Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (71649 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1792 entries)
Binder Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (46193 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (266 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3623 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (91 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (14204 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (259 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (134 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (44 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1276 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (682 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3041 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (36 entries)

O

oappEmap [lemma, in mathcomp.ssreflect.ssrfun]
oapp_comp_f [lemma, in mathcomp.ssreflect.ssrfun]
oapp_comp [lemma, in mathcomp.ssreflect.ssrfun]
obindEapp [lemma, in mathcomp.ssreflect.ssrfun]
ocan_in_comp [lemma, in mathcomp.ssreflect.ssrbool]
ocan_comp [lemma, in mathcomp.ssreflect.ssrfun]
odd [definition, in mathcomp.ssreflect.ssrnat]
oddB [lemma, in mathcomp.ssreflect.ssrnat]
oddb [lemma, in mathcomp.ssreflect.ssrnat]
oddD [lemma, in mathcomp.ssreflect.ssrnat]
oddM [lemma, in mathcomp.ssreflect.ssrnat]
oddN [lemma, in mathcomp.ssreflect.ssrnat]
oddS [lemma, in mathcomp.ssreflect.ssrnat]
oddSg [lemma, in mathcomp.solvable.pgroup]
oddX [lemma, in mathcomp.ssreflect.ssrnat]
odd_lift_perm [lemma, in mathcomp.fingroup.perm]
odd_permJ [lemma, in mathcomp.fingroup.perm]
odd_permV [lemma, in mathcomp.fingroup.perm]
odd_permM [lemma, in mathcomp.fingroup.perm]
odd_perm_prod [lemma, in mathcomp.fingroup.perm]
odd_tperm [lemma, in mathcomp.fingroup.perm]
odd_mul_tperm [lemma, in mathcomp.fingroup.perm]
odd_perm1 [lemma, in mathcomp.fingroup.perm]
odd_perm [definition, in mathcomp.fingroup.perm]
odd_mod [lemma, in mathcomp.ssreflect.div]
odd_gt2 [lemma, in mathcomp.ssreflect.ssrnat]
odd_gt0 [lemma, in mathcomp.ssreflect.ssrnat]
odd_ltn [lemma, in mathcomp.ssreflect.ssrnat]
odd_geq [lemma, in mathcomp.ssreflect.ssrnat]
odd_uphalfK [lemma, in mathcomp.ssreflect.ssrnat]
odd_halfK [lemma, in mathcomp.ssreflect.ssrnat]
odd_double_half [lemma, in mathcomp.ssreflect.ssrnat]
odd_double [lemma, in mathcomp.ssreflect.ssrnat]
odd_pgroup_odd [lemma, in mathcomp.solvable.pgroup]
odd_2'nat [lemma, in mathcomp.ssreflect.prime]
odd_prime_gt2 [lemma, in mathcomp.ssreflect.prime]
odd_pgroup_rank1_cyclic [lemma, in mathcomp.solvable.extremal]
odd_not_extremal2 [lemma, in mathcomp.solvable.extremal]
odd_polyMX [lemma, in mathcomp.algebra.poly]
odd_poly_is_linear [lemma, in mathcomp.algebra.poly]
odd_polyZ [lemma, in mathcomp.algebra.poly]
odd_polyD [lemma, in mathcomp.algebra.poly]
odd_polyC [lemma, in mathcomp.algebra.poly]
odd_polyE [lemma, in mathcomp.algebra.poly]
odd_poly [definition, in mathcomp.algebra.poly]
offset:108 [binder, in mathcomp.ssreflect.div]
offset:89 [binder, in mathcomp.ssreflect.div]
ofs:1868 [binder, in mathcomp.algebra.ssralg]
of_irrK [lemma, in mathcomp.character.vcharacter]
of_irr [definition, in mathcomp.character.vcharacter]
ohead [definition, in mathcomp.ssreflect.seq]
Ohm [definition, in mathcomp.solvable.abelian]
OhmE [lemma, in mathcomp.solvable.abelian]
OhmEabelian [lemma, in mathcomp.solvable.abelian]
OhmJ [lemma, in mathcomp.solvable.abelian]
OhmPredP [lemma, in mathcomp.solvable.abelian]
OhmProps [section, in mathcomp.solvable.abelian]
OhmProps.char [section, in mathcomp.solvable.abelian]
OhmProps.char.D [variable, in mathcomp.solvable.abelian]
OhmProps.char.G [variable, in mathcomp.solvable.abelian]
OhmProps.char.gT [variable, in mathcomp.solvable.abelian]
OhmProps.char.n [variable, in mathcomp.solvable.abelian]
OhmProps.char.rT [variable, in mathcomp.solvable.abelian]
OhmProps.Generic [section, in mathcomp.solvable.abelian]
OhmProps.Generic.gT [variable, in mathcomp.solvable.abelian]
OhmProps.Generic.n [variable, in mathcomp.solvable.abelian]
OhmProps.gT [variable, in mathcomp.solvable.abelian]
OhmS [lemma, in mathcomp.solvable.abelian]
Ohm_Mho_homocyclic [lemma, in mathcomp.solvable.abelian]
Ohm_leq [lemma, in mathcomp.solvable.abelian]
Ohm_normal [lemma, in mathcomp.solvable.abelian]
Ohm_char [lemma, in mathcomp.solvable.abelian]
Ohm_mgFun [definition, in mathcomp.solvable.abelian]
Ohm_gFun [definition, in mathcomp.solvable.abelian]
Ohm_igFun [definition, in mathcomp.solvable.abelian]
Ohm_dprod [lemma, in mathcomp.solvable.abelian]
Ohm_p_cycle [lemma, in mathcomp.solvable.abelian]
Ohm_cont [lemma, in mathcomp.solvable.abelian]
Ohm_id [lemma, in mathcomp.solvable.abelian]
Ohm_sub [lemma, in mathcomp.solvable.abelian]
Ohm_group [definition, in mathcomp.solvable.abelian]
Ohm0 [lemma, in mathcomp.solvable.abelian]
Ohm1 [lemma, in mathcomp.solvable.abelian]
Ohm1Eexponent [lemma, in mathcomp.solvable.abelian]
Ohm1Eprime [lemma, in mathcomp.solvable.abelian]
Ohm1_homocyclicP [lemma, in mathcomp.solvable.abelian]
Ohm1_cyclic_pgroup_prime [lemma, in mathcomp.solvable.abelian]
Ohm1_cent_max [lemma, in mathcomp.solvable.abelian]
Ohm1_eq1 [lemma, in mathcomp.solvable.abelian]
Ohm1_id [lemma, in mathcomp.solvable.abelian]
Ohm1_abelem [lemma, in mathcomp.solvable.abelian]
Ohm1_extraspecial_odd [lemma, in mathcomp.solvable.extraspecial]
Ohm1_cent_max_normal_abelem [lemma, in mathcomp.solvable.maximal]
Ohm1_stab_Ohm1_SCN_series [lemma, in mathcomp.solvable.maximal]
oi:22 [binder, in mathcomp.ssreflect.ssrAC]
ok_proj:1885 [binder, in mathcomp.algebra.ssralg]
old_id:13 [binder, in mathcomp.ssreflect.ssreflect]
olift [definition, in mathcomp.ssreflect.ssrfun]
olift_comp [lemma, in mathcomp.ssreflect.ssrfun]
omapEapp [lemma, in mathcomp.ssreflect.ssrfun]
omapEbind [lemma, in mathcomp.ssreflect.ssrfun]
omap_comp [lemma, in mathcomp.ssreflect.ssrfun]
oneg_subdef:3 [binder, in mathcomp.fingroup.fingroup]
oneg:28 [binder, in mathcomp.fingroup.fingroup]
oneq [definition, in mathcomp.algebra.rat]
oner_neq0:1139 [binder, in mathcomp.algebra.ssralg]
oner_neq0:211 [binder, in mathcomp.algebra.ssralg]
oner_neq0:194 [binder, in mathcomp.algebra.ssralg]
oneT:118 [binder, in mathcomp.algebra.ring_quotient]
oneT:47 [binder, in mathcomp.algebra.ring_quotient]
oneT:69 [binder, in mathcomp.algebra.ring_quotient]
oneT:92 [binder, in mathcomp.algebra.ring_quotient]
one_group [definition, in mathcomp.fingroup.fingroup]
one:1133 [binder, in mathcomp.algebra.ssralg]
one:187 [binder, in mathcomp.algebra.ssralg]
one:200 [binder, in mathcomp.algebra.ssralg]
on_card_preimset [lemma, in mathcomp.ssreflect.finset]
on1lS [lemma, in mathcomp.ssreflect.ssrbool]
on1lS_in [lemma, in mathcomp.ssreflect.ssrbool]
on1lW_in [lemma, in mathcomp.ssreflect.ssrbool]
on1S [lemma, in mathcomp.ssreflect.ssrbool]
on1S_in [lemma, in mathcomp.ssreflect.ssrbool]
on1W_in [lemma, in mathcomp.ssreflect.ssrbool]
on2S [lemma, in mathcomp.ssreflect.ssrbool]
on2S_in [lemma, in mathcomp.ssreflect.ssrbool]
on2W_in [lemma, in mathcomp.ssreflect.ssrbool]
opA [abbreviation, in mathcomp.ssreflect.bigop]
opAC [abbreviation, in mathcomp.ssreflect.ssrAC]
opACl [abbreviation, in mathcomp.ssreflect.ssrAC]
opACof [abbreviation, in mathcomp.ssreflect.ssrAC]
opair_of_sumK [lemma, in mathcomp.ssreflect.choice]
opair_of_sum [definition, in mathcomp.ssreflect.choice]
opA:21 [binder, in mathcomp.ssreflect.bigop]
opA:3 [binder, in mathcomp.ssreflect.bigop]
opA:48 [binder, in mathcomp.ssreflect.bigop]
opA:68 [binder, in mathcomp.ssreflect.bigop]
opC [abbreviation, in mathcomp.ssreflect.bigop]
opC:12 [binder, in mathcomp.ssreflect.bigop]
opC:22 [binder, in mathcomp.ssreflect.bigop]
opC:69 [binder, in mathcomp.ssreflect.bigop]
opm1:36 [binder, in mathcomp.ssreflect.bigop]
opm1:50 [binder, in mathcomp.ssreflect.bigop]
opp [definition, in mathcomp.solvable.burnside_app]
oppmx [definition, in mathcomp.algebra.matrix]
oppmx_key [lemma, in mathcomp.algebra.matrix]
oppq [definition, in mathcomp.algebra.rat]
oppq_frac [lemma, in mathcomp.algebra.rat]
oppq_def [definition, in mathcomp.algebra.rat]
oppq_subdef [definition, in mathcomp.algebra.rat]
oppr_itvcc [lemma, in mathcomp.algebra.interval]
oppr_itvoc [lemma, in mathcomp.algebra.interval]
oppr_itvco [lemma, in mathcomp.algebra.interval]
oppr_itvoo [lemma, in mathcomp.algebra.interval]
oppr_itv [lemma, in mathcomp.algebra.interval]
oppT:116 [binder, in mathcomp.algebra.ring_quotient]
oppT:25 [binder, in mathcomp.algebra.ring_quotient]
oppT:4 [binder, in mathcomp.algebra.ring_quotient]
oppT:45 [binder, in mathcomp.algebra.ring_quotient]
oppT:67 [binder, in mathcomp.algebra.ring_quotient]
oppT:90 [binder, in mathcomp.algebra.ring_quotient]
oppz_add [definition, in mathcomp.algebra.ssrint]
opp_block_mx [lemma, in mathcomp.algebra.matrix]
opp_col_mx [lemma, in mathcomp.algebra.matrix]
opp_row_mx [lemma, in mathcomp.algebra.matrix]
opp_isometry [lemma, in mathcomp.character.classfun]
opp_pair [definition, in mathcomp.algebra.ssralg]
opp_lfunE [lemma, in mathcomp.algebra.vector]
opp_lfun [definition, in mathcomp.algebra.vector]
opp_poly_unlockable [definition, in mathcomp.algebra.poly]
opp_poly [definition, in mathcomp.algebra.poly]
opp_poly_key [lemma, in mathcomp.algebra.poly]
opp_poly_def [definition, in mathcomp.algebra.poly]
opp:198 [binder, in mathcomp.algebra.ssralg]
opp:3 [binder, in mathcomp.algebra.ssralg]
OpsTheory [section, in mathcomp.ssreflect.fintype]
OpsTheory.EnumPick [section, in mathcomp.ssreflect.fintype]
OpsTheory.EnumPick.P [variable, in mathcomp.ssreflect.fintype]
OpsTheory.T [variable, in mathcomp.ssreflect.fintype]
OptionEqType [section, in mathcomp.ssreflect.eqtype]
OptionEqType.T [variable, in mathcomp.ssreflect.eqtype]
OptionFinType [section, in mathcomp.ssreflect.fintype]
OptionFinType.T [variable, in mathcomp.ssreflect.fintype]
option_enumP [lemma, in mathcomp.ssreflect.fintype]
option_enum [definition, in mathcomp.ssreflect.fintype]
opt_eqP [lemma, in mathcomp.ssreflect.eqtype]
opt_eq [definition, in mathcomp.ssreflect.eqtype]
op_Wedderburn_id [lemma, in mathcomp.character.mxrepresentation]
op_additive_subproof:922 [binder, in mathcomp.algebra.ssralg]
op':475 [binder, in mathcomp.ssreflect.ssrnat]
op1m:35 [binder, in mathcomp.ssreflect.bigop]
op1m:49 [binder, in mathcomp.ssreflect.bigop]
op1m:70 [binder, in mathcomp.ssreflect.bigop]
op:11 [binder, in mathcomp.ssreflect.bigop]
op:16 [binder, in mathcomp.ssreflect.bigop]
op:168 [binder, in mathcomp.character.inertia]
op:178 [binder, in mathcomp.algebra.ssrnum]
op:2 [binder, in mathcomp.ssreflect.bigop]
op:20 [binder, in mathcomp.ssreflect.bigop]
op:2505 [binder, in mathcomp.ssreflect.bigop]
op:26 [binder, in mathcomp.ssreflect.bigop]
op:28 [binder, in mathcomp.algebra.zmodp]
op:299 [binder, in mathcomp.ssreflect.bigop]
op:34 [binder, in mathcomp.ssreflect.bigop]
op:35 [binder, in mathcomp.algebra.zmodp]
op:42 [binder, in mathcomp.ssreflect.bigop]
op:441 [binder, in mathcomp.ssreflect.ssrnat]
op:462 [binder, in mathcomp.ssreflect.ssrnat]
op:47 [binder, in mathcomp.ssreflect.bigop]
op:474 [binder, in mathcomp.ssreflect.ssrnat]
op:474 [binder, in mathcomp.character.character]
op:56 [binder, in mathcomp.ssreflect.bigop]
op:62 [binder, in mathcomp.ssreflect.bigop]
op:67 [binder, in mathcomp.ssreflect.bigop]
op:7 [binder, in mathcomp.ssreflect.bigop]
op:720 [binder, in mathcomp.character.classfun]
op:76 [binder, in mathcomp.ssreflect.bigop]
op:825 [binder, in mathcomp.ssreflect.order]
op:838 [binder, in mathcomp.ssreflect.order]
op:919 [binder, in mathcomp.algebra.ssralg]
op:928 [binder, in mathcomp.algebra.ssralg]
op:95 [binder, in mathcomp.ssreflect.bigop]
op:988 [binder, in mathcomp.ssreflect.bigop]
op:99 [binder, in mathcomp.ssreflect.ssrAC]
orbit [definition, in mathcomp.fingroup.action]
orbit [definition, in mathcomp.ssreflect.fingraph]
Orbit [section, in mathcomp.ssreflect.fingraph]
orbitE [lemma, in mathcomp.fingroup.action]
orbitE [lemma, in mathcomp.ssreflect.fingraph]
orbitJ [lemma, in mathcomp.fingroup.action]
orbitJs [lemma, in mathcomp.fingroup.action]
orbitP [lemma, in mathcomp.fingroup.action]
orbitPcycle [lemma, in mathcomp.ssreflect.fingraph]
orbitR [lemma, in mathcomp.fingroup.action]
orbitRs [lemma, in mathcomp.fingroup.action]
orbit_morphim_actperm [lemma, in mathcomp.fingroup.action]
orbit_conjsg [lemma, in mathcomp.fingroup.action]
orbit_rcoset [lemma, in mathcomp.fingroup.action]
orbit_lcoset [lemma, in mathcomp.fingroup.action]
orbit_inv [lemma, in mathcomp.fingroup.action]
orbit_eq_mem [lemma, in mathcomp.fingroup.action]
orbit_actr [lemma, in mathcomp.fingroup.action]
orbit_act [lemma, in mathcomp.fingroup.action]
orbit_transl [lemma, in mathcomp.fingroup.action]
orbit_eqP [lemma, in mathcomp.fingroup.action]
orbit_trans [lemma, in mathcomp.fingroup.action]
orbit_sym [lemma, in mathcomp.fingroup.action]
orbit_stabilizer [lemma, in mathcomp.fingroup.action]
orbit_transversalP [lemma, in mathcomp.fingroup.action]
orbit_transversal [definition, in mathcomp.fingroup.action]
orbit_partition [lemma, in mathcomp.fingroup.action]
orbit_conjsg_in [lemma, in mathcomp.fingroup.action]
orbit_rcoset_in [lemma, in mathcomp.fingroup.action]
orbit_lcoset_in [lemma, in mathcomp.fingroup.action]
orbit_inv_in [lemma, in mathcomp.fingroup.action]
orbit_actr_in [lemma, in mathcomp.fingroup.action]
orbit_act_in [lemma, in mathcomp.fingroup.action]
orbit_in_transl [lemma, in mathcomp.fingroup.action]
orbit_in_eqP [lemma, in mathcomp.fingroup.action]
orbit_in_trans [lemma, in mathcomp.fingroup.action]
orbit_in_sym [lemma, in mathcomp.fingroup.action]
orbit_rel [abbreviation, in mathcomp.fingroup.action]
orbit_refl [lemma, in mathcomp.fingroup.action]
orbit_id [lemma, in mathcomp.ssreflect.fingraph]
orbit_rot_cycle [lemma, in mathcomp.ssreflect.fingraph]
orbit_uniq [lemma, in mathcomp.ssreflect.fingraph]
Orbit.f [variable, in mathcomp.ssreflect.fingraph]
Orbit.fconnect [section, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_undup.homo_f [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_undup.f_inj [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_undup.p_undup_uniq [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_undup.f_p [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_undup.p [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_undup [section, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_cons.f_p [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_cons.p [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_cons.x [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_cons [section, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p.homo_f [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p.f_inj [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p.mem_cycle.p_x [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p.mem_cycle.x [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p.mem_cycle.Up [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p.mem_cycle [section, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p.f_p [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p.p [variable, in mathcomp.ssreflect.fingraph]
Orbit.fcycle_p [section, in mathcomp.ssreflect.fingraph]
Orbit.orbit_inj.symf [variable, in mathcomp.ssreflect.fingraph]
Orbit.orbit_inj.injf [variable, in mathcomp.ssreflect.fingraph]
Orbit.orbit_inj [section, in mathcomp.ssreflect.fingraph]
Orbit.orbit_in.injf [variable, in mathcomp.ssreflect.fingraph]
Orbit.orbit_in.f_in [variable, in mathcomp.ssreflect.fingraph]
Orbit.orbit_in.S [variable, in mathcomp.ssreflect.fingraph]
Orbit.orbit_in [section, in mathcomp.ssreflect.fingraph]
Orbit.T [variable, in mathcomp.ssreflect.fingraph]
