Top

Module mathcomp.analysis.function_spaces

From HB Require Import structures.
From mathcomp Require Import all_ssreflect all_algebra finmap generic_quotient.
From mathcomp Require Import boolp classical_sets functions.
From mathcomp Require Import cardinality mathcomp_extra fsbigop.
From mathcomp Require Import reals signed topology separation_axioms.

# The topology of functions spaces Function spaces have no canonical topology. We develop the theory of several general-purpose function space topologies here. ## Topologies on `U -> V` There is no canonical topology on `U->V` in this library. Mathematically, the right topology usually depends on context. We provide three general options in this file which work for various amounts of structures on the domain and codomain. Topologies we consider are: - Topology of pointwise convergence + requires only a topology on V - Topology of uniform convergence + requires only a uniformity on V - Topology of uniform convergence on subspaces + requires only a uniformity on V - The compact-open topology + requires a topology on U and V if you're looking for the topology of compact convergence, note that it is exactly the compact-open topology via `compact_open_fam_compactP`. To locally assign a topology to `->`, import one of the following modules - ArrowAsProduct assigns the product topology - ArrowAsUniformType assigns the uniform topology - ArrowAsCompactOpen assign the compact-open topology The major results are: - Compactness in the product topology via Tychonoff's - Compactness in the compact convergence topology via Ascoli's - Conditions when the supremum and weak topology commute in products - The compact-open topology is the topopology of compact convergence - Cartesian closedness for the category of locally compact topologies ## Function space notations ``` {uniform` A -> V} == the space U -> V, equipped with the topology of uniform convergence from a set A to V, where V is a uniformType {uniform U -> V} := {uniform` [set: U] -> V} {uniform A, F --> f} == F converges to f in {uniform A -> V} {uniform, F --> f} := {uniform setT, F --> f} prod_topology I T == the topology of pointwise convergence on the dependent space `forall (i:I), T i` arrow_uniform_type U V == the topology of uniform convergence on the type `U -> V` {ptws U -> V} == prod_topology for the non-dependent product separate_points_from_closed f == for a closed set U and point x outside some member of the family f, it sends f_i(x) outside (closure (f_i @` U)) Used together with join_product. join_product f == the function (x => f ^~ x) When the family f separates points from closed sets, join_product is an embedding. {ptws, F --> f} == F converges to f in {ptws U -> V} {family fam, U -> V} == the supremum of {uniform A -> f} for each A in `fam` In particular, {family compact, U -> V} is the topology of compact convergence. {family fam, F --> f} == F converges to f in {family fam, U -> V} {compact_open, U -> V} == compact-open topology {compact_open, F --> f} == F converges to f in {compact_open, U -> V} eval == the evaluation map for continuous functions ``` ## Ascoli's theorem notations ``` equicontinuous W x == the set (W : X -> Y) is equicontinuous at x singletons T := [set [set x] | x in [set: T]] pointwise_precompact W == for each (x : X), the set of images [f x | f in W] is precompact ```

Reserved Notation "{ 'uniform`' A -> V }"
  (at level 0, A at level 69, format "{ 'uniform`' A -> V }").
Reserved Notation "{ 'uniform' U -> V }"
  (at level 0, U at level 69, format "{ 'uniform' U -> V }").
Reserved Notation "{ 'uniform' A , F --> f }"
  (at level 0, A at level 69, F at level 69,
   format "{ 'uniform' A , F --> f }").
Reserved Notation "{ 'uniform' , F --> f }"
  (at level 0, F at level 69,
   format "{ 'uniform' , F --> f }").
Reserved Notation "{ 'ptws' U -> V }"
  (at level 0, U at level 69, format "{ 'ptws' U -> V }").
Reserved Notation "{ 'ptws' , F --> f }"
  (at level 0, F at level 69, format "{ 'ptws' , F --> f }").
Reserved Notation "{ 'family' fam , U -> V }"
  (at level 0, U at level 69, format "{ 'family' fam , U -> V }").
Reserved Notation "{ 'family' fam , F --> f }"
  (at level 0, F at level 69, format "{ 'family' fam , F --> f }").
Reserved Notation "{ 'compact-open' , U -> V }"
  (at level 0, U at level 69, format "{ 'compact-open' , U -> V }").
Reserved Notation "{ 'compact-open' , F --> f }"
  (at level 0, F at level 69, format "{ 'compact-open' , F --> f }").

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Obligation Tactic := idtac.

Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.

Product topology, also known as the topology of pointwise convergence
Section Product_Topology.

Definition prod_topology {I : Type} (T : I -> Type) := forall i, T i.

Variable I : Type.

Definition product_topology_def (T : I -> topologicalType) :=
  sup_topology (fun i => Topological.class
    (weak_topology (fun f : (forall i, T i) => f i))).

HB.instance Definition _ (T : I -> topologicalType) :=
  Topological.copy (prod_topology T) (product_topology_def T).

HB.instance Definition _ (T : I -> uniformType) :=
  Uniform.copy (prod_topology T)
    (sup_topology (fun i => Uniform.class (weak_topology (@proj _ T i)))).

HB.instance Definition _ (R : realType) (Ii : countType)
    (Tc : Ii -> pseudoMetricType R) := PseudoMetric.copy (prod_topology Tc)
  (sup_pseudometric (fun i => PseudoMetric.class (weak_topology (@proj _ Tc i)))
    (countableP _)).

End Product_Topology.

Notation "{ 'ptws' U -> V }" := (prod_topology (fun _ : U => V)) : type_scope.
Notation "{ 'ptws' , F --> f }" :=
  (cvg_to F (nbhs (f : {ptws _ -> _}))) : classical_set_scope.

Module ArrowAsProduct.
HB.instance Definition _ (U : Type) (T : U -> topologicalType) :=
  Topological.copy (forall x : U, T x) (prod_topology T).

HB.instance Definition _ (U : Type) (T : U -> uniformType) :=
  Uniform.copy (forall x : U, T x) (prod_topology T).

HB.instance Definition _ (U T : topologicalType) :=
  Topological.copy
    (continuousType U T)
    (weak_topology (id : continuousType U T -> (U -> T))).

HB.instance Definition _ (U : topologicalType) (T : uniformType) :=
  Uniform.copy
    (continuousType U T)
    (weak_topology (id : continuousType U T -> (U -> T))).

End ArrowAsProduct.

Section product_spaces.
Local Import ArrowAsProduct.

Section projection_maps.
Context {I : eqType} {K : I -> topologicalType}.

Lemma proj_continuous i : continuous (@proj I K i).
Proof.
move=> f; have /cvg_sup/(_ i)/cvg_image : f --> f by apply: cvg_id.
move=> h; apply: cvg_trans (h _) => {h}.
  by move=> Q /= [W nbdW <-]; apply: filterS nbdW; exact: preimage_image.
rewrite eqEsubset; split => y //; exists (dfwith f i y) => //.
by rewrite dfwithin.
Qed.

Lemma dfwith_continuous g (i : I) : continuous (@dfwith I K g i).
Proof.
move=> z U [] P [] [] Q QfinP <- [] V JV Vpz.
move/(@preimage_subset _ _ (dfwith g i))/filterS; apply.
apply: (@filterS _ _ _ ((dfwith g i) @^-1` V)); first by exists V.
have [L Lsub /[dup] VL <-] := QfinP _ JV; rewrite preimage_bigcap.
apply: filter_bigI => /= M /[dup] LM /Lsub /set_mem [] w _ [+] + /[dup] + <-.
have [->|wnx] := eqVneq w i => N oN NM.
  apply: (@filterS _ _ _ N); first by move=> ? ?; rewrite /= dfwithin.
  apply: open_nbhs_nbhs; split => //; move: Vpz.
  by rewrite -VL => /(_ _ LM); rewrite -NM /= dfwithin.
apply: nearW => y /=; move: Vpz.
by rewrite -VL => /(_ _ LM); rewrite -NM /= ?dfwithout // eq_sym.
Qed.

Lemma proj_open i (A : set (prod_topology K)) : open A -> open (proj i @` A).
Proof.
move=> oA; rewrite openE => z [f Af <-]; rewrite openE in oA.
have {oA} := oA _ Af; rewrite /interior => nAf.
apply: (@filterS _ _ _ ((dfwith f i) @^-1` A)).
  by move=> w Apw; exists (dfwith f i w) => //; rewrite projK.
apply: dfwith_continuous => /=; move: nAf; congr (nbhs _ A).
by apply: functional_extensionality_dep => ?; case: dfwithP.
Qed.

Lemma hausdorff_product :
  (forall x, hausdorff_space (K x)) -> hausdorff_space (forall x, K x).
Proof.
move=> hsdfK p q /= clstr; apply: functional_extensionality_dep => x.
apply: hsdfK; move: clstr; rewrite ?cluster_cvgE /= => -[G PG [GtoQ psubG]].
exists (proj x @ G); [exact: fmap_proper_filter|split].
  apply: cvg_trans; last exact: (@proj_continuous x q).
  by apply: cvg_app; exact: GtoQ.
move/(cvg_app (proj x)): psubG => /cvg_trans; apply.
exact: proj_continuous.
Qed.

End projection_maps.

