Top

Module mathcomp.reals.interval_inference

From HB Require Import structures.
From mathcomp Require Import ssreflect ssrfun ssrbool.
From mathcomp Require Import ssrnat eqtype choice order ssralg ssrnum ssrint.
From mathcomp Require Import interval.
From mathcomp Require Import mathcomp_extra.

# Numbers within an interval This file develops tools to make the manipulation of numbers within a known interval easier, thanks to canonical structures. This adds types like {itv R & `[a, b]}, a notation e%:itv that infers an enclosing interval for expression e according to existing canonical instances and %:num to cast back from type {itv R & i} to R. For instance, for x : {i01 R}, we have (1 - x%:num)%:itv : {i01 R} automatically inferred. ## types for values within known interval ``` {itv R & i} == generic type of values in interval i : interval int See interval.v for notations that can be used for i. R must have a numDomainType structure. This type is shown to be a porderType. {i01 R} := {itv R & `[0, 1]} Allows to solve automatically goals of the form x >= 0 and x <= 1 when x is canonically a {i01 R}. {i01 R} is canonically stable by common operations. {posnum R} := {itv R & `]0, +oo[) {nonneg R} := {itv R & `[0, +oo[) ``` ## casts from/to values within known interval Explicit casts of x to some {itv R & i} according to existing canonical instances: ``` x%:itv == cast to the most precisely known {itv R & i} x%:i01 == cast to {i01 R}, or fail x%:pos == cast to {posnum R}, or fail x%:nng == cast to {nonneg R}, or fail ``` Explicit casts of x from some {itv R & i} to R: ``` x%:num == cast from {itv R & i} x%:posnum == cast from {posnum R} x%:nngnum == cast from {nonneg R} ``` ## sign proofs ``` [itv of x] == proof that x is in the interval inferred by x%:itv [gt0 of x] == proof that x > 0 [lt0 of x] == proof that x < 0 [ge0 of x] == proof that x >= 0 [le0 of x] == proof that x <= 0 [cmp0 of x] == proof that 0 >=< x [neq0 of x] == proof that x != 0 ``` ## constructors ``` ItvNum xr lx xu == builds a {itv R & i} from proofs xr : x \in Num.real, lx : map_itv_bound (Itv.num_sem R) l <= BLeft x xu : BRight x <= map_itv_bound (Itv.num_sem R) u where x : R with R : numDomainType and l u : itv_bound int ItvReal lx xu == builds a {itv R & i} from proofs lx : map_itv_bound (Itv.num_sem R) l <= BLeft x xu : BRight x <= map_itv_bound (Itv.num_sem R) u where x : R with R : realDomainType and l u : itv_bound int Itv01 x0 x1 == builds a {i01 R} from proofs x0 : 0 <= x and x1 : x <= 1 where x : R with R : numDomainType PosNum x0 == builds a {posnum R} from a proof x0 : x > 0 where x : R NngNum x0 == builds a {posnum R} from a proof x0 : x >= 0 where x : R ``` A number of canonical instances are provided for common operations, if your favorite operator is missing, look below for examples on how to add the appropriate Canonical. Also note that all provided instances aren't necessarily optimal, improvements welcome! Canonical instances are also provided according to types, as a fallback when no known operator appears in the expression. Look to top_typ below for an example on how to add your favorite type.

Reserved Notation "{ 'itv' R & i }"
  (at level 0, R at level 200, i at level 200, format "{ 'itv' R & i }").
Reserved Notation "{ 'i01' R }"
  (at level 0, R at level 200, format "{ 'i01' R }").
Reserved Notation "{ 'posnum' R }" (at level 0, format "{ 'posnum' R }").
Reserved Notation "{ 'nonneg' R }" (at level 0, format "{ 'nonneg' R }").

Reserved Notation "x %:itv" (at level 2, format "x %:itv").
Reserved Notation "x %:i01" (at level 2, format "x %:i01").
Reserved Notation "x %:pos" (at level 2, format "x %:pos").
Reserved Notation "x %:nng" (at level 2, format "x %:nng").
Reserved Notation "x %:inum" (at level 2, format "x %:inum").
Reserved Notation "x %:num" (at level 2, format "x %:num").
Reserved Notation "x %:posnum" (at level 2, format "x %:posnum").
Reserved Notation "x %:nngnum" (at level 2, format "x %:nngnum").

Reserved Notation "[ 'itv' 'of' x ]" (format "[ 'itv' 'of' x ]").
Reserved Notation "[ 'gt0' 'of' x ]" (format "[ 'gt0' 'of' x ]").
Reserved Notation "[ 'lt0' 'of' x ]" (format "[ 'lt0' 'of' x ]").
Reserved Notation "[ 'ge0' 'of' x ]" (format "[ 'ge0' 'of' x ]").
Reserved Notation "[ 'le0' 'of' x ]" (format "[ 'le0' 'of' x ]").
Reserved Notation "[ 'cmp0' 'of' x ]" (format "[ 'cmp0' 'of' x ]").
Reserved Notation "[ 'neq0' 'of' x ]" (format "[ 'neq0' 'of' x ]").

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory Order.Syntax.
Import GRing.Theory Num.Theory.

Local Open Scope ring_scope.
Local Open Scope order_scope.

Definition map_itv_bound S T (f : S -> T) (b : itv_bound S) : itv_bound T :=
  match b with
  | BSide b x => BSide b (f x)
  | BInfty b => BInfty _ b
  end.

Lemma map_itv_bound_comp S T U (f : T -> S) (g : U -> T) (b : itv_bound U) :
  map_itv_bound (f \o g) b = map_itv_bound f (map_itv_bound g b).
Proof.
by case: b. Qed.

Definition map_itv S T (f : S -> T) (i : interval S) : interval T :=
  let 'Interval l u := i in Interval (map_itv_bound f l) (map_itv_bound f u).

Lemma map_itv_comp S T U (f : T -> S) (g : U -> T) (i : interval U) :
  map_itv (f \o g) i = map_itv f (map_itv g i).
Proof.
by case: i => l u /=; rewrite -!map_itv_bound_comp. Qed.

Module IntItv.
Implicit Types (b : itv_bound int) (i j : interval int).

Definition opp_bound b :=
  match b with
  | BSide b x => BSide (~~ b) (intZmod.oppz x)
  | BInfty b => BInfty _ (~~ b)
  end.

Lemma opp_bound_ge0 b : (BLeft 0%R <= opp_bound b)%O = (b <= BRight 0%R)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp oppr_ge0. Qed.

Lemma opp_bound_gt0 b : (BRight 0%R <= opp_bound b)%O = (b <= BLeft 0%R)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp ?oppr_ge0 ?oppr_gt0.
Qed.

Definition opp i :=
  let: Interval l u := i in Interval (opp_bound u) (opp_bound l).
Arguments opp /.

Definition add_boundl b1 b2 :=
  match b1, b2 with
  | BSide b1 x1, BSide b2 x2 => BSide (b1 && b2) (intZmod.addz x1 x2)
  | _, _ => BInfty _ true
  end.

Definition add_boundr b1 b2 :=
  match b1, b2 with
  | BSide b1 x1, BSide b2 x2 => BSide (b1 || b2) (intZmod.addz x1 x2)
  | _, _ => BInfty _ false
  end.

Definition add i1 i2 :=
  let: Interval l1 u1 := i1 in let: Interval l2 u2 := i2 in
  Interval (add_boundl l1 l2) (add_boundr u1 u2).
Arguments add /.

Variant signb := EqZero | NonNeg | NonPos.

Definition sign_boundl b :=
  let: b0 := BLeft 0%Z in
  if b == b0 then EqZero else if (b <= b0)%O then NonPos else NonNeg.

Definition sign_boundr b :=
  let: b0 := BRight 0%Z in
  if b == b0 then EqZero else if (b <= b0)%O then NonPos else NonNeg.

Variant signi := Known of signb | Unknown | Empty.

Definition sign i : signi :=
  let: Interval l u := i in
  match sign_boundl l, sign_boundr u with
  | EqZero, NonPos
  | NonNeg, EqZero
  | NonNeg, NonPos => Empty
  | EqZero, EqZero => Known EqZero
  | NonPos, EqZero
  | NonPos, NonPos => Known NonPos
  | EqZero, NonNeg
  | NonNeg, NonNeg => Known NonNeg
  | NonPos, NonNeg => Unknown
  end.

Definition mul_boundl b1 b2 :=
  match b1, b2 with
  | BInfty _, _
  | _, BInfty _
  | BLeft 0%Z, _
  | _, BLeft 0%Z => BLeft 0%Z
  | BSide b1 x1, BSide b2 x2 => BSide (b1 && b2) (intRing.mulz x1 x2)
  end.

Definition mul_boundr b1 b2 :=
  match b1, b2 with
  | BLeft 0%Z, _
  | _, BLeft 0%Z => BLeft 0%Z
  | BRight 0%Z, _
  | _, BRight 0%Z => BRight 0%Z
  | BSide b1 x1, BSide b2 x2 => BSide (b1 || b2) (intRing.mulz x1 x2)
  | _, BInfty _
  | BInfty _, _ => +oo%O
  end.