orbit1P [lemma, in mathcomp.fingroup.action]
order [definition, in mathcomp.fingroup.fingroup]
Order [module, in mathcomp.ssreflect.order]
order [definition, in mathcomp.ssreflect.fingraph]
order [library]
orderC [definition, in mathcomp.field.algnum]
orderE [lemma, in mathcomp.fingroup.fingroup]
orderJ [lemma, in mathcomp.fingroup.fingroup]
orderM [lemma, in mathcomp.solvable.cyclic]
orderPcycle [lemma, in mathcomp.ssreflect.fingraph]
orderSpred [lemma, in mathcomp.ssreflect.fingraph]
OrderStepCycle [constructor, in mathcomp.ssreflect.fingraph]
OrderStepNoCycle [constructor, in mathcomp.ssreflect.fingraph]
orderV [lemma, in mathcomp.fingroup.fingroup]
orderXdiv [lemma, in mathcomp.solvable.cyclic]
orderXdvd [lemma, in mathcomp.solvable.cyclic]
orderXexp [lemma, in mathcomp.solvable.cyclic]
orderXgcd [lemma, in mathcomp.solvable.cyclic]
orderXpfactor [lemma, in mathcomp.solvable.cyclic]
orderXpnat [lemma, in mathcomp.solvable.cyclic]
orderXprime [lemma, in mathcomp.solvable.cyclic]
order_Zp1 [lemma, in mathcomp.algebra.zmodp]
order_gt1 [lemma, in mathcomp.fingroup.fingroup]
order_eq1 [lemma, in mathcomp.fingroup.fingroup]
order_gt0 [lemma, in mathcomp.fingroup.fingroup]
order_constt [lemma, in mathcomp.solvable.pgroup]
order_path_min [lemma, in mathcomp.ssreflect.path]
order_path_min_in [lemma, in mathcomp.ssreflect.path]
order_primeChar [lemma, in mathcomp.field.finfield]
order_injm [lemma, in mathcomp.fingroup.morphism]
order_set_finv [lemma, in mathcomp.ssreflect.fingraph]
order_finv [lemma, in mathcomp.ssreflect.fingraph]
order_id [lemma, in mathcomp.ssreflect.fingraph]
order_spec_cycle [inductive, in mathcomp.ssreflect.fingraph]
order_id_cycle [lemma, in mathcomp.ssreflect.fingraph]
order_cycle [lemma, in mathcomp.ssreflect.fingraph]
order_le_cycle [lemma, in mathcomp.ssreflect.fingraph]
order_set [definition, in mathcomp.ssreflect.fingraph]
order_gt0 [lemma, in mathcomp.ssreflect.fingraph]
order_inj_cyclic [lemma, in mathcomp.solvable.cyclic]
order_dvdG [lemma, in mathcomp.solvable.cyclic]
order_inf [lemma, in mathcomp.solvable.cyclic]
order_dvdn [lemma, in mathcomp.solvable.cyclic]
Order.arg_max [definition, in mathcomp.ssreflect.order]
Order.arg_min [definition, in mathcomp.ssreflect.order]
Order.BDistrLatticeExports [module, in mathcomp.ssreflect.order]
[ bDistrLatticeType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.BDistrLatticeTheory [module, in mathcomp.ssreflect.order]
Order.BDistrLatticeTheory.BDistrLatticeTheory [section, in mathcomp.ssreflect.order]
0 [notation, in mathcomp.ssreflect.order]
Order.BDistrLatticeTheory.disjoint_lexUr [lemma, in mathcomp.ssreflect.order]
Order.BDistrLatticeTheory.disjoint_lexUl [lemma, in mathcomp.ssreflect.order]
Order.BDistrLatticeTheory.joins_disjoint [lemma, in mathcomp.ssreflect.order]
Order.BDistrLatticeTheory.leU2E [lemma, in mathcomp.ssreflect.order]
Order.BDistrLatticeTheory.leU2l_le [lemma, in mathcomp.ssreflect.order]
Order.BDistrLatticeTheory.leU2r_le [lemma, in mathcomp.ssreflect.order]
Order.BLatticeExports [module, in mathcomp.ssreflect.order]
[ bLatticeType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ bLatticeType of _ for _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.BLatticeSyntax [module, in mathcomp.ssreflect.order]
\join_ ( _ in _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ in _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ <= _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ <= _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ : _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ : _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ _ _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ <- _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join_ ( _ <- _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
0 (order_scope) [notation, in mathcomp.ssreflect.order]
Order.BLatticeTheory [module, in mathcomp.ssreflect.order]
Order.BLatticeTheory.BLatticeTheory [section, in mathcomp.ssreflect.order]
0 [notation, in mathcomp.ssreflect.order]
Order.BLatticeTheory.Eq0NotPOs [constructor, in mathcomp.ssreflect.order]
Order.BLatticeTheory.eq0_xor_gt0 [inductive, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joinsP [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joinsP_seq [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joins_seq [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joins_setU [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joins_le [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joins_min [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joins_sup [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joins_min_seq [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joins_sup_seq [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.joinx0 [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.join_seq [abbreviation, in mathcomp.ssreflect.order]
Order.BLatticeTheory.join_min [abbreviation, in mathcomp.ssreflect.order]
Order.BLatticeTheory.join_sup [abbreviation, in mathcomp.ssreflect.order]
Order.BLatticeTheory.join_min_seq [abbreviation, in mathcomp.ssreflect.order]
Order.BLatticeTheory.join_sup_seq [abbreviation, in mathcomp.ssreflect.order]
Order.BLatticeTheory.join_eq0 [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.join0x [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.lex0 [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.le_joins [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.le0x [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.ltx0 [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.lt0x [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.meetx0 [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.meet0x [lemma, in mathcomp.ssreflect.order]
Order.BLatticeTheory.POsNotEq0 [constructor, in mathcomp.ssreflect.order]
Order.BLatticeTheory.posxP [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder [module, in mathcomp.ssreflect.order]
Order.BoolOrder.andbE [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.andEbool [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.anti [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.BoolOrder [section, in mathcomp.ssreflect.order]
Order.BoolOrder.bool_display [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.complEbool [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.Exports [module, in mathcomp.ssreflect.order]
Order.BoolOrder.Exports.andEbool [definition, in mathcomp.ssreflect.order]
Order.BoolOrder.Exports.complEbool [definition, in mathcomp.ssreflect.order]
Order.BoolOrder.Exports.leEbool [definition, in mathcomp.ssreflect.order]
Order.BoolOrder.Exports.ltEbool [definition, in mathcomp.ssreflect.order]
Order.BoolOrder.Exports.orEbool [definition, in mathcomp.ssreflect.order]
Order.BoolOrder.Exports.subEbool [definition, in mathcomp.ssreflect.order]
Order.BoolOrder.joinIB [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.leEbool [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.ltEbool [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.ltn_def [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.orbE [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.orEbool [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.sub [definition, in mathcomp.ssreflect.order]
Order.BoolOrder.subEbool [lemma, in mathcomp.ssreflect.order]
Order.BoolOrder.subKI [lemma, in mathcomp.ssreflect.order]
Order.Builders_365.meetUl [lemma, in mathcomp.ssreflect.order]
Order.Builders_361.meet_eql [lemma, in mathcomp.ssreflect.order]
Order.Builders_361.meetKI [lemma, in mathcomp.ssreflect.order]
Order.Builders_361.joinKI [lemma, in mathcomp.ssreflect.order]
Order.Builders_361.joinA [lemma, in mathcomp.ssreflect.order]
Order.Builders_361.meetA [lemma, in mathcomp.ssreflect.order]
Order.Builders_361.joinC [lemma, in mathcomp.ssreflect.order]
Order.Builders_361.meetC [lemma, in mathcomp.ssreflect.order]
Order.Builders_361.join [definition, in mathcomp.ssreflect.order]
Order.Builders_361.meet [definition, in mathcomp.ssreflect.order]
Order.Builders_332.totalT [lemma, in mathcomp.ssreflect.order]
Order.Builders_325.le_total [lemma, in mathcomp.ssreflect.order]
Order.Builders_325.le_trans [lemma, in mathcomp.ssreflect.order]
Order.Builders_325.le_anti [lemma, in mathcomp.ssreflect.order]
Order.Builders_325.join_def_le [lemma, in mathcomp.ssreflect.order]
Order.Builders_325.meet_def_le [lemma, in mathcomp.ssreflect.order]
Order.Builders_325.lt_def [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.le_def [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.meetxx [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.meetUl [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.meetKU [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.joinKI [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.joinA [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.meetA [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.joinC [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.meetC [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.joinE [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.meetE [lemma, in mathcomp.ssreflect.order]
Order.Builders_302.T' [definition, in mathcomp.ssreflect.order]
Order.Builders_302.Builders_302.GeneratedOrder [section, in mathcomp.ssreflect.order]
Order.Builders_302.le_refl [lemma, in mathcomp.ssreflect.order]
Order.Builders_295.le_trans [lemma, in mathcomp.ssreflect.order]
Order.Builders_295.le_anti [lemma, in mathcomp.ssreflect.order]
Order.Builders_295.le_refl [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.leEmeet [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.meetKU [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.joinKI [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.joinA [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.meetA [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.joinC [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.meetC [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.join [definition, in mathcomp.ssreflect.order]
Order.Builders_288.meet [definition, in mathcomp.ssreflect.order]
Order.Builders_288.leP [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.ltgtP [lemma, in mathcomp.ssreflect.order]
Order.Builders_288.Builders_288.comparableT [variable, in mathcomp.ssreflect.order]
Order.Builders_282.meetUl [lemma, in mathcomp.ssreflect.order]
Order.Builders_282.Builders_282.comparableT [variable, in mathcomp.ssreflect.order]
Order.Builders_12.Builders_12.lt_def [variable, in mathcomp.ssreflect.order]
Order.Builders_12.Builders_12.le_trans [variable, in mathcomp.ssreflect.order]
Order.Builders_12.Builders_12.le_anti [variable, in mathcomp.ssreflect.order]
Order.Builders_12.Builders_12.le_refl [variable, in mathcomp.ssreflect.order]
Order.CancelPartial [module, in mathcomp.ssreflect.order]
Order.CancelPartial.anti [lemma, in mathcomp.ssreflect.order]
Order.CancelPartial.Can [definition, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial [section, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial.disp [variable, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial.disp' [variable, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial.f [variable, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial.PCan [section, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial.PCan.f_can [variable, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial.PCan.f' [variable, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial.T [variable, in mathcomp.ssreflect.order]
Order.CancelPartial.CancelPartial.T' [variable, in mathcomp.ssreflect.order]
Order.CancelPartial.le [definition, in mathcomp.ssreflect.order]
Order.CancelPartial.lt [definition, in mathcomp.ssreflect.order]
Order.CancelPartial.lt_def [lemma, in mathcomp.ssreflect.order]
Order.CancelPartial.Pcan [definition, in mathcomp.ssreflect.order]
Order.CancelPartial.refl [lemma, in mathcomp.ssreflect.order]
Order.CancelPartial.trans [lemma, in mathcomp.ssreflect.order]
Order.CancelTotal [section, in mathcomp.ssreflect.order]
Order.CancelTotal.Can [section, in mathcomp.ssreflect.order]
Order.CancelTotal.Can.f_can [variable, in mathcomp.ssreflect.order]
Order.CancelTotal.Can.f' [variable, in mathcomp.ssreflect.order]
Order.CancelTotal.disp [variable, in mathcomp.ssreflect.order]
Order.CancelTotal.disp' [variable, in mathcomp.ssreflect.order]
Order.CancelTotal.f [variable, in mathcomp.ssreflect.order]
Order.CancelTotal.PCan [section, in mathcomp.ssreflect.order]
Order.CancelTotal.PCan.f_can [variable, in mathcomp.ssreflect.order]
Order.CancelTotal.PCan.f' [variable, in mathcomp.ssreflect.order]
Order.CancelTotal.T [variable, in mathcomp.ssreflect.order]
Order.CancelTotal.T' [variable, in mathcomp.ssreflect.order]
Order.CanExports [module, in mathcomp.ssreflect.order]
Order.CanExports.CanOrderMixin [abbreviation, in mathcomp.ssreflect.order]
Order.CanExports.CanPOrderMixin [abbreviation, in mathcomp.ssreflect.order]
Order.CanExports.IsoDistrLatticeMixin [abbreviation, in mathcomp.ssreflect.order]
Order.CanExports.IsoLatticeMixin [abbreviation, in mathcomp.ssreflect.order]
Order.CanExports.MonoTotalMixin [abbreviation, in mathcomp.ssreflect.order]
Order.CanExports.PcanOrderMixin [abbreviation, in mathcomp.ssreflect.order]
Order.CanExports.PcanPOrderMixin [abbreviation, in mathcomp.ssreflect.order]
Order.CanPartial [abbreviation, in mathcomp.ssreflect.order]
Order.CanTotal [definition, in mathcomp.ssreflect.order]
Order.cardE [lemma, in mathcomp.ssreflect.order]
Order.cardT [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeExports [module, in mathcomp.ssreflect.order]
Order.CBDistrLatticeSyntax [module, in mathcomp.ssreflect.order]
_ `\` _ (order_scope) [notation, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory [module, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.CBDistrLatticeTheory [section, in mathcomp.ssreflect.order]
0 [notation, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.disj_subr [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.disj_subl [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.disj_leC [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.disj_le [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.eq_sub [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.joinBI [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.joinBIC [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.joinBK [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.joinBKC [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.joinBx [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.joinIB [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.joinIBC [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.joinxB [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.leBKU [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.leBl [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.leBLR [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.leBr [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.leBRL [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.leBUK [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.leBx [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.leB2 [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.lt0B [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.meetBI [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.meetBx [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.meetIB [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.meetxB [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.meet_eq0E_sub [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subBx [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subIK [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subIx [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subKI [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subKU [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subUK [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subUx [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subxB [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subxI [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subxU [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subxx [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.subx0 [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.sub_eq0 [lemma, in mathcomp.ssreflect.order]
