Module mathcomp.analysis.lebesgue_integral
From HB Require Import structures.From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap.
From mathcomp Require Import archimedean.
From mathcomp Require Import boolp classical_sets functions.
From mathcomp Require Import cardinality fsbigop signed reals ereal topology.
From mathcomp Require Import tvs normedtype sequences real_interval esum measure.
From mathcomp Require Import lebesgue_measure numfun realfun function_spaces.
Lebesgue Integral
This file contains a formalization of the Lebesgue integral. It starts with simple functions and their integral, provides basic operations (addition, etc.), and proves the properties of their integral (linearity, non-decreasingness). It then defines the integral of measurable functions, proves the approximation theorem, the properties of their integral (linearity, non-decreasingness), the monotone convergence theorem, and Fatou's lemma. Finally, it proves the linearity properties of the integral, the dominated convergence theorem and Fubini's theorem, etc. This file is further completed by related, standard lemmas such as the Hardy–Littlewood maximal inequality and Lebesgue's differentiation theorem.
Main notation:
Coq notation | Meaning | |
---|---|---|
\int[mu]_(x in D) f x | == | |
\int[mu]_x f x | == |
Main reference:
- Daniel Li, Intégration et applications, 2016
About the local naming convention: Lemmas about the Lebesgue integral often appears in two flavors, depending on whether they are about non- negative functions or about integrable functions. Lemmas about non- negative functions are prefixed with ge0_, lemmas about integrable functions are not.
Detailed contents:
{mfun aT >-> rT} == type of measurable functions
aT and rT are sigmaRingType's.
{sfun T >-> R} == type of simple functions
{nnsfun T >-> R} == type of non-negative simple functions
cst_nnsfun r == constant simple function
nnsfun0 := cst_nnsfun 0
sintegral mu f == integral of the function f with the measure mu
\int[mu]_(x in D) f x == integral of the measurable function f over the
domain D with measure mu
\int[mu]_x f x := \int[mu]_(x in setT) f x
dyadic_itv n k == the interval
`[(k%:R * 2 ^- n), (k.+1%:R * 2 ^- n)[
approx D f == nondecreasing sequence of functions that
approximates f over D using dyadic intervals
It uses the sets dyadic_approx and
integer_approx.
nnsfun_approx D f == same as approx D f but as a nnsfun
approximates f over D using dyadic intervals
Rintegral mu D f := fine (\int[mu]_(x in D) f x).
mu.-integrable D f == f is measurable over D and the integral of f
w.r.t. D is < +oo
m1 \x m2 == product measure over T1 * T2, m1 is a measure
measure over T1, and m2 is a sigma finite
measure over T2
m1 \x^ m2 == product measure over T1 * T2, m2 is a measure
measure over T1, and m1 is a sigma finite
measure over T2
locally_integrable D f == the real number-valued function f is locally
integrable on D
iavg f A := "average" of the real-valued function f over
the set A
HL_maximal == the Hardy–Littlewood maximal operator
input: real number-valued function
output: extended real number-valued function
davg f x r == "deviated average" of the real-valued function
f over ball x r
lim_sup_davg f x := lime_sup (davg f x) 0
lebesgue_pt f x == Lebesgue point at x of the real-valued
function f
nicely_shrinking x E == the sequence of sets E is nicely shrinking to x
About the use of simple functions: Because of a limitation of HB <= 1.8.0, we need some care to be able to use simple functions. The structure SimpleFun (resp. NonNegSimpleFun) is located inside the module HBSimple (resp. HBNNSimple). As a consequence, we need to import HBSimple (resp. HBNNSimple) to use the coercion from simple functions (resp. non-negative simple functions) to Coq functions. Also, assume that f (e.g., cst, indic) is equipped with the structure of MeasurableFun. For f to be equipped with the structure of SimpleFun (resp. NonNegSimpleFun), one need locally to import HBSimple (resp. HBNNSimple) and to instantiate FiniteImage (resp. NonNegFun) locally.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Import numFieldNormedType.Exports.