Lemma tychonoff (I : eqType) (T : I -> topologicalType)
  (A : forall i, set (T i)) :
  (forall i, compact (A i)) ->
  compact [set f : forall i, T i | forall i, A i (f i)].
Proof.
case: (pselect ([set f : forall i, T i | forall i, A i (f i)] == set0)).
  move/eqP => -> _; exact: compact0.
case/negP/set0P=> a0 Aa0 Aco; rewrite compact_ultra => F FU FA.
set subst_coord := fun (i : I) (pi : T i) (f : forall x : I, T x) (j : I) =>
  if eqP is ReflectT e then ecast i (T i) (esym e) pi else f j.
have subst_coordT i pi f : subst_coord i pi f i = pi.
  rewrite /subst_coord; case: eqP => // e.
  by rewrite (eq_irrelevance e (erefl _)).
have subst_coordN i pi f j : i != j -> subst_coord i pi f j = f j.
  move=> inej; rewrite /subst_coord; case: eqP => // e.
  by move: inej; rewrite {1}e => /negP.
have pr_surj i : @^~ i @` [set: forall i, T i] = setT.
  rewrite predeqE => pi; split=> // _.
  by exists (subst_coord i pi a0) => //; rewrite subst_coordT.
pose pF i : set_system _ := [set @^~ i @` B | B in F].
have pFultra i : UltraFilter (pF i) by exact: ultra_image (pr_surj i).
have pFA i : pF i (A i).
  exists [set g | forall i, A i (g i)] => //.
  rewrite predeqE => pi; split; first by move=> [g Ag <-]; apply: Ag.
  move=> Aipi; have [f Af] := filter_ex FA.
  exists (subst_coord i pi f); last exact: subst_coordT.
  move=> j; have [<-{j}|] := eqVneq i j; first by rewrite subst_coordT.
  by move=> /subst_coordN ->; apply: Af.
have cvpFA i : A i `&` [set p | pF i --> p] !=set0.
  by rewrite -ultra_cvg_clusterE; apply: Aco.
exists (fun i => xget (a0 i) (A i `&` [set p | pF i --> p])).
split=> [i|]; first by have /(xgetPex (a0 i)) [] := cvpFA i.
apply/cvg_sup => i; apply/cvg_image=> //.
by have /(xgetPex (a0 i)) [] := cvpFA i.
Qed.

Lemma perfect_prod {I : Type} (i : I) (K : I -> topologicalType) :
  perfect_set [set: K i] -> perfect_set [set: forall i, K i].
Proof.
move=> /perfectTP KPo; apply/perfectTP => f oF; apply: (KPo (f i)).
rewrite (_ : [set f i] = proj i @` [set f]).
  by apply: (@proj_open {classic I} _ i); exact: oF.
by rewrite eqEsubset; split => ? //; [move=> -> /=; exists f | case=> g ->].
Qed.

Lemma perfect_diagonal (K : nat -> topologicalType) :
  (forall i, exists xy : K i * K i, xy.1 != xy.2) ->
  perfect_set [set: forall i, K i].
Proof.
move=> npts; split; first exact: closedT.
rewrite eqEsubset; split => f // _.
pose distincts (i : nat) := projT1 (sigW (npts i)).
pose derange i (z : K i) :=
  if z == (distincts i).1 then (distincts i).2 else (distincts i).1.
pose g (N i : nat) := if (i < N)%N then f i else derange _ (f i).
have gcvg : g @ \oo --> f.
  apply/cvg_sup => N U [V] [[W] oW <-] WfN WU.
  by apply: (filterS WU); rewrite nbhs_simpl /g; exists N.+1 => // i /= ->.
move=> A /gcvg; rewrite nbhs_simpl => -[N _ An].
exists (g N); split => //; last by apply: An; rewrite /= leqnn.
apply/eqP => M; suff: g N N != f N by rewrite M; move/eqP.
rewrite /g ltnn /derange eq_sym; have [->|//] := eqVneq (f N) (distincts N).1.
exact: projT2 (sigW (npts N)).
Qed.

Lemma zero_dimension_prod (I : choiceType) (T : I -> topologicalType) :
  (forall i, zero_dimensional (T i)) ->
  zero_dimensional (forall i, T i).
Proof.
move=> dctTI x y /eqP xneqy.
have [i/eqP/dctTI [U [clU Ux nUy]]] : exists i, x i <> y i.
  by apply/existsNP=> W; exact/xneqy/functional_extensionality_dep.
exists (proj i @^-1` U); split => //; apply: clopen_comp => //.
exact/proj_continuous.
Qed.

Lemma totally_disconnected_prod (I : choiceType)
  (T : I -> topologicalType) (A : forall i, set (T i)) :
  (forall i, totally_disconnected (A i)) ->
  @totally_disconnected (forall i, T i) (fun f => forall i, A i (f i)).
Proof.
move=> dsctAi x /= Aix; rewrite eqEsubset; split; last first.
  by move=> ? ->; exact: connected_component_refl.
move=> f /= [C /= [Cx CA ctC Cf]]; apply/functional_extensionality_dep => i.
suff : proj i @` C `<=` [set x i] by apply; exists f.
rewrite -(dsctAi i) // => Ti ?; exists (proj i @` C) => //.
split; [by exists x | by move=> ? [r Cr <-]; exact: CA |].
apply/(connected_continuous_connected ctC)/continuous_subspaceT.
exact: proj_continuous.
Qed.

A handy technique for embedding a space `T` into a product. The key interface is `separate_points_from_closed`, which guarantees that the topologies - `T`'s native topology - `sup (weak f_i)`: the sup of all the weak topologies of `f_i` - `weak (x => (f_1 x, f_2 x, ...))`: the weak topology from the product space are equivalent (the last equivalence seems to require `accessible_space`).
Section product_embeddings.
Context {I : choiceType} {T : topologicalType} {U_ : I -> topologicalType}.
Variable (f_ : forall i, T -> U_ i).

Definition separate_points_from_closed := forall (U : set T) x,
  closed U -> ~ U x -> exists i, ~ (closure (f_ i @` U)) (f_ i x).

Hypothesis sepf : separate_points_from_closed.
Hypothesis ctsf : forall i, continuous (f_ i).

Let weakT : topologicalType :=
  sup_topology (fun i => Topological.on (weak_topology (f_ i))).

Let PU : topologicalType := prod_topology U_.

Local Notation sup_open := (@open weakT).
Local Notation "'weak_open' i" := (@open weakT) (at level 0).
Local Notation natural_open := (@open T).

Lemma weak_sep_cvg (F : set_system T) (x : T) :
  Filter F -> (F --> (x : T)) <-> (F --> (x : weakT)).
Proof.
move=> FF; split.
  move=> FTx; apply/cvg_sup => i U.
  have /= -> := @nbhsE (weak_topology (f_ i)) x.
  case=> B [[C oC <- ?]] /filterS; apply; apply: FTx; rewrite /= nbhsE.
  by exists (f_ i @^-1` C) => //; split => //; exact: open_comp.
move/cvg_sup => wiFx U; rewrite /= nbhs_simpl nbhsE => [[B [oB ?]]].
move/filterS; apply; have [//|i nclfix] := @sepf _ x (open_closedC oB).
apply: (wiFx i); have /= -> := @nbhsE (weak_topology (f_ i)) x.
exists (f_ i @^-1` (~` closure [set f_ i x | x in ~` B])); [split=>//|].
  apply: open_comp; last by rewrite ?openC//; exact: closed_closure.
  by move=> + _; exact: (@weak_continuous _ _ (f_ i)).
rewrite -interiorC interiorEbigcup preimage_bigcup => z [V [oV]] VnB => /VnB.
by move/forall2NP => /(_ z) [] // /contrapT.
Qed.

Lemma weak_sep_nbhsE x : @nbhs T T x = @nbhs T weakT x.
Proof.
rewrite predeqE => U; split; move: U.
  by have P := weak_sep_cvg x (nbhs_filter (x : weakT)); exact/P.
by have P := weak_sep_cvg x (nbhs_filter (x : T)); exact/P.
Qed.

Lemma weak_sep_openE : @open T = @open weakT.
Proof.
rewrite predeqE => A; rewrite ?openE /interior.
by split => + z => /(_ z); rewrite weak_sep_nbhsE.
Qed.

Definition join_product (x : T) : PU := f_ ^~ x.

Lemma join_product_continuous : continuous join_product.
Proof.
suff : continuous (join_product : weakT -> PU).
  by move=> cts x U => /cts; rewrite nbhs_simpl /= -weak_sep_nbhsE.
move=> x; apply/cvg_sup; first exact/fmap_filter/(nbhs_filter (x : weakT)).
move=> i; move: x; apply/(@continuousP _ (weak_topology (@^~ i))) => A [B ? E].
rewrite -E (_ : @^~ i = proj i) //.
have -> : join_product @^-1` (proj i @^-1` B) = f_ i @^-1` B by [].
apply: open_comp => // + _; rewrite /cvg_to => x U.
by rewrite nbhs_simpl /= -weak_sep_nbhsE; move: x U; exact: ctsf.
Qed.

Local Notation prod_open := (@open (subspace (range join_product))).

Lemma join_product_open (A : set T) : open A ->
  open ((join_product @` A) : set (subspace (range join_product))).
Proof.
move=> oA; rewrite openE => y /= [x Ax] jxy.
have [// | i nAfiy] := @sepf (~` A) x (open_closedC oA).
pose B : set PU := proj i @^-1` (~` closure (f_ i @` ~` A)).
apply: (@filterS _ _ _ (range join_product `&` B)).
  move=> z [[w ?]] wzE Bz; exists w => //.
  move: Bz; rewrite /B -wzE -interiorC interiorEbigcup.
  case=> K [oK KsubA] /KsubA.
  have -> : proj i (join_product w) = f_ i w by [].
  by move=> /exists2P/forallNP/(_ w)/not_andP [] // /contrapT.
apply: open_nbhs_nbhs; split; last by rewrite -jxy.
apply: openI; first exact: open_subspaceT.
apply: open_subspaceW; apply: open_comp; last exact/closed_openC/closed_closure.
by move=> + _; exact: proj_continuous.
Qed.

Lemma join_product_inj : accessible_space T -> set_inj [set: T] join_product.
Proof.
move=> /accessible_closed_set1 cl1 x y; case: (eqVneq x y) => // xny _ _ jxjy.
have [] := @sepf [set y] x (cl1 y); first exact/eqP.
move=> i P; suff : join_product x i != join_product y i by rewrite jxjy => /eqP.
apply/negP; move: P; apply: contra_not => /eqP; rewrite /join_product => ->.
by apply: subset_closure; exists y.
Qed.

Lemma join_product_weak : set_inj [set: T] join_product ->
  @open T = @open (weak_topology join_product).
Proof.
move=> inj; rewrite predeqE => U; split; first last.
  by move=> [V ? <-]; apply: open_comp => // + _; exact: join_product_continuous.
move=> /join_product_open/open_subspaceP [V [oU VU]].
exists V => //; have := @f_equal _ _ (preimage join_product) _ _ VU.
rewrite !preimage_setI // !preimage_range !setIT => ->.
rewrite eqEsubset; split; last exact: preimage_image.
by move=> z [w Uw] /inj <- //; rewrite inE.
Qed.