Order.CBDistrLatticeTheory.sub0x [lemma, in mathcomp.ssreflect.order]
Order.comparable [definition, in mathcomp.ssreflect.order]
Order.compare [inductive, in mathcomp.ssreflect.order]
Order.CompareEq [constructor, in mathcomp.ssreflect.order]
Order.CompareGt [constructor, in mathcomp.ssreflect.order]
Order.comparel [inductive, in mathcomp.ssreflect.order]
Order.ComparelEq [constructor, in mathcomp.ssreflect.order]
Order.ComparelGt [constructor, in mathcomp.ssreflect.order]
Order.ComparelLt [constructor, in mathcomp.ssreflect.order]
Order.CompareLt [constructor, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeExports [module, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeSyntax [module, in mathcomp.ssreflect.order]
~` _ (order_scope) [notation, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory [module, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.complB [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.complE [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.complI [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.complK [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.complU [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.compl_meets [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.compl_joins [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.compl_inj [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.compl0 [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.compl1 [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.CTBDistrLatticeTheory [section, in mathcomp.ssreflect.order]
0 [notation, in mathcomp.ssreflect.order]
1 [notation, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.disj_leC [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.joinCx [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.joinxC [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.leBC [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.leC [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.leCx [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.lexC [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.meetCx [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.meetxC [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.subE [lemma, in mathcomp.ssreflect.order]
Order.CTBDistrLatticeTheory.sub1x [lemma, in mathcomp.ssreflect.order]
Order.CTheory [module, in mathcomp.ssreflect.order]
Order.DefaultProdLexiOrder [module, in mathcomp.ssreflect.order]
Order.DefaultProdLexiOrder.DefaultProdLexiOrder [section, in mathcomp.ssreflect.order]
Order.DefaultProdOrder [module, in mathcomp.ssreflect.order]
Order.DefaultProdOrder.DefaultProdOrder [section, in mathcomp.ssreflect.order]
Order.DefaultSeqLexiOrder [module, in mathcomp.ssreflect.order]
Order.DefaultSeqLexiOrder.DefaultSeqLexiOrder [section, in mathcomp.ssreflect.order]
Order.DefaultSeqProdOrder [module, in mathcomp.ssreflect.order]
Order.DefaultSeqProdOrder.DefaultSeqProdOrder [section, in mathcomp.ssreflect.order]
Order.DefaultSetSubsetOrder [module, in mathcomp.ssreflect.order]
Order.DefaultSetSubsetOrder.DefaultSetSubsetOrder [section, in mathcomp.ssreflect.order]
Order.DefaultTupleLexiOrder [module, in mathcomp.ssreflect.order]
Order.DefaultTupleLexiOrder.DefaultTupleLexiOrder [section, in mathcomp.ssreflect.order]
Order.DefaultTupleProdOrder [module, in mathcomp.ssreflect.order]
Order.DefaultTupleProdOrder.DefaultTupleProdOrder [section, in mathcomp.ssreflect.order]
Order.DistrLatticeExports [module, in mathcomp.ssreflect.order]
Order.DistrLatticeTheory [module, in mathcomp.ssreflect.order]
Order.DistrLatticeTheory.DistrLatticeTheory [section, in mathcomp.ssreflect.order]
Order.DistrLatticeTheory.DistrLatticeTheory.L [variable, in mathcomp.ssreflect.order]
Order.DistrLatticeTheory.joinIl [lemma, in mathcomp.ssreflect.order]
Order.DistrLatticeTheory.joinIr [lemma, in mathcomp.ssreflect.order]
Order.DistrLatticeTheory.meetUl [lemma, in mathcomp.ssreflect.order]
Order.DistrLatticeTheory.meetUr [lemma, in mathcomp.ssreflect.order]
Order.dual [definition, in mathcomp.ssreflect.order]
Order.DualLattice [module, in mathcomp.ssreflect.order]
Order.DualLattice.DualLattice [section, in mathcomp.ssreflect.order]
Order.DualLattice.DualLattice.L [variable, in mathcomp.ssreflect.order]
Order.DualLattice.dual_leEmeet [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.joinA [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.joinC [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.joinEdual [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.joinIK [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.joinIKC [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.joinKI [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.joinKIC [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.leEjoin [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.leEmeet [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.meetA [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.meetC [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.meetEdual [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.meetKU [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.meetKUC [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.meetUK [lemma, in mathcomp.ssreflect.order]
Order.DualLattice.meetUKC [lemma, in mathcomp.ssreflect.order]
Order.DualOrder [module, in mathcomp.ssreflect.order]
Order.DualOrder.DualOrder [section, in mathcomp.ssreflect.order]
Order.DualOrder.DualOrderTheory [section, in mathcomp.ssreflect.order]
Order.DualOrder.DualOrder.O [variable, in mathcomp.ssreflect.order]
Order.DualOrder.dual_total [lemma, in mathcomp.ssreflect.order]
Order.DualOrder.nth_count_eq [lemma, in mathcomp.ssreflect.order]
Order.DualOrder.nth_count_gt [lemma, in mathcomp.ssreflect.order]
Order.DualOrder.nth_count_ge [lemma, in mathcomp.ssreflect.order]
Order.DualOrder.sorted_filter_ge [lemma, in mathcomp.ssreflect.order]
Order.DualOrder.sorted_filter_gt [lemma, in mathcomp.ssreflect.order]
Order.DualPOrder [module, in mathcomp.ssreflect.order]
Order.DualPOrder.DualPOrder [section, in mathcomp.ssreflect.order]
Order.DualPOrder.DualPOrder.T [variable, in mathcomp.ssreflect.order]
Order.DualPOrder.dual_le_anti [lemma, in mathcomp.ssreflect.order]
Order.DualPOrder.dual_lt_def [lemma, in mathcomp.ssreflect.order]
Order.DualPOrder.leEdual [lemma, in mathcomp.ssreflect.order]
Order.DualPOrder.ltEdual [lemma, in mathcomp.ssreflect.order]
Order.DualSyntax [module, in mathcomp.ssreflect.order]
Order.DualSyntax.join [abbreviation, in mathcomp.ssreflect.order]
Order.DualSyntax.meet [abbreviation, in mathcomp.ssreflect.order]
><^d%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=<^d%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<?<=^d%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<?=^d%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>^d%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<^d%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=^d%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<=^d%O (fun_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ in _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ in _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ <= _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ <= _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ : _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ : _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ _ _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ <- _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^d_ ( _ <- _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ in _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ in _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ <= _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ <= _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ : _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ : _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ _ _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ <- _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^d_ ( _ <- _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
1^d (order_scope) [notation, in mathcomp.ssreflect.order]
0^d (order_scope) [notation, in mathcomp.ssreflect.order]
_ `|^d` _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ `&^d` _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ ><^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
><^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
><^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=<^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=<^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=<^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^d _ ?<= if _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^d _ ?<= if _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^d _ ?= iff _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^d _ ?= iff _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^d _ <^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^d _ <^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^d _ <=^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^d _ <=^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
>^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
<^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
<^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
<=^d _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
<=^d _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ ^d (type_scope) [notation, in mathcomp.ssreflect.order]
0 [notation, in mathcomp.ssreflect.order]
1 [notation, in mathcomp.ssreflect.order]
Order.DualTBDistrLattice [module, in mathcomp.ssreflect.order]
Order.DualTBDistrLattice.DualTBDistrLattice [section, in mathcomp.ssreflect.order]
Order.DualTBLattice [module, in mathcomp.ssreflect.order]
Order.DualTBLattice.botEdual [lemma, in mathcomp.ssreflect.order]
Order.DualTBLattice.DualTBLattice [section, in mathcomp.ssreflect.order]
Order.DualTBLattice.lex1 [lemma, in mathcomp.ssreflect.order]
Order.DualTBLattice.topEdual [lemma, in mathcomp.ssreflect.order]
Order.dual_top [abbreviation, in mathcomp.ssreflect.order]
Order.dual_bottom [abbreviation, in mathcomp.ssreflect.order]
Order.dual_join [abbreviation, in mathcomp.ssreflect.order]
Order.dual_meet [abbreviation, in mathcomp.ssreflect.order]
Order.dual_min [abbreviation, in mathcomp.ssreflect.order]
Order.dual_max [abbreviation, in mathcomp.ssreflect.order]
Order.dual_lteif [abbreviation, in mathcomp.ssreflect.order]
Order.dual_leif [abbreviation, in mathcomp.ssreflect.order]
Order.dual_gt [abbreviation, in mathcomp.ssreflect.order]
Order.dual_ge [abbreviation, in mathcomp.ssreflect.order]
Order.dual_comparable [abbreviation, in mathcomp.ssreflect.order]
Order.dual_lt [abbreviation, in mathcomp.ssreflect.order]
Order.dual_le [abbreviation, in mathcomp.ssreflect.order]
Order.dual_display [definition, in mathcomp.ssreflect.order]
Order.DvdSyntax [module, in mathcomp.ssreflect.order]
Order.DvdSyntax.dvd [abbreviation, in mathcomp.ssreflect.order]
Order.DvdSyntax.gcd [abbreviation, in mathcomp.ssreflect.order]
Order.DvdSyntax.lcm [abbreviation, in mathcomp.ssreflect.order]
Order.DvdSyntax.nat0 [abbreviation, in mathcomp.ssreflect.order]
Order.DvdSyntax.nat1 [abbreviation, in mathcomp.ssreflect.order]
Order.DvdSyntax.sdvd [abbreviation, in mathcomp.ssreflect.order]
@ lcm _ (fun_scope) [notation, in mathcomp.ssreflect.order]
@ gcd _ (fun_scope) [notation, in mathcomp.ssreflect.order]
@ sdvd _ (fun_scope) [notation, in mathcomp.ssreflect.order]
@ dvd _ (fun_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ in _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ in _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ <= _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ <= _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ : _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ : _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ _ _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ <- _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\lcm_ ( _ <- _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ in _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ in _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ <= _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ <= _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ : _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ : _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ _ _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ <- _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\gcd_ ( _ <- _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ %<| _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ %| _ (order_scope) [notation, in mathcomp.ssreflect.order]
Order.dvd_display [lemma, in mathcomp.ssreflect.order]
Order.Enum [section, in mathcomp.ssreflect.order]
Order.enum [abbreviation, in mathcomp.ssreflect.order]
Order.enumT [lemma, in mathcomp.ssreflect.order]
Order.EnumVal [module, in mathcomp.ssreflect.order]
Order.EnumVal.EnumVal [section, in mathcomp.ssreflect.order]
Order.EnumVal.EnumVal.d [variable, in mathcomp.ssreflect.order]
Order.EnumVal.EnumVal.T [variable, in mathcomp.ssreflect.order]
Order.EnumVal.EnumVal.total [section, in mathcomp.ssreflect.order]
Order.EnumVal.EnumVal.total.leT_total [variable, in mathcomp.ssreflect.order]
Order.EnumVal.enum_val_bij [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_rank_bij [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_rank_in_inj [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_val_bij_in [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_val_inj [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_rank_inj [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_valK [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_valK_in [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_rankK [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_rankK_in [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_val_nth [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_valP [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.enum_val [definition, in mathcomp.ssreflect.order]
Order.EnumVal.enum_rank [definition, in mathcomp.ssreflect.order]
Order.EnumVal.enum_rank_in [definition, in mathcomp.ssreflect.order]
Order.EnumVal.eq_enum_rank_in [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.le_enum_rank [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.le_enum_rank_in [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.le_enum_val [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.nth_enum_rank [lemma, in mathcomp.ssreflect.order]
Order.EnumVal.nth_enum_rank_in [lemma, in mathcomp.ssreflect.order]
Order.enum_val_bij [abbreviation, in mathcomp.ssreflect.order]
Order.enum_rank_bij [abbreviation, in mathcomp.ssreflect.order]