From mathcomp Require Import mathcomp_extra.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Reserved Notation "\int [ mu ]_ ( i 'in' D ) F"
(at level 36, F at level 36, mu at level 10, i, D at level 50,
format "'[' \int [ mu ]_ ( i 'in' D ) '/ ' F ']'").
Reserved Notation "\int [ mu ]_ i F"
(at level 36, F at level 36, mu at level 10, i at level 0,
right associativity, format "'[' \int [ mu ]_ i '/ ' F ']'").
Reserved Notation "mu .-integrable" (at level 2, format "mu .-integrable").
Reserved Notation "m1 '\x' m2" (at level 40, left associativity).
Reserved Notation "m1 '\x^' m2" (at level 40, left associativity).
#[global]
Hint Extern 0 (measurable [set _]) => solve [apply: measurable_set1] : core.
HB.mixin Record isMeasurableFun d d' (aT : sigmaRingType d) (rT : sigmaRingType d')
(f : aT -> rT) := {
measurable_funP : measurable_fun [set: aT] f
}.
HB.structure Definition MeasurableFun d d' aT rT :=
{f of @isMeasurableFun d d' aT rT f}.
Arguments measurable_funP {d d' aT rT} s.
Reserved Notation "{ 'mfun' aT >-> T }"
(at level 0, format "{ 'mfun' aT >-> T }").
Reserved Notation "[ 'mfun' 'of' f ]"
(at level 0, format "[ 'mfun' 'of' f ]").
Notation "{ 'mfun' aT >-> T }" := (@MeasurableFun.type _ _ aT T) : form_scope.
Notation "[ 'mfun' 'of' f ]" := [the {mfun _ >-> _} of f] : form_scope.
#[global] Hint Extern 0 (measurable_fun [set: _] _) =>
solve [apply: measurable_funP] : core.
Reserved Notation "{ 'sfun' aT >-> T }"
(at level 0, format "{ 'sfun' aT >-> T }").
Reserved Notation "[ 'sfun' 'of' f ]"
(at level 0, format "[ 'sfun' 'of' f ]").
Module HBSimple.
HB.structure Definition SimpleFun d (aT : sigmaRingType d) (rT : realType) :=
{f of @isMeasurableFun d _ aT rT f & @FiniteImage aT rT f}.
End HBSimple.
Notation "{ 'sfun' aT >-> T }" := (@HBSimple.SimpleFun.type _ aT T) : form_scope.
Notation "[ 'sfun' 'of' f ]" := [the {sfun _ >-> _} of f] : form_scope.
Lemma measurable_sfunP {d d'} {aT : measurableType d} {rT : measurableType d'}
(f : {mfun aT >-> rT}) (Y : set rT) : measurable Y -> measurable (f @^-1` Y).
Proof.
HB.mixin Record isNonNegFun (aT : Type) (rT : numDomainType) (f : aT -> rT) := {
fun_ge0 : forall x, 0 <= f x
}.
HB.structure Definition NonNegFun aT rT := {f of @isNonNegFun aT rT f}.
Reserved Notation "{ 'nnfun' aT >-> T }"
(at level 0, format "{ 'nnfun' aT >-> T }").
Reserved Notation "[ 'nnfun' 'of' f ]"
(at level 0, format "[ 'nnfun' 'of' f ]").
Notation "{ 'nnfun' aT >-> T }" := (@NonNegFun.type aT T) : form_scope.
Notation "[ 'nnfun' 'of' f ]" := [the {nnfun _ >-> _} of f] : form_scope.
#[global] Hint Extern 0 (is_true (0 <= _)) => solve [apply: fun_ge0] : core.
Reserved Notation "{ 'nnsfun' aT >-> T }"
(at level 0, format "{ 'nnsfun' aT >-> T }").
Reserved Notation "[ 'nnsfun' 'of' f ]"
(at level 0, format "[ 'nnsfun' 'of' f ]").
Module HBNNSimple.
