a b,
[/\
n_step_ball a x e1 t1,
n_step_ball 0 t1 (
e1 + e2)
t2,
n_step_ball b t2 e2 z &
(
a + b = n)
%N
].
Proof.
move: e1 e2 x z; elim: n.
move=> e1 e2 x z e1pos e2pos [y] [d1] [d2] [] Oxy ? ? gd2yz deE.
case: (
pselect (
e1 <= d1)).
move=> e1d1; exists x, y, 0%N, 0%N; split.
- exact: n_step_ball_center.
- apply: n_step_ball_le; last exact: Oxy.
by rewrite -deE ler_addl; apply: ltW.
- apply: (
@n_step_ball_le _ _ d2)
; last by split.
rewrite -[e2]addr0 -(
subrr e1)
addrA -ler_subl_addr opprK addrC.
by rewrite [e2 + _]addrC -deE; exact: ler_add.
- by rewrite addn0.
move=> /negP; rewrite -real_ltNge ?num_real //.
move=> e1d1; exists y, z, 0%N, 0%N; split.
- by apply: n_step_ball_le; last (
exact: Oxy)
; exact: ltW.
- rewrite -deE; apply: (
@n_step_ball_le _ _ d2)
=> //.
by rewrite ler_addr; apply: ltW.
- exact: n_step_ball_center.
- by rewrite addn0.
move=> n IH e1 e2 x z e1pos e2pos [y] [d1] [d2] [] Od1xy d1pos d2pos gd2yz deE.
case: (
pselect (
e2 <= d2)).
move=> e2d2; exists y, z, n.
+1, 0%N; split.
- apply: (
@n_step_ball_le _ _ d1)
; rewrite // -[e1]addr0 -(
subrr e2)
addrA.
by rewrite -deE -ler_subl_addr opprK ler_add.
- apply: (
@n_step_ball_le _ _ d2)
; last by split.
by rewrite -deE ler_addr; exact: ltW.
- exact: n_step_ball_center.
- by rewrite addn0.
have d1E' : d1 = e1 + (
e2 - d2).
by move: deE; rewrite addrA [e1 + _]addrC => <-; rewrite -addrA subrr addr0.
move=> /negP; rewrite -?real_ltNge // ?num_real // => d2lee2.
case: (
IH e1 (
e2 - d2)
x y)
; rewrite ?subr_gt0 // -d1E' //.
move=> t1 [t2] [c1] [c2] [] Oxy1 gt1t2 t2y <-.
exists t1, t2, c1, c2.
+1; split => //.
- by apply: (
@n_step_ball_le _ _ d1)
; rewrite -?deE // ?ler_addl; exact: ltW.
- exists y, (
e2 - d2)
, d2; split; rewrite // ?subr_gt0//.
by rewrite -addrA [-_ + _]addrC subrr addr0.
- by rewrite addnS.
Qed.
Local Lemma n_step_ball_le_g x n :
n_step_ball 0 x n%:R^-1 `<=` [set y | g_ n (
x,y)
].
Proof.
Local Lemma subset_n_step_ball n x N :
n_step_ball n x N.
+1%:R^-1 `<=` [set y | (
g_ N) (
x, y)
].
Proof.
Local Lemma subset_step_ball x N :
step_ball x N.
+1%:R^-1 `<=` [set y | (
g_ N) (
x, y)
].
Proof.
Local Lemma step_ball_entourage : entourage = entourage_ step_ball.
Proof.
Definition countable_uniform_pseudoMetricType_mixin := PseudoMetric.Mixin
step_ball_center step_ball_sym step_ball_triangle step_ball_entourage.
Lemma countable_uniform_bounded (
x y : T)
:
let U := PseudoMetricType _ countable_uniform_pseudoMetricType_mixin
in @ball _ U x 2 y.
Proof.
rewrite /ball; exists O%N; rewrite /n_step_ball; split; rewrite // /distN.
suff -> : @floor R 2^-1 = 0 by rewrite absz0 /=.
apply/eqP; rewrite -[_ == _]negbK; rewrite floor_neq0 negb_or -?ltNge -?leNgt.
by apply/andP; split => //; rewrite invf_lt1 //= ltr_addl.
Qed.
End countable_uniform.
Section sup_pseudometric.
Variable (
R : realType) (
T : pointedType) (
Ii : Type).
Variable (
Tc : Ii -> PseudoMetric.class_of R T).
Hypothesis Icnt : countable [set: Ii].
Let I : choiceType := classicType_choiceType Ii.
Let TS := fun i => PseudoMetric.Pack (
Tc i).
Definition countable_uniformityT := @countable_sup_ent T Ii Tc Icnt
(
fun i => @countable_uniformity_metric _ (
TS i)).
Definition sup_pseudoMetric_mixin := @countable_uniform_pseudoMetricType_mixin R
(
sup_uniformType Tc)
countable_uniformityT.
Definition sup_pseudoMetricType :=
PseudoMetricType (
sup_uniformType Tc)
sup_pseudoMetric_mixin.
End sup_pseudometric.
Section product_pseudometric.
Variable (
R : realType) (
Ii : countType) (
Tc : Ii -> pseudoMetricType R).
Hypothesis Icnt : countable [set: Ii].
Definition product_pseudoMetricType :=
sup_pseudoMetricType (
fun i => PseudoMetric.class
(
weak_pseudoMetricType (
fun f : dep_arrow_pointedType Tc => f i)))
Icnt.
End product_pseudometric.
Definition subspace {T : Type} (
A : set T)
:= T.
Arguments subspace {T} _ : simpl never.
Definition incl_subspace {T A} (
x : subspace A)
: T := x.
Section Subspace.
Context {T : topologicalType} (
A : set T).
Definition nbhs_subspace (
x : subspace A)
: set (
set (
subspace A))
:=
if x \in A then within A (
nbhs x)
else globally [set x].
Variant nbhs_subspace_spec x : Prop -> Prop -> bool -> set (
set T)
-> Type :=
| WithinSubspace :
A x -> nbhs_subspace_spec x True False true (
within A (
nbhs x))
| WithoutSubspace :
~ A x -> nbhs_subspace_spec x False True false (
globally [set x]).
Lemma nbhs_subspaceP x :
nbhs_subspace_spec x (
A x) (
~ A x) (
x \in A) (
nbhs_subspace x).
Proof.
Lemma nbhs_subspace_in (
x : T)
: A x -> within A (
nbhs x)
= nbhs_subspace x.
Proof.
Lemma nbhs_subspace_out (
x : T)
: ~ A x -> globally [set x] = nbhs_subspace x.