Lemma mul_boundrC b1 b2 : mul_boundr b1 b2 = mul_boundr b2 b1.
Proof.
by move: b1 b2 => [[] [[|?]|?] | []] [[] [[|?]|?] | []] //=; rewrite mulnC.
Qed.

Lemma mul_boundr_gt0 b1 b2 :
  (BRight 0%Z <= b1 -> BRight 0%Z <= b2 -> BRight 0%Z <= mul_boundr b1 b2)%O.
Proof.
case: b1 b2 => [b1b b1 | []] [b2b b2 | []]//=.
- by case: b1b b2b => -[]; case: b1 b2 => [[|b1] | b1] [[|b2] | b2].
- by case: b1b b1 => -[[] |].
- by case: b2b b2 => -[[] |].
Qed.

Definition mul i1 i2 :=
  let: Interval l1 u1 := i1 in let: Interval l2 u2 := i2 in
  let: opp := opp_bound in
  let: mull := mul_boundl in let: mulr := mul_boundr in
  match sign i1, sign i2 with
  | Empty, _ | _, Empty => `[1, 0]
  | Known EqZero, _ | _, Known EqZero => `[0, 0]
  | Known NonNeg, Known NonNeg =>
      Interval (mull l1 l2) (mulr u1 u2)
  | Known NonPos, Known NonPos =>
      Interval (mull (opp u1) (opp u2)) (mulr (opp l1) (opp l2))
  | Known NonNeg, Known NonPos =>
      Interval (opp (mulr u1 (opp l2))) (opp (mull l1 (opp u2)))
  | Known NonPos, Known NonNeg =>
      Interval (opp (mulr (opp l1) u2)) (opp (mull (opp u1) l2))
  | Known NonNeg, Unknown =>
      Interval (opp (mulr u1 (opp l2))) (mulr u1 u2)
  | Known NonPos, Unknown =>
      Interval (opp (mulr (opp l1) u2)) (mulr (opp l1) (opp l2))
  | Unknown, Known NonNeg =>
      Interval (opp (mulr (opp l1) u2)) (mulr u1 u2)
  | Unknown, Known NonPos =>
      Interval (opp (mulr u1 (opp l2))) (mulr (opp l1) (opp l2))
  | Unknown, Unknown =>
      Interval
        (Order.min (opp (mulr (opp l1) u2)) (opp (mulr u1 (opp l2))))
        (Order.max (mulr (opp l1) (opp l2)) (mulr u1 u2))
  end.
Arguments mul /.

Definition min i j :=
  let: Interval li ui := i in let: Interval lj uj := j in
  Interval (Order.min li lj) (Order.min ui uj).
Arguments min /.

Definition max i j :=
  let: Interval li ui := i in let: Interval lj uj := j in
  Interval (Order.max li lj) (Order.max ui uj).
Arguments max /.

Definition keep_nonneg_bound b :=
  match b with
  | BSide _ (Posz _) => BLeft 0%Z
  | BSide _ (Negz _) => -oo%O
  | BInfty _ => -oo%O
  end.
Arguments keep_nonneg_bound /.

Definition keep_pos_bound b :=
  match b with
  | BSide b 0%Z => BSide b 0%Z
  | BSide _ (Posz (S _)) => BRight 0%Z
  | BSide _ (Negz _) => -oo
  | BInfty _ => -oo
  end.
Arguments keep_pos_bound /.

Definition keep_nonpos_bound b :=
  match b with
  | BSide _ (Negz _) | BSide _ (Posz 0) => BRight 0%Z
  | BSide _ (Posz (S _)) => +oo%O
  | BInfty _ => +oo%O
  end.
Arguments keep_nonpos_bound /.

Definition keep_neg_bound b :=
  match b with
  | BSide b 0%Z => BSide b 0%Z
  | BSide _ (Negz _) => BLeft 0%Z
  | BSide _ (Posz _) => +oo
  | BInfty _ => +oo
  end.
Arguments keep_neg_bound /.

Definition inv i :=
  let: Interval l u := i in
  Interval (keep_pos_bound l) (keep_neg_bound u).
Arguments inv /.

Definition exprn_le1_bound b1 b2 :=
  if b2 isn't BSide _ 1%Z then +oo
  else if (BLeft 0%Z <= b1)%O then BRight 1%Z else +oo.
Arguments exprn_le1_bound /.

Definition exprn i :=
  let: Interval l u := i in
  Interval (keep_pos_bound l) (exprn_le1_bound l u).
Arguments exprn /.

Definition keep_sign i :=
  let: Interval l u := i in
  Interval (keep_nonneg_bound l) (keep_nonpos_bound u).

Definition keep_nonpos i :=
  let 'Interval l u := i in
  Interval -oo%O (keep_nonpos_bound u).
Arguments keep_nonpos /.

Definition keep_nonneg i :=
  let 'Interval l u := i in
  Interval (keep_nonneg_bound l) +oo%O.
Arguments keep_nonneg /.

End IntItv.

Module Itv.

Variant t := Top | Real of interval int.

Definition sub (x y : t) :=
  match x, y with
  | _, Top => true
  | Top, Real _ => false
  | Real xi, Real yi => subitv xi yi
  end.

Section Itv.
Context T (sem : interval int -> T -> bool).

Definition spec (i : t) (x : T) := if i is Real i then sem i x else true.

Record def (i : t) := Def {
  r : T;
  #[canonical=no]
  P : spec i r
}.

End Itv.

Record typ i := Typ {
  sort : Type;
  #[canonical=no]
  sort_sem : interval int -> sort -> bool;
  #[canonical=no]
  allP : forall x : sort, spec sort_sem i x
}.

Definition mk {T f} i x P : @def T f i := @Def T f i x P.

Definition from {T f i} {x : @def T f i} (phx : phantom T (r x)) := x.

Definition fromP {T f i} {x : @def T f i} (phx : phantom T (r x)) := P x.

Definition num_sem (R : numDomainType) (i : interval int) (x : R) : bool :=
  (x \in Num.real) && (x \in map_itv intr i).

Definition nat_sem (i : interval int) (x : nat) : bool := Posz x \in i.

Definition posnum (R : numDomainType) of phant R :=
  def (@num_sem R) (Real `]0, +oo[).

Definition nonneg (R : numDomainType) of phant R :=
  def (@num_sem R) (Real `[0, +oo[).

Definition real1 (op1 : interval int -> interval int) (x : Itv.t) : Itv.t :=
  match x with Itv.Top => Itv.Top | Itv.Real x => Itv.Real (op1 x) end.

Definition real2 (op2 : interval int -> interval int -> interval int)
    (x y : Itv.t) : Itv.t :=
  match x, y with
  | Itv.Top, _ | _, Itv.Top => Itv.Top
  | Itv.Real x, Itv.Real y => Itv.Real (op2 x y)
  end.

Lemma spec_real1 T f (op1 : T -> T) (op1i : interval int -> interval int) :
    forall (x : T), (forall xi, f xi x = true -> f (op1i xi) (op1 x) = true) ->
  forall xi, spec f xi x -> spec f (real1 op1i xi) (op1 x).
Proof.
by move=> x + [//| xi]; apply. Qed.

Lemma spec_real2 T f (op2 : T -> T -> T)
    (op2i : interval int -> interval int -> interval int) (x y : T) :
    (forall xi yi, f xi x = true -> f yi y = true ->
     f (op2i xi yi) (op2 x y) = true) ->
  forall xi yi, spec f xi x -> spec f yi y ->
    spec f (real2 op2i xi yi) (op2 x y).
Proof.
by move=> + [//| xi] [//| yi]; apply. Qed.

Module Exports.
Arguments r {T sem i}.
Notation "{ 'itv' R & i }" := (def (@num_sem R) (Itv.Real i%Z)) : type_scope.
Notation "{ 'i01' R }" := {itv R & `[0, 1]} : type_scope.
Notation "{ 'posnum' R }" := (@posnum _ (Phant R)) : ring_scope.
Notation "{ 'nonneg' R }" := (@nonneg _ (Phant R)) : ring_scope.
Notation "x %:itv" := (from (Phantom _ x)) : ring_scope.
Notation "[ 'itv' 'of' x ]" := (fromP (Phantom _ x)) : ring_scope.
Notation num := r.
Notation "x %:inum" := (r x) (only parsing) : ring_scope.
Notation "x %:num" := (r x) : ring_scope.
Notation "x %:posnum" := (@r _ _ (Real `]0%Z, +oo[) x) : ring_scope.
Notation "x %:nngnum" := (@r _ _ (Real `[0%Z, +oo[) x) : ring_scope.
End Exports.
End Itv.
Export Itv.Exports.

Local Notation num_spec := (Itv.spec (@Itv.num_sem _)).
Local Notation num_def R := (Itv.def (@Itv.num_sem R)).
Local Notation num_itv_bound R := (@map_itv_bound _ R intr).

Local Notation nat_spec := (Itv.spec Itv.nat_sem).
Local Notation nat_def := (Itv.def Itv.nat_sem).

Section POrder.
Context d (T : porderType d) (f : interval int -> T -> bool) (i : Itv.t).
Local Notation itv := (Itv.def f i).
HB.instance Definition _ := [isSub for @Itv.r T f i].
HB.instance Definition _ : Order.POrder d itv := [POrder of itv by <:].
End POrder.