Import HBSimple.
HB.structure Definition NonNegSimpleFun
d (aT : sigmaRingType d) (rT : realType) :=
{f of @SimpleFun d _ _ f & @NonNegFun aT rT f}.
End HBNNSimple.
Notation "{ 'nnsfun' aT >-> T }" := (@HBNNSimple.NonNegSimpleFun.type _ aT%type T) : form_scope.
Notation "[ 'nnsfun' 'of' f ]" := [the {nnsfun _ >-> _} of f] : form_scope.
Section mfun_pred.
Context {d d'} {aT : sigmaRingType d} {rT : sigmaRingType d'}.
Definition mfun : {pred aT -> rT} := mem [set f | measurable_fun setT f].
Definition mfun_key : pred_key mfun
Proof.
End mfun_pred.
Section mfun.
Context {d d'} {aT : sigmaRingType d} {rT : sigmaRingType d'}.
Notation T := {mfun aT >-> rT}.
Notation mfun := (@mfun _ _ aT rT).
Section Sub.
Context (f : aT -> rT) (fP : f \in mfun).
Definition mfun_Sub_subproof := @isMeasurableFun.Build d _ aT rT f (set_mem fP).
#[local] HB.instance Definition _ := mfun_Sub_subproof.
Definition mfun_Sub := [mfun of f].
End Sub.
Lemma mfun_rect (K : T -> Type) :
(forall f (Pf : f \in mfun), K (mfun_Sub Pf)) -> forall u : T, K u.
Proof.
Lemma mfun_valP f (Pf : f \in mfun) : mfun_Sub Pf = f :> (_ -> _).
Proof.
HB.instance Definition _ := isSub.Build _ _ T mfun_rect mfun_valP.
Lemma mfuneqP (f g : {mfun aT >-> rT}) : f = g <-> f =1 g.
HB.instance Definition _ := [Choice of {mfun aT >-> rT} by <:].
HB.instance Definition _ x := isMeasurableFun.Build d _ aT rT (cst x)
(@measurable_cst _ _ aT rT setT x).
End mfun.
Section mfun_realType.
Context {rT : realType}.
HB.instance Definition _ := @isMeasurableFun.Build _ _ _ rT
(@normr rT rT) (@normr_measurable rT setT).
HB.instance Definition _ :=
isMeasurableFun.Build _ _ _ _ (@expR rT) (@measurable_expR rT).
End mfun_realType.
Section mfun_measurableType.
Context {d d'} {aT : measurableType d} {rT : measurableType d'}.
Lemma measurableT_comp_subproof (f : {mfun _ >-> rT}) (g : {mfun aT >-> rT}) :
measurable_fun setT (f \o g).
Proof.
HB.instance Definition _ (f : {mfun _ >-> rT}) (g : {mfun aT >-> rT}) :=
isMeasurableFun.Build _ _ _ _ (f \o g) (measurableT_comp_subproof _ _).
End mfun_measurableType.
Section ring.
Context d (aT : measurableType d) (rT : realType).
Lemma mfun_subring_closed : subring_closed (@mfun _ _ aT rT).
Proof.
- exact: measurable_cst.
- exact: measurable_funB.
- exact: measurable_funM.
Qed.
(@mfun d default_measure_display aT rT) mfun_subring_closed.
HB.instance Definition _ := [SubChoice_isSubComRing of {mfun aT >-> rT} by <:].
Implicit Types (f g : {mfun aT >-> rT}).
Lemma mfun0 : (0 : {mfun aT >-> rT}) =1 cst 0 :> (_ -> _)
Proof.
Proof.
Proof.
Proof.
Proof.
Proof.
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x.
Proof.
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x.
Proof.
HB.instance Definition _ f g := MeasurableFun.copy (f \+ g) (f + g).
HB.instance Definition _ f g := MeasurableFun.copy (\- f) (- f).
HB.instance Definition _ f g := MeasurableFun.copy (f \- g) (f - g).