Proof.
Lemma nbhs_subspace_filter (
x : subspace A)
: ProperFilter (
nbhs_subspace x).
Proof.
Definition subspace_pointedType := PointedType (
subspace A)
point.
Canonical subspace_filteredType :=
FilteredType (
subspace A) (
subspace A)
nbhs_subspace.
Program Definition subspace_topologicalMixin :
Topological.mixin_of (
nbhs_subspace)
:= @topologyOfFilterMixin
(
subspace A)
nbhs_subspace nbhs_subspace_filter _ _.
Next Obligation.
by move=> p A0; case: nbhs_subspaceP => ? => [/nbhs_singleton|]; apply.
Qed.
Next Obligation.
Canonical subspace_topologicalType :=
TopologicalType (
subspace A)
subspace_topologicalMixin.
Lemma subspace_cvgP (
F : set (
set T)) (
x : T)
:
Filter F -> A x ->
(
F --> (
x : subspace A))
<-> (
F --> within A (
nbhs x)).
Proof.
Lemma subspace_continuousP {S : topologicalType} (
f : T -> S)
:
continuous (
f : subspace A -> S)
<->
(
forall x, A x -> f @ within A (
nbhs x)
--> f x)
.
Proof.
Lemma subspace_eq_continuous {S : topologicalType} (
f g : subspace A -> S)
:
{in A, f =1 g} -> continuous f -> continuous g.
Proof.
rewrite ?subspace_continuousP=> feq L x Ax; rewrite -(
feq x)
?inE //.
by apply: cvg_trans _ (
L x Ax)
; apply: fmap_within_eq=> ? ?; rewrite feq.
Qed.
Lemma continuous_subspace_in {U : topologicalType} (
f : subspace A -> U)
:
continuous f = {in A, continuous f}.
Proof.
Lemma nbhs_subspace_interior (
x : T)
:
A^°
x -> nbhs x = (
nbhs (
x : subspace A)).
Proof.
move=> /[dup] /[dup] /interior_subset ? /within_interior <- ?.
by case: RHS / nbhs_subspaceP.
Qed.
Lemma nbhs_subspace_ex (
U : set T) (
x : T)
: A x ->
nbhs (
x : subspace A)
U <->
exists2 V, nbhs (
x : T)
V & U `&` A = V `&` A.
Proof.
Lemma incl_subspace_continuous : continuous incl_subspace.
Proof.
by apply/subspace_continuousP => x Ax; apply: cvg_within. Qed.
Section SubspaceOpen.
Lemma open_subspace1out (
x : subspace A)
: ~ A x -> open [set x].
Proof.
move=> /nbhs_subspace_out E; have : nbhs x [set x] by rewrite /nbhs //= -E.
rewrite nbhsE => [[U []]] oU Ux Usub; suff : U = [set x] by move=> <-.
by rewrite eqEsubset; split => // t ->.
Qed.
Lemma open_subspace_out (
U : set (
subspace A))
: U `<=` ~` A -> open U.
Proof.
Lemma open_subspaceT : open (
A : set (
subspace A)).
Proof.
Lemma open_subspaceIT (
U : set (
subspace A))
: open (
U `&` A)
= open U.
Proof.
Lemma open_subspaceTI (
U : set (
subspace A))
:
open (
A `&` U : set (
subspace A))
= open U.
Proof.
Lemma closed_subspaceT : closed (
A : set (
subspace A)).
Proof.
Lemma open_subspaceP (
U : set T)
:
open (
U : set (
subspace A))
<->
exists V, open (
V : set T)
/\ V `&` A = U `&` A.
Proof.
Lemma closed_subspaceP (
U : set T)
:
closed (
U : set (
subspace A))
<->
exists V, closed (
V : set T)
/\ V `&` A = U `&` A.
Proof.
rewrite -openC open_subspaceP.
under [X in _ <-> X] eq_exists => V do rewrite -openC.
by split => -[V [? VU]]; exists (
~` V)
; split; rewrite ?setCK //;
move/(
congr1 setC)
: VU; rewrite ?eqEsubset ?setCI ?setCK; firstorder.
Qed.
Lemma open_subspaceW (
U : set T)
:
open (
U : set T)
-> open (
U : set (
subspace A)).
Proof.
by move=> oU; apply/open_subspaceP; exists U. Qed.
Lemma closed_subspaceW (
U : set T)
:
closed (
U : set T)
-> closed (
U : set (
subspace A)).
Proof.
by move=> /closed_openC/open_subspaceW/open_closedC; rewrite setCK. Qed.
Lemma open_setIS (
U : set (
subspace A))
: open A ->
open (
U `&` A : set T)
= open U.
Proof.
move=> oA; apply/propext; rewrite open_subspaceP.
split=> [|[V [oV <-]]]; last exact: openI.
by move=> oUA; exists (
U `&` A)
; rewrite -setIA setIid.
Qed.
Lemma open_setSI (
U : set (
subspace A))
: open A -> open (
A `&` U)
= open U.
Proof.
Lemma closed_setIS (
U : set (
subspace A))
: closed A ->
closed (
U `&` A : set T)
= closed U.
Proof.
Lemma closed_setSI (
U : set (
subspace A))
:
closed A -> closed (
A `&` U)
= closed U.
Proof.
Lemma closure_subspaceW (
U : set T)
:
U `<=` A -> closure (
U : set (
subspace A))
= closure (
U : set T)
`&` A.
Proof.
Lemma subspace_hausdorff :
hausdorff_space T -> hausdorff_space [topologicalType of subspace A].
Proof.
rewrite ?open_hausdorff => + x y xNy => /(_ x y xNy).
move=> [[P Q]] /= [Px Qx] /= [/open_subspaceW oP /open_subspaceW oQ].
by move=> ?; exists (P, Q).
Qed.
End SubspaceOpen.
Lemma compact_subspaceIP (
U : set T)
:
compact (
U `&` A : set (
subspace A))
<-> compact (
U `&` A : set T).
Proof.
rewrite ?compact_ultra /=.
split=> + F UF FUA => /(
_ F UF FUA)
[x] [[Ux Ax] Fp].
exists x; split=> //; move/subspace_cvgP: Fp => /(
_ Ax)
Fx.
by apply: cvg_trans; [exact: Fx | exact: cvg_within].
exists x; split=> //; apply/subspace_cvgP => //.
rewrite withinE => W/= -[V nbhsV WV]; apply: filterS (
V `&` (
U `&` A))
_ _ _.
by rewrite setIC -setIA [A `&` _]setIC -WV=>?[]?[].
by apply: filterI; rewrite nbhs_simpl //; exact: Fp.