End product_embeddings.

Global Instance prod_topology_filter (U : Type) (T : U -> ptopologicalType) (f : prod_topology T) :
  ProperFilter (nbhs f).
Proof.
exact: nbhs_pfilter.
Qed.

End product_spaces.

HB.instance Definition _ (U : Type) (T : U -> ptopologicalType) :=
  Pointed.copy (forall x : U, T x) (prod_topology T).

the uniform topologies type
Section fct_Uniform.
Local Open Scope relation_scope.
Variables (T : choiceType) (U : uniformType).

Definition fct_ent := filter_from (@entourage U)
  (fun P => [set fg | forall t : T, P (fg.1 t, fg.2 t)]).

Lemma fct_ent_filter : Filter fct_ent.
Proof.
apply: filter_from_filter; first by exists setT; apply: filterT.
move=> A B entA entB.
exists (A `&` B); first exact: filterI.
by move=> fg ABfg; split=> t; have [] := ABfg t.
Qed.

Lemma fct_ent_refl A : fct_ent A -> diagonal `<=` A.
Proof.
move=> [B entB sBA] fg feg; apply/sBA => t; rewrite feg.
exact: entourage_refl.
Qed.

Lemma fct_ent_inv A : fct_ent A -> fct_ent A^-1.
Proof.
move=> [B entB sBA]; exists B^-1; first exact: entourage_inv.
by move=> fg Bgf; exact/sBA.
Qed.

Lemma fct_ent_split A : fct_ent A -> exists2 B, fct_ent B & B \; B `<=` A.
Proof.
move=> [B entB sBA].
exists [set fg | forall t, split_ent B (fg.1 t, fg.2 t)].
  by exists (split_ent B).
move=> fg [h spBfh spBhg].
by apply: sBA => t; apply: entourage_split (spBfh t) (spBhg t).
Qed.

Definition arrow_uniform_type : Type := T -> U.

#[export] HB.instance Definition _ := Choice.on arrow_uniform_type.
#[export] HB.instance Definition _ := isUniform.Build arrow_uniform_type
  fct_ent_filter fct_ent_refl fct_ent_inv fct_ent_split.

End fct_Uniform.

#[export] HB.instance Definition _ {T : choiceType} {U : puniformType} :=
  Pointed.on (arrow_uniform_type T U).

Lemma cvg_fct_entourageP (T : choiceType) (U : uniformType)
    (F : set_system (arrow_uniform_type T U)) (FF : Filter F)
    (f : arrow_uniform_type T U) :
  F --> f <-> forall A, entourage A ->
              \forall g \near F, forall t, A (f t, g t).
Proof.
split => [/cvg_entourageP Ff A entA|Ff].
  by apply: (Ff [set fg | forall t : T, A (fg.1 t, fg.2 t)]); exists A.
apply/cvg_entourageP => A [P entP sPA].
by near=> g do apply: sPA; apply: Ff.
Unshelve. all: by end_near. Qed.

Section fun_Complete.
Context {T : choiceType} {U : completeType}.

Lemma fun_complete (F : set_system (arrow_uniform_type T U))
  {FF : ProperFilter F} : cauchy F -> cvg F.
Proof.
move=> Fc.
have /(_ _) /cauchy_cvg /cvg_app_entourageP cvF : cauchy (@^~_ @ F).
  move=> t A /= entA; rewrite near_simpl -near2E near_map2.
  by apply: Fc; exists A.
apply/cvg_ex; exists (fun t => lim (@^~t @ F)).
apply/cvg_fct_entourageP => A entA; near=> f => t; near F => g.
apply: (entourage_split (g t)) => //; first by near: g; apply: cvF.
move: (t); near: g; near: f; apply: nearP_dep; apply: Fc.
by exists (split_ent A)^-1%relation => /=.
Unshelve. all: by end_near. Qed.

HB.instance Definition _ := Uniform_isComplete.Build
  (arrow_uniform_type T U) fun_complete.

HB.instance Definition _ (R : numFieldType) :=
  Uniform_isComplete.Build (arrow_uniform_type T U) cauchy_cvg.

End fun_Complete.

Functional metric spaces
Section fct_PseudoMetric.
Variable (T : choiceType) (R : numFieldType) (U : pseudoMetricType R).
Definition fct_ball (x : arrow_uniform_type T U) (eps : R)
  (y : arrow_uniform_type T U) := forall t : T, ball (x t) eps (y t).
Lemma fct_ball_center (x : T -> U) (e : R) : 0 < e -> fct_ball x e x.
Proof.
by move=> /posnumP[{}e] ?. Qed.

Lemma fct_ball_sym (x y : T -> U) (e : R) : fct_ball x e y -> fct_ball y e x.
Proof.
by move=> P t; apply: ball_sym. Qed.
Lemma fct_ball_triangle (x y z : T -> U) (e1 e2 : R) :
  fct_ball x e1 y -> fct_ball y e2 z -> fct_ball x (e1 + e2) z.
Proof.
by move=> xy yz t; apply: (@ball_triangle _ _ (y t)). Qed.
Lemma fct_entourage : entourage = entourage_ fct_ball.
Proof.
rewrite predeqE => A; split; last first.
  by move=> [_/posnumP[e] sbeA]; exists [set xy | ball xy.1 e%:num xy.2].
move=> [P]; rewrite -entourage_ballE => -[_/posnumP[e] sbeP] sPA.
by exists e%:num => //= fg fg_e; apply: sPA => t; apply: sbeP; apply: fg_e.
Qed.

HB.instance Definition _ := Uniform_isPseudoMetric.Build R
  (arrow_uniform_type T U) fct_ball_center fct_ball_sym
  fct_ball_triangle fct_entourage.
End fct_PseudoMetric.

Module ArrowAsUniformType.
HB.instance Definition _ (U : choiceType) (V : uniformType) :=
  Uniform.copy (U -> V) (arrow_uniform_type U V).

HB.instance Definition _ (U : choiceType) (R : numFieldType)
    (V : pseudoMetricType R) :=
  PseudoMetric.copy (U -> V) (arrow_uniform_type U V).

HB.instance Definition _ (U : topologicalType) (T : uniformType) :=
  Uniform.copy
    (continuousType U T)
    (weak_topology (id : continuousType U T -> (U -> T))).

HB.instance Definition _ (U : topologicalType) (R : realType)
     (T : pseudoMetricType R) :=
  PseudoMetric.on
    (weak_topology (id : continuousType U T -> (U -> T))).

End ArrowAsUniformType.

Limit switching
Section Cvg_switch.
Context {T1 T2 : choiceType}.
Local Import ArrowAsUniformType.

Lemma cvg_switch_1 {U : uniformType}
  F1 {FF1 : ProperFilter F1} F2 {FF2 : Filter F2}
  (f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) (l : U) :
  f @ F1 --> g -> (forall x1, f x1 @ F2 --> h x1) -> h @ F1 --> l ->
  g @ F2 --> l.
Proof.
move=> fg fh hl; apply/cvg_app_entourageP => A entA.
near F1 => x1; near=> x2; apply: (entourage_split (h x1)) => //.
  by apply/xsectionP; near: x1; exact: hl.
apply: (entourage_split (f x1 x2)) => //.
  by apply/xsectionP; near: x2; exact: fh.
move: (x2); near: x1; have /cvg_fct_entourageP /(_ _^-1%relation):= fg; apply.
exact: entourage_inv.
Unshelve. all: by end_near. Qed.

Lemma cvg_switch_2 {U : completeType}
  F1 {FF1 : ProperFilter F1} F2 {FF2 : ProperFilter F2}
  (f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) :
  f @ F1 --> g -> (forall x, f x @ F2 --> h x) ->
  [cvg h @ F1 in U].
Proof.
move=> fg fh; apply: cauchy_cvg => A entA.
rewrite !near_simpl -near2_pair near_map2; near=> x1 y1 => /=; near F2 => x2.
apply: (entourage_split (f x1 x2)) => //.
  by apply/xsectionP; near: x2; exact: fh.
apply: (entourage_split (f y1 x2)) => //; last first.
  apply/xsectionP; near: x2; apply/(fh _ (xsection _^-1%relation _)).
  exact: nbhs_entourage (entourage_inv _).
apply: (entourage_split (g x2)) => //; move: (x2); [near: x1|near: y1].
  have /cvg_fct_entourageP /(_ _^-1%relation) := fg; apply.
  exact: entourage_inv.
by have /cvg_fct_entourageP := fg; apply.
Unshelve. all: by end_near. Qed.

Lemma cvg_switch {U : completeType}
  F1 (FF1 : ProperFilter F1) F2 (FF2 : ProperFilter F2)
  (f : T1 -> T2 -> U) (g : T2 -> U) (h : T1 -> U) :
  f @ F1 --> g -> (forall x1, f x1 @ F2 --> h x1) ->
  exists l : U, h @ F1 --> l /\ g @ F2 --> l.
Proof.
move=> Hfg Hfh; have hcv := !! cvg_switch_2 Hfg Hfh.
by exists (lim (h @ F1)); split=> //; apply: cvg_switch_1 Hfg Hfh hcv.
Qed.

End Cvg_switch.

Definition uniform_fun {U : Type} (A : set U) (V : Type) : Type := U -> V.

Notation "{ 'uniform`' A -> V }" := (@uniform_fun _ A V) : type_scope.
Notation "{ 'uniform' U -> V }" := ({uniform` [set: U] -> V}) : type_scope.
Notation "{ 'uniform' A , F --> f }" :=
  (cvg_to F (nbhs (f : {uniform` A -> _}))) : classical_set_scope.
Notation "{ 'uniform' , F --> f }" :=
  (cvg_to F (nbhs (f : {uniform _ -> _}))) : classical_set_scope.

Definition sigL_arrow {U : choiceType} (A : set U) (V : uniformType) :
  (U -> V) -> arrow_uniform_type A V := @sigL _ V A.

HB.instance Definition _ (U : choiceType) (A : set U) (V : uniformType) :=
  Uniform.copy {uniform` A -> V} (weak_topology (@sigL_arrow _ A V)).

Section RestrictedUniformTopology.
Context {U : choiceType} (A : set U) {V : uniformType} .