HB.instance Definition _ f g := MeasurableFun.copy (f \* g) (f * g).
Definition mindic (D : set aT) of measurable D : aT -> rT := \1_D.
Lemma mindicE (D : set aT) (mD : measurable D) :
mindic mD = (fun x => (x \in D)%:R).
HB.instance Definition _ D mD := @isMeasurableFun.Build _ _ aT rT (mindic mD)
(@measurable_indic _ aT rT setT D mD).
Definition indic_mfun (D : set aT) (mD : measurable D) : {mfun aT >-> rT} :=
mindic mD.
HB.instance Definition _ k f := MeasurableFun.copy (k \o* f) (f * cst k).
Definition scale_mfun k f : {mfun aT >-> rT} := k \o* f.
Lemma max_mfun_subproof f g : @isMeasurableFun d _ aT rT (f \max g).
Proof.
HB.instance Definition _ f g := max_mfun_subproof f g.
Definition max_mfun f g : {mfun aT >-> _} := f \max g.
End ring.
Arguments indic_mfun {d aT rT} _.
#[global] Hint Extern 0 (measurable_fun _ (\1__ : _ -> _)) =>
(exact: measurable_indic ) : core.
Section sfun_pred.
Context {d} {aT : sigmaRingType d} {rT : realType}.
Definition sfun : {pred _ -> _} := [predI @mfun _ _ aT rT & fimfun].
Definition sfun_key : pred_key sfun
Proof.
Lemma sub_sfun_mfun : {subset sfun <= mfun}
Proof.
Proof.
Section sfun.
Context {d} {aT : measurableType d} {rT : realType}.
Notation T := {sfun aT >-> rT}.
Notation sfun := (@sfun _ aT rT).
Section Sub.
Context (f : aT -> rT) (fP : f \in sfun).
Definition sfun_Sub1_subproof :=
@isMeasurableFun.Build d _ aT rT f (set_mem (sub_sfun_mfun fP)).
#[local] HB.instance Definition _ := sfun_Sub1_subproof.
Definition sfun_Sub2_subproof :=
@FiniteImage.Build aT rT f (set_mem (sub_sfun_fimfun fP)).
Import HBSimple.
#[local] HB.instance Definition _ := sfun_Sub2_subproof.
Definition sfun_Sub := [sfun of f].
End Sub.
Lemma sfun_rect (K : T -> Type) :
(forall f (Pf : f \in sfun), K (sfun_Sub Pf)) -> forall u : T, K u.
Proof.
have -> : Pf1 = set_mem (sub_sfun_mfun Pf) by [].
have -> : Pf2 = set_mem (sub_sfun_fimfun Pf) by [].
exact: Ksub.
Qed.
Import HBSimple.
Lemma sfun_valP f (Pf : f \in sfun) : sfun_Sub Pf = f :> (_ -> _).
Proof.
HB.instance Definition _ := isSub.Build _ _ T sfun_rect sfun_valP.
Lemma sfuneqP (f g : {sfun aT >-> rT}) : f = g <-> f =1 g.
HB.instance Definition _ := [Choice of {sfun aT >-> rT} by <:].
HB.instance Definition _ x : @FImFun aT rT (cst x) := FImFun.on (cst x).
Definition cst_sfun x : {sfun aT >-> rT} := cst x.
Lemma cst_sfunE x : @cst_sfun x =1 cst x
Proof.
End sfun.
Lemma fctD (T : pointedType) (K : ringType) (f g : T -> K) : f + g = f \+ g.
Proof.
Proof.
Proof.
k *: f = k \*: f.
Proof.
Definition fctWE := (fctD, fctN, fctM, fctZ).
Section ring.
Context d (aT : measurableType d) (rT : realType).
Lemma sfun_subring_closed : subring_closed (@sfun d aT rT).
Proof.
HB.instance Definition _ := GRing.isSubringClosed.Build _ sfun
sfun_subring_closed.
HB.instance Definition _ := [SubChoice_isSubComRing of {sfun aT >-> rT} by <:].