Qed.
Lemma clopen_connectedP : connected A <->
(
forall U, @clopen (
subspace_topologicalType)
U ->
U `<=` A -> U !=set0 -> U = A).
Proof.
split.
move=> + U [/open_subspaceP oU /closed_subspaceP cU] UA U0; apply => //.
- case: oU => V [oV VAUA]; exists V; rewrite // setIC VAUA.
exact/esym/setIidPl.
- case: cU => V [cV VAUA]; exists V => //; rewrite setIC VAUA.
exact/esym/setIidPl.
move=> clpnA U Un0 [V oV UVA] [W cW UWA]; apply: clpnA => //; first split.
- by apply/open_subspaceP; exists V; rewrite setIC UVA setIAC setIid.
- by apply/closed_subspaceP; exists W; rewrite setIC UWA setIAC setIid.
- by rewrite UWA; exact: subIsetl.
Qed.
End Subspace.
Global Instance subspace_filter {T : topologicalType}
(
A : set T) (
x : subspace A)
:
Filter (
nbhs_subspace x)
:= nbhs_subspace_filter x.
Global Instance subspace_proper_filter {T : topologicalType}
(
A : set T) (
x : subspace A)
:
ProperFilter (
nbhs_subspace x)
:= nbhs_subspace_filter x.
Notation "{ 'within' A , 'continuous' f }" := (
forall x,
cvg_to [filter of fmap f (
filter_of (
Phantom (
subspace A)
x))
]
[filter of f x])
: classical_set_scope.
Section SubspaceRelative.
Context {T : topologicalType}.
Implicit Types (
U : topologicalType) (
A B : set T).
Lemma nbhs_subspace_subset A B (
x : T)
:
A `<=` B -> nbhs (
x : subspace B)
`<=` nbhs (
x : subspace A).
Proof.
Lemma continuous_subspaceW {U} A B (
f : T -> U)
:
A `<=` B ->
{within B, continuous f} -> {within A, continuous f}.
Proof.
by move=> ? ctsF ? ? ?; apply: (@nbhs_subspace_subset A B) => //; exact: ctsF.
Qed.
Lemma nbhs_subspaceT (
x : T)
: nbhs (
x : subspace setT)
= nbhs x.
Proof.
Lemma continuous_subspaceT_for {U} A (
f : T -> U) (
x : T)
:
A x -> {for x, continuous f} -> {for x, continuous (
f : subspace A -> U)
}.
Proof.
Lemma continuous_in_subspaceT {U} A (
f : T -> U)
:
{in A, continuous f} -> {within A, continuous f}.
Proof.
Lemma continuous_subspaceT {U} A (
f : T -> U)
:
continuous f -> {within A, continuous f}.
Proof.
Lemma continuous_open_subspace {U} A (
f : T -> U)
:
open A -> {within A, continuous f} = {in A, continuous f}.
Proof.
Lemma continuous_inP {U} A (
f : T -> U)
: open A ->
{in A, continuous f} <-> forall X, open X -> open (
A `&` f @^-1` X).
Proof.
move=> oA; rewrite -continuous_open_subspace// continuousP.
by under eq_forall do rewrite -open_setSI//.
Qed.
Lemma withinU_continuous {U} A B (
f : T -> U)
: closed A -> closed B ->
{within A, continuous f} -> {within B, continuous f} ->
{within A `|` B, continuous f}.
Proof.
move=> ? ? ctsA ctsB; apply/continuous_closedP => W oW.
case/continuous_closedP/(
_ _ oW)
/closed_subspaceP: ctsA => V1 [? V1W].
case/continuous_closedP/(
_ _ oW)
/closed_subspaceP: ctsB => V2 [? V2W].
apply/closed_subspaceP; exists ((
V1 `&` A)
`|` (
V2 `&` B))
; split.
by apply: closedU; exact: closedI.
rewrite [RHS]setIUr -V2W -V1W eqEsubset; split=> ?.
by case=> [[][]] ? ? [] ?; [left | left | right | right]; split.
by case=> [][] ? ?; split=> []; [left; split | left | right; split | right].
Qed.
Lemma subspaceT_continuous {U} A (
B : set U) (
f : {fun A >-> B})
:
{within A, continuous f} -> continuous (
f : subspace A -> subspace B).
Proof.
move=> /continuousP ctsf; apply/continuousP => O /open_subspaceP [V [oV VBOB]].
rewrite -open_subspaceIT; apply/open_subspaceP.
case/open_subspaceP: (
ctsf _ oV)
=> W [oW fVA]; exists W; split => //.
rewrite fVA -setIA setIid eqEsubset; split => x [fVx Ax]; split => //.
- by have /[!VBOB]-[] : (
V `&` B) (
f x)
by split => //; exact: funS.
- by have /[!esym VBOB]-[] : (
O `&` B) (
f x)
by split => //; exact: funS.
Qed.
Lemma continuous_subspace0 {U} (
f : T -> U)
: {within set0, continuous f}.
Proof.
Lemma continuous_subspace1 {U} (
a : T) (
f : T -> U)
:
{within [set a], continuous f}.
Proof.
move=> x Q; rewrite nbhs_simpl /= {2}/nbhs /=.
case: (
nbhs_subspaceP [set a] x)
; last by move=> _ /nbhs_singleton /= ? ? ->.
by move=> -> /nbhs_singleton ?; apply: nearW => ? ->.
Qed.
End SubspaceRelative.
Section SubspaceUniform.
Local Notation "A ^-1" := (
[set xy | A (
xy.
2, xy.
1)
])
: classical_set_scope.
Context {X : uniformType} (
A : set X).
Definition subspace_ent :=
filter_from (
@entourage X)
(
fun E => [set xy | (
xy.
1 = xy.
2)
\/ (
A xy.
1 /\ A xy.
2 /\ E xy)
]).
Program Definition subspace_uniformMixin :=
@Uniform.
Mixin (
subspace A) (
@nbhs_subspace _ _)
subspace_ent _ _ _ _ _.
Next Obligation.
apply: filter_from_filter; first by (
exists setT; exact: filterT).
move=> P Q entP entQ; exists (
P `&` Q)
; first exact: filterI.
move=> [x y] /=; case; first (
by move=> ->; split=> /=; left).
by move=> [Ax [Ay [Pxy Qxy]]]; split=> /=; right.
Qed.
Next Obligation.
by move=> ? + [x y]/= ->; case=> V entV; apply; left. Qed.