Lemma uniform_nbhs (f : {uniform` A -> V}) P:
  nbhs f P <-> (exists E, entourage E /\
    [set h | forall y, A y -> E(f y, h y)] `<=` P).
Proof.
split=> [[Q [[/= W oW <- /=] Wf subP]]|[E [entE subP]]].
  rewrite openE /= /interior in oW.
  case: (oW _ Wf) => ? [ /= E entE] Esub subW.
  exists E; split=> // h Eh; apply/subP/subW/xsectionP/Esub => /= [[u Au]].
  by apply: Eh => /=; rewrite -inE.
case : (pselect (exists (u : U), True)); first last.
  move=> nU; apply: (filterS subP); apply: (@filterS _ _ _ setT).
  by move=> t _ /= y; move: nU; apply: absurd; exists y.
  exact: filterT.
case=> u0 _; near=> g; apply: subP => y /mem_set Ay; rewrite -!(sigLE A).
move: (SigSub _); near: g.
have := (@cvg_image _ _ (@sigL_arrow _ A V) _ f (nbhs_filter f)
  (image_sigL (f u0))).1 cvg_id [set h | forall y, E (sigL A f y, h y)].
case.
  exists [set fg | forall y, E (fg.1 y, fg.2 y)] => //; first by exists E.
  by move=> g /xsectionP.
move=> B nbhsB rBrE; apply: (filterS _ nbhsB) => g Bg [y yA].
by move: rBrE; rewrite eqEsubset; case => [+ _]; apply; exists g.
Unshelve. all: by end_near. Qed.

Lemma uniform_entourage :
  @entourage {uniform` A -> V} =
  filter_from
    (@entourage V)
    (fun P => [set fg | forall t : U, A t -> P (fg.1 t, fg.2 t)]).
Proof.
rewrite eqEsubset; split => P /=.
  case=> /= E [F entF FsubE EsubP]; exists F => //; case=> f g Ffg.
  by apply/EsubP/FsubE=> [[x p]] /=; apply: Ffg; move/set_mem: (p).
case=> E entE EsubP; exists [set fg | forall t, E (fg.1 t, fg.2 t)].
  by exists E.
case=> f g Efg; apply: EsubP => t /mem_set At.
by move: Efg => /= /(_ (@exist _ (fun x => in_mem x (mem A)) _ At)).
Qed.

End RestrictedUniformTopology.

Lemma restricted_cvgE {U : choiceType} {V : uniformType}
    (F : set_system (U -> V)) A (f : U -> V) :
  {uniform A, F --> f} = (F --> (f : {uniform` A -> V})).
Proof.
by []. Qed.

Lemma pointwise_cvgE {U : Type} {V : topologicalType}
    (F : set_system (U -> V)) (A : set U) (f : U -> V) :
  {ptws, F --> f} = (F --> (f : {ptws U -> V})).
Proof.
by []. Qed.


We use this function to help Coq identify the correct notation to use when printing. Otherwise you get goals like `F --> f -> F --> f`.
Definition uniform_fun_family {U} V (fam : set U -> Prop) := U -> V.

Notation "{ 'family' fam , U -> V }" := (@uniform_fun_family U V fam).
Notation "{ 'family' fam , F --> f }" :=
  (cvg_to F (@nbhs _ {family fam, _ -> _} f)) : type_scope.

HB.instance Definition _ {U : choiceType} {V : uniformType}
    (fam : set U -> Prop) :=
  Uniform.copy {family fam, U -> V} (sup_topology (fun k : sigT fam =>
       Uniform.class {uniform` projT1 k -> V})).

Section UniformCvgLemmas.
Context {U : choiceType} {V : uniformType}.

Lemma uniform_set1 F (f : U -> V) (x : U) :
  Filter F -> {uniform [set x], F --> f} = (g x @[g --> F] --> f x).
Proof.
move=> FF; rewrite propeqE; split.
  move=> + W => /(_ [set t | W (t x)]) +; rewrite -nbhs_entourageE.
  rewrite uniform_nbhs => + [Q entQ subW].
  by apply; exists Q; split => // h Qf; exact/subW/xsectionP/Qf.
move=> Ff W; rewrite uniform_nbhs => [[E] [entE subW]].
apply: (filterS subW); move/(nbhs_entourage (f x))/Ff: entE => //=; near_simpl.
by apply: filter_app; apply: nearW=> ? /xsectionP ? ? ->.
Qed.

Lemma uniform_subset_nbhs (f : U -> V) (A B : set U) :
  B `<=` A -> nbhs (f : {uniform` A -> V}) `=>` nbhs (f : {uniform` B -> V}).
Proof.
move => BsubA P /uniform_nbhs [E [entE EsubP]].
apply: (filterS EsubP); apply/uniform_nbhs; exists E; split => //.
by move=> h Eh y /BsubA Ay; exact: Eh.
Qed.

Lemma uniform_subset_cvg (f : U -> V) (A B : set U) F :
  Filter F -> B `<=` A -> {uniform A, F --> f} -> {uniform B, F --> f}.
Proof.
move => FF /uniform_subset_nbhs => /(_ f).
by move=> nbhsF Acvg; apply: cvg_trans; [exact: Acvg|exact: nbhsF].
Qed.

Lemma pointwise_uniform_cvg (f : U -> V) (F : set_system (U -> V)) :
  Filter F -> {uniform, F --> f} -> {ptws, F --> f}.
Proof.
move=> FF; rewrite cvg_sup => + i; have isubT : [set i] `<=` setT by move=> ?.
move=> /(uniform_subset_cvg _ isubT); rewrite uniform_set1.
rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
apply: cvg_trans => W /=; rewrite nbhs_simpl; exists (@^~ i @^-1` W) => //.
by rewrite image_preimage // eqEsubset; split=> // j _; exists (fun _ => j).
Qed.

Lemma cvg_sigL (A : set U) (f : U -> V) (F : set_system (U -> V)) :
    Filter F ->
  {uniform A, F --> f} <->
  {uniform, sigL A @ F --> sigL A f}.
Proof.
move=> FF; split.
- move=> cvgF P' /uniform_nbhs [E [entE EsubP]].
  apply: (filterS EsubP); apply: cvgF => /=.
  apply: (filterS (P := [set h | forall y, A y -> E (f y, h y)])).
    + by move=> h/= Eh [y ?] _; apply Eh; rewrite -inE.
    + by (apply/uniform_nbhs; eexists; split; eauto).
- move=> cvgF P' /= /uniform_nbhs [ E [/= entE EsubP]].
  apply: (filterS EsubP).
  move: (cvgF [set h | (forall y , E (sigL A f y, h y))]) => /=.
  set Q := (x in (_ -> x) -> _); move=> W.
  have: Q by apply W, uniform_nbhs; exists E; split => // h + ?; apply.
  rewrite {}/W {}/Q; near_simpl => /= R; apply: (filterS _ R) => h /=.
  by rewrite forall_sig /sigL /=.
Qed.

Lemma eq_in_close (A : set U) (f g : {uniform` A -> V}) :
  {in A, f =1 g} -> close f g.
Proof.
rewrite entourage_close => /eq_sigLP eqfg ? [E entE]; apply=> /=.
by rewrite /map_pair/sigL_arrow eqfg; exact: entourage_refl.
Qed.

Lemma hausdorrf_close_eq_in (A : set U) (f g : {uniform` A -> V}) :
  hausdorff_space V -> close f g = {in A, f =1 g}.
Proof.
move=> hV.
rewrite propeqE; split; last exact: eq_in_close.
rewrite entourage_close => C u; rewrite inE => uA; apply: hV.
rewrite /cluster -nbhs_entourageE /= => X Y [X' eX X'X] [Y' eY Y'Y].
exists (g u); split; [apply: X'X| apply: Y'Y]; apply/xsectionP; last first.
  exact: entourage_refl.
apply: (C [set fg | forall y, A y -> X' (fg.1 y, fg.2 y)]) => //=.
by rewrite uniform_entourage; exists X'.
Qed.

Lemma uniform_nbhsT (f : U -> V) :
  (nbhs (f : {uniform U -> V})) = nbhs (f : arrow_uniform_type U V).
Proof.
rewrite eqEsubset; split=> A.
  case/uniform_nbhs => E [entE] /filterS; apply.
  exists [set fh | forall y, E (fh.1 y, fh.2 y)]; first by exists E.
  by move=> ? /xsectionP /=.
case => J [E entE EJ] /filterS; apply; apply/uniform_nbhs; exists E.
by split => // z /= Efz; apply/xsectionP/EJ => t /=; exact: Efz.
Qed.

Lemma cvg_uniformU (f : U -> V) (F : set_system (U -> V)) A B : Filter F ->
  {uniform A, F --> f} -> {uniform B, F --> f} ->
  {uniform (A `|` B), F --> f}.
Proof.
move=> FF AFf BFf Q /=/uniform_nbhs [E [entE EsubQ]].
apply: (filterS EsubQ).
rewrite (_: [set h | (forall y : U, (A `|` B) y -> E (f y, h y))] =
    [set h | forall y, A y -> E (f y, h y)] `&`
    [set h | forall y, B y -> E (f y, h y)]).
- apply: filterI; [apply: AFf| apply: BFf].
  + by apply/uniform_nbhs; exists E; split.
  + by apply/uniform_nbhs; exists E; split.
- rewrite eqEsubset; split=> h.
  + by move=> R; split=> t ?; apply: R;[left| right].
  + by move=> [R1 R2] y [? | ?]; [apply: R1| apply: R2].
Qed.

Lemma cvg_uniform_set0 (F : set_system (U -> V)) (f : U -> V) : Filter F ->
  {uniform set0, F --> f}.
Proof.
move=> FF P /= /uniform_nbhs [E [? R]].
suff -> : P = setT by exact: filterT.
rewrite eqEsubset; split => //=.
by apply: subset_trans R => g _ ?.
Qed.

Lemma fam_cvgP (fam : set U -> Prop) (F : set_system (U -> V)) (f : U -> V) :
  Filter F -> {family fam, F --> f} <->
  (forall A : set U, fam A -> {uniform A, F --> f }).
Proof.
split; first by move=> /cvg_sup + A FA; move/(_ (existT _ _ FA)).
by move=> famFf /=; apply/cvg_sup => [[? ?] FA]; apply: famFf.
Qed.