Order.enum_rank_in_inj [abbreviation, in mathcomp.ssreflect.order]
Order.enum_val_bij_in [abbreviation, in mathcomp.ssreflect.order]
Order.enum_val_inj [abbreviation, in mathcomp.ssreflect.order]
Order.enum_rank_inj [abbreviation, in mathcomp.ssreflect.order]
Order.enum_valK [abbreviation, in mathcomp.ssreflect.order]
Order.enum_valK_in [abbreviation, in mathcomp.ssreflect.order]
Order.enum_rankK [abbreviation, in mathcomp.ssreflect.order]
Order.enum_rankK_in [abbreviation, in mathcomp.ssreflect.order]
Order.enum_val_nth [abbreviation, in mathcomp.ssreflect.order]
Order.enum_valP [abbreviation, in mathcomp.ssreflect.order]
Order.enum_rank [abbreviation, in mathcomp.ssreflect.order]
Order.enum_rank_in [abbreviation, in mathcomp.ssreflect.order]
Order.enum_val [abbreviation, in mathcomp.ssreflect.order]
Order.enum_ord [lemma, in mathcomp.ssreflect.order]
Order.enum_set1 [lemma, in mathcomp.ssreflect.order]
Order.enum_setT [lemma, in mathcomp.ssreflect.order]
Order.enum_set0 [lemma, in mathcomp.ssreflect.order]
Order.enum_uniq [lemma, in mathcomp.ssreflect.order]
Order.Enum.d [variable, in mathcomp.ssreflect.order]
Order.Enum.T [variable, in mathcomp.ssreflect.order]
Order.enum0 [lemma, in mathcomp.ssreflect.order]
Order.enum1 [lemma, in mathcomp.ssreflect.order]
Order.eq_enum_rank_in [abbreviation, in mathcomp.ssreflect.order]
Order.eq_cardT [lemma, in mathcomp.ssreflect.order]
Order.eq_enum [lemma, in mathcomp.ssreflect.order]
Order.Exports [module, in mathcomp.ssreflect.order]
Order.FinCDistrLatticeExports [module, in mathcomp.ssreflect.order]
[ finCDistrLatticeType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.FinDistrLatticeExports [module, in mathcomp.ssreflect.order]
[ finDistrLatticeType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.FinLatticeExports [module, in mathcomp.ssreflect.order]
[ finLatticeType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.FinPOrderExports [module, in mathcomp.ssreflect.order]
[ finPOrderType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.FinTotalExports [module, in mathcomp.ssreflect.order]
[ finOrderType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.ge [definition, in mathcomp.ssreflect.order]
Order.GelNotLt [constructor, in mathcomp.ssreflect.order]
Order.GeNotLt [constructor, in mathcomp.ssreflect.order]
Order.gt [definition, in mathcomp.ssreflect.order]
Order.GtlNotLe [constructor, in mathcomp.ssreflect.order]
Order.GtNotLe [constructor, in mathcomp.ssreflect.order]
Order.InCompare [constructor, in mathcomp.ssreflect.order]
Order.incompare [inductive, in mathcomp.ssreflect.order]
Order.InCompareEq [constructor, in mathcomp.ssreflect.order]
Order.InCompareGt [constructor, in mathcomp.ssreflect.order]
Order.InComparel [constructor, in mathcomp.ssreflect.order]
Order.incomparel [inductive, in mathcomp.ssreflect.order]
Order.InComparelEq [constructor, in mathcomp.ssreflect.order]
Order.InComparelGt [constructor, in mathcomp.ssreflect.order]
Order.InComparelLt [constructor, in mathcomp.ssreflect.order]
Order.InCompareLt [constructor, in mathcomp.ssreflect.order]
Order.index_enum_ord [lemma, in mathcomp.ssreflect.order]
Order.LatticeDef [section, in mathcomp.ssreflect.order]
Order.LatticeExports [module, in mathcomp.ssreflect.order]
[ latticeType of _ with _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ latticeType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ latticeType of _ for _ with _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ latticeType of _ for _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.LatticeSyntax [module, in mathcomp.ssreflect.order]
_ `|` _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ `&` _ (order_scope) [notation, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin [module, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.eq_joinr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.eq_joinl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.joinAC [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.joinACA [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.joinCA [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.joinKU [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.joinKUC [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.joinUK [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.joinUKC [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.joinxx [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.join_r [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.join_l [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.join_idPl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.join_idPr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.LatticeTheoryJoin [section, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.lcomparableP [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.lcomparable_ltP [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.lcomparable_leP [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.lcomparable_ltgtP [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.leUidl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.leUidr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.leUl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.leUr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.leUx [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.leU2 [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.lexUl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.lexUr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryJoin.lexU2 [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet [module, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.eq_meetr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.eq_meetl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.LatticeTheoryMeet [section, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.leIidl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.leIidr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.leIl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.leIr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.leIxl [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.leIxr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.leIx2 [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.leI2 [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.lexI [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meetAC [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meetACA [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meetCA [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meetIK [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meetIKC [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meetKI [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meetKIC [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meetxx [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meet_r [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meet_l [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meet_idPr [lemma, in mathcomp.ssreflect.order]
Order.LatticeTheoryMeet.meet_idPl [lemma, in mathcomp.ssreflect.order]
Order.leif [definition, in mathcomp.ssreflect.order]
Order.LelNotGt [constructor, in mathcomp.ssreflect.order]
Order.lel_xor_gt [inductive, in mathcomp.ssreflect.order]
Order.LeNotGt [constructor, in mathcomp.ssreflect.order]
Order.LexiSyntax [module, in mathcomp.ssreflect.order]
Order.LexiSyntax.joinlexi [abbreviation, in mathcomp.ssreflect.order]
Order.LexiSyntax.meetlexi [abbreviation, in mathcomp.ssreflect.order]
><^l%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=<^l%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<?=^l%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>^l%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<^l%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=^l%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=^l%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<=^l%O (fun_scope) [notation, in mathcomp.ssreflect.order]
_ `|^l` _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ `&^l` _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ ><^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
><^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
><^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=<^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=<^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=<^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^l _ ?= iff _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^l _ ?= iff _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^l _ <^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^l _ <^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^l _ <=^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^l _ <=^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
>^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
<^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
<^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
<=^l _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
<=^l _ (order_scope) [notation, in mathcomp.ssreflect.order]
Order.lexi_display [lemma, in mathcomp.ssreflect.order]
Order.le_enum_rank [abbreviation, in mathcomp.ssreflect.order]
Order.le_enum_rank_in [abbreviation, in mathcomp.ssreflect.order]
Order.le_enum_val [abbreviation, in mathcomp.ssreflect.order]
Order.le_xor_gt [inductive, in mathcomp.ssreflect.order]
Order.le_of_leif [definition, in mathcomp.ssreflect.order]
Order.lteif [definition, in mathcomp.ssreflect.order]
Order.LTheory [module, in mathcomp.ssreflect.order]
Order.LtlNotGe [constructor, in mathcomp.ssreflect.order]
Order.ltl_xor_ge [inductive, in mathcomp.ssreflect.order]
Order.LtNotGe [constructor, in mathcomp.ssreflect.order]
Order.lt_xor_ge [inductive, in mathcomp.ssreflect.order]
Order.max [definition, in mathcomp.ssreflect.order]
Order.max_fun [definition, in mathcomp.ssreflect.order]
Order.mem_enum [lemma, in mathcomp.ssreflect.order]
Order.min [definition, in mathcomp.ssreflect.order]
Order.min_fun [definition, in mathcomp.ssreflect.order]
Order.mono_unique [lemma, in mathcomp.ssreflect.order]
Order.mono_sorted_enum [lemma, in mathcomp.ssreflect.order]
Order.NatDvd [module, in mathcomp.ssreflect.order]
Order.NatDvd.dvdE [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.Exports [module, in mathcomp.ssreflect.order]
Order.NatDvd.Exports.dvdEnat [definition, in mathcomp.ssreflect.order]
Order.NatDvd.Exports.gcdEnat [definition, in mathcomp.ssreflect.order]
Order.NatDvd.Exports.lcmEnat [definition, in mathcomp.ssreflect.order]
Order.NatDvd.Exports.natdvd [abbreviation, in mathcomp.ssreflect.order]
Order.NatDvd.Exports.nat0E [definition, in mathcomp.ssreflect.order]
Order.NatDvd.Exports.nat1E [definition, in mathcomp.ssreflect.order]
Order.NatDvd.Exports.sdvdEnat [definition, in mathcomp.ssreflect.order]
Order.NatDvd.gcdE [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.joinKI [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.lcmE [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.lcmnn [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.le_def [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.meetKU [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.meetUl [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.NatDvd [section, in mathcomp.ssreflect.order]
Order.NatDvd.nat0E [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.nat1E [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.sdvdE [lemma, in mathcomp.ssreflect.order]
Order.NatDvd.t [definition, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory [module, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.decnP [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.decn_inP [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.homo_ltn_lt [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.homo_ltn_lt_in [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.incnP [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.incn_inP [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.NatMonotonyTheory [section, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.NatMonotonyTheory.D [variable, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.NatMonotonyTheory.Dconvex [variable, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.NatMonotonyTheory.f [variable, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.nhomo_ltn_lt [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.nhomo_ltn_lt_in [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.nondecnP [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.nondecn_inP [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.nonincnP [lemma, in mathcomp.ssreflect.order]
Order.NatMonotonyTheory.nonincn_inP [lemma, in mathcomp.ssreflect.order]
Order.NatOrder [module, in mathcomp.ssreflect.order]
Order.NatOrder.botEnat [lemma, in mathcomp.ssreflect.order]
Order.NatOrder.Exports [module, in mathcomp.ssreflect.order]
Order.NatOrder.Exports.botEnat [definition, in mathcomp.ssreflect.order]
Order.NatOrder.Exports.leEnat [definition, in mathcomp.ssreflect.order]
Order.NatOrder.Exports.ltEnat [definition, in mathcomp.ssreflect.order]
Order.NatOrder.Exports.maxEnat [definition, in mathcomp.ssreflect.order]
Order.NatOrder.Exports.minEnat [definition, in mathcomp.ssreflect.order]
Order.NatOrder.leEnat [lemma, in mathcomp.ssreflect.order]
Order.NatOrder.ltEnat [lemma, in mathcomp.ssreflect.order]
Order.NatOrder.ltn_def [lemma, in mathcomp.ssreflect.order]
Order.NatOrder.maxEnat [lemma, in mathcomp.ssreflect.order]
Order.NatOrder.minEnat [lemma, in mathcomp.ssreflect.order]
Order.NatOrder.NatOrder [section, in mathcomp.ssreflect.order]
Order.NatOrder.nat_display [lemma, in mathcomp.ssreflect.order]
Order.nth_enum_rank [abbreviation, in mathcomp.ssreflect.order]
Order.nth_enum_rank_in [abbreviation, in mathcomp.ssreflect.order]
Order.nth_ord_enum [lemma, in mathcomp.ssreflect.order]
Order.nth_enum_ord [lemma, in mathcomp.ssreflect.order]
Order.Ordinal [section, in mathcomp.ssreflect.order]
Order.OrdinalOrder [module, in mathcomp.ssreflect.order]
Order.OrdinalOrder.botEord [lemma, in mathcomp.ssreflect.order]
Order.OrdinalOrder.Exports [module, in mathcomp.ssreflect.order]
Order.OrdinalOrder.Exports.botEord [definition, in mathcomp.ssreflect.order]
Order.OrdinalOrder.Exports.leEord [definition, in mathcomp.ssreflect.order]
Order.OrdinalOrder.Exports.ltEord [definition, in mathcomp.ssreflect.order]
Order.OrdinalOrder.Exports.topEord [definition, in mathcomp.ssreflect.order]
Order.OrdinalOrder.leEord [lemma, in mathcomp.ssreflect.order]
Order.OrdinalOrder.ltEord [lemma, in mathcomp.ssreflect.order]
Order.OrdinalOrder.OrdinalOrder [section, in mathcomp.ssreflect.order]
Order.OrdinalOrder.OrdinalOrder.NonTrivial [section, in mathcomp.ssreflect.order]
Order.OrdinalOrder.OrdinalOrder.NonTrivial.n [variable, in mathcomp.ssreflect.order]
Order.OrdinalOrder.OrdinalOrder.NonTrivial.n' [variable, in mathcomp.ssreflect.order]
Order.OrdinalOrder.OrdinalOrder.PossiblyTrivial [section, in mathcomp.ssreflect.order]
Order.OrdinalOrder.OrdinalOrder.PossiblyTrivial.n [variable, in mathcomp.ssreflect.order]
Order.OrdinalOrder.ord_display [lemma, in mathcomp.ssreflect.order]
Order.OrdinalOrder.topEord [lemma, in mathcomp.ssreflect.order]
Order.PcanPartial [abbreviation, in mathcomp.ssreflect.order]
Order.PcanTotal [definition, in mathcomp.ssreflect.order]
Order.POCoercions [module, in mathcomp.ssreflect.order]
Order.POrderDef [section, in mathcomp.ssreflect.order]
Order.POrderDef.disp [variable, in mathcomp.ssreflect.order]
Order.POrderDef.LiftedPOrder [section, in mathcomp.ssreflect.order]