Next Obligation.
move=> ?; case=> V ? Vsub; exists (
V^-1)
%classic; first exact: entourage_inv.
move=> [x y] /= G; apply: Vsub; case: G; first by (
move=> <-; left).
by move=> [? [? Vxy]]; right; repeat split => //.
Qed.
Next Obligation.
move=> ?; case=> E entE Esub.
exists [set xy | xy.
1 = xy.
2 \/ A xy.
1 /\ A xy.
2 /\ split_ent E xy].
by exists (
split_ent E).
move=> [x y] [z /= Ez zE] /=; case: Ez; case: zE.
- by move=> -> ->; apply: Esub; left.
- move=> [ ? []] ? G xy; subst; apply: Esub; right; repeat split => //=.
by apply: entourage_split => //=; first exact: G; exact: entourage_refl.
- move=> -> [ ? []] ? G; apply: Esub; right; repeat split => //=.
by apply: entourage_split => //=; first exact: G; exact: entourage_refl.
- move=> []? []? ?[]?[]??; apply: Esub; right; repeat split => //=.
by apply: subset_split_ent => //; exists z.
Qed.
Next Obligation.
pose EA := [set xy | xy.
1 = xy.
2 \/ A xy.
1 /\ A xy.
2].
have entEA : subspace_ent EA.
exists setT; first exact: filterT.
by move=> [??] /= [ ->|[?] [?]];[left|right].
rewrite funeq2E=> x U.
case: (
@nbhs_subspaceP X A x)
; rewrite propeqE; split => //=.
- rewrite withinE; case=> V /[dup] nbhsV => [/nbhsP [E entE Esub] UV].
exists [set xy | xy.
1 = xy.
2 \/ A xy.
1 /\ A xy.
2 /\ E xy].
by exists E => //= [[??]] /= [->| [?[]]//]; exact: entourage_refl.
move=> y /= [<-|].
suff : (
U `&` A)
x by case.
by rewrite UV; split => //; apply: (
@nbhs_singleton X).
case=> _ [Ay Ey]; suff : (
U `&` A)
y by case.
by rewrite UV; split => //; apply: Esub.
- move=> [] W [E eentE subW] subU //=.
near=> w; apply: subU; apply: subW; right; repeat split => //=.
by exact: (
near (
withinT _ (
@nbhs_filter X _))).
by near: w; apply/nbhsP; exists E => // y /= Ey.
- move=> //= Ux; exists EA => //.
by move=> y /= [|[]] //= <-; apply: Ux.
- rewrite //= => [[W [W' entW' subW] subU]] ? ->.
by apply: subU; apply: subW; left.
Unshelve.
all: by end_near. Qed.
Canonical subspace_uniformType :=
UniformType (
subspace A)
subspace_uniformMixin.
End SubspaceUniform.
Section SubspacePseudoMetric.
Context {R : numDomainType} {X : pseudoMetricType R} (
A : set X).
Definition subspace_ball (
x : subspace A) (
r : R)
:=
if x \in A then A `&` ball (
x : X)
r else [set x].
Program Definition subspace_pseudoMetricType_mixin :=
@PseudoMetric.
Mixin R (
subspace A) (
subspace_ent A) (
subspace_ball)
_ _ _ _.
Next Obligation.
move=> x e; rewrite /subspace_ball; case: ifP => //= /asboolP ? ?.
by split=> //; exact: ballxx.
Qed.
Next Obligation.
move=> x y e; rewrite /subspace_ball; case: ifP => //= /asboolP ?.
by move=> [] Ay /ball_sym yBx; case: ifP => /asboolP.
by move=> ->; case: ifP => /asboolP.
Qed.
Next Obligation.
move=> x y z e1 e2; rewrite /subspace_ball; (
repeat case: ifP => /asboolP).
- by move=>?? [??] [??]; split => //=; apply: ball_triangle; eauto.
- by move=> ?? [??] ->.
- by move=> + /[swap] => /[swap] => ->.
- by move=> _ _ -> ->.
Qed.
Next Obligation.
rewrite eqEsubset; split; rewrite /subspace_ball.
move=> U [W + subU]; rewrite -entourage_ballE => [[eps] nneg subW].
exists eps => //; apply: (
subset_trans _ subU).
move=> [x y] /=; case: ifP => /asboolP ?.
by move=> [Ay xBy]; right; repeat split => //; exact: subW.
by move=> ->; left.
move=> E [eps nneg subE]; exists [set xy | ball (
xy.
1 : X)
eps xy.
2].
by rewrite -entourage_ballE; exists eps.
move=> [x y] /= [->|[]Ax []Ay xBy]; apply: subE => //=.
by case: ifP => /asboolP; split => //; exact: ballxx.
by case: ifP => /asboolP.
Qed.
Canonical subspace_pseudoMetricType :=
PseudoMetricType (
subspace A)
subspace_pseudoMetricType_mixin.
End SubspacePseudoMetric.
Section SubspaceWeak.
Context {T : topologicalType} {U : pointedType}.
Variables (
f : U -> T).
Let U' := weak_topologicalType f.
Lemma weak_subspace_open (
A : set U')
:
open A -> open (
f @` A : set (
subspace (
range f))).
Proof.
case=> B oB <-; apply/open_subspaceP; exists B; split => //; rewrite eqEsubset.
split => z [] /[swap]; first by case=> w _ <- ?; split; exists w.
by case=> w _ <- [v] ? <-.
Qed.
End SubspaceWeak.
Definition separate_points_from_closed {I : Type} {T : topologicalType}
{U_ : I -> topologicalType} (
f_ : forall i, T -> U_ i)
:=
forall (
U : set T)
x,
closed U -> ~ U x -> exists i, ~ (
closure (
f_ i @` U)) (
f_ i x).
Section product_embeddings.
Context {I : choiceType} {T : topologicalType} {U_ : I -> topologicalType}.
Variable (
f_ : forall i, T -> U_ i).
Hypothesis sepf : separate_points_from_closed f_.
Hypothesis ctsf : forall i, continuous (
f_ i).
Let weakT := @sup_topologicalType T I
(
fun i => Topological.class (
weak_topologicalType (
f_ i))).
Let PU := product_topologicalType U_.
Local Notation sup_open := (
@open weakT).
Local Notation "'weak_open' i" :=
(
@open (
weak_topologicalType (
f_ i))) (
at level 0).
Local Notation natural_open := (
@open T).
Lemma weak_sep_cvg (
F : set (
set T)) (
x : T)
:
Filter F -> (
F --> (
x : T))
<-> (
F --> (
x : weakT)).