Section Order.
Variables (R : numDomainType) (i : interval int).
Local Notation nR := (num_def R (Itv.Real i)).

Lemma itv_le_total_subproof : total (<=%O : rel nR).
Proof.
move=> x y; apply: real_comparable.
- by case: x => [x /=/andP[]].
- by case: y => [y /=/andP[]].
Qed.

HB.instance Definition _ := Order.POrder_isTotal.Build ring_display nR
  itv_le_total_subproof.

End Order.

Module TypInstances.

Lemma top_typ_spec T f (x : T) : Itv.spec f Itv.Top x.
Proof.
by []. Qed.

Canonical top_typ T f := Itv.Typ (@top_typ_spec T f).

Lemma real_domain_typ_spec (R : realDomainType) (x : R) :
  num_spec (Itv.Real `]-oo, +oo[) x.
Proof.
by rewrite /Itv.num_sem/= num_real. Qed.

Canonical real_domain_typ (R : realDomainType) :=
  Itv.Typ (@real_domain_typ_spec R).

Lemma real_field_typ_spec (R : realFieldType) (x : R) :
  num_spec (Itv.Real `]-oo, +oo[) x.
Proof.
exact: real_domain_typ_spec. Qed.

Canonical real_field_typ (R : realFieldType) :=
  Itv.Typ (@real_field_typ_spec R).

Lemma nat_typ_spec (x : nat) : nat_spec (Itv.Real `[0, +oo[) x.
Proof.
by []. Qed.

Canonical nat_typ := Itv.Typ nat_typ_spec.

Lemma typ_inum_spec (i : Itv.t) (xt : Itv.typ i) (x : Itv.sort xt) :
  Itv.spec (@Itv.sort_sem _ xt) i x.
Proof.
by move: xt x => []. Qed.

Canonical typ_inum (i : Itv.t) (xt : Itv.typ i) (x : Itv.sort xt) :=
  Itv.mk (typ_inum_spec x).

End TypInstances.
Export (canonicals) TypInstances.

Class unify {T} f (x y : T) := Unify : f x y = true.
#[export] Hint Mode unify + + + + : typeclass_instances.
Class unify' {T} f (x y : T) := Unify' : f x y = true.
#[export] Instance unify'P {T} f (x y : T) : unify' f x y -> unify f x y := id.
#[export]
Hint Extern 0 (unify' _ _ _) => vm_compute; reflexivity : typeclass_instances.

Notation unify_itv ix iy := (unify Itv.sub ix iy).

#[export] Instance top_wider_anything i : unify_itv i Itv.Top.
Proof.
by case: i. Qed.

#[export] Instance real_wider_anyreal i :
  unify_itv (Itv.Real i) (Itv.Real `]-oo, +oo[).
Proof.
by case: i => [l u]; apply/andP; rewrite !bnd_simp. Qed.

Section NumDomainTheory.
Context {R : numDomainType} {i : Itv.t}.
Implicit Type x : num_def R i.

Lemma le_num_itv_bound (x y : itv_bound int) :
  (num_itv_bound R x <= num_itv_bound R y)%O = (x <= y)%O.
Proof.
by case: x y => [[] x | x] [[] y | y]//=; rewrite !bnd_simp ?ler_int ?ltr_int.
Qed.

Lemma num_itv_bound_le_BLeft (x : itv_bound int) (y : int) :
  (num_itv_bound R x <= BLeft (y%:~R : R))%O = (x <= BLeft y)%O.
Proof.
rewrite -[BLeft y%:~R]/(map_itv_bound intr (BLeft y)).
by rewrite le_num_itv_bound.
Qed.

Lemma BRight_le_num_itv_bound (x : int) (y : itv_bound int) :
  (BRight (x%:~R : R) <= num_itv_bound R y)%O = (BRight x <= y)%O.
Proof.
rewrite -[BRight x%:~R]/(map_itv_bound intr (BRight x)).
by rewrite le_num_itv_bound.
Qed.

Lemma num_spec_sub (x y : Itv.t) : Itv.sub x y ->
  forall z : R, num_spec x z -> num_spec y z.
Proof.
case: x y => [| x] [| y] //= x_sub_y z /andP[rz]; rewrite /Itv.num_sem rz/=.
move: x y x_sub_y => [lx ux] [ly uy] /andP[lel leu] /=.
move=> /andP[lxz zux]; apply/andP; split.
- by apply: le_trans lxz; rewrite le_num_itv_bound.
- by apply: le_trans zux _; rewrite le_num_itv_bound.
Qed.

Definition empty_itv := Itv.Real `[1, 0]%Z.

Lemma bottom x : ~ unify_itv i empty_itv.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /andP[] /le_trans /[apply]; rewrite ler10.
Qed.

Lemma gt0 x : unify_itv i (Itv.Real `]0%Z, +oo[) -> 0 < x%:num :> R.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_].
by rewrite /= in_itv/= andbT.
Qed.

Lemma le0F x : unify_itv i (Itv.Real `]0%Z, +oo[) -> x%:num <= 0 :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= andbT => /lt_geF.
Qed.

Lemma lt0 x : unify_itv i (Itv.Real `]-oo, 0%Z[) -> x%:num < 0 :> R.
Proof.
by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv.
Qed.

Lemma ge0F x : unify_itv i (Itv.Real `]-oo, 0%Z[) -> 0 <= x%:num :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /lt_geF.
Qed.

Lemma ge0 x : unify_itv i (Itv.Real `[0%Z, +oo[) -> 0 <= x%:num :> R.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= andbT.
Qed.

Lemma lt0F x : unify_itv i (Itv.Real `[0%Z, +oo[) -> x%:num < 0 :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= andbT => /le_gtF.
Qed.

Lemma le0 x : unify_itv i (Itv.Real `]-oo, 0%Z]) -> x%:num <= 0 :> R.
Proof.
by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv.
Qed.

Lemma gt0F x : unify_itv i (Itv.Real `]-oo, 0%Z]) -> 0 < x%:num :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /le_gtF.
Qed.

Lemma cmp0 x : unify_itv i (Itv.Real `]-oo, +oo[) -> 0 >=< x%:num.
Proof.
by case: i x => [//| i' [x /=/andP[]]]. Qed.

Lemma neq0 x :
  unify (fun ix iy => ~~ Itv.sub ix iy) (Itv.Real `[0%Z, 0%Z]) i ->
  x%:num != 0 :> R.
Proof.
case: i x => [//| [l u] [x /= Px]]; apply: contra => /eqP x0 /=.
move: Px; rewrite x0 => /and3P[_ /= l0 u0]; apply/andP; split.
- by case: l l0 => [[] l /= |//]; rewrite !bnd_simp ?lerz0 ?ltrz0.
- by case: u u0 => [[] u /= |//]; rewrite !bnd_simp ?ler0z ?ltr0z.
Qed.

Lemma eq0F x :
  unify (fun ix iy => ~~ Itv.sub ix iy) (Itv.Real `[0%Z, 0%Z]) i ->
  x%:num == 0 :> R = false.
Proof.
by move=> u; apply/negbTE/neq0. Qed.

Lemma lt1 x : unify_itv i (Itv.Real `]-oo, 1%Z[) -> x%:num < 1 :> R.
Proof.
by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv.
Qed.

Lemma ge1F x : unify_itv i (Itv.Real `]-oo, 1%Z[) -> 1 <= x%:num :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /lt_geF.
Qed.

Lemma le1 x : unify_itv i (Itv.Real `]-oo, 1%Z]) -> x%:num <= 1 :> R.
Proof.
by case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=; rewrite in_itv.
Qed.

Lemma gt1F x : unify_itv i (Itv.Real `]-oo, 1%Z]) -> 1 < x%:num :> R = false.
Proof.
case: x => x /= /[swap] /num_spec_sub /[apply] /andP[_] /=.
by rewrite in_itv/= => /le_gtF.
Qed.

Lemma widen_itv_subproof x i' : Itv.sub i i' -> num_spec i' x%:num.
Proof.
by case: x => x /= /[swap] /num_spec_sub; apply. Qed.

Definition widen_itv x i' (uni : unify_itv i i') :=
  Itv.mk (widen_itv_subproof x uni).

Lemma widen_itvE x (uni : unify_itv i i) : @widen_itv x i uni = x.
Proof.
exact/val_inj. Qed.

Lemma posE x (uni : unify_itv i (Itv.Real `]0%Z, +oo[)) :
  (widen_itv x%:num%:itv uni)%:num = x%:num.
Proof.
by []. Qed.

Lemma nngE x (uni : unify_itv i (Itv.Real `[0%Z, +oo[)) :
  (widen_itv x%:num%:itv uni)%:num = x%:num.
Proof.
by []. Qed.

End NumDomainTheory.