Order.POrderDef.LiftedPOrder.T' [variable, in mathcomp.ssreflect.order]
Order.POrderDef.T [variable, in mathcomp.ssreflect.order]
_ >< _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=< _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ < _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <= _ (order_scope) [notation, in mathcomp.ssreflect.order]
Order.POrderExports [module, in mathcomp.ssreflect.order]
[ porderType of _ with _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ porderType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ porderType of _ for _ with _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ porderType of _ for _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.POrderTheory [module, in mathcomp.ssreflect.order]
Order.POrderTheory.comparableP [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparablexx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_lt_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_le_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_ltn_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_ltn_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_leq_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_leq_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contraFlt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contraFle [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_not_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contra_not_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contraNlt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contraNle [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contraPlt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contraPle [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contraTlt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_contraTle [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_bigr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_bigl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_arg_maxP [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_arg_minP [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_min_maxr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_max_minr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxACA [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minACA [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxCA [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minCA [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxAC [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minAC [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_min_maxl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_max_minl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxA [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minA [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lteif_maxl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lteif_maxr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lteif_minl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lteif_minr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lteifNE [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxKx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxxK [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minKx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minxK [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lt_maxl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lt_maxr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_le_maxl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_le_maxr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lt_minl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_lt_minr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_le_minl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_le_minr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_max_idPl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_min_idPr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_eq_maxl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_eq_minr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxC [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minC [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxEge [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minEge [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_maxEgt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_minEgt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_sym [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_ltP [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_leP [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_ltgtP [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_ltNge [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.comparable_leNgt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ContraTheory [section, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_lt_ltn [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_lt_leq [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_le_ltn [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_le_leq [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_ltF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_leF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_lt_not [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_le_not [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_ltN [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_leN [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_ltT [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.contra_leT [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.count_lt_le_mem [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.count_le_nth [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.count_lt_nth [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.dec_inj_in [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.dec_inj [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.eqTleif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.eq_maxr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.eq_minl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.eq_leif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.eq_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.filter_le_nth [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.filter_lt_nth [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.geE [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ge_leif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ge_comparable [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ge_trans [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ge_anti [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ge_refl [definition, in mathcomp.ssreflect.order]
Order.POrderTheory.gtE [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.gt_comparable [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.gt_eqF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.incomparable_ltF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.incomparable_leF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.incomparable_eqF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.inc_inj_in [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.inc_inj [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.inj_nhomo_lt_in [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.inj_homo_lt_in [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.inj_nhomo_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.inj_homo_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leifP [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leif_eq [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leif_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leif_trans [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leif_refl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leW_nmono_in [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leW_mono_in [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leW_nmono [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.leW_mono [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lexx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_comparable [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_sorted_eq [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_sorted_leq_nth [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_sorted_ltn_nth [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_path_filter [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_path_mask [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_sorted_filter [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_sorted_mask [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_path_pairwise [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_sorted_pairwise [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_path_sortedE [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_path_min [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_lt_asym [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_gtF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_lt_trans [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_eqVlt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_le_trans [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_trans [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_anti [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.le_refl [definition, in mathcomp.ssreflect.order]
Order.POrderTheory.lteifF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteifN [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteifNF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteifS [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteifT [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteifW [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteifxx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteif_imply [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteif_andb [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteif_orb [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteif_anti [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lteif_trans [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ltexx [definition, in mathcomp.ssreflect.order]
Order.POrderTheory.lte_anti [definition, in mathcomp.ssreflect.order]
Order.POrderTheory.ltNleif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ltrW_lteif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ltW [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ltW_nhomo_in [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ltW_homo_in [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ltW_nhomo [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ltW_homo [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.ltxx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_leif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_comparable [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_sorted_eq [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_sorted_uniq [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_sorted_ltn_nth [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_sorted_leq_nth [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_path_filter [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_path_mask [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_sorted_filter [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_sorted_mask [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_sorted_uniq_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_path_pairwise [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_sorted_pairwise [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_path_sortedE [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_path_min [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_le_asym [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_leAnge [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_gtF [definition, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_geF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_asym [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_nsym [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_trans [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_le_trans [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_eqF [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_irreflexive [definition, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_neqAle [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.lt_def [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.maxEle [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.maxElt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.maxxx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.max_maxxK [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.max_maxKx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.max_idPr [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.max_r [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.max_l [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.minEle [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.minElt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.minxx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.min_minxK [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.min_minKx [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.min_idPl [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.min_r [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.min_l [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.mono_leif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.mono_in_leif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.nmono_leif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.nmono_in_leif [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.nth_count_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.nth_count_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderMonotonyTheory [section, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderMonotonyTheory.D [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderMonotonyTheory.D' [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderMonotonyTheory.f [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderMonotonyTheory.ge_antiT [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderMonotonyTheory.leT_anti [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderMonotonyTheory.leT'_anti [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory [section, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.ArgExtremum [section, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.ArgExtremum.F_comparable [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable2 [section, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable2.cmp_xy [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable2.x [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable2.y [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable2.z [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable3 [section, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable3.cmp_yz [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable3.cmp_xz [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable3.cmp_xy [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable3.P [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable3.x [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable3.y [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.POrderTheory.Comparable3.z [variable, in mathcomp.ssreflect.order]