Proof.
Lemma weak_sep_nbhsE x : @nbhs T T x = @nbhs T weakT x.
Proof.
Lemma weak_sep_openE : @open T = @open weakT.
Proof.
Definition join_product (
x : T)
: PU := f_ ^~ x.
Lemma join_product_continuous : continuous join_product.
Proof.
Local Notation prod_open :=
(
@open (
subspace_topologicalType (
range join_product))).
Lemma join_product_open (
A : set T)
: open A ->
open ((
join_product @` A)
: set (
subspace (
range join_product))).
Proof.
Lemma join_product_inj : accessible_space T -> set_inj [set: T] join_product.
Proof.
move=> /accessible_closed_set1 cl1 x y; case: (
eqVneq x y)
=> // xny _ _ jxjy.
have [] := (
@sepf [set y] x (
cl1 y))
; first by exact/eqP.
move=> i P; suff : join_product x i != join_product y i by rewrite jxjy => /eqP.
apply/negP; move: P; apply: contra_not => /eqP; rewrite /join_product => ->.
by apply: subset_closure; exists y.
Qed.
Lemma join_product_weak : set_inj [set: T] join_product ->
@open T = @open (
weak_topologicalType join_product).
Proof.
End product_embeddings.
Lemma continuous_compact {T U : topologicalType} (
f : T -> U)
A :
{within A, continuous f} -> compact A -> compact (
f @` A).
Proof.
move=> fcont Aco F FF FfA; set G := filter_from F (
fun C => A `&` f @^-1` C).
have GF : ProperFilter G.
apply: (
filter_from_proper (
filter_from_filter _ _)).
- by exists (
f @` A).
- by move=> C1 C2 F1 F2; exists (
C1 `&` C2)
; [exact: filterI|move=> ? [? []]].
- by move=> C /(
filterI FfA)
/filter_ex [_ [[p ? <-]]]; exists p.
move: Aco; rewrite -[A]setIid => /compact_subspaceIP; rewrite setIid.
case /(
_ G)
; first by exists (
f @` A)
=> // ? [].
move=> p [Ap clsGp]; exists (
f p)
; split; first exact/imageP.
move=> B C FB /fcont p_Cf.
have : G (
A `&` f @^-1` B)
by exists B.
by move=> /clsGp /(
_ p_Cf)
[q [[]]]; exists (
f q).
Qed.
Lemma connected_continuous_connected (
T U : topologicalType)
(
A : set T) (
f : T -> U)
:
connected A -> {within A, continuous f} -> connected (
f @` A).
Proof.
move=> cA cf; apply: contrapT => /connectedPn[E [E0 fAE sE]].
set AfE := fun b =>(
A `&` f @^-1` E b)
: set (
subspace A).
suff sAfE : separated (
AfE false) (
AfE true).
move: cA; apply/connectedPn; exists AfE; split; last (
rewrite /AfE; split).
- move=> b; case: (
E0 b)
=> /= u Ebu.
have [t Et ftu] : (
f @` A)
u by rewrite fAE; case: b Ebu; [right|left].
by exists t; split => //=; rewrite /preimage ftu.
- by rewrite -setIUr -preimage_setU -fAE; exact/esym/setIidPl/preimage_image.
+ rewrite -{2}(
setIid A)
?setIA -(
@closure_subspaceW _ A)
; last by move=> ?[].
by rewrite -/(
AfE false)
-setIA -/(
AfE true)
; case: sAfE.
+ rewrite -{1}(
setIid A)
setIC ?setIA -(
@closure_subspaceW _ A).
by rewrite -/(
AfE true)
-setIA -/(
AfE false)
setIC; case: sAfE.
by move=> ?[].
suff cI0 b : closure (
AfE b)
`&` AfE (
~~ b)
= set0.
by rewrite /separated cI0 setIC cI0.
have [fAfE cEIE] :
f @` AfE (
~~ b)
= E (
~~ b)
/\ closure (
E b)
`&` E (
~~ b)
= set0.
split; last by case: sE => ? ?; case: b => //; rewrite setIC.
rewrite eqEsubset; split => [|u Ebu].
apply: (
subset_trans sub_image_setI).
by apply: subIset; right; exact: image_preimage_subset.
have [t [At ftu]] : exists t, A t /\ f t = u.
suff [t At ftu] : (
f @` A)
u by exists t.
by rewrite fAE; case: b Ebu; [left|right].
by exists t => //; split => //=; rewrite /preimage ftu.
have ? : f @` closure (
AfE b)
`<=` closure (
E b).
have /(
@image_subset _ _ f)
: closure (
AfE b)
`<=` f @^-1` closure (
E b).
have /closure_id -> : closed (
f @^-1` closure (
E b)
: set (
subspace A)).
by apply: closed_comp => //; exact: closed_closure.
apply: closure_subset.
have /(
@preimage_subset _ _ f)
A0cA0 := @subset_closure _ (
E b).
by apply: subset_trans A0cA0; apply: subIset; right.
by move/subset_trans; apply; exact: image_preimage_subset.
apply/eqP/negPn/negP/set0P => -[t [? ?]].
have : f @` closure (
AfE b)
`&` f @` AfE (
~~ b)
= set0.
by rewrite fAfE; exact: subsetI_eq0 cEIE.
by rewrite predeqE => /(
_ (
f t))
[fcAfEb] _; apply: fcAfEb; split; exists t.
Qed.
Lemma uniform_limit_continuous {U : topologicalType} {V : uniformType}
(
F : set (
set (
U -> V))) (
f : U -> V)
:
ProperFilter F -> (
\forall g \near F, continuous (
g : U -> V))
->
{uniform, F --> f} -> continuous f.
Proof.
move=> PF ctsF Ff x; apply/cvg_app_entourageP => A entA; near F => g; near=> y.
apply: (
entourage_split (
g x))
=> //.
by near: g; apply/Ff/uniform_nbhs; exists (
split_ent A)
; split => // ?; exact.
apply: (
entourage_split (
g y))
=> //; near: y; near: g.
by apply: (
filterS _ ctsF)
=> g /(
_ x)
/cvg_app_entourageP; exact.
apply/Ff/uniform_nbhs; exists (
split_ent (
split_ent A))
^-1%classic.
by split; [exact: entourage_inv | move=> g fg; near_simpl; near=> z; exact: fg].
Unshelve.
all: end_near. Qed.