Arguments bottom {R i} _ {_}.
Arguments gt0 {R i} _ {_}.
Arguments le0F {R i} _ {_}.
Arguments lt0 {R i} _ {_}.
Arguments ge0F {R i} _ {_}.
Arguments ge0 {R i} _ {_}.
Arguments lt0F {R i} _ {_}.
Arguments le0 {R i} _ {_}.
Arguments gt0F {R i} _ {_}.
Arguments cmp0 {R i} _ {_}.
Arguments neq0 {R i} _ {_}.
Arguments eq0F {R i} _ {_}.
Arguments lt1 {R i} _ {_}.
Arguments ge1F {R i} _ {_}.
Arguments le1 {R i} _ {_}.
Arguments gt1F {R i} _ {_}.
Arguments widen_itv {R i} _ {_ _}.
Arguments widen_itvE {R i} _ {_}.
Arguments posE {R i} _ {_}.
Arguments nngE {R i} _ {_}.

Notation "[ 'gt0' 'of' x ]" := (ltac:(refine (gt0 x%:itv))).
Notation "[ 'lt0' 'of' x ]" := (ltac:(refine (lt0 x%:itv))).
Notation "[ 'ge0' 'of' x ]" := (ltac:(refine (ge0 x%:itv))).
Notation "[ 'le0' 'of' x ]" := (ltac:(refine (le0 x%:itv))).
Notation "[ 'cmp0' 'of' x ]" := (ltac:(refine (cmp0 x%:itv))).
Notation "[ 'neq0' 'of' x ]" := (ltac:(refine (neq0 x%:itv))).

#[export] Hint Extern 0 (is_true (0%R < _)%R) => solve [apply: gt0] : core.
#[export] Hint Extern 0 (is_true (_ < 0%R)%R) => solve [apply: lt0] : core.
#[export] Hint Extern 0 (is_true (0%R <= _)%R) => solve [apply: ge0] : core.
#[export] Hint Extern 0 (is_true (_ <= 0%R)%R) => solve [apply: le0] : core.
#[export] Hint Extern 0 (is_true (_ \is Num.real)) => solve [apply: cmp0]
  : core.
#[export] Hint Extern 0 (is_true (0%R >=< _)%R) => solve [apply: cmp0] : core.
#[export] Hint Extern 0 (is_true (_ != 0%R)) => solve [apply: neq0] : core.
#[export] Hint Extern 0 (is_true (_ < 1%R)%R) => solve [apply: lt1] : core.
#[export] Hint Extern 0 (is_true (_ <= 1%R)%R) => solve [apply: le1] : core.

Notation "x %:i01" := (widen_itv x%:itv : {i01 _}) (only parsing) : ring_scope.
Notation "x %:i01" := (@widen_itv _ _
    (@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `[0, 1]%Z) _)
  (only printing) : ring_scope.
Notation "x %:pos" := (widen_itv x%:itv : {posnum _}) (only parsing)
  : ring_scope.
Notation "x %:pos" := (@widen_itv _ _
    (@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `]0%Z, +oo[) _)
  (only printing) : ring_scope.
Notation "x %:nng" := (widen_itv x%:itv : {nonneg _}) (only parsing)
  : ring_scope.
Notation "x %:nng" := (@widen_itv _ _
    (@Itv.from _ _ _ (Phantom _ x)) (Itv.Real `[0%Z, +oo[) _)
  (only printing) : ring_scope.

Local Open Scope ring_scope.

Module Instances.

Import IntItv.

Section NumDomainInstances.
Context {R : numDomainType}.

Lemma num_spec_zero : num_spec (Itv.Real `[0, 0]) (0 : R).
Proof.
by apply/andP; split; [exact: real0 | rewrite /= in_itv/= lexx]. Qed.

Canonical zero_inum := Itv.mk num_spec_zero.

Lemma num_spec_one : num_spec (Itv.Real `[1, 1]) (1 : R).
Proof.
by apply/andP; split; [exact: real1 | rewrite /= in_itv/= lexx]. Qed.

Canonical one_inum := Itv.mk num_spec_one.

Lemma opp_boundr (x : R) b :
  (BRight (- x)%R <= num_itv_bound R (opp_bound b))%O
  = (num_itv_bound R b <= BLeft x)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp mulrNz ?lerN2 // ltrN2.
Qed.

Lemma opp_boundl (x : R) b :
  (num_itv_bound R (opp_bound b) <= BLeft (- x)%R)%O
  = (BRight x <= num_itv_bound R b)%O.
Proof.
by case: b => [[] b | []//]; rewrite /= !bnd_simp mulrNz ?lerN2 // ltrN2.
Qed.

Lemma num_spec_opp (i : Itv.t) (x : num_def R i) (r := Itv.real1 opp i) :
  num_spec r (- x%:num).
Proof.
apply: Itv.spec_real1 (Itv.P x).
case: x => x /= _ [l u] /and3P[xr lx xu].
rewrite /Itv.num_sem/= realN xr/=; apply/andP.
by rewrite opp_boundl opp_boundr.
Qed.

Canonical opp_inum (i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_opp x).

Lemma num_itv_add_boundl (x1 x2 : R) b1 b2 :
  (num_itv_bound R b1 <= BLeft x1)%O -> (num_itv_bound R b2 <= BLeft x2)%O ->
  (num_itv_bound R (add_boundl b1 b2) <= BLeft (x1 + x2)%R)%O.
Proof.
case: b1 b2 => [bb1 b1 |//] [bb2 b2 |//].
case: bb1; case: bb2; rewrite /= !bnd_simp mulrzDr_tmp.
- exact: lerD.
- exact: ler_ltD.
- exact: ltr_leD.
- exact: ltrD.
Qed.

Lemma num_itv_add_boundr (x1 x2 : R) b1 b2 :
  (BRight x1 <= num_itv_bound R b1)%O -> (BRight x2 <= num_itv_bound R b2)%O ->
  (BRight (x1 + x2)%R <= num_itv_bound R (add_boundr b1 b2))%O.
Proof.
case: b1 b2 => [bb1 b1 |//] [bb2 b2 |//].
case: bb1; case: bb2; rewrite /= !bnd_simp mulrzDr_tmp.
- exact: ltrD.
- exact: ltr_leD.
- exact: ler_ltD.
- exact: lerD.
Qed.

Lemma num_spec_add (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi)
    (r := Itv.real2 add xi yi) :
  num_spec r (x%:num + y%:num).
Proof.
apply: Itv.spec_real2 (Itv.P x) (Itv.P y).
case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=.
move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]].
rewrite /Itv.num_sem realD//=; apply/andP.
by rewrite num_itv_add_boundl ?num_itv_add_boundr.
Qed.

Canonical add_inum (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) :=
  Itv.mk (num_spec_add x y).

Variant sign_spec (l u : itv_bound int) (x : R) : signi -> Set :=
  | ISignEqZero : l = BLeft 0 -> u = BRight 0 -> x = 0 ->
                  sign_spec l u x (Known EqZero)
  | ISignNonNeg : (BLeft 0%:Z <= l)%O -> (BRight 0%:Z < u)%O -> 0 <= x ->
                  sign_spec l u x (Known NonNeg)
  | ISignNonPos : (l < BLeft 0%:Z)%O -> (u <= BRight 0%:Z)%O -> x <= 0 ->
                  sign_spec l u x (Known NonPos)
  | ISignBoth : (l < BLeft 0%:Z)%O -> (BRight 0%:Z < u)%O -> x \in Num.real ->
                sign_spec l u x Unknown.

Lemma signP (l u : itv_bound int) (x : R) :
    (num_itv_bound R l <= BLeft x)%O -> (BRight x <= num_itv_bound R u)%O ->
    x \in Num.real ->
  sign_spec l u x (sign (Interval l u)).
Proof.
move=> + + xr; rewrite /sign/sign_boundl/sign_boundr.
have [lneg|lpos|->] := ltgtP l; have [uneg|upos|->] := ltgtP u => lx xu.
- apply: ISignNonPos => //; first exact: ltW.
  have:= le_trans xu (eqbRL (le_num_itv_bound _ _) (ltW uneg)).
  by rewrite bnd_simp.
- exact: ISignBoth.
- exact: ISignNonPos.
- have:= @ltxx _ _ (num_itv_bound R l).
  rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//.
  by rewrite le_num_itv_bound (le_trans (ltW uneg)).
- apply: ISignNonNeg => //; first exact: ltW.
  have:= le_trans (eqbRL (le_num_itv_bound _ _) (ltW lpos)) lx.
  by rewrite bnd_simp.
- have:= @ltxx _ _ (num_itv_bound R l).
  rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//.
  by rewrite le_num_itv_bound ?leBRight_ltBLeft.
- have:= @ltxx _ _ (num_itv_bound R (BLeft 0%Z)).
  rewrite (le_lt_trans lx) -?leBRight_ltBLeft ?(le_trans xu)//.
  by rewrite le_num_itv_bound -?ltBRight_leBLeft.
- exact: ISignNonNeg.
- apply: ISignEqZero => //.
  by apply/le_anti/andP; move: lx xu; rewrite !bnd_simp.
Qed.