Lemma family_cvg_subset (famA famB : set U -> Prop) (F : set_system (U -> V))
    (f : U -> V) : Filter F ->
  famA `<=` famB -> {family famB, F --> f} -> {family famA, F --> f}.
Proof.
by move=> FF S /fam_cvgP famBFf; apply/fam_cvgP => A ?; apply/famBFf/S.
Qed.

Lemma family_cvg_finite_covers (famA famB : set U -> Prop)
  (F : set_system (U -> V)) (f : U -> V) : Filter F ->
  (forall P, famA P ->
    exists (I : choiceType) f,
      (forall i, famB (f i)) /\ finite_subset_cover [set: I] f P) ->
  {family famB, F --> f} -> {family famA, F --> f}.
Proof.
move=> FF ex_finCover /fam_cvgP rFf; apply/fam_cvgP => A famAA.
move: ex_finCover => /(_ _ famAA) [R [g [g_famB [D _]]]].
move/uniform_subset_cvg; apply.
elim/finSet_rect: D => X IHX.
have [->|/set0P[x xX]] := eqVneq [set` X] set0.
  by rewrite coverE bigcup_set0; apply: cvg_uniform_set0.
rewrite coverE (bigcup_fsetD1 x)//; apply: cvg_uniformU.
  exact/rFf/g_famB.
exact/IHX/fproperD1.
Qed.

End UniformCvgLemmas.

Lemma uniform_restrict_cvg {U : choiceType} {V : puniformType}
    (F : set_system (U -> V)) (f : U -> V) A : Filter F ->
  {uniform A, F --> f} <-> {uniform, restrict A @ F --> restrict A f}.
Proof.
move=> FF; rewrite cvg_sigL; split.
- rewrite -sigLK; move/(cvg_app valL) => D.
  apply: cvg_trans; first exact: D.
  move=> P /uniform_nbhs [E [/=entE EsubP]]; apply: (filterS EsubP).
  apply/uniform_nbhs; exists E; split=> //= h /=.
  rewrite /sigL => R u _; rewrite oinv_set_val.
  by case: insubP=> /= *; [apply: R|apply: entourage_refl].
- move/(@cvg_app _ _ _ _ (sigL A)).
  rewrite -fmap_comp sigL_restrict => D.
  apply: cvg_trans; first exact: D.
  move=> P /uniform_nbhs [E [/=entE EsubP]]; apply: (filterS EsubP).
  apply/uniform_nbhs; exists E; split=> //= h /=.
  rewrite /sigL => R [u Au] _ /=.
  by have := R u I; rewrite /patch Au.
Qed.


Section FamilyConvergence.

Lemma fam_cvgE {U : choiceType} {V : uniformType} (F : set_system (U -> V))
    (f : U -> V) fam :
  {family fam, F --> f} = (F --> (f : {family fam, U -> V})).
Proof.
by []. Qed.

Lemma fam_nbhs {U : choiceType} {V : uniformType} (fam : set U -> Prop)
    (A : set U) (E : set (V * V)) (f : {family fam, U -> V}) :
  entourage E -> fam A -> nbhs f [set g | forall y, A y -> E (f y, g y)].
Proof.
move=> entE famA; have /fam_cvgP /(_ A) : (nbhs f --> f) by []; apply => //.
by apply uniform_nbhs; exists E; split.
Qed.

Lemma fam_compact_nbhs {U : topologicalType} {V : uniformType}
    (A : set U) (O : set V) (f : {family compact, U -> V}) :
  open O -> f @` A `<=` O -> compact A -> continuous f ->
  nbhs (f : {family compact, U -> V}) [set g | forall y, A y -> O (g y)].
Proof.
move=> oO fAO /[dup] cA /compact_near_coveringP/near_covering_withinP cfA ctsf.
near=> z => /=; (suff: A `<=` [set y | O (z y)] by exact); near: z.
apply: cfA => x Ax; have : O (f x) by exact: fAO.
move: (oO); rewrite openE /= => /[apply] /[dup] /ctsf Ofx /=.
rewrite /interior -nbhs_entourageE => -[E entE EfO].
exists (f @^-1` xsection (split_ent E) (f x),
    [set g | forall w, A w -> split_ent E (f w, g w)]).
  split => //=; last exact: fam_nbhs.
  by apply: ctsf; rewrite /= -nbhs_entourageE; exists (split_ent E).
case=> y g [/= /xsectionP Efxy] AEg Ay; apply/EfO/xsectionP.
by apply: subset_split_ent => //; exists (f y) => //=; exact: AEg.
Unshelve. all: by end_near. Qed.

End FamilyConvergence.

It turns out `{family compact, U -> V}` can be generalized to only assume `topologicalType` on `V`. This topology is called the compact-open topology. This topology is special because it is the _only_ topology that will allow `curry`/`uncurry` to be continuous.
Section compact_open.
Context {T U : topologicalType}.

Definition compact_open : Type := T -> U.

Section compact_open_setwise.
Context {K : set T}.

Definition compact_openK := let _ := K in compact_open.

Definition compact_openK_nbhs (f : compact_openK) :=
  filter_from
    [set O | f @` K `<=` O /\ open O]
    (fun O => [set g | g @` K `<=` O]).

Global Instance compact_openK_nbhs_filter (f : compact_openK) :
  ProperFilter (compact_openK_nbhs f).
Proof.
split; first by case=> g [gKO oO] /(_ f); apply.
apply: filter_from_filter; first by exists setT; split => //; exact: openT.
move=> P Q [fKP oP] [fKQ oQ]; exists (P `&` Q); first split.
- by move=> ? [z Kz M-]; split; [apply: fKP | apply: fKQ]; exists z.
- exact: openI.
by move=> g /= gPQ; split; exact: (subset_trans gPQ).
Qed.

HB.instance Definition _ := Choice.on compact_openK.

HB.instance Definition _ := hasNbhs.Build compact_openK compact_openK_nbhs.

Definition compact_open_of_nbhs := [set A : set compact_openK | A `<=` nbhs^~ A].

Lemma compact_openK_nbhsE_subproof (p : compact_openK) :
  compact_openK_nbhs p =
    [set A | exists B : set compact_openK,
      [/\ compact_open_of_nbhs B, B p & B `<=` A]].
Proof.
rewrite eqEsubset; split => A /=.
  case=> B /= [fKB oB gKBA]; exists [set g | g @` K `<=` B]; split => //.
  by move=> h /= hKB; exists B.
by case=> B [oB Bf /filterS]; apply; exact: oB.
Qed.

Lemma compact_openK_openE_subproof :
  compact_open_of_nbhs = [set A | A `<=` compact_openK_nbhs^~ A].
Proof.
by []. Qed.

HB.instance Definition _ :=
  Nbhs_isTopological.Build compact_openK compact_openK_nbhs_filter
  compact_openK_nbhsE_subproof compact_openK_openE_subproof.

End compact_open_setwise.

Definition compact_open_def :=
  sup_topology (fun i : sigT (@compact T) =>
    Topological.class (@compact_openK (projT1 i))).

HB.instance Definition _ := Nbhs.copy compact_open compact_open_def.

HB.instance Definition _ : Nbhs_isTopological compact_open :=
  Topological.copy compact_open compact_open_def.

Lemma compact_open_cvgP (F : set_system compact_open)
    (f : compact_open) :
  Filter F ->
  F --> f <-> forall K O, @compact T K -> @open U O -> f @` K `<=` O ->
    F [set g | g @` K `<=` O].
Proof.
move=> FF; split.
  by move/cvg_sup => + K O cptK ? ? => /(_ (existT _ _ cptK)); apply; exists O.
move=> fko; apply/cvg_sup => -[A cptK] O /= [C /= [fAC oC]].
by move/filterS; apply; exact: fko.
Qed.

Lemma compact_open_open (K : set T) (O : set U) :
  compact K -> open O -> open ([set g | g @` K `<=` O] : set compact_open).
Proof.
pose C := [set g | g @` K `<=` O]; move=> cptK oO.
exists [set C]; last by rewrite bigcup_set1.
move=> _ ->; exists (fset1 C) => //; last by rewrite set_fset1 bigcap_set1.
by move=> _ /[!inE] ->; exists (existT _ _ cptK) => // z Cz; exists O.
Qed.

End compact_open.

HB.instance Definition _ {U : topologicalType} {V : ptopologicalType} K :=
    Pointed.on (@compact_openK U V K).

HB.instance Definition _ {U : topologicalType} {V : ptopologicalType} :=
  Pointed.on (@compact_open U V).


Notation "{ 'compact-open' , U -> V }" := (@compact_open U V).
Notation "{ 'compact-open' , F --> f }" :=
  (F --> (f : @compact_open _ _)).

Section compact_open_uniform.
Context {U : topologicalType} {V : puniformType}.

Let small_ent_sub := @small_set_sub _ (@entourage V).