Lemma uniform_limit_continuous_subspace {U : topologicalType} {V : uniformType}
(
K : set U) (
F : set (
set (
U -> V))) (
f : subspace K -> V)
:
ProperFilter F -> (
\forall g \near F, continuous (
g : subspace K -> V))
->
{uniform K, F --> f} -> {within K, continuous f}.
Proof.
Lemma continuous_localP {X Y : topologicalType} (
f : X -> Y)
:
continuous f <->
forall (
x : X)
, \forall U \near powerset_filter_from (
nbhs x)
,
{within U, continuous f}.
Proof.
split; first by move=> ? ?; near=> U; apply: continuous_subspaceT=> ?; exact.
move=> + x => /(
_ x)
/near_powerset_filter_fromP.
case; first by move=> ? ?; exact: continuous_subspaceW.
move=> U nbhsU wctsf; wlog oU : U wctsf nbhsU / open U.
move: nbhsU; rewrite nbhsE => -[] W [oW Wx WU] /(
_ W).
by move/(
_ (
continuous_subspaceW WU wctsf))
; apply => //; exists W.
move/nbhs_singleton: nbhsU; move: x; apply/in_setP.
by rewrite -continuous_open_subspace.
Unshelve.
end_near. Qed.
Lemma totally_disconnected_prod (
I : choiceType)
(
T : I -> topologicalType) (
A : forall i, set (
T i))
:
(
forall i, totally_disconnected (
A i))
->
@totally_disconnected (
product_topologicalType T)
(
fun f => forall i, A i (
f i)).
Proof.
Section UniformPointwise.
Context {U : topologicalType} {V : uniformType}.
Definition singletons {T : Type} := [set [set x] | x in [set: T]].
Lemma pointwise_cvg_family_singleton F (
f: U -> V)
:
Filter F -> {ptws, F --> f} = {family @singletons U, F --> f}.
Proof.
Lemma pointwise_cvg_compact_family F (
f : U -> V)
:
Filter F -> {family compact, F --> f} -> {ptws, F --> f}.
Proof.
Lemma pointwise_cvgP F (
f: U -> V)
:
Filter F -> {ptws, F --> f} <-> forall (
t : U)
, (
fun g => g t)
@ F --> f t.
Proof.
End UniformPointwise.
Section gauges.
Let split_sym {T : uniformType} (
W : set (
T * T))
:=
(
split_ent W)
`&` (
split_ent W)
^-1.
Section entourage_gauge.
Context {T : uniformType} (
E : set (
T * T)) (
entE : entourage E).
Definition gauge :=
filter_from [set: nat] (
fun n => iter n split_sym (
E `&` E^-1)).
Lemma iter_split_ent j : entourage (
iter j split_sym (
E `&` E^-1)).
Proof.
by elim: j => [|i IH]; exact: filterI. Qed.
Lemma gauge_ent A : gauge A -> entourage A.
Proof.
case=> n; elim: n A; first by move=> ? _ /filterS; apply; apply: filterI.
by move=> n ? A _ /filterS; apply; apply: filterI; have ? := iter_split_ent n.
Qed.
Lemma gauge_filter : Filter gauge.
Proof.
Lemma gauge_refl A : gauge A -> [set fg | fg.
1 = fg.
2] `<=` A.
Proof.
Lemma gauge_inv A : gauge A -> gauge (
A^-1)
%classic.
Proof.
case=> n _ EA; apply: (
@filterS _ _ _ (
iter n split_sym (
E `&` E^-1))).
- exact: gauge_filter.
- by case: n EA; last move=> n; move=> EA [? ?] [/=] ? ?; exact: EA.
- by exists n .
Qed.
Lemma gauge_split A : gauge A -> exists2 B, gauge B & B \; B `<=` A.
Proof.
Definition gauge_uniformType_mixin :=
UniformMixin gauge_filter gauge_refl gauge_inv gauge_split erefl.
Definition gauge_topologicalTypeMixin :=
topologyOfEntourageMixin gauge_uniformType_mixin.
Definition gauge_filtered := FilteredType T T (
nbhs_ gauge).
Definition gauge_topologicalType :=
TopologicalType gauge_filtered gauge_topologicalTypeMixin.
Definition gauge_uniformType := UniformType
gauge_topologicalType gauge_uniformType_mixin.
Lemma gauge_countable_uniformity : countable_uniformity gauge_uniformType.
Proof.
Definition gauge_pseudoMetric_mixin {R : realType} :=
@countable_uniform_pseudoMetricType_mixin R _ gauge_countable_uniformity.
Definition gauge_pseudoMetricType {R : realType} :=
PseudoMetricType gauge_uniformType (
@gauge_pseudoMetric_mixin R).
End entourage_gauge.
Lemma uniform_pseudometric_sup {R : realType} {T : uniformType} :
@entourage T = @sup_ent T {E : set (
T * T)
| @entourage T E}
(
fun E => Uniform.class (
@gauge_pseudoMetricType T (
projT1 E) (
projT2 E)
R)).
Proof.
End gauges.
Section ArzelaAscoli.
Context {X : topologicalType}.
Context {Y : uniformType}.
Context {hsdf : hausdorff_space Y}.
Implicit Types (
I : Type).
Definition equicontinuous {I} (
W : set I) (
d : I -> (
X -> Y))
:=
forall x (
E : set (
Y * Y))
, entourage E ->
\forall y \near x, forall i, W i -> E (
d i x, d i y).
Lemma equicontinuous_subset {I J} (
W : set I) (
V : set J)
{fW : I -> X -> Y} {fV : J -> X -> Y} :
fW @`W `<=` fV @` V -> equicontinuous V fV -> equicontinuous W fW.
Proof.
move=> WsubV + x E entE => /(
_ x E entE)
; apply: filterS => y VE i Wi.
by case: (
WsubV (
fW i))
; [exists i | move=> j Vj <-; exact: VE].
Qed.
Lemma equicontinuous_subset_id (
W V : set (
X -> Y))
:
W `<=` V -> equicontinuous V id -> equicontinuous W id.
Proof.
Lemma equicontinuous_continuous_for {I} (
W : set I) (
fW : I -> X -> Y)
i x :
{for x, equicontinuous W fW} -> W i -> {for x, continuous (
fW i)
}.
Proof.
move=> ectsW Wf; apply/cvg_entourageP => E entE; near_simpl.
by near=> y; apply: (
near (
ectsW _ entE)
y).
Unshelve.
end_near. Qed.
Lemma equicontinuous_continuous {I} (
W : set I) (
fW : I -> (
X -> Y)) (
i : I)
:
equicontinuous W fW -> W i -> continuous (
fW i).
Proof.