Lemma num_itv_mul_boundl b1 b2 (x1 x2 : R) :
  (BLeft 0%:Z <= b1 -> BLeft 0%:Z <= b2 ->
   num_itv_bound R b1 <= BLeft x1 ->
   num_itv_bound R b2 <= BLeft x2 ->
   num_itv_bound R (mul_boundl b1 b2) <= BLeft (x1 * x2))%O.
Proof.
move: b1 b2 => [[] b1 | []//] [[] b2 | []//] /=; rewrite 4!bnd_simp.
- set bl := match b1 with 0%Z => _ | _ => _ end.
  have -> : bl = BLeft (b1 * b2).
    rewrite {}/bl; move: b1 b2 => [[|p1]|p1] [[|p2]|p2]; congr BLeft.
    by rewrite mulr0.
  by rewrite bnd_simp intrM -2!(ler0z R); apply: ler_pM.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp// => b1p b2p sx1 sx2.
  + by rewrite mulr_ge0 ?(le_trans _ (ltW sx2)) ?ler0z.
  + rewrite intrM (@lt_le_trans _ _ (b1.+1%:~R * x2)) ?ltr_pM2l//.
    by rewrite ler_pM2r// (le_lt_trans _ sx2) ?ler0z.
- case: b2 => [[|b2] | b2]; rewrite !bnd_simp// => b1p b2p sx1 sx2.
  + by rewrite mulr_ge0 ?(le_trans _ (ltW sx1)) ?ler0z.
  + rewrite intrM (@le_lt_trans _ _ (b1%:~R * x2)) ?ler_wpM2l ?ler0z//.
    by rewrite ltr_pM2r ?(lt_le_trans _ sx2).
- by rewrite -2!(ler0z R) bnd_simp intrM; apply: ltr_pM.
Qed.

Lemma num_itv_mul_boundr b1 b2 (x1 x2 : R) :
  (0 <= x1 -> 0 <= x2 ->
   BRight x1 <= num_itv_bound R b1 ->
   BRight x2 <= num_itv_bound R b2 ->
   BRight (x1 * x2) <= num_itv_bound R (mul_boundr b1 b2))%O.
Proof.
case: b1 b2 => [b1b b1 | []] [b2b b2 | []] //= x1p x2p; last first.
- case: b2b b2 => -[[|//] | //] _ x20.
  + have:= @ltxx _ (itv_bound R) (BLeft 0%:~R).
    by rewrite (lt_le_trans _ x20).
  + have -> : x2 = 0 by apply/le_anti/andP.
    by rewrite mulr0.
- case: b1b b1 => -[[|//] |//] x10 _.
  + have:= @ltxx _ (itv_bound R) (BLeft 0%Z%:~R).
    by rewrite (lt_le_trans _ x10).
  + by have -> : x1 = 0; [apply/le_anti/andP | rewrite mul0r].
case: b1b b2b => -[]; rewrite -[intRing.mulz]/GRing.mul.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b.
  + by have:= @ltxx _ R 0; rewrite (le_lt_trans x1p x1b).
  + case: b2 x2b => [[| b2] | b2] => x2b; rewrite bnd_simp.
    * by have:= @ltxx _ R 0; rewrite (le_lt_trans x2p x2b).
    * by rewrite intrM ltr_pM.
    * have:= @ltxx _ R 0; rewrite (le_lt_trans x2p)//.
      by rewrite (lt_le_trans x2b) ?lerz0.
  + have:= @ltxx _ R 0; rewrite (le_lt_trans x1p)//.
    by rewrite (lt_le_trans x1b) ?lerz0.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b.
  + by have:= @ltxx _ R 0; rewrite (le_lt_trans x1p x1b).
  + case: b2 x2b => [[| b2] | b2] x2b; rewrite bnd_simp.
    * exact: mulr_ge0_le0.
    * by rewrite intrM (le_lt_trans (ler_wpM2l x1p x2b)) ?ltr_pM2r.
    * have:= @ltxx _ _ x2.
      by rewrite (le_lt_trans x2b) ?(lt_le_trans _ x2p) ?ltrz0.
  + have:= @ltxx _ _ x1.
    by rewrite (lt_le_trans x1b) ?(le_trans _ x1p) ?lerz0.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b.
  + case: b2 x2b => [[|b2] | b2] x2b; rewrite bnd_simp.
    * by have:= @ltxx _ _ x2; rewrite (lt_le_trans x2b).
    * by have -> : x1 = 0; [apply/le_anti/andP | rewrite mul0r].
    * have:= @ltxx _ _ x2.
      by rewrite (lt_le_trans x2b) ?(le_trans _ x2p) ?lerz0.
  + case: b2 x2b => [[|b2] | b2] x2b; rewrite bnd_simp.
    * by have:= @ltxx _ _ x2; rewrite (lt_le_trans x2b).
    * by rewrite intrM (le_lt_trans (ler_wpM2r x2p x1b)) ?ltr_pM2l.
    * have:= @ltxx _ _ x2.
      by rewrite (lt_le_trans x2b) ?(le_trans _ x2p) ?lerz0.
  + have:= @ltxx _ _ x1.
    by rewrite (le_lt_trans x1b) ?(lt_le_trans _ x1p) ?ltrz0.
- case: b1 => [[|b1] | b1]; rewrite !bnd_simp => x1b x2b.
  + by have -> : x1 = 0; [apply/le_anti/andP | rewrite mul0r].
  + case: b2 x2b => [[| b2] | b2] x2b; rewrite bnd_simp.
    * by have -> : x2 = 0; [apply/le_anti/andP | rewrite mulr0].
    * by rewrite intrM ler_pM.
    * have:= @ltxx _ _ x2.
      by rewrite (le_lt_trans x2b) ?(lt_le_trans _ x2p) ?ltrz0.
  + have:= @ltxx _ _ x1.
    by rewrite (le_lt_trans x1b) ?(lt_le_trans _ x1p) ?ltrz0.
Qed.

Lemma BRight_le_mul_boundr b1 b2 (x1 x2 : R) :
  (0 <= x1 -> x2 \in Num.real -> BRight 0%Z <= b2 ->
   BRight x1 <= num_itv_bound R b1 ->
   BRight x2 <= num_itv_bound R b2 ->
   BRight (x1 * x2) <= num_itv_bound R (mul_boundr b1 b2))%O.
Proof.
move=> x1ge0 x2r b2ge0 lex1b1 lex2b2.
have /orP[x2ge0 | x2le0] := x2r; first exact: num_itv_mul_boundr.
have lem0 : (BRight (x1 * x2) <= BRight 0%R)%O.
  by rewrite bnd_simp mulr_ge0_le0 // ltW.
apply: le_trans lem0 _.
rewrite -(mulr0z 1) BRight_le_num_itv_bound.
apply: mul_boundr_gt0 => //.
by rewrite -(@BRight_le_num_itv_bound R) (le_trans _ lex1b1).
Qed.

Lemma comparable_num_itv_bound (x y : itv_bound int) :
  (num_itv_bound R x >=< num_itv_bound R y)%O.
Proof.
by case: x y => [[] x | []] [[] y | []]//; apply/orP;
  rewrite !bnd_simp ?ler_int ?ltr_int;
  case: leP => xy; apply/orP => //; rewrite ltW ?orbT.
Qed.

Lemma num_itv_bound_min (x y : itv_bound int) :
  num_itv_bound R (Order.min x y)
  = Order.min (num_itv_bound R x) (num_itv_bound R y).
Proof.
have [lexy | ltyx] := leP x y; [by rewrite !minEle le_num_itv_bound lexy|].
rewrite minElt -if_neg -comparable_leNgt ?le_num_itv_bound ?ltW//.
exact: comparable_num_itv_bound.
Qed.

Lemma num_itv_bound_max (x y : itv_bound int) :
  num_itv_bound R (Order.max x y)
  = Order.max (num_itv_bound R x) (num_itv_bound R y).
Proof.
have [lexy | ltyx] := leP x y; [by rewrite !maxEle le_num_itv_bound lexy|].
rewrite maxElt -if_neg -comparable_leNgt ?le_num_itv_bound ?ltW//.
exact: comparable_num_itv_bound.
Qed.