Order.POrderTheory.sorted_filter_le [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.sorted_filter_lt [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.sort_lt_id [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.sort_le_id [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.subseq_lt_sorted [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.subseq_le_sorted [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.subseq_lt_path [lemma, in mathcomp.ssreflect.order]
Order.POrderTheory.subseq_le_path [lemma, in mathcomp.ssreflect.order]
Order.POSyntax [module, in mathcomp.ssreflect.order]
Order.POSyntax.leLHS [abbreviation, in mathcomp.ssreflect.order]
Order.POSyntax.leRHS [abbreviation, in mathcomp.ssreflect.order]
Order.POSyntax.ltLHS [abbreviation, in mathcomp.ssreflect.order]
Order.POSyntax.ltRHS [abbreviation, in mathcomp.ssreflect.order]
><%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=<%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<?<=%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<?=%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<=%O (fun_scope) [notation, in mathcomp.ssreflect.order]
_ \max _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ \min _ (order_scope) [notation, in mathcomp.ssreflect.order]
[ arg max_ ( _ > _ ) _ ] (order_scope) [notation, in mathcomp.ssreflect.order]
[ arg max_ ( _ > _ in _ ) _ ] (order_scope) [notation, in mathcomp.ssreflect.order]
[ arg max_ ( _ > _ | _ ) _ ] (order_scope) [notation, in mathcomp.ssreflect.order]
[ arg min_ ( _ < _ ) _ ] (order_scope) [notation, in mathcomp.ssreflect.order]
[ arg min_ ( _ < _ in _ ) _ ] (order_scope) [notation, in mathcomp.ssreflect.order]
[ arg min_ ( _ < _ | _ ) _ ] (order_scope) [notation, in mathcomp.ssreflect.order]
_ >< _ (order_scope) [notation, in mathcomp.ssreflect.order]
>< _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>< _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=< _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=< _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=< _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ < _ ?<= if _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ < _ ?<= if _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <= _ ?= iff _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <= _ ?= iff _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ < _ < _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <= _ < _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ < _ <= _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <= _ <= _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ > _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ > _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ < _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ < _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >= _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >= _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <= _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <= _ (order_scope) [notation, in mathcomp.ssreflect.order]
> _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
> _ (order_scope) [notation, in mathcomp.ssreflect.order]
< _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
< _ (order_scope) [notation, in mathcomp.ssreflect.order]
>= _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>= _ (order_scope) [notation, in mathcomp.ssreflect.order]
<= _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
<= _ (order_scope) [notation, in mathcomp.ssreflect.order]
Order.ProdLexiOrder [module, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.anti [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.botEprodlexi [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.Exports [module, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.Exports.botEprodlexi [definition, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.Exports.leEprodlexi [definition, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.Exports.lexi_pair [definition, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.Exports.ltEprodlexi [definition, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.Exports.ltxi_pair [definition, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.Exports.sub_prod_lexi [definition, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.Exports.topEprodlexi [definition, in mathcomp.ssreflect.order]
_ *l _ (type_scope) [notation, in mathcomp.ssreflect.order]
_ *lexi[ _ ] _ (type_scope) [notation, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.le [definition, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.leEprodlexi [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.lexi_pair [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.lex1 [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.le0x [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.lt [definition, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ltEprodlexi [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ltxi_pair [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.lt_def [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder [section, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.FinDistrLattice [section, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.FinDistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.FinDistrLattice.T' [variable, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.POrder [section, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.POrder.T [variable, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.POrder.T' [variable, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.Total [section, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.Total.T [variable, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.ProdLexiOrder.Total.T' [variable, in mathcomp.ssreflect.order]
_ * _ (type_scope) [notation, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.refl [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.sub_prod_lexi [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.topEprodlexi [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.total [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.trans [lemma, in mathcomp.ssreflect.order]
Order.ProdLexiOrder.type [definition, in mathcomp.ssreflect.order]
Order.ProdOrder [module, in mathcomp.ssreflect.order]
Order.ProdOrder.anti [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.botEprod [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.compl [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.complE [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.complEprod [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports [module, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.botEprod [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.complEprod [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.joinEprod [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.leEprod [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.le_pair [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.ltEprod [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.lt_pair [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.meetEprod [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.subEprod [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.Exports.topEprod [definition, in mathcomp.ssreflect.order]
_ *p _ (type_scope) [notation, in mathcomp.ssreflect.order]
_ *prod[ _ ] _ (type_scope) [notation, in mathcomp.ssreflect.order]
Order.ProdOrder.join [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.joinA [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.joinC [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.joinEprod [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.joinIB [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.joinKI [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.le [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.leEmeet [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.leEprod [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.lex1 [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.le_pair [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.le0x [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.ltEprod [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.lt_pair [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.meet [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.meetA [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.meetC [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.meetEprod [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.meetKU [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.meetUl [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder [section, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.BLattice [section, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.BLattice.T [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.BLattice.T' [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.CBDistrLattice [section, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.CBDistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.CBDistrLattice.T' [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.CTBDistrLattice [section, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.CTBDistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.CTBDistrLattice.T' [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.DistrLattice [section, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.DistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.DistrLattice.T' [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.Lattice [section, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.Lattice.T [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.Lattice.T' [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.POrder [section, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.POrder.T [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.POrder.T' [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.TBLattice [section, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.TBLattice.T [variable, in mathcomp.ssreflect.order]
Order.ProdOrder.ProdOrder.TBLattice.T' [variable, in mathcomp.ssreflect.order]
_ * _ (type_scope) [notation, in mathcomp.ssreflect.order]
Order.ProdOrder.refl [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.sub [definition, in mathcomp.ssreflect.order]
Order.ProdOrder.subEprod [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.subKI [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.topEprod [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.trans [lemma, in mathcomp.ssreflect.order]
Order.ProdOrder.type [definition, in mathcomp.ssreflect.order]
Order.ProdSyntax [module, in mathcomp.ssreflect.order]
><^p%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=<^p%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<?=^p%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>^p%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<^p%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=^p%O (fun_scope) [notation, in mathcomp.ssreflect.order]
>=^p%O (fun_scope) [notation, in mathcomp.ssreflect.order]
<=^p%O (fun_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ in _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ in _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ <= _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ <= _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ : _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ : _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ _ _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ <- _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet^p_ ( _ <- _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ in _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ in _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ <= _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ <= _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ : _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ : _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ _ _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ <- _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\join^p_ ( _ <- _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ `|^p` _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ `&^p` _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ ><^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
><^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
><^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=<^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=<^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=<^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^p _ ?= iff _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^p _ ?= iff _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^p _ <^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^p _ <^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^p _ <=^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^p _ <=^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ >=^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
_ <=^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
>^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
<^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
<^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
>=^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
<=^p _ :> _ (order_scope) [notation, in mathcomp.ssreflect.order]
<=^p _ (order_scope) [notation, in mathcomp.ssreflect.order]
Order.prod_display [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder [module, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.anti [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.eqhead_ltxiE [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.eqhead_lexiE [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports [module, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.eqhead_ltxiE [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.eqhead_lexiE [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.leEseqlexi [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.lexis0 [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.lexi_lehead [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.lexi_cons [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.lexi0s [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.ltEseqltxi [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.ltxis0 [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.ltxi_lehead [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.ltxi_cons [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.ltxi0s [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.neqhead_ltxiE [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.neqhead_lexiE [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.seqlexi [abbreviation, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.seqlexi_with [abbreviation, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.Exports.sub_seqprod_lexi [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.le [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.leEseqlexi [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.lexis0 [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.lexi_lehead [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.lexi_cons [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.lexi0s [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.lt [definition, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.ltEseqlexi [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.ltxis0 [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.ltxi_lehead [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.ltxi_cons [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.ltxi0s [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.lt_def [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.neqhead_ltxiE [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.neqhead_lexiE [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.refl [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.seq [abbreviation, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.SeqLexiOrder [section, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.SeqLexiOrder.POrder [section, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.SeqLexiOrder.POrder.T [variable, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.SeqLexiOrder.Total [section, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.SeqLexiOrder.Total.T [variable, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.sub_seqprod_lexi [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.total [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.trans [lemma, in mathcomp.ssreflect.order]