Lemma compact_open_fam_compactP (f : U -> V) (F : set_system (U -> V)) :
  continuous f -> Filter F ->
  {compact-open, F --> f} <-> {family compact, F --> f}.
Proof.
move=> ctsf FF; split; first last.
  move=> cptF; apply/compact_open_cvgP => K O cptK oO fKO.
  apply: cptF; have := fam_compact_nbhs oO fKO cptK ctsf; apply: filter_app.
  by near=> g => /= gKO ? [z Kx <-]; exact: gKO.
move/compact_open_cvgP=> cptOF; apply/cvg_sup => -[K cptK R].
case=> D [[E oE <-] Ekf] /filterS; apply.
move: oE; rewrite openE => /(_ _ Ekf); case => A [J entJ] EKR KfE.
near=> z; apply/KfE/xsectionP/EKR => -[u Kp]; rewrite /sigL_arrow /= /set_val /= /eqincl.
(have Ku : K u by rewrite inE in Kp); move: u Ku {D Kp}; near: z.
move/compact_near_coveringP/near_covering_withinP : (cptK); apply.
move=> u Ku; near (powerset_filter_from (@entourage V)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose C := f @^-1` xsection E' (f u).
pose B := \bigcup_(z in K `&` closure C) interior (xsection E' (f z)).
have oB : open B by apply: bigcup_open => ? ?; exact: open_interior.
have fKB : f @` (K `&` closure C) `<=` B.
  move=> _ [z KCz <-]; exists z => //; rewrite /interior.
  by rewrite -nbhs_entourageE; exists E'.
have cptKC : compact (K `&` closure C).
  by apply: compact_closedI => //; exact: closed_closure.
have := cptOF (K `&` closure C) B cptKC oB fKB.
exists (C, [set g | [set g x | x in K `&` closure C] `<=` B]).
  split; last exact: cptOF.
  by apply: (ctsf) => //; rewrite /filter_of -nbhs_entourageE; exists E'.
case=> z h /= [Cz KB Kz].
case: (KB (h z)); first by exists z; split => //; exact: subset_closure.
move=> w [Kw Cw /interior_subset Jfwhz]; apply: subset_split_ent => //.
exists (f w); last first.
  apply: (near (small_ent_sub _) E') => //.
  exact/xsectionP.
apply: subset_split_ent => //; exists (f u).
  apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
  exact/xsectionP.
have [] := Cw (f @^-1` xsection E' (f w)).
  by apply: ctsf; rewrite /= -nbhs_entourageE; exists E'.
move=> r [Cr /= Ewr]; apply: subset_split_ent => //; exists (f r).
  apply: (near (small_ent_sub _) E') => //.
  exact/xsectionP.
apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
exact/xsectionP.
Unshelve. all: by end_near. Qed.

End compact_open_uniform.

Module ArrowAsCompactOpen.
HB.instance Definition _ (U : topologicalType) (V : topologicalType) :=
  Topological.copy (U -> V) {compact-open, U -> V}.

HB.instance Definition _ (U : topologicalType) (V : topologicalType) :=
  Topological.copy (continuousType U V)
    (weak_topology (id : (continuousType U V) -> (U -> V)) ).
End ArrowAsCompactOpen.

Definition compactly_in {U : topologicalType} (A : set U) :=
  [set B | B `<=` A /\ compact B].

Lemma compact_cvg_within_compact {U : topologicalType} {V : uniformType}
    (C : set U) (F : set_system (U -> V)) (f : U -> V) :
  Filter F -> compact C ->
  {uniform C, F --> f} <-> {family compactly_in C, F --> f}.
Proof.
move=> FF CC.
apply: (iff_trans _ (iff_sym (fam_cvgP _ _ FF))); split.
- by move=> CFf D [/uniform_subset_cvg + _]; apply.
- by apply; split.
Qed.

Section UniformContinuousLimits.

Lemma uniform_limit_continuous {U : topologicalType} {V : uniformType}
    (F : set_system (U -> V)) (f : U -> V) :
  ProperFilter F -> (\forall g \near F, continuous (g : U -> V)) ->
  {uniform, F --> f} -> continuous f.
Proof.
move=> PF ctsF Ff x; apply/cvg_app_entourageP => A entA; near F => g; near=> y.
apply: (entourage_split (g x)) => //.
  by near: g; apply/Ff/uniform_nbhs; exists (split_ent A); split => // ?; exact.
apply: (entourage_split (g y)) => //; near: y; near: g.
  by apply: (filterS _ ctsF) => g /(_ x) /cvg_app_entourageP; exact.
apply/Ff/uniform_nbhs; exists (split_ent (split_ent A))^-1%relation.
by split; [exact: entourage_inv | move=> g fg; near_simpl; near=> z; exact: fg].
Unshelve. all: end_near. Qed.

Lemma uniform_limit_continuous_subspace {U : topologicalType} {V : puniformType}
    (K : set U) (F : set_system (U -> V)) (f : subspace K -> V) :
  ProperFilter F -> (\forall g \near F, continuous (g : subspace K -> V)) ->
  {uniform K, F --> f} -> {within K, continuous f}.
Proof.
move=> PF ctsF Ff; apply: (@subspace_eq_continuous _ _ _ (restrict K f)).
  by rewrite /restrict => ? ->.
apply: (@uniform_limit_continuous (subspace K) _ (restrict K @ F) _).
  apply: (filterS _ ctsF) => g; apply: subspace_eq_continuous.
  by rewrite /restrict => ? ->.
by apply (@uniform_restrict_cvg _ _ F ) => //; exact: PF.
Qed.

End UniformContinuousLimits.

Section UniformPointwise.
Context {U : topologicalType} {V : uniformType}.

Definition singletons {T : Type} := [set [set x] | x in [set: T]].

Lemma pointwise_cvg_family_singleton F (f: U -> V):
  Filter F -> {ptws, F --> f} = {family @singletons U, F --> f}.
Proof.
move=> FF; apply/propext.
rewrite (@fam_cvgP _ _ singletons). (* BUG: slowdown if no arguments *)
rewrite cvg_sup; split.
  move=> + A [x _ <-] => /(_ x); rewrite uniform_set1.
  rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
  apply: cvg_trans => W /=; rewrite ?nbhs_simpl /fmap /= => [[W' + <-]].
  by apply: filterS => g W'g /=; exists g.
move=> + i; have /[swap] /[apply] : singletons [set i] by exists i.
rewrite uniform_set1.
rewrite cvg_image; last by rewrite eqEsubset; split=> v // _; exists (cst v).
move=> + W //=; rewrite ?nbhs_simpl => Q => /Q Q'; exists (@^~ i @^-1` W) => //.
by rewrite eqEsubset; split => [j [? + <-//]|j Wj]; exists (fun _ => j).
Qed.

Lemma pointwise_cvg_compact_family F (f : U -> V) :
  Filter F -> {family compact, F --> f} -> {ptws, F --> f}.
Proof.
move=> PF; rewrite pointwise_cvg_family_singleton; apply: family_cvg_subset.
by move=> A [x _ <-]; exact: compact_set1.
Qed.

Lemma pointwise_cvgP F (f: U -> V):
  Filter F -> {ptws, F --> f} <-> forall (t : U), (fun g => g t) @ F --> f t.
Proof.
move=> Ff; rewrite pointwise_cvg_family_singleton; split.
  move/fam_cvgP => + t A At => /(_ [set t]); rewrite uniform_set1; apply => //.
  by exists t.
by move=> pf; apply/fam_cvgP => ? [t _ <-]; rewrite uniform_set1; exact: pf.
Qed.

End UniformPointwise.

Section ArzelaAscoli.
Context {X : topologicalType} {Y : puniformType} {hsdf : hausdorff_space Y}.
Implicit Types (I : Type).

The key condition in Arzela-Ascoli that, like uniform continuity, moves a quantifier around so all functions have the same "deltas":
Definition equicontinuous {I} (W : set I) (d : I -> (X -> Y)) :=
  forall x (E : set (Y * Y)), entourage E ->
    \forall y \near x, forall i, W i -> E (d i x, d i y).

Lemma equicontinuous_subset {I J} (W : set I) (V : set J)
    {fW : I -> X -> Y} {fV : J -> X -> Y} :
  fW @`W `<=` fV @` V -> equicontinuous V fV -> equicontinuous W fW.
Proof.
move=> WsubV + x E entE => /(_ x E entE); apply: filterS => y VE i Wi.
by case: (WsubV (fW i)); [exists i | move=> j Vj <-; exact: VE].
Qed.

Lemma equicontinuous_subset_id (W V : set (X -> Y)) :
  W `<=` V -> equicontinuous V id -> equicontinuous W id.
Proof.
move=> WsubV; apply: equicontinuous_subset => ? [y ? <- /=]; exists y => //.
exact: WsubV.
Qed.

Lemma equicontinuous_continuous_for {I} (W : set I) (fW : I -> X -> Y) i x :
  {for x, equicontinuous W fW} -> W i -> {for x, continuous (fW i)}.
Proof.
move=> ectsW Wf; apply/cvg_entourageP => E entE; near_simpl.
by near=> y; apply: (near (ectsW _ entE) y).
Unshelve. end_near. Qed.

Lemma equicontinuous_continuous {I} (W : set I) (fW : I -> (X -> Y)) (i : I) :
  equicontinuous W fW -> W i -> continuous (fW i).
Proof.
move=> ectsW Wf x; apply: equicontinuous_continuous_for; last exact: Wf.
by move=> ?; exact: ectsW.
Qed.

A convenient notion that is in between compactness in `{family compact, X -> y}` and compactness in `{ptws X -> y}`:
Definition pointwise_precompact {I} (W : set I) (d : I -> X -> Y) :=
  forall x, precompact [set d i x | i in W].

Lemma pointwise_precompact_subset {I J} (W : set I) (V : set J)
    {fW : I -> X -> Y} {fV : J -> X -> Y} :
  fW @` W `<=` fV @` V -> pointwise_precompact V fV ->
  pointwise_precompact W fW.
Proof.
move=> WsubV + x => /(_ x) pcptV; apply: precompact_subset pcptV => y [i Wi <-].
by case: (WsubV (fW i)); [exists i | move=> j Vj <-; exists j].
Qed.

Lemma pointwise_precompact_precompact {I} (W : set I) (fW : I -> (X -> Y)) :
  pointwise_precompact W fW -> precompact ((fW @` W) : set {ptws X -> Y}).
Proof.
rewrite precompactE => ptwsPreW.
pose K := fun x => closure [set fW i x | i in W].
set R := [set f : {ptws X -> Y} | forall x : X, K x (f x)].
have C : compact R.
  by apply: tychonoff => x; rewrite -precompactE; move: ptwsPreW; exact.
apply: (subclosed_compact _ C); first exact: closed_closure.
have WsubR : (fW @` W) `<=` R.
  move=> f Wf x; rewrite /R /K closure_limit_point; left.
  by case: Wf => i ? <-; exists i.
rewrite closureE; apply: smallest_sub (compact_closed _ C) WsubR.
exact: hausdorff_product.
Qed.

Lemma uniform_pointwise_compact (W : set (X -> Y)) :
  compact (W : set (@uniform_fun_family X Y compact)) ->
  compact (W : set {ptws X -> Y}).
Proof.
rewrite [x in x _ -> _]compact_ultra [x in _ -> x _]compact_ultra.
move=> + F UF FW => /(_ F UF FW) [h [Wh Fh]]; exists h; split => //.
by move=> Q Fq; apply: (pointwise_cvg_compact_family _ Fh).
Qed.