Implicit Types (f g : {sfun aT >-> rT}).
Import HBSimple.
Lemma sfun0 : (0 : {sfun aT >-> rT}) =1 cst 0
Proof.
Proof.
Proof.
Proof.
Proof.
Proof.
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x.
Proof.
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x.
Proof.
HB.instance Definition _ f g := MeasurableFun.copy (f \+ g) (f + g).
HB.instance Definition _ f g := MeasurableFun.copy (\- f) (- f).
HB.instance Definition _ f g := MeasurableFun.copy (f \- g) (f - g).
HB.instance Definition _ f g := MeasurableFun.copy (f \* g) (f * g).
Import HBSimple.
HB.instance Definition _ (D : set aT) (mD : measurable D) :
@FImFun aT rT (mindic _ mD) := FImFun.on (mindic _ mD).
Definition indic_sfun (D : set aT) (mD : measurable D) : {sfun aT >-> rT} :=
mindic rT mD.
HB.instance Definition _ k f := MeasurableFun.copy (k \o* f) (f * cst_sfun k).
Definition scale_sfun k f : {sfun aT >-> rT} := k \o* f.
HB.instance Definition _ f g := max_mfun_subproof f g.
Definition max_sfun f g : {sfun aT >-> _} := f \max g.
End ring.
Arguments indic_sfun {d aT rT} _.
Lemma preimage_nnfun0 T (R : realDomainType) (f : {nnfun T >-> R}) t :
t < 0 -> f @^-1` [set t] = set0.
Proof.
Lemma preimage_cstM T (R : realFieldType) (x y : R) (f : T -> R) :
x != 0 -> (cst x \* f) @^-1` [set y] = f @^-1` [set y / x].
Proof.
Lemma preimage_add T (R : numDomainType) (f g : T -> R) z :
(f \+ g) @^-1` [set z] = \bigcup_(a in f @` setT)
((f @^-1` [set a]) `&` (g @^-1` [set z - a])).
Proof.
Section simple_bounded.
Context d (T : sigmaRingType d) (R : realType).
Import HBSimple.
Lemma simple_bounded (f : {sfun T >-> R}) : bounded_fun f.
Proof.
exists (fine (\big[maxe/-oo%E]_(i <- r) `|i|%:E)).
split; rewrite ?num_real// => x mx z _; apply/ltW/(le_lt_trans _ mx).
have ? : f z \in r by have := imageT f z; rewrite fr.
rewrite -[leLHS]/(fine `|f z|%:E) fine_le//.
(* TODO: generalize the statement of bigmaxe_fin_num *)
have := @bigmaxe_fin_num _ (map normr r) `|f z|.
by rewrite big_map => ->//; apply/mapP; exists (f z).
by rewrite (bigmax_sup_seq _ _ (lexx _)).
Qed.
End simple_bounded.
Section nnsfun_functions.
Context d (T : measurableType d) (R : realType).
Import HBNNSimple.
Lemma cst_nnfun_subproof (x : {nonneg R}) : forall t : T, 0 <= cst x%:num t.
Proof.
(cst_nnfun_subproof x).
HB.instance Definition _ x : @FImFun T R (cst x) := FImFun.on (cst x).
Definition cst_nnsfun (r : {nonneg R}) : {nnsfun T >-> R} := cst r%:num.
Definition nnsfun0 : {nnsfun T >-> R} := cst_nnsfun 0%R%:nng.
Lemma indic_nnfun_subproof (D : set T) : forall x, 0 <= (\1_D) x :> R.
Proof.
HB.instance Definition _ D := @isNonNegFun.Build T R \1_D
(indic_nnfun_subproof D).
HB.instance Definition _ D (mD : measurable D) :
@NonNegFun T R (mindic R mD) := NonNegFun.on (mindic R mD).
End nnsfun_functions.
Arguments nnsfun0 {d T R}.
Section nnfun_bin.
Variables (T : Type) (R : numDomainType) (f g : {nnfun T >-> R}).