Order.SeqLexiOrder.type [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder [module, in mathcomp.ssreflect.order]
Order.SeqProdOrder.anti [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.botEseq [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports [module, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.botEseq [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.joinEseq [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.leEseq [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.les0 [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.le_cons [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.le0s [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.meetEseq [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.meet_cons [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.seqprod [abbreviation, in mathcomp.ssreflect.order]
Order.SeqProdOrder.Exports.seqprod_with [abbreviation, in mathcomp.ssreflect.order]
Order.SeqProdOrder.join [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.joinA [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.joinC [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.joinEseq [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.joinKI [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.join_cons [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.le [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.leEmeet [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.leEseq [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.les0 [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.le_cons [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.le0s [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.meet [definition, in mathcomp.ssreflect.order]
Order.SeqProdOrder.meetA [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.meetC [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.meetEseq [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.meetKU [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.meetss [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.meetUl [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.meet_cons [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.refl [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.seq [abbreviation, in mathcomp.ssreflect.order]
Order.SeqProdOrder.SeqProdOrder [section, in mathcomp.ssreflect.order]
Order.SeqProdOrder.SeqProdOrder.DistrLattice [section, in mathcomp.ssreflect.order]
Order.SeqProdOrder.SeqProdOrder.DistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.SeqProdOrder.SeqProdOrder.Lattice [section, in mathcomp.ssreflect.order]
Order.SeqProdOrder.SeqProdOrder.Lattice.T [variable, in mathcomp.ssreflect.order]
Order.SeqProdOrder.SeqProdOrder.POrder [section, in mathcomp.ssreflect.order]
Order.SeqProdOrder.SeqProdOrder.POrder.T [variable, in mathcomp.ssreflect.order]
Order.SeqProdOrder.trans [lemma, in mathcomp.ssreflect.order]
Order.SeqProdOrder.type [definition, in mathcomp.ssreflect.order]
Order.SetSubsetOrder [module, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.botEsubset [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.complEsubset [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.Exports [module, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.Exports.botEsubset [definition, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.Exports.complEsubset [definition, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.Exports.joinEsubset [definition, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.Exports.leEsubset [definition, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.Exports.meetEsubset [definition, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.Exports.subEsubset [definition, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.Exports.topEsubset [definition, in mathcomp.ssreflect.order]
{ subset _ } (type_scope) [notation, in mathcomp.ssreflect.order]
{ subset [ _ ] _ } (type_scope) [notation, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.joinEsubset [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.leEsubset [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.le_def [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.meetEsubset [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.setIDv [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.setKIC [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.setKUC [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.SetSubsetOrder [section, in mathcomp.ssreflect.order]
{ subset _ } [notation, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.setTDsym [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.subEsubset [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.subset_display [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.topEsubset [lemma, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.type [definition, in mathcomp.ssreflect.order]
Order.SetSubsetOrder.type_of [definition, in mathcomp.ssreflect.order]
Order.set_enum [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder [module, in mathcomp.ssreflect.order]
Order.SigmaOrder.anti [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.botEsig [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports [module, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports.botEsig [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports.leEsig [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports.le_Taggedr [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports.le_Taggedl [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports.ltEsig [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports.lt_Taggedr [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports.lt_Taggedl [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.Exports.topEsig [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.le [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.leEsig [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.lex1 [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.le_Taggedr [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.le_Taggedl [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.le0x [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.lt [definition, in mathcomp.ssreflect.order]
Order.SigmaOrder.ltEsig [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.lt_Taggedr [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.lt_Taggedl [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.lt_def [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.refl [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder [section, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.FinDistrLattice [section, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.FinDistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.FinDistrLattice.T' [variable, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.POrder [section, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.POrder.T [variable, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.POrder.T' [variable, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.Total [section, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.Total.T [variable, in mathcomp.ssreflect.order]
Order.SigmaOrder.SigmaOrder.Total.T' [variable, in mathcomp.ssreflect.order]
Order.SigmaOrder.topEsig [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.total [lemma, in mathcomp.ssreflect.order]
Order.SigmaOrder.trans [lemma, in mathcomp.ssreflect.order]
Order.size_enum_ord [lemma, in mathcomp.ssreflect.order]
Order.SubOrder [module, in mathcomp.ssreflect.order]
Order.SubOrder.Exports [module, in mathcomp.ssreflect.order]
Order.SubOrder.Exports.leEsub [definition, in mathcomp.ssreflect.order]
Order.SubOrder.Exports.ltEsub [definition, in mathcomp.ssreflect.order]
[ Order of _ by <: ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ IsTotal of _ by <: ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ IsPOrdered of _ by <: ] (form_scope) [notation, in mathcomp.ssreflect.order]
[ POrder of _ by <: ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.SubOrder.leEsub [lemma, in mathcomp.ssreflect.order]
Order.SubOrder.ltEsub [lemma, in mathcomp.ssreflect.order]
Order.SubOrder.Partial [section, in mathcomp.ssreflect.order]
Order.SubOrder.Total [section, in mathcomp.ssreflect.order]
Order.Syntax [module, in mathcomp.ssreflect.order]
Order.TBDistrLatticeExports [module, in mathcomp.ssreflect.order]
[ tbDistrLatticeType of _ ] (form_scope) [notation, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory [module, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory.cover_leIxr [lemma, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory.cover_leIxl [lemma, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory.Ld [abbreviation, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory.leI2E [lemma, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory.leI2l_le [lemma, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory.leI2r_le [lemma, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory.meets_total [lemma, in mathcomp.ssreflect.order]
Order.TBDistrLatticeTheory.TBDistrLatticeTheory [section, in mathcomp.ssreflect.order]
1 [notation, in mathcomp.ssreflect.order]
Order.TBLatticeExports [module, in mathcomp.ssreflect.order]
Order.TBLatticeSyntax [module, in mathcomp.ssreflect.order]
\meet_ ( _ in _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ in _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ <= _ < _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ <= _ < _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ : _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ : _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ _ _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ <- _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
\meet_ ( _ <- _ | _ ) _ (order_scope) [notation, in mathcomp.ssreflect.order]
1 (order_scope) [notation, in mathcomp.ssreflect.order]
Order.TBLatticeTheory [module, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.joinx1 [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.join1x [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.le_meets [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.le1x [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meetsP [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meetsP_seq [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meets_seq [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meets_setU [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meets_ge [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meets_max [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meets_inf [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meets_max_seq [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meets_inf_seq [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meetx1 [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meet_seq [abbreviation, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meet_max_seq [abbreviation, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meet_inf_seq [abbreviation, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meet_eq1 [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.meet1x [lemma, in mathcomp.ssreflect.order]
Order.TBLatticeTheory.TBLatticeTheory [section, in mathcomp.ssreflect.order]
1 [notation, in mathcomp.ssreflect.order]
Order.Theory [module, in mathcomp.ssreflect.order]
Order.TotalExports [module, in mathcomp.ssreflect.order]
Order.TotalTheory [module, in mathcomp.ssreflect.order]
Order.TotalTheory.arg_maxP [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.arg_minP [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.comparableT [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contraFle [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contraFlt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contraNle [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contraNlt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contraPle [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contraPlt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.ContraTheory [section, in mathcomp.ssreflect.order]
Order.TotalTheory.contraTle [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contraTlt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_lt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_lt_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_le_lt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_ltn_lt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_ltn_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_leq_lt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_leq_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_not_lt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.contra_not_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.count_lt_ge [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.count_le_gt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.eq_maxl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.eq_minr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.eq_ltRL [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.eq_ltLR [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.eq_leRL [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.eq_leLR [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.filter_sort_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.ge_total [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.joinEtotal [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.leIx [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.leNgt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.leP [definition, in mathcomp.ssreflect.order]
Order.TotalTheory.lexU [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_nmono_in [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_mono_in [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_nmono [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_mono [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_maxl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_maxr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_minl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_minr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.le_total [definition, in mathcomp.ssreflect.order]