Lemma num_spec_mul (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi)
    (r := Itv.real2 mul xi yi) :
  num_spec r (x%:num * y%:num).
Proof.
rewrite {}/r; case: xi yi x y => [//| [xl xu]] [//| [yl yu]].
case=> [x /=/and3P[xr /= xlx xxu]] [y /=/and3P[yr /= yly yyu]].
rewrite -/(sign (Interval xl xu)) -/(sign (Interval yl yu)).
have ns000 : @Itv.num_sem R `[0, 0] 0 by apply/and3P.
have xyr : x * y \in Num.real by exact: realM.
case: (signP xlx xxu xr) => xlb xub xs.
- by rewrite xs mul0r; case: (signP yly yyu yr).
- case: (signP yly yyu yr) => ylb yub ys.
  + by rewrite ys mulr0.
  + apply/and3P; split=> //=.
    * exact: num_itv_mul_boundl xlx yly.
    * exact: num_itv_mul_boundr xxu yyu.
  + apply/and3P; split=> //=; rewrite -[x * y]opprK -mulrN.
    * by rewrite opp_boundl num_itv_mul_boundr ?oppr_ge0// opp_boundr.
    * by rewrite opp_boundr num_itv_mul_boundl ?opp_boundl// opp_bound_ge0.
  + apply/and3P; split=> //=.
    * rewrite -[x * y]opprK -mulrN opp_boundl.
      by rewrite BRight_le_mul_boundr ?realN ?opp_boundr// opp_bound_gt0 ltW.
    * by rewrite BRight_le_mul_boundr// ltW.
- case: (signP yly yyu yr) => ylb yub ys.
  + by rewrite ys mulr0.
  + apply/and3P; split=> //=; rewrite -[x * y]opprK -mulNr.
    * rewrite opp_boundl.
      by rewrite num_itv_mul_boundr ?oppr_ge0 ?opp_boundr.
    * by rewrite opp_boundr num_itv_mul_boundl ?opp_boundl// opp_bound_ge0.
  + apply/and3P; split=> //=; rewrite -mulrNN.
    * by rewrite num_itv_mul_boundl ?opp_bound_ge0 ?opp_boundl.
    * by rewrite num_itv_mul_boundr ?oppr_ge0 ?opp_boundr.
  + apply/and3P; split=> //=; rewrite -[x * y]opprK.
    * rewrite -mulNr opp_boundl BRight_le_mul_boundr ?oppr_ge0 ?opp_boundr//.
      exact: ltW.
    * rewrite opprK -mulrNN.
      by rewrite BRight_le_mul_boundr ?opp_boundr
              ?oppr_ge0 ?realN ?opp_bound_gt0// ltW.
- case: (signP yly yyu yr) => ylb yub ys.
  + by rewrite ys mulr0.
  + apply/and3P; split=> //=; rewrite mulrC mul_boundrC.
    * rewrite -[y * x]opprK -mulrN opp_boundl.
      rewrite BRight_le_mul_boundr ?oppr_ge0 ?realN ?opp_boundr//.
      by rewrite opp_bound_gt0 ltW.
    * by rewrite BRight_le_mul_boundr// ltW.
  + apply/and3P; split=> //=; rewrite mulrC mul_boundrC.
    * rewrite -[y * x]opprK -mulNr opp_boundl.
      by rewrite BRight_le_mul_boundr ?oppr_ge0 ?opp_boundr// ltW.
    * rewrite -mulrNN BRight_le_mul_boundr ?oppr_ge0 ?realN ?opp_boundr//.
      by rewrite opp_bound_gt0 ltW.
apply/and3P; rewrite xyr/= num_itv_bound_min num_itv_bound_max.
rewrite (comparable_ge_min _ (comparable_num_itv_bound _ _)).
rewrite (comparable_le_max _ (comparable_num_itv_bound _ _)).
case: (comparable_leP xr) => [x0 | /ltW x0]; split=> //.
- apply/orP; right; rewrite -[x * y]opprK -mulrN opp_boundl.
  by rewrite BRight_le_mul_boundr ?realN ?opp_boundr// opp_bound_gt0 ltW.
- by apply/orP; right; rewrite BRight_le_mul_boundr// ltW.
- apply/orP; left; rewrite -[x * y]opprK -mulNr opp_boundl.
  by rewrite BRight_le_mul_boundr ?oppr_ge0 ?opp_boundr// ltW.
- apply/orP; left; rewrite -mulrNN.
  rewrite BRight_le_mul_boundr ?oppr_ge0 ?realN ?opp_boundr//.
  by rewrite opp_bound_gt0 ltW.
Qed.

Canonical mul_inum (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi) :=
  Itv.mk (num_spec_mul x y).

Lemma num_spec_min (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi)
    (r := Itv.real2 min xi yi) :
  num_spec r (Order.min x%:num y%:num).
Proof.
apply: Itv.spec_real2 (Itv.P x) (Itv.P y).
case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=.
move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]].
apply/and3P; split; rewrite ?min_real//= num_itv_bound_min real_BSide_min//.
- apply: (comparable_min_le_min (comparable_num_itv_bound _ _)) => //.
  exact: real_comparable.
- apply: (comparable_min_le_min _ (comparable_num_itv_bound _ _)) => //.
  exact: real_comparable.
Qed.

Lemma num_spec_max (xi yi : Itv.t) (x : num_def R xi) (y : num_def R yi)
    (r := Itv.real2 max xi yi) :
  num_spec r (Order.max x%:num y%:num).
Proof.
apply: Itv.spec_real2 (Itv.P x) (Itv.P y).
case: x y => [x /= _] [y /= _] => {xi yi r} -[lx ux] [ly uy]/=.
move=> /andP[xr /=/andP[lxx xux]] /andP[yr /=/andP[lyy yuy]].
apply/and3P; split; rewrite ?max_real//= num_itv_bound_max real_BSide_max//.
- apply: (comparable_max_le_max (comparable_num_itv_bound _ _)) => //.
  exact: real_comparable.
- apply: (comparable_max_le_max _ (comparable_num_itv_bound _ _)) => //.
  exact: real_comparable.
Qed.

Record min_max_typ d := MinMaxTyp {
  min_max_sort : porderType d;
  #[canonical=no]
  min_max_sem : interval int -> min_max_sort -> bool;
  #[canonical=no]
  min_max_minP : forall (xi yi : Itv.t) (x : Itv.def min_max_sem xi)
    (y : Itv.def min_max_sem yi),
    let: r := Itv.real2 min xi yi in
    Itv.spec min_max_sem r (Order.min x%:num y%:num);
  #[canonical=no]
  min_max_maxP : forall (xi yi : Itv.t) (x : Itv.def min_max_sem xi)
    (y : Itv.def min_max_sem yi),
    let: r := Itv.real2 max xi yi in
    Itv.spec min_max_sem r (Order.max x%:num y%:num);
}.

Canonical min_typ_inum d (t : min_max_typ d) (xi yi : Itv.t)
    (x : Itv.def (@min_max_sem d t) xi) (y : Itv.def (@min_max_sem d t) yi)
    (r := Itv.real2 min xi yi) :=
  Itv.mk (min_max_minP x y).

Canonical max_typ_inum d (t : min_max_typ d) (xi yi : Itv.t)
    (x : Itv.def (@min_max_sem d t) xi) (y : Itv.def (@min_max_sem d t) yi)
    (r := Itv.real2 min xi yi) :=
  Itv.mk (min_max_maxP x y).

Canonical num_min_max_typ := MinMaxTyp num_spec_min num_spec_max.

Lemma nat_num_spec (i : Itv.t) (n : nat) : nat_spec i n = num_spec i (n%:R : R).
Proof.
case: i => [//| [l u]]; rewrite /= /Itv.num_sem realn/=; congr (_ && _).
- by case: l => [[] l |//]; rewrite !bnd_simp ?pmulrn ?ler_int ?ltr_int.
- by case: u => [[] u |//]; rewrite !bnd_simp ?pmulrn ?ler_int ?ltr_int.
Qed.

Lemma num_spec_natmul (xi ni : Itv.t) (x : num_def R xi) (n : nat_def ni)
    (r := Itv.real2 mul xi ni) :
  num_spec r (x%:num *+ n%:num).
Proof.
have Pn : num_spec ni (n%:num%:R : R) by case: n => /= n; rewrite nat_num_spec.
by rewrite -mulr_natr -[n%:num%:R]/((Itv.Def Pn)%:num) num_spec_mul.
Qed.

Canonical natmul_inum (xi ni : Itv.t) (x : num_def R xi) (n : nat_def ni) :=
  Itv.mk (num_spec_natmul x n).

Lemma num_spec_int (i : Itv.t) (n : int) :
  num_spec i n = num_spec i (n%:~R : R).
Proof.
case: i => [//| [l u]]; rewrite /= /Itv.num_sem num_real realz/=.
congr (andb _ _).
- by case: l => [[] l |//]; rewrite !bnd_simp intz ?ler_int ?ltr_int.
- by case: u => [[] u |//]; rewrite !bnd_simp intz ?ler_int ?ltr_int.
Qed.

Lemma num_spec_intmul (xi ii : Itv.t) (x : num_def R xi) (i : num_def int ii)
    (r := Itv.real2 mul xi ii) :
  num_spec r (x%:num *~ i%:num).
Proof.
have Pi : num_spec ii (i%:num%:~R : R) by case: i => /= i; rewrite num_spec_int.
by rewrite -mulrzr -[i%:num%:~R]/((Itv.Def Pi)%:num) num_spec_mul.
Qed.

Canonical intmul_inum (xi ni : Itv.t) (x : num_def R xi) (n : num_def int ni) :=
  Itv.mk (num_spec_intmul x n).

Lemma num_itv_bound_keep_pos (op : R -> R) (x : R) b :
  {homo op : x / 0 <= x} -> {homo op : x / 0 < x} ->
  (num_itv_bound R b <= BLeft x)%O ->
  (num_itv_bound R (keep_pos_bound b) <= BLeft (op x))%O.
Proof.
case: b => [[] [] [| b] // | []//] hle hlt; rewrite !bnd_simp.
- exact: hle.
- by move=> blex; apply: le_lt_trans (hlt _ _) => //; apply: lt_le_trans blex.
- exact: hlt.
- by move=> bltx; apply: le_lt_trans (hlt _ _) => //; apply: le_lt_trans bltx.
Qed.