Definition pointwise_precompact {I} (
W : set I) (
d : I -> X -> Y)
:=
forall x, precompact [set d i x | i in W].
Lemma pointwise_precompact_subset {I J} (
W : set I) (
V : set J)
{fW : I -> X -> Y} {fV : J -> X -> Y} :
fW @` W `<=` fV @` V -> pointwise_precompact V fV ->
pointwise_precompact W fW.
Proof.
move=> WsubV + x => /(
_ x)
pcptV; apply: precompact_subset pcptV => y [i Wi <-].
by case: (
WsubV (
fW i))
; [exists i | move=> j Vj <-; exists j].
Qed.
Lemma pointwise_precompact_precompact {I} (
W : set I) (
fW : I -> (
X -> Y))
:
pointwise_precompact W fW -> precompact ((
fW @` W)
: set {ptws X -> Y}).
Proof.
Lemma uniform_pointwise_compact (
W : set (
X -> Y))
:
compact (
W : set (
@fct_UniformFamily X Y compact))
->
compact (
W : set {ptws X -> Y}).
Proof.
rewrite [x in x _ -> _]compact_ultra [x in _ -> x _]compact_ultra.
move=> + F UF FW => /(
_ F UF FW)
[h [Wh Fh]]; exists h; split => //.
by move=> Q Fq; apply: (
pointwise_cvg_compact_family _ Fh).
Qed.
Lemma precompact_pointwise_precompact (
W : set {family compact, X -> Y})
:
precompact W -> pointwise_precompact W id.
Proof.
Lemma pointwise_cvg_entourage (
x : X) (
f : {ptws X -> Y})
E :
entourage E -> \forall g \near f, E (
f x, g x).
Proof.
Lemma equicontinuous_closure (
W : set {ptws X -> Y})
:
equicontinuous W id -> equicontinuous (
closure W)
id.
Proof.
Definition small_ent_sub := @small_set_sub _ (
@entourage Y).
Lemma pointwise_compact_cvg (
F : set (
set (
X -> Y)))
f :
ProperFilter F ->
(
\forall W \near powerset_filter_from F, equicontinuous W id)
->
{ptws, F --> f} <-> {family compact, F --> f}.
Proof.
Lemma pointwise_compact_closure (
W : set (
X -> Y))
:
equicontinuous W id ->
closure (
W : set {family compact, X -> Y})
=
closure (
W : set {ptws X -> Y}).
Proof.
rewrite ?closureEcvg // predeqE => ? ?.
split; move=> [F PF [Fx WF]]; (
exists F; last split)
=> //.
apply/@pointwise_compact_cvg => //; apply/near_powerset_filter_fromP.
exact: equicontinuous_subset_id.
by exists W => //; exact: WF.
apply/@pointwise_compact_cvg => //; apply/near_powerset_filter_fromP.
exact: equicontinuous_subset_id.
by exists W => //; exact: WF.
Qed.
Lemma pointwise_precompact_equicontinuous (
W : set (
X -> Y))
:
pointwise_precompact W id ->
equicontinuous W id ->
precompact (
W : set {family compact, X -> Y }).
Proof.
Section precompact_equicontinuous.
Hypothesis lcptX : locally_compact [set: X].
Lemma compact_equicontinuous (
W : set {family compact, X -> Y})
:
(
forall f, W f -> continuous f)
->
compact (
W : set {family compact, X -> Y})
->
equicontinuous W id.
Proof.
Lemma precompact_equicontinuous (
W : set {family compact, X -> Y})
:
(
forall f, W f -> continuous f)
->
precompact (
W : set {family compact, X -> Y})
->
equicontinuous W id.
Proof.
End precompact_equicontinuous.
Theorem Ascoli (
W : set {family compact, X -> Y})
:
locally_compact [set: X] ->
pointwise_precompact W id /\ equicontinuous W id <->
(
forall f, W f -> continuous f)
/\
precompact (
W : set {family compact, X -> Y}).
Proof.
End ArzelaAscoli.
Lemma uniform_regular {T : uniformType} : @regular_space T.
Proof.
move=> x R /=; rewrite -{1}nbhs_entourageE => -[E entE ER].
pose E' := split_ent E; have eE' : entourage E' by exact: entourage_split_ent.
exists (
to_set (
E' `&` E'^-1%classic)
x).
rewrite -nbhs_entourageE; exists (
E' `&` E'^-1%classic)
=> //.
exact: filterI.
move=> z /= clEz; apply: ER; apply: subset_split_ent => //.
have [] := clEz (
to_set (
E' `&` E'^-1%classic)
z).
rewrite -nbhs_entourageE; exists (
E' `&` E'^-1%classic)
=> //.
exact: filterI.
by move=> y /= [[? ?]] [? ?]; exists y.
Qed.
#[global] Hint Resolve uniform_regular : core.
Section currying.
Local Notation "U '~>' V" :=
(
{compact-open, [topologicalType of U] -> [topologicalType of V]})
(
at level 99, right associativity).
Section cartesian_closed.
Context {U V W : topologicalType}.
In this section, we consider under what conditions \
`[f in U ~> V ~> W | continuous f /\ forall u, continuous (f u)]` \
and \
`[f in U * V ~> W | continuous f]` \
are homeomorphic.
- Always: \
`curry` sends continuous functions to continuous functions.
- `V` locally_compact + regular or Hausdorff: \
`uncurry` sends continuous functions to continuous functions.
- `U` regular or Hausdorff: \
`curry` itself is a continuous map.
- `U` regular or Hausdorff AND `V` locally_compact + regular or Hausdorff \
`uncurry` itself is a continuous map. \
Therefore `curry`/`uncurry` are homeomorphisms.
So the category of locally compact regular spaces is cartesian closed.
Lemma continuous_curry (
f : U * V ~> W)
:
continuous f ->
continuous (
curry f : U ~> V ~> W)
/\ forall u, continuous (
curry f u).
Proof.
move=> ctsf; split; first last.
move=> u z; apply: continuous_comp; last exact: ctsf.
by apply: cvg_pair => //=; exact: cvg_cst.
move=> x; apply/compact_open_cvgP => K O /= cptK oO fKO.
near=> z => w /= [+ + <-]; near: z.
move/compact_near_coveringP/near_covering_withinP : cptK; apply.
move=> v Kv; have [[P Q] [Px Qv] PQfO] : nbhs (
x, v) (
f @^-1` O).
by apply: ctsf; move: oO; rewrite openE; apply; apply: fKO; exists v.
by exists (
Q, P)
=> // -[b a] /= [Qb Pa] Kb; exact: PQfO.