Lemma precompact_pointwise_precompact (W : set {family compact, X -> Y}) :
  precompact W -> pointwise_precompact W id.
Proof.
move=> + x; rewrite ?precompactE => pcptW.
have : compact (proj x @` (closure W)).
  apply: continuous_compact => //; apply: continuous_subspaceT=> g.
  move=> E nbhsE; have := (@proj_continuous _ _ x g E nbhsE).
  exact: (@pointwise_cvg_compact_family _ _ (nbhs g)).
move=> /[dup]/(compact_closed hsdf)/closure_id -> /subclosed_compact.
apply; first exact: closed_closure.
by apply/closure_subset/image_subset; exact: (@subset_closure _ W).
Qed.

Lemma pointwise_cvg_entourage (x : X) (f : {ptws X -> Y}) E :
  entourage E -> \forall g \near f, E (f x, g x).
Proof.
move=> entE; have : ({ptws, nbhs f --> f}) by [].
have ? : Filter (nbhs f) by exact: nbhs_pfilter. (* NB: This Filter (nbhs f) used to infer correctly. *)
rewrite pointwise_cvg_family_singleton => /fam_cvgP /(_ [set x]).
rewrite uniform_set1 => /(_ _ [set y | E (f x, y)]); apply; first by exists x.
by move: E entE; exact/cvg_entourageP.
Qed.

Lemma equicontinuous_closure (W : set {ptws X -> Y}) :
  equicontinuous W id -> equicontinuous (closure W) id.
Proof.
move=> ectsW x E entE; near=> y => f clWf.
have ? : ProperFilter (within W (nbhs (f : {ptws X -> Y}))).
  exact: within_nbhs_proper. (* TODO: This ProperFilter _ also used to infer correctly. *)
near (within W (nbhs (f : {ptws X -> Y}))) => g.
near: g; rewrite near_withinE; near_simpl; near=> g => Wg.
apply: (@entourage_split _ (g x)) => //.
  exact: (near (pointwise_cvg_entourage _ _ _)).
apply: (@entourage_split _ (g y)) => //; first exact: (near (@ectsW x _ _)).
by apply/entourage_sym; exact: (near (pointwise_cvg_entourage _ _ _)).
Unshelve. all: by end_near. Qed.

Definition small_ent_sub := @small_set_sub _ (@entourage Y).

Lemma pointwise_compact_cvg (F : set_system {ptws X -> Y}) (f : {ptws X -> Y}) :
  ProperFilter F ->
  (\forall W \near powerset_filter_from F, equicontinuous W id) ->
  {ptws, F --> f} <-> {family compact, F --> f}.
Proof.
move=> PF /near_powerset_filter_fromP; case.
  exact: equicontinuous_subset_id.
move=> W; wlog Wf : f W / W f.
  move=> + FW /equicontinuous_closure => /(_ f (closure (W : set {ptws X -> Y}))) Q.
  split => Ff; last by apply: pointwise_cvg_compact_family.
  apply/Q => //.
    by rewrite closureEcvg; exists F; [|split] => // ? /= /filterS; apply.
  by apply: (filterS _ FW) => z Wz; apply: subset_closure.
move=> FW ectsW; split=> [ptwsF|]; last exact: pointwise_cvg_compact_family.
apply/fam_cvgP => K ? U /=; rewrite uniform_nbhs => [[E [eE EsubU]]].
suff : \forall g \near within W (nbhs (f : {ptws X -> Y})),
    forall y, K y -> E (f y, g y).
  rewrite near_withinE; near_simpl => N; apply: (filter_app _ _ FW).
  by apply: ptwsF; near=> g => ?; apply: EsubU; apply: (near N g).
near (powerset_filter_from (@entourage Y)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose Q := fun (h : X -> Y) x => E' (f x, h x).
apply: (iffLR (compact_near_coveringP K)) => // x Kx.
near=> y g => /=.
apply: (entourage_split (f x) eE).
  apply entourage_sym; apply: (near (small_ent_sub _) E') => //.
  exact: (near (ectsW x E' entE') y).
apply: (@entourage_split _ (g x)) => //.
  apply: (near (small_ent_sub _) E') => //.
  near: g; near_simpl; apply: (@cvg_within _ (nbhs (f : {ptws X -> Y}))).
  exact: pointwise_cvg_entourage.
apply: (near (small_ent_sub _) E') => //.
apply: (near (ectsW x E' entE')) => //.
exact: (near (withinT _ (nbhs_filter (f : {ptws X -> Y})))).
Unshelve. all: end_near. Qed.

Lemma pointwise_compact_closure (W : set (X -> Y)) :
  equicontinuous W id ->
  closure (W : set {family compact, X -> Y}) =
  closure (W : set {ptws X -> Y}).
Proof.
rewrite ?closureEcvg // predeqE => ? ?.
split; move=> [F PF [Fx WF]]; (exists F; last split) => //.
  apply/@pointwise_compact_cvg => //; apply/near_powerset_filter_fromP.
    exact: equicontinuous_subset_id.
  by exists W => //; exact: WF.
apply/@pointwise_compact_cvg => //; apply/near_powerset_filter_fromP.
  exact: equicontinuous_subset_id.
by exists W => //; exact: WF.
Qed.

Lemma pointwise_precompact_equicontinuous (W : set (X -> Y)) :
  pointwise_precompact W id ->
  equicontinuous W id ->
  precompact (W : set {family compact, X -> Y }).
Proof.
move=> /pointwise_precompact_precompact + ectsW.
rewrite ?precompactE compact_ultra compact_ultra pointwise_compact_closure //.
move=> /= + F UF FcW => /(_ F UF); rewrite image_id => /(_ FcW)[p [cWp Fp]].
exists p; split => //; apply/pointwise_compact_cvg => //.
apply/near_powerset_filter_fromP; first exact: equicontinuous_subset_id.
exists (closure (W : set {ptws X -> Y })) => //.
exact: equicontinuous_closure.
Qed.

Section precompact_equicontinuous.
Hypothesis lcptX : locally_compact [set: X].

Lemma compact_equicontinuous (W : set {family compact, X -> Y}) :
  (forall f, W f -> continuous f) ->
  compact (W : set {family compact, X -> Y}) ->
  equicontinuous W id.
Proof.
move=> ctsW cptW x E entE.
have [//|U UWx [cptU clU]] := @lcptX x; rewrite withinET in UWx.
near (powerset_filter_from (@entourage Y)) => E'.
have entE' : entourage E' by exact: (near (near_small_set _)).
pose Q := fun (y : X) (f : {family compact, X -> Y}) => E' (f x, f y).
apply: (iffLR (compact_near_coveringP W)) => // f Wf; near=> g y => /=.
apply: (entourage_split (f x) entE).
  apply/entourage_sym; apply: (near (small_ent_sub _) E') => //.
  exact: (near (fam_nbhs _ entE' (@compact_set1 _ x)) g).
apply: (entourage_split (f y) (entourage_split_ent entE)).
  apply: (near (small_ent_sub _) E') => //.
  by apply/xsectionP; near: y; apply: (@ctsW f Wf x); exact: nbhs_entourage.
apply: (near (small_ent_sub _) E') => //.
by apply: (near (fam_nbhs _ entE' cptU) g) => //; exact: (near UWx y).
Unshelve. all: end_near. Qed.

Lemma precompact_equicontinuous (W : set {family compact, X -> Y}) :
  (forall f, W f -> continuous f) ->
  precompact (W : set {family compact, X -> Y}) ->
  equicontinuous W id.
Proof.
move=> pcptW ctsW; apply: (equicontinuous_subset_id (@subset_closure _ W)).
apply: compact_equicontinuous; last by rewrite -precompactE.
move=> f; rewrite closureEcvg => [[G PG [Gf GW]]] x B /=.
rewrite -nbhs_entourageE => -[E entE] /filterS; apply; near_simpl.
suff ctsf : continuous f.
  near=> x0; apply/xsectionP; near: x0.
  by move: E entE; apply/cvg_app_entourageP; exact: ctsf.
apply/continuous_localP => x'; apply/near_powerset_filter_fromP.
  by move=> ? ?; exact: continuous_subspaceW.
case: (@lcptX x') => // U; rewrite withinET => nbhsU [cptU _].
exists U => //; apply: (uniform_limit_continuous_subspace PG _ _).
  by near=> g; apply: continuous_subspaceT; near: g; exact: GW.
by move/fam_cvgP/(_ _ cptU) : Gf.
Unshelve. all: end_near. Qed.

End precompact_equicontinuous.

Theorem Ascoli (W : set {family compact, X -> Y}) :
    locally_compact [set: X] ->
  pointwise_precompact W id /\ equicontinuous W id <->
    (forall f, W f -> continuous f) /\
    precompact (W : set {family compact, X -> Y}).
Proof.
move=> lcpt; split => [[Wid ectsW]|[fWf]pcptW].
  split=> [?|]; first exact: equicontinuous_continuous.
  exact: pointwise_precompact_equicontinuous.
split; last exact: precompact_equicontinuous.
exact: precompact_pointwise_precompact.
Qed.

End ArzelaAscoli.

Section currying.
Local Import ArrowAsCompactOpen.

Section cartesian_closed.
Context {U V W : topologicalType}.

In this section, we consider under what conditions \ `[f in U ~> V ~> W | continuous f /\ forall u, continuous (f u)]` \ and \ `[f in U * V ~> W | continuous f]` \ are homeomorphic. - Always: \ `curry` sends continuous functions to continuous functions. - `V` locally_compact + regular or Hausdorff: \ `uncurry` sends continuous functions to continuous functions. - `U` regular or Hausdorff: \ `curry` itself is a continuous map. - `U` regular or Hausdorff AND `V` locally_compact + regular or Hausdorff \ `uncurry` itself is a continuous map. \ Therefore `curry`/`uncurry` are homeomorphisms. So the category of locally compact regular spaces is cartesian closed.