Lemma num_itv_bound_keep_neg (op : R -> R) (x : R) b :
  {homo op : x / x <= 0} -> {homo op : x / x < 0} ->
  (BRight x <= num_itv_bound R b)%O ->
  (BRight (op x) <= num_itv_bound R (keep_neg_bound b))%O.
Proof.
case: b => [[] [[|//] | b] | []//] hge hgt; rewrite !bnd_simp.
- exact: hgt.
- by move=> xltb; apply: hgt; apply: lt_le_trans xltb _; rewrite lerz0.
- exact: hge.
- by move=> xleb; apply: hgt; apply: le_lt_trans xleb _; rewrite ltrz0.
Qed.

Lemma num_spec_inv (i : Itv.t) (x : num_def R i) (r := Itv.real1 inv i) :
  num_spec r (x%:num^-1).
Proof.
apply: Itv.spec_real1 (Itv.P x).
case: x => x /= _ [l u] /and3P[xr /= lx xu].
rewrite /Itv.num_sem/= realV xr/=; apply/andP; split.
- apply: num_itv_bound_keep_pos lx.
  + by move=> ?; rewrite invr_ge0.
  + by move=> ?; rewrite invr_gt0.
- apply: num_itv_bound_keep_neg xu.
  + by move=> ?; rewrite invr_le0.
  + by move=> ?; rewrite invr_lt0.
Qed.

Canonical inv_inum (i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_inv x).

Lemma num_itv_bound_exprn_le1 (x : R) n l u :
  (num_itv_bound R l <= BLeft x)%O ->
  (BRight x <= num_itv_bound R u)%O ->
  (BRight (x ^+ n) <= num_itv_bound R (exprn_le1_bound l u))%O.
Proof.
case: u => [bu [[//|[|//]] |//] | []//].
rewrite /exprn_le1_bound; case: (leP _ l) => [lge1 /= |//] lx xu.
rewrite bnd_simp; case: n => [| n]; rewrite ?expr0// expr_le1//.
  by case: bu xu; rewrite bnd_simp//; apply: ltW.
case: l lge1 lx => [[] l | []//]; rewrite !bnd_simp -(@ler_int R).
- exact: le_trans.
- by move=> + /ltW; apply: le_trans.
Qed.

Lemma num_spec_exprn (i : Itv.t) (x : num_def R i) n (r := Itv.real1 exprn i) :
  num_spec r (x%:num ^+ n).
Proof.
apply: (@Itv.spec_real1 _ _ (fun x => x^+n) _ _ _ _ (Itv.P x)).
case: x => x /= _ [l u] /and3P[xr /= lx xu].
rewrite /Itv.num_sem realX//=; apply/andP; split.
- apply: (@num_itv_bound_keep_pos (fun x => x^+n)) lx.
  + exact: exprn_ge0.
  + exact: exprn_gt0.
- exact: num_itv_bound_exprn_le1 lx xu.
Qed.

Canonical exprn_inum (i : Itv.t) (x : num_def R i) n :=
  Itv.mk (num_spec_exprn x n).

Lemma num_spec_norm {V : normedZmodType R} (x : V) :
  num_spec (Itv.Real `[0, +oo[) `|x|.
Proof.
by apply/and3P; split; rewrite //= ?normr_real ?bnd_simp ?normr_ge0. Qed.

Canonical norm_inum {V : normedZmodType R} (x : V) := Itv.mk (num_spec_norm x).

End NumDomainInstances.

Section RcfInstances.
Context {R : rcfType}.

Definition sqrt_itv (i : Itv.t) : Itv.t :=
  match i with
  | Itv.Top => Itv.Real `[0%Z, +oo[
  | Itv.Real (Interval l u) =>
    match l with
    | BSide b 0%Z => Itv.Real (Interval (BSide b 0%Z) +oo)
    | BSide b (Posz (S _)) => Itv.Real `]0%Z, +oo[
    | _ => Itv.Real `[0, +oo[
    end
  end.
Arguments sqrt_itv /.

Lemma num_spec_sqrt (i : Itv.t) (x : num_def R i) (r := sqrt_itv i) :
  num_spec r (Num.sqrt x%:num).
Proof.
have: Itv.num_sem `[0%Z, +oo[ (Num.sqrt x%:num).
  by apply/and3P; rewrite /= num_real !bnd_simp sqrtr_ge0.
rewrite {}/r; case: i x => [//| [[bl [l |//] |//] u]] [x /= +] _.
case: bl l => -[| l] /and3P[xr /= bx _]; apply/and3P; split=> //=;
  move: bx; rewrite !bnd_simp ?sqrtr_ge0// sqrtr_gt0;
  [exact: lt_le_trans | exact: le_lt_trans..].
Qed.

Canonical sqrt_inum (i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_sqrt x).

End RcfInstances.

Section NumClosedFieldInstances.
Context {R : numClosedFieldType}.

Definition sqrtC_itv (i : Itv.t) : Itv.t :=
  match i with
  | Itv.Top => Itv.Top
  | Itv.Real (Interval l u) =>
    match l with
    | BSide b (Posz _) => Itv.Real (Interval (BSide b 0%Z) +oo)
    | _ => Itv.Top
    end
  end.
Arguments sqrtC_itv /.

Lemma num_spec_sqrtC (i : Itv.t) (x : num_def R i) (r := sqrtC_itv i) :
  num_spec r (sqrtC x%:num).
Proof.
rewrite {}/r; case: i x => [//| [l u] [x /=/and3P[xr /= lx xu]]].
case: l lx => [bl [l |//] |[]//] lx; apply/and3P; split=> //=.
  by apply: real_sqrtC; case: bl lx => /[!bnd_simp] [|/ltW]; apply: le_trans.
case: bl lx => /[!bnd_simp] lx.
- by rewrite sqrtC_ge0; apply: le_trans lx.
- by rewrite sqrtC_gt0; apply: le_lt_trans lx.
Qed.

Canonical sqrtC_inum (i : Itv.t) (x : num_def R i) := Itv.mk (num_spec_sqrtC x).

End NumClosedFieldInstances.

Section NatInstances.
Local Open Scope nat_scope.
Implicit Type (n : nat).

Lemma nat_spec_zero : nat_spec (Itv.Real `[0, 0]%Z) 0
Proof.
by []. Qed.

Canonical zeron_inum := Itv.mk nat_spec_zero.

Lemma nat_spec_succ n : nat_spec (Itv.Real `[1, +oo[%Z) n.+1
Proof.
by []. Qed.

Canonical succn_inum n := Itv.mk (nat_spec_succ n).

Lemma nat_spec_add (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi)
    (r := Itv.real2 add xi yi) :
  nat_spec r (x%:num + y%:num).
Proof.
have Px : num_spec xi (x%:num%:R : int).
  by case: x => /= x; rewrite (@nat_num_spec int).
have Py : num_spec yi (y%:num%:R : int).
  by case: y => /= y; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) natrD.
rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num).
exact: num_spec_add.
Qed.

Canonical addn_inum (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) :=
  Itv.mk (nat_spec_add x y).

Lemma nat_spec_double (i : Itv.t) (n : nat_def i) (r := Itv.real2 add i i) :
  nat_spec r (n%:num.*2).
Proof.
by rewrite -addnn nat_spec_add. Qed.

Canonical double_inum (i : Itv.t) (x : nat_def i) := Itv.mk (nat_spec_double x).

Lemma nat_spec_mul (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi)
    (r := Itv.real2 mul xi yi) :
  nat_spec r (x%:num * y%:num).
Proof.
have Px : num_spec xi (x%:num%:R : int).
  by case: x => /= x; rewrite (@nat_num_spec int).
have Py : num_spec yi (y%:num%:R : int).
  by case: y => /= y; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) natrM.
rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num).
exact: num_spec_mul.
Qed.

Canonical muln_inum (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) :=
  Itv.mk (nat_spec_mul x y).

Lemma nat_spec_exp (i : Itv.t) (x : nat_def i) n (r := Itv.real1 exprn i) :
  nat_spec r (x%:num ^ n).
Proof.
have Px : num_spec i (x%:num%:R : int).
  by case: x => /= x; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) natrX -[x%:num%:R]/((Itv.Def Px)%:num).
exact: num_spec_exprn.
Qed.

Canonical expn_inum (i : Itv.t) (x : nat_def i) n := Itv.mk (nat_spec_exp x n).

Lemma nat_spec_min (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi)
    (r := Itv.real2 min xi yi) :
  nat_spec r (minn x%:num y%:num).
Proof.
have Px : num_spec xi (x%:num%:R : int).
  by case: x => /= x; rewrite (@nat_num_spec int).
have Py : num_spec yi (y%:num%:R : int).
  by case: y => /= y; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) -minEnat natr_min.
rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num).
exact: num_spec_min.
Qed.

Canonical minn_inum (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) :=
  Itv.mk (nat_spec_min x y).

Lemma nat_spec_max (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi)
    (r := Itv.real2 max xi yi) :
  nat_spec r (maxn x%:num y%:num).
Proof.
have Px : num_spec xi (x%:num%:R : int).
  by case: x => /= x; rewrite (@nat_num_spec int).
have Py : num_spec yi (y%:num%:R : int).
  by case: y => /= y; rewrite (@nat_num_spec int).
rewrite (@nat_num_spec int) -maxEnat natr_max.
rewrite -[x%:num%:R]/((Itv.Def Px)%:num) -[y%:num%:R]/((Itv.Def Py)%:num).
exact: num_spec_max.
Qed.