Unshelve.
all: by end_near. Qed.
Lemma continuous_uncurry_regular (
f : U ~> V ~> W)
:
locally_compact [set: V] -> @regular_space V -> continuous f ->
(
forall u, continuous (
f u))
-> continuous (
uncurry f : U * V ~> W).
Proof.
Lemma continuous_uncurry (
f : U ~> V ~> W)
:
locally_compact [set: V] -> hausdorff_space V -> continuous f ->
(
forall u, continuous (
f u))
->
continuous ((
uncurry : (
U ~> V ~> W)
-> (
U * V ~> W))
f).
Proof.
move=> lcV hsdf ctsf cf; apply: continuous_uncurry_regular => //.
move=> v; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB].
by move=> z; exact: (
@compact_regular V hsdf v B).
Qed.
Lemma curry_continuous (
f : U * V ~> W)
: continuous f -> @regular_space U ->
{for f, continuous (
curry : (
U * V ~> W)
-> (
U ~> V ~> W))
}.
Proof.
move=> ctsf regU; apply/compact_open_cvgP.
by apply: fmap_filter; exact: nbhs_filter.
move=> K ? cptK [D OfinIo <-] fKD /=; near=> z => w [+ + <-]; near: z.
move/compact_near_coveringP/near_covering_withinP : (
cptK)
; apply => u Ku.
have [] := fKD (
curry f u)
; first by exists u.
move=> E /[dup] /[swap] /OfinIo [N Asub <- DIN INf].
suff : \forall x' \near u & i \near nbhs f, K x' ->
(
\bigcap_(
i in [set` N])
i) (
curry i x').
apply: filter_app; near=> a b => /[apply] ?.
by exists (
\bigcap_(
i in [set` N])
i).
apply: filter_bigI_within => R RN; have /set_mem [[M cptM _]] := Asub _ RN.
have Rfu : R (
curry f u)
by exact: INf.
move/(
_ _ Rfu)
=> [O [fMO oO] MOR]; near=> p => /= Ki; apply: MOR => + [+ + <-].
move=> _ v Mv; move: v Mv Ki; near: p.
have umb : \forall y \near u, (
forall b, M b -> nbhs (
y, b) (
f @^-1` O)).
move/compact_near_coveringP/near_covering_withinP : (
cptM)
; apply => v Mv.
have [[P Q] [Pu Qv] PQO] : nbhs (
u, v) (
f @^-1` O).
by apply: ctsf; apply: open_nbhs_nbhs; split => //; apply: fMO; exists v.
exists (
Q, P)
; [by []| move=> [b a [/= Qb Pa Mb]]].
by apply: ctsf; apply: open_nbhs_nbhs; split => //; exact: PQO.
move/compact_near_coveringP/near_covering_withinP : (
cptM)
; apply => v Mv.
have [P' P'u cPO] := regU u _ umb.
pose L := [set h | h @` ((
K `&` closure P')
`*` M)
`<=` O].
exists (
setT, P' `*` L).
split => //; [exact: filterT|]; exists (
P', L)
=> //; split => //.
apply: open_nbhs_nbhs; split; first apply: compact_open_open => //.
apply: compact_setM => //; apply: compact_closedI => //.
exact: closed_closure.
by move=> ? [[a b] [[Ka /cPO +] Mb <-]] => /(
_ _ Mb)
/nbhs_singleton.
move=> [b [a h]] [/= _ [Pa] +] Ma Ka; apply.
by exists (
a, b)
; split => //; split => //; exact/subset_closure.
Unshelve.
all: by end_near. Qed.
Lemma uncurry_continuous (
f : U ~> V ~> W)
:
locally_compact [set: V] -> @regular_space V -> @regular_space U ->
continuous f -> (
forall u, continuous (
f u))
->
{for f, continuous (
uncurry : (
U ~> V ~> W)
-> (
U * V ~> W))
}.
Proof.
move=> lcV regV regU ctsf ctsfp; apply/compact_open_cvgP.
by apply: fmap_filter; exact:nbhs_filter.
move=> /= K O cptK oO fKO; near=> h => ? [+ + <-]; near: h.
move/compact_near_coveringP/near_covering_withinP: (
cptK)
; apply.
case=> u v Kuv.
have : exists P Q, [/\ closed P, compact Q, nbhs u P,
nbhs v Q & P `*` Q `<=` uncurry f @^-1` O].
have : continuous (
uncurry f)
by exact: continuous_uncurry_regular.
move/continuousP/(
_ _ oO)
; rewrite openE => /(
_ (
u, v))
[].
by apply: fKO; exists (
u, v).
case=> /= P' Q' [P'u Q'v] PQO.
have [B] := @lcV v I; rewrite withinET; move=> Bv [cptB clB].
have [P Pu cPP'] := regU u P' P'u; have [Q Qv cQQ'] := regV v Q' Q'v.
exists (
closure P)
, (
B `&` closure Q)
; split.
- exact: closed_closure.
- by apply: compact_closedI => //; exact: closed_closure.
- by apply: filterS; first exact: subset_closure.
- by apply: filterI=> //; apply: filterS; first exact: subset_closure.
- by case => a b [/cPP' ?] [_ /cQQ' ?]; exact: PQO.
case=> P [Q [clP cptQ Pu Qv PQfO]]; pose R := [set g : V ~> W | g @` Q `<=` O].
(
have oR : open R by exact: compact_open_open)
; pose P' := f @^-1` R.
pose L := [set h : U ~> V ~> W | h @` (
fst @` K `&` P)
`<=` R].
exists ((
P `&` P')
`*` Q, L)
; first split => /=.
- exists (
P `&` P', Q)
=> //; split => //=; apply: filterI => //.
apply: ctsf; apply: open_nbhs_nbhs; split => // _ [b Qb <-].
by apply: (
PQfO (
u, b))
; split => //; exact: nbhs_singleton.
- rewrite nbhs_simpl /=; apply: open_nbhs_nbhs; split.
apply: compact_open_open => //; apply: compact_closedI => //.
apply: continuous_compact => //; apply: continuous_subspaceT => x.
exact: cvg_fst.
move=> /= _ [a [Kxa Pa] <-] _ [b Qb <-].
by apply: (
PQfO (
a, b))
; split => //; exact: nbhs_singleton.
move=> [[a b h]] [/= [[Pa P'a] Qb Lh] Kab].
apply: (
Lh (
h a))
; first by exists a => //; split => //; exists (
a, b).
by exists b.
Unshelve.
all: by end_near. Qed.
End cartesian_closed.
End currying.