Order.TotalTheory.lteifNE [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lteif_maxl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lteif_maxr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lteif_minl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lteif_minr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lteIx [definition, in mathcomp.ssreflect.order]
Order.TotalTheory.lteUx [definition, in mathcomp.ssreflect.order]
Order.TotalTheory.ltexI [definition, in mathcomp.ssreflect.order]
Order.TotalTheory.ltexU [definition, in mathcomp.ssreflect.order]
Order.TotalTheory.ltgtP [definition, in mathcomp.ssreflect.order]
Order.TotalTheory.ltIx [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.ltNge [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.ltP [definition, in mathcomp.ssreflect.order]
Order.TotalTheory.ltUx [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.ltxI [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.ltxU [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lt_maxl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lt_maxr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lt_minl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lt_minr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.lt_total [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.mask_sort_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxA [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxAC [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxACA [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxC [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxCA [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxEge [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxEgt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxKx [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.maxxK [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.max_minr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.max_minl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.max_idPl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.meetEtotal [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.mem2_sort_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minA [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minAC [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minACA [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minC [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minCA [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minEge [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minEgt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minKx [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.minxK [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.min_maxr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.min_maxl [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.min_idPr [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.neq_lt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.perm_sort_leP [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.sorted_subseq_sort_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.sorted_mask_sort_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.sort_lt_sorted [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.sort_le_sorted [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.subseq_sort_le [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory [section, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory.D [variable, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory.f [variable, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory.leT_total [variable, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory.leT_anti [variable, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory.leT'_anti [variable, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory.ltT_def [variable, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory.ltT_neqAle [variable, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalMonotonyTheory.ltT'_neqAle [variable, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalTheory [section, in mathcomp.ssreflect.order]
Order.TotalTheory.TotalTheory.ArgExtremum [section, in mathcomp.ssreflect.order]
Order.TotalTheory.wlog_lt [lemma, in mathcomp.ssreflect.order]
Order.TotalTheory.wlog_le [lemma, in mathcomp.ssreflect.order]
Order.TTheory [module, in mathcomp.ssreflect.order]
Order.TupleLexiOrder [module, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.botEtlexi [lemma, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.Exports [module, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.Exports.botEtlexi [definition, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.Exports.lexi_tupleP [definition, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.Exports.ltxi_tuplePlt [definition, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.Exports.ltxi_tupleP [definition, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.Exports.sub_tprod_lexi [definition, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.Exports.topEtlexi [definition, in mathcomp.ssreflect.order]
_ .-tuplelexi (order_scope) [notation, in mathcomp.ssreflect.order]
_ .-tuplelexi[ _ ] (order_scope) [notation, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.lexi_tupleP [lemma, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.lex1 [lemma, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.le0x [lemma, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.ltxi_tuplePlt [lemma, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.ltxi_tupleP [lemma, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.sub_tprod_lexi [lemma, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.topEtlexi [lemma, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder [section, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.Basics [section, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.Basics.n [variable, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.BDistrLattice [section, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.BDistrLattice.n [variable, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.BDistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.POrder [section, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.TBDistrLattice [section, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.TBDistrLattice.n [variable, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.TupleLexiOrder.TBDistrLattice.T [variable, in mathcomp.ssreflect.order]
_ .-tuple (type_scope) [notation, in mathcomp.ssreflect.order]
Order.TupleLexiOrder.type [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder [module, in mathcomp.ssreflect.order]
Order.TupleProdOrder.botEtprod [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.compl [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.complE [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.complEtprod [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports [module, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.botEtprod [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.complEtprod [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.joinEtprod [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.leEtprod [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.ltEtprod [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.meetEtprod [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.subEtprod [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.tnth_compl [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.tnth_sub [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.tnth_join [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.tnth_meet [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.Exports.topEtprod [definition, in mathcomp.ssreflect.order]
_ .-tupleprod (type_scope) [notation, in mathcomp.ssreflect.order]
_ .-tupleprod[ _ ] (type_scope) [notation, in mathcomp.ssreflect.order]
Order.TupleProdOrder.join [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.joinA [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.joinC [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.joinEtprod [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.joinIB [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.joinKI [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.leEmeet [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.leEtprod [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.lex1 [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.le0x [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.ltEtprod [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.meet [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.meetA [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.meetC [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.meetEtprod [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.meetKU [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.meetUl [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.sub [definition, in mathcomp.ssreflect.order]
Order.TupleProdOrder.subEtprod [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.subKI [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.tnth_compl [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.tnth_sub [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.tnth_join [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.tnth_meet [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.topEtprod [lemma, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.Basics [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.Basics.n [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.BLattice [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.BLattice.n [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.BLattice.T [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.CBDistrLattice [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.CBDistrLattice.n [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.CBDistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.CTBDistrLattice [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.CTBDistrLattice.n [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.CTBDistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.DistrLattice [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.DistrLattice.n [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.DistrLattice.T [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.Lattice [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.Lattice.n [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.Lattice.T [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.POrder [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.TBLattice [section, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.TBLattice.n [variable, in mathcomp.ssreflect.order]
Order.TupleProdOrder.TupleProdOrder.TBLattice.T [variable, in mathcomp.ssreflect.order]
_ .-tuple (type_scope) [notation, in mathcomp.ssreflect.order]
Order.TupleProdOrder.type [definition, in mathcomp.ssreflect.order]
Order.val_enum_ord [lemma, in mathcomp.ssreflect.order]
order1 [lemma, in mathcomp.fingroup.fingroup]
Ordinal [constructor, in mathcomp.ssreflect.fintype]
ordinal [inductive, in mathcomp.ssreflect.fintype]
OrdinalEnum [section, in mathcomp.ssreflect.fintype]
OrdinalEnum.n [variable, in mathcomp.ssreflect.fintype]
OrdinalPos [section, in mathcomp.ssreflect.fintype]
OrdinalPos.n' [variable, in mathcomp.ssreflect.fintype]
OrdinalSub [section, in mathcomp.ssreflect.fintype]
OrdinalSub.n [variable, in mathcomp.ssreflect.fintype]
ord_tuple [definition, in mathcomp.ssreflect.tuple]
ord_enum4 [lemma, in mathcomp.solvable.burnside_app]
ord_max [definition, in mathcomp.ssreflect.fintype]
ord_enum_uniq [lemma, in mathcomp.ssreflect.fintype]
ord_enum [definition, in mathcomp.ssreflect.fintype]
ord_inj [lemma, in mathcomp.ssreflect.fintype]
ord0 [definition, in mathcomp.ssreflect.fintype]
ord1 [lemma, in mathcomp.algebra.zmodp]
ord1 [lemma, in mathcomp.ssreflect.fintype]
ord:723 [binder, in mathcomp.ssreflect.fintype]
ord:732 [binder, in mathcomp.ssreflect.fintype]
ord:742 [binder, in mathcomp.ssreflect.fintype]
ord:753 [binder, in mathcomp.ssreflect.fintype]
orPP [lemma, in mathcomp.ssreflect.ssrbool]
orthogonal [definition, in mathcomp.character.classfun]
OrthogonalityRelations [section, in mathcomp.character.character]
OrthogonalityRelations.A [variable, in mathcomp.character.character]
OrthogonalityRelations.aT [variable, in mathcomp.character.character]
OrthogonalityRelations.G [variable, in mathcomp.character.character]
OrthogonalityRelations.gT [variable, in mathcomp.character.character]
OrthogonalityRelations.uX [variable, in mathcomp.character.character]
OrthogonalityRelations.XX'_1 [variable, in mathcomp.character.character]
OrthogonalityRelations.X' [variable, in mathcomp.character.character]
orthogonalP [lemma, in mathcomp.character.classfun]
orthogonal_span [lemma, in mathcomp.character.vcharacter]
orthogonal_free [lemma, in mathcomp.character.classfun]
orthogonal_oppl [lemma, in mathcomp.character.classfun]
orthogonal_oppr [lemma, in mathcomp.character.classfun]
orthogonal_split [lemma, in mathcomp.character.classfun]
orthogonal_catr [lemma, in mathcomp.character.classfun]
orthogonal_catl [lemma, in mathcomp.character.classfun]
orthogonal_sym [lemma, in mathcomp.character.classfun]
orthogonal_cons [lemma, in mathcomp.character.classfun]
orthonormal [definition, in mathcomp.character.classfun]
orthonormalE [lemma, in mathcomp.character.classfun]
orthonormalP [lemma, in mathcomp.character.classfun]
orthonormal_span [lemma, in mathcomp.character.vcharacter]
orthonormal_free [lemma, in mathcomp.character.classfun]
orthonormal_cat [lemma, in mathcomp.character.classfun]
orthonormal_orthogonal [lemma, in mathcomp.character.classfun]
orthonormal_not0 [lemma, in mathcomp.character.classfun]
orthonormal2P [lemma, in mathcomp.character.classfun]
orthoP [lemma, in mathcomp.character.classfun]
orthoPl [lemma, in mathcomp.character.classfun]
orthoPr [lemma, in mathcomp.character.classfun]
ortho_rec [definition, in mathcomp.character.classfun]
OtherDefs [section, in mathcomp.algebra.vector]
OtherEncodings [section, in mathcomp.ssreflect.choice]
OtherEncodings.T [variable, in mathcomp.ssreflect.choice]
OtherEncodings.T1 [variable, in mathcomp.ssreflect.choice]
OtherEncodings.T2 [variable, in mathcomp.ssreflect.choice]
out_perm [lemma, in mathcomp.fingroup.perm]
out_Aut [lemma, in mathcomp.fingroup.automorphism]



Global Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (71649 entries)
Notation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1792 entries)
Binder Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (46193 entries)
Module Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (266 entries)
Variable Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3623 entries)
Library Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (91 entries)
Lemma Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (14204 entries)
Constructor Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (259 entries)
Axiom Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (8 entries)
Inductive Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (134 entries)
Projection Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (44 entries)
Section Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (1276 entries)
Abbreviation Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (682 entries)
Definition Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (3041 entries)
Record Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ other (36 entries)