Lemma add_nnfun_subproof : @isNonNegFun T R (f \+ g).
HB.instance Definition _ := add_nnfun_subproof.
Lemma mul_nnfun_subproof : @isNonNegFun T R (f \* g).
HB.instance Definition _ := mul_nnfun_subproof.
Lemma max_nnfun_subproof : @isNonNegFun T R (f \max g).
HB.instance Definition _ := max_nnfun_subproof.
End nnfun_bin.
Section nnsfun_bin.
Context d (T : measurableType d) (R : realType).
Variables f g : {nnsfun T >-> R}.
Import HBNNSimple.
HB.instance Definition _ := MeasurableFun.on (f \+ g).
Definition add_nnsfun : {nnsfun T >-> R} := f \+ g.
HB.instance Definition _ := MeasurableFun.on (f \* g).
Definition mul_nnsfun : {nnsfun T >-> R} := f \* g.
HB.instance Definition _ := MeasurableFun.on (f \max g).
Definition max_nnsfun : {nnsfun T >-> R} := f \max g.
Definition indic_nnsfun A (mA : measurable A) : {nnsfun T >-> R} := mindic R mA.
End nnsfun_bin.
Arguments add_nnsfun {d T R} _ _.
Arguments mul_nnsfun {d T R} _ _.
Arguments max_nnsfun {d T R} _ _.
Section nnsfun_iter.
Context d (T : measurableType d) (R : realType) (D : set T).
Variable f : {nnsfun T >-> R}^nat.
Definition sum_nnsfun n := \big[add_nnsfun/nnsfun0]_(i < n) f i.
Import HBNNSimple.
Lemma sum_nnsfunE n t : sum_nnsfun n t = \sum_(i < n) (f i t).
Proof.
Definition bigmax_nnsfun n := \big[max_nnsfun/nnsfun0]_(i < n) f i.
Lemma bigmax_nnsfunE n t : bigmax_nnsfun n t = \big[maxr/0]_(i < n) (f i t).
Proof.
End nnsfun_iter.
Section nnsfun_cover.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable f : {nnsfun T >-> R}.
Import HBNNSimple.
Lemma nnsfun_cover : \big[setU/set0]_(i \in range f) (f @^-1` [set i]) = setT.
Proof.
Lemma nnsfun_coverT : \big[setU/set0]_(i \in [set: R]) f @^-1` [set i] = setT.
Proof.
End nnsfun_cover.
#[global] Hint Extern 0 (measurable (_ @^-1` [set _])) =>
solve [apply: measurable_sfunP; exact: measurable_set1] : core.
Lemma measurable_sfun_inP {d} {aT : measurableType d} {rT : realType}
(f : {mfun aT >-> rT}) D (y : rT) :
measurable D -> measurable (D `&` f @^-1` [set y]).
Proof.
#[global] Hint Extern 0 (measurable (_ `&` _ @^-1` [set _])) =>
solve [apply: measurable_sfun_inP; assumption] : core.
Section measure_fsbig.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable m : {measure set T -> \bar R}.
Lemma measure_fsbig (I : choiceType) (A : set I) (F : I -> set T) :
finite_set A ->
(forall i, A i -> measurable (F i)) -> trivIset A F ->
m (\big[setU/set0]_(i \in A) F i) = \sum_(i \in A) m (F i).
Proof.
Import HBNNSimple.
Lemma additive_nnsfunr (g f : {nnsfun T >-> R}) x :
\sum_(i \in range g) m (f @^-1` [set x] `&` (g @^-1` [set i])) =
m (f @^-1` [set x] `&` \big[setU/set0]_(i \in range g) (g @^-1` [set i])).
Proof.
- by rewrite !fsbig_finite//= big_distrr.
- by move=> i Ai; apply: measurableI.
- exact/trivIset_setIl/trivIset_preimage1.
Qed.