Lemma continuous_curry (f : U * V -> W) :
  continuous f ->
    continuous (curry f) /\ forall u, continuous (curry f u).
Proof.
move=> ctsf; split; first last.
  move=> u z; apply: continuous_comp; last exact: ctsf.
  by apply: cvg_pair => //=; exact: cvg_cst.
move=> x; apply/compact_open_cvgP => K O /= cptK oO fKO.
near=> z => w /= [+ + <-]; near: z.
move/compact_near_coveringP/near_covering_withinP : cptK; apply.
move=> v Kv; have [[P Q] [Px Qv] PQfO] : nbhs (x, v) (f @^-1` O).
  by apply: ctsf; move: oO; rewrite openE; apply; apply: fKO; exists v.
by exists (Q, P) => // -[b a] /= [Qb Pa] Kb; exact: PQfO.
Unshelve. all: by end_near. Qed.

Lemma continuous_curry_fun (f : U * V -> W) :
  continuous f -> continuous (curry f).
Proof.
by case/continuous_curry. Qed.

Lemma continuous_curry_cvg (f : U * V -> W) (u : U) (v : V) :
  continuous f -> curry f z.1 z.2 @[z --> (u, v)] --> curry f u v.
Proof.
move=> cf D /cf; rewrite !nbhs_simpl /curry /=; apply: filterS => z ? /=.
by rewrite -surjective_pairing.
Qed.

Lemma continuous_uncurry_regular (f : U -> V -> W) :
  locally_compact [set: V] -> @regular_space V -> continuous f ->
  (forall u, continuous (f u)) -> continuous (uncurry f).
Proof.
move=> lcV reg cf cfp /= [u v] D; rewrite /= nbhsE => -[O [oO Ofuv]] /filterS.
apply; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB].
have [R Rv RO] : exists2 R, nbhs v R & forall z, closure R z -> O (f u z).
  have [] := reg v (f u @^-1` O); first by apply: cfp; exact: open_nbhs_nbhs.
  by move=> R ? ?; exists R.
exists (f @^-1` [set g | g @` (B `&` closure R) `<=` O], B `&` closure R).
  split; [apply/cf/open_nbhs_nbhs; split | apply: filterI] => //.
  - apply: compact_open_open => //; apply: compact_closedI => //.
    exact: closed_closure.
  - by move=> ? [x [? + <-]]; apply: RO.
  - by apply: filterS; first exact: subset_closure.
by case=> a r /= [fBMO [Br] cmR]; apply: fBMO; exists r.
Qed.

Lemma continuous_uncurry (f : U -> V -> W) :
  locally_compact [set: V] -> hausdorff_space V -> continuous f ->
  (forall u, continuous (f u)) -> continuous (uncurry f).
Proof.
move=> lcV hsdf ctsf cf; apply: continuous_uncurry_regular => //.
move=> v; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB].
by move=> z; exact: (compact_regular _ cptB).
Qed.

Lemma curry_continuous (f : (U * V)%type -> W) : continuous f -> @regular_space U ->
  {for f, continuous curry}.
Proof.
move=> ctsf regU; apply/compact_open_cvgP.
  by apply: fmap_filter; exact: nbhs_filter.
move=> K ? cptK [D OfinIo <-] fKD /=; near=> z => w [+ + <-]; near: z.
move/compact_near_coveringP/near_covering_withinP : (cptK); apply => u Ku.
have [] := fKD (curry f u); first by exists u.
move=> E /[dup] /[swap] /OfinIo [N Asub <- DIN INf].
suff : \forall x' \near u & i \near nbhs f, K x' ->
    (\bigcap_(i in [set` N]) i) (curry i x').
  apply: filter_app; near=> a b => /[apply] ?.
  by exists (\bigcap_(i in [set` N]) i).
apply: filter_bigI_within => R RN; have /set_mem [[M cptM _]] := Asub _ RN.
have Rfu : R (curry f u) by exact: INf.
move/(_ _ Rfu) => [O [fMO oO] MOR]; near=> p => /= Ki; apply: MOR => + [+ + <-].
move=> _ v Mv; move: v Mv Ki; near: p.
have umb : \forall y \near u, (forall b, M b -> nbhs (y, b) (f @^-1` O)).
  move/compact_near_coveringP/near_covering_withinP : (cptM); apply => v Mv.
  have [[P Q] [Pu Qv] PQO] : nbhs (u, v) (f @^-1` O).
    by apply: ctsf; apply: open_nbhs_nbhs; split => //; apply: fMO; exists v.
  exists (Q, P); [by []| move=> [b a [/= Qb Pa Mb]]].
  by apply: ctsf; apply: open_nbhs_nbhs; split => //; exact: PQO.
move/compact_near_coveringP/near_covering_withinP : (cptM); apply => v Mv.
have [P' P'u cPO] := regU u _ umb.
pose L := [set h | h @` ((K `&` closure P') `*` M) `<=` O].
exists (setT, P' `*` L).
  split => //; [exact: filterT|]; exists (P', L) => //; split => //.
  apply: open_nbhs_nbhs; split; first apply: compact_open_open => //.
    apply: compact_setX => //; apply: compact_closedI => //.
    exact: closed_closure.
  by move=> ? [[a b] [[Ka /cPO +] Mb <-]] => /(_ _ Mb)/nbhs_singleton.
move=> [b [a h]] [/= _ [Pa] +] Ma Ka; apply.
by exists (a, b); split => //; split => //; exact/subset_closure.
Unshelve. all: by end_near. Qed.

Lemma uncurry_continuous (f : U -> V -> W) :
  locally_compact [set: V] -> @regular_space V -> @regular_space U ->
  continuous f -> (forall u, continuous (f u)) ->
  {for f, continuous uncurry}.
Proof.
move=> lcV regV regU ctsf ctsfp; apply/compact_open_cvgP.
  by apply: fmap_filter; exact:nbhs_filter.
move=> /= K O cptK oO fKO; near=> h => ? [+ + <-]; near: h.
move/compact_near_coveringP/near_covering_withinP: (cptK); apply.
case=> u v Kuv.
have : exists P Q, [/\ closed P, compact Q, nbhs u P,
    nbhs v Q & P `*` Q `<=` uncurry f @^-1` O].
  have : continuous (uncurry f) by exact: continuous_uncurry_regular.
  move/continuousP/(_ _ oO); rewrite openE => /(_ (u, v))[].
    by apply: fKO; exists (u, v).
  case=> /= P' Q' [P'u Q'v] PQO.
  have [B] := @lcV v I; rewrite withinET; move=> Bv [cptB clB].
  have [P Pu cPP'] := regU u P' P'u; have [Q Qv cQQ'] := regV v Q' Q'v.
  exists (closure P), (B `&` closure Q); split.
  - exact: closed_closure.
  - by apply: compact_closedI => //; exact: closed_closure.
  - by apply: filterS; first exact: subset_closure.
  - by apply: filterI=> //; apply: filterS; first exact: subset_closure.
  - by case => a b [/cPP' ?] [_ /cQQ' ?]; exact: PQO.
case=> P [Q [clP cptQ Pu Qv PQfO]]; pose R := [set g : V -> W | g @` Q `<=` O].
(have oR : open R by exact: compact_open_open); pose P' := f @^-1` R.
pose L := [set h : U -> V -> W | h @` (fst @` K `&` P) `<=` R].
exists ((P `&` P') `*` Q, L); first split => /=.
- exists (P `&` P', Q) => //; split => //=; apply: filterI => //.
  apply: ctsf; apply: open_nbhs_nbhs; split => // _ [b Qb <-].
  by apply: (PQfO (u, b)); split => //; exact: nbhs_singleton.
- rewrite nbhs_simpl /=; apply: open_nbhs_nbhs; split.
    apply: compact_open_open => //; apply: compact_closedI => //.
    apply: continuous_compact => //; apply: continuous_subspaceT => x.
    exact: cvg_fst.
  move=> /= _ [a [Kxa Pa] <-] _ [b Qb <-].
  by apply: (PQfO (a, b)); split => //; exact: nbhs_singleton.
move=> [[a b h]] [/= [[Pa P'a] Qb Lh] Kab].
apply: (Lh (h a)); first by exists a => //; split => //; exists (a, b).
by exists b.
Unshelve. all: by end_near. Qed.

End cartesian_closed.

End currying.

Definition eval {X Y : topologicalType} : continuousType X Y * X -> Y :=
  uncurry (id : continuousType X Y -> (X -> Y)).

Section composition.

Local Import ArrowAsCompactOpen.

Lemma eval_continuous {X Y : topologicalType} :
  locally_compact [set: X] -> regular_space X -> continuous (@eval X Y).
Proof.
move=> lcX rsX; apply: continuous_uncurry_regular => //.
  exact: weak_continuous.
by move=> ?; exact: cts_fun.
Qed.

Lemma compose_continuous {X Y Z : topologicalType} :
  locally_compact [set: X] -> @regular_space X ->
  locally_compact [set: Y] -> @regular_space Y ->
  continuous (uncurry
    (comp : continuousType Y Z -> continuousType X Y -> continuousType X Z)).
Proof.
move=> lX rX lY rY; apply: continuous_comp_weak.
set F := _ \o _.
rewrite -[F]uncurryK; apply: continuous_curry_fun.
pose g := uncurry F \o prodAr \o swap; rewrite /= in g *.
have -> : uncurry F = uncurry F \o prodAr \o prodA by rewrite funeqE => -[[]].
move=> z; apply: continuous_comp; first exact: prodA_continuous.
have -> : uncurry F \o prodAr = uncurry F \o prodAr \o swap \o swap.
  by rewrite funeqE => -[[]].
apply: continuous_comp; first exact: swap_continuous.
pose h (fxg : continuousType X Y * X * continuousType Y Z) : Z :=
  eval (fxg.2, (eval fxg.1)).
have <- : h = uncurry F \o prodAr \o swap.
  by rewrite /h/g/uncurry/swap/F funeqE => -[[]].
rewrite /h.
apply: (@continuous2_cvg _ _ _ _ _ _ snd (eval \o fst) (curry eval)).
- by apply: continuous_curry_cvg; exact: eval_continuous.
- exact: cvg_snd.
- by apply: cvg_comp; [exact: cvg_fst | exact: eval_continuous].
Qed.

End composition.