Canonical maxn_inum (xi yi : Itv.t) (x : nat_def xi) (y : nat_def yi) :=
  Itv.mk (nat_spec_max x y).

Canonical nat_min_max_typ := MinMaxTyp nat_spec_min nat_spec_max.

End NatInstances.

Section IntInstances.

Lemma num_spec_Posz n : num_spec (Itv.Real `[0, +oo[) (Posz n).
Proof.
by apply/and3P; rewrite /= num_real !bnd_simp. Qed.

Canonical Posz_inum n := Itv.mk (num_spec_Posz n).

Lemma num_spec_Negz n : num_spec (Itv.Real `]-oo, -1]) (Negz n).
Proof.
by apply/and3P; rewrite /= num_real !bnd_simp. Qed.

Canonical Negz_inum n := Itv.mk (num_spec_Negz n).

End IntInstances.

End Instances.
Export (canonicals) Instances.

Section Morph.
Context {R : numDomainType} {i : Itv.t}.
Local Notation nR := (num_def R i).
Implicit Types x y : nR.
Local Notation num := (@num R (@Itv.num_sem R) i).

Lemma num_eq : {mono num : x y / x == y}
Proof.
by []. Qed.
Lemma num_le : {mono num : x y / (x <= y)%O}
Proof.
by []. Qed.
Lemma num_lt : {mono num : x y / (x < y)%O}
Proof.
by []. Qed.
Lemma num_min : {morph num : x y / Order.min x y}.
Proof.
by move=> x y; rewrite !minEle num_le -fun_if. Qed.
Lemma num_max : {morph num : x y / Order.max x y}.
Proof.
by move=> x y; rewrite !maxEle num_le -fun_if. Qed.

End Morph.

Section MorphNum.
Context {R : numDomainType}.

Lemma num_abs_eq0 (a : R) : (`|a|%:nng == 0%:nng) = (a == 0).
Proof.
by rewrite -normr_eq0. Qed.

End MorphNum.

Section MorphReal.
Context {R : numDomainType} {i : interval int}.
Local Notation nR := (num_def R (Itv.Real i)).
Implicit Type x y : nR.
Local Notation num := (@num R (@Itv.num_sem R) i).

Lemma num_le_max a x y :
  a <= Num.max x%:num y%:num = (a <= x%:num) || (a <= y%:num).
Proof.
by rewrite -comparable_le_max// real_comparable. Qed.

Lemma num_ge_max a x y :
  Num.max x%:num y%:num <= a = (x%:num <= a) && (y%:num <= a).
Proof.
by rewrite -comparable_ge_max// real_comparable. Qed.

Lemma num_le_min a x y :
  a <= Num.min x%:num y%:num = (a <= x%:num) && (a <= y%:num).
Proof.
by rewrite -comparable_le_min// real_comparable. Qed.

Lemma num_ge_min a x y :
  Num.min x%:num y%:num <= a = (x%:num <= a) || (y%:num <= a).
Proof.
by rewrite -comparable_ge_min// real_comparable. Qed.

Lemma num_lt_max a x y :
  a < Num.max x%:num y%:num = (a < x%:num) || (a < y%:num).
Proof.
by rewrite -comparable_lt_max// real_comparable. Qed.

Lemma num_gt_max a x y :
  Num.max x%:num y%:num < a = (x%:num < a) && (y%:num < a).
Proof.
by rewrite -comparable_gt_max// real_comparable. Qed.

Lemma num_lt_min a x y :
  a < Num.min x%:num y%:num = (a < x%:num) && (a < y%:num).
Proof.
by rewrite -comparable_lt_min// real_comparable. Qed.

Lemma num_gt_min a x y :
  Num.min x%:num y%:num < a = (x%:num < a) || (y%:num < a).
Proof.
by rewrite -comparable_gt_min// real_comparable. Qed.

End MorphReal.

Section MorphGe0.
Context {R : numDomainType}.
Local Notation nR := (num_def R (Itv.Real `[0%Z, +oo[)).
Implicit Type x y : nR.
Local Notation num := (@num R (@Itv.num_sem R) (Itv.Real `[0%Z, +oo[)).

Lemma num_abs_le a x : 0 <= a -> (`|a|%:nng <= x) = (a <= x%:num).
Proof.
by move=> a0; rewrite -num_le//= ger0_norm. Qed.

Lemma num_abs_lt a x : 0 <= a -> (`|a|%:nng < x) = (a < x%:num).
Proof.
by move=> a0; rewrite -num_lt/= ger0_norm. Qed.
End MorphGe0.

Section ItvNum.
Context (R : numDomainType).
Context (x : R) (l u : itv_bound int).
Context (x_real : x \in Num.real).
Context (l_le_x : (num_itv_bound R l <= BLeft x)%O).
Context (x_le_u : (BRight x <= num_itv_bound R u)%O).
Lemma itvnum_subdef : num_spec (Itv.Real (Interval l u)) x.
Proof.
by apply/and3P. Qed.
Definition ItvNum : num_def R (Itv.Real (Interval l u)) := Itv.mk itvnum_subdef.
End ItvNum.

Section ItvReal.
Context (R : realDomainType).
Context (x : R) (l u : itv_bound int).
Context (l_le_x : (num_itv_bound R l <= BLeft x)%O).
Context (x_le_u : (BRight x <= num_itv_bound R u)%O).
Lemma itvreal_subdef : num_spec (Itv.Real (Interval l u)) x.
Proof.
by apply/and3P; split; first exact: num_real. Qed.
Definition ItvReal : num_def R (Itv.Real (Interval l u)) :=
  Itv.mk itvreal_subdef.
End ItvReal.

Section Itv01.
Context (R : numDomainType).
Context (x : R) (x_ge0 : 0 <= x) (x_le1 : x <= 1).
Lemma itv01_subdef : num_spec (Itv.Real `[0%Z, 1%Z]) x.
Proof.
by apply/and3P; split; rewrite ?bnd_simp// ger0_real. Qed.
Definition Itv01 : num_def R (Itv.Real `[0%Z, 1%Z]) := Itv.mk itv01_subdef.
End Itv01.

Section Posnum.
Context (R : numDomainType) (x : R) (x_gt0 : 0 < x).
Lemma posnum_subdef : num_spec (Itv.Real `]0, +oo[) x.
Proof.
by apply/and3P; rewrite /= gtr0_real. Qed.
Definition PosNum : {posnum R} := Itv.mk posnum_subdef.
End Posnum.

Section Nngnum.
Context (R : numDomainType) (x : R) (x_ge0 : 0 <= x).
Lemma nngnum_subdef : num_spec (Itv.Real `[0, +oo[) x.
Proof.
by apply/and3P; rewrite /= ger0_real. Qed.
Definition NngNum : {nonneg R} := Itv.mk nngnum_subdef.
End Nngnum.

Variant posnum_spec (R : numDomainType) (x : R) :
  R -> bool -> bool -> bool -> Type :=
| IsPosnum (p : {posnum R}) : posnum_spec x (p%:num) false true true.

Lemma posnumP (R : numDomainType) (x : R) : 0 < x ->
  posnum_spec x x (x == 0) (0 <= x) (0 < x).
Proof.
move=> x_gt0; case: real_ltgt0P (x_gt0) => []; rewrite ?gtr0_real // => _ _.
by rewrite -[x]/(PosNum x_gt0)%:num; constructor.
Qed.

Variant nonneg_spec (R : numDomainType) (x : R) : R -> bool -> Type :=
| IsNonneg (p : {nonneg R}) : nonneg_spec x (p%:num) true.

Lemma nonnegP (R : numDomainType) (x : R) : 0 <= x -> nonneg_spec x x (0 <= x).
Proof.
by move=> xge0; rewrite xge0 -[x]/(NngNum xge0)%:num; constructor. Qed.

Section Test1.

Variable R : numDomainType.
Variable x : {i01 R}.

Goal 0%:i01 = 1%:i01 :> {i01 R}.
Proof.
Abort.

Goal (- x%:num)%:itv = (- x%:num)%:itv :> {itv R & `[-1, 0]}.
Proof.
Abort.

Goal (1 - x%:num)%:i01 = x.
Proof.
Abort.

End Test1.

Section Test2.

Variable R : realDomainType.
Variable x y : {i01 R}.

Goal (x%:num * y%:num)%:i01 = x%:num%:i01.
Proof.
Abort.

End Test2.

Module Test3.
Section Test3.
Variable R : realDomainType.

Definition s_of_pq (p q : {i01 R}) : {i01 R} :=
  (1 - ((1 - p%:num)%:i01%:num * (1 - q%:num)%:i01%:num))%:i01.

Lemma s_of_p0 (p : {i01 R}) : s_of_pq p 0%:i01 = p.
Proof.
by apply/val_inj; rewrite /= subr0 mulr1 subKr. Qed.

Canonical onem_itv01 (p : {i01 R}) : {i01 R} :=
  @Itv.mk _ _ _ (onem p%:num) [itv of 1 - p%:num].

Definition s_of_pq' (p q : {i01 R}) : {i01 R} :=
  (`1- (`1-(p%:num) * `1-(q%:num)))%:i01.

End Test3.
End Test3.