Lemma additive_nnsfunl (g f : {nnsfun T >-> R}) x :
\sum_(i \in range g) m (g @^-1` [set i] `&` (f @^-1` [set x])) =
m (\big[setU/set0]_(i \in range g) (g @^-1` [set i]) `&` f @^-1` [set x]).
Proof.
End measure_fsbig.
Section mulem_ge0.
Local Open Scope ereal_scope.
Let mulef_ge0 (R : realDomainType) x (f : R -> \bar R) :
0 <= f x -> ((x < 0)%R -> f x = 0) -> 0 <= x%:E * f x.
Proof.
Lemma nnfun_muleindic_ge0 d (T : sigmaRingType d) (R : realDomainType)
(f : {nnfun T >-> R}) r z : 0 <= r%:E * (\1_(f @^-1` [set r]) z)%:E.
Proof.
Lemma mulemu_ge0 d (T : sigmaRingType d) (R : realType)
(mu : {measure set T -> \bar R}) x (A : R -> set T) :
((x < 0)%R -> A x = set0) -> 0 <= x%:E * mu (A x).
Global Arguments mulemu_ge0 {d T R mu x} A.
Import HBNNSimple.
Lemma nnsfun_mulemu_ge0 d (T : sigmaRingType d) (R : realType)
(mu : {measure set T -> \bar R}) (f : {nnsfun T >-> R}) x :
0 <= x%:E * mu (f @^-1` [set x]).
Proof.
End mulem_ge0.
Section simple_fun_raw_integral.
Local Open Scope ereal_scope.
Variables (T : Type) (R : numDomainType) (mu : set T -> \bar R) (f : T -> R).
Definition sintegral := \sum_(x \in [set: R]) x%:E * mu (f @^-1` [set x]).
Lemma sintegralET :
sintegral = \sum_(x \in [set: R]) x%:E * mu (f @^-1` [set x]).
Proof.
End simple_fun_raw_integral.
#[global] Hint Extern 0 (is_true (0 <= (_ : {measure set _ -> \bar _}) _)%E) =>
solve [apply: measure_ge0] : core.
Section sintegral_lemmas.
Context d (T : sigmaRingType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Local Open Scope ereal_scope.
Lemma sintegralE f :
sintegral mu f = \sum_(x \in range f) x%:E * mu (f @^-1` [set x]).
Proof.
by rewrite preimage10// measure0 mule0.
Qed.
Lemma sintegral0 : sintegral mu (cst 0%R) = 0.
Proof.
by case: ifPn => [/[!inE] <-|]; rewrite ?mul0e// measure0 mule0.
Qed.
Import HBNNSimple.
Lemma sintegral_ge0 (f : {nnsfun T >-> R}) : 0 <= sintegral mu f.
Proof.
Lemma sintegral_indic (A : set T) : sintegral mu \1_A = mu A.
Proof.
- exact: image_indic_sub.
- by move=> t [[] -> /= /preimage10->]; rewrite measure0 mule0.
have N01 : (0 <> 1:> R)%R by apply/eqP; rewrite eq_sym oner_eq0.
rewrite fsbigU//=; last by move=> t [->].
rewrite !fsbig_set1 mul0e add0e mul1e.
by rewrite preimage_indic ifT ?inE// ifN ?notin_setE.
Qed.
Lemma sintegralEnnsfun (f : {nnsfun T >-> R}) : sintegral mu f =
(\sum_(x \in [set r | r > 0]%R) (x%:E * mu (f @^-1` [set x])))%E.
Proof.
move=> x [_ /=]; case: ltgtP => //= [xlt0 _|<-]; last by rewrite mul0e.
rewrite preimage10 ?measure0 ?mule0//= => -[t _ xE].
by apply/negP: xlt0; rewrite -leNgt -xE.
Qed.
End sintegral_lemmas.
Lemma eq_sintegral d (T : sigmaRingType d) (R : numDomainType)
(mu : set T -> \bar R) g f :
f =1 g -> sintegral mu f = sintegral mu g.
Proof.
Section sintegralrM.
Local Open Scope ereal_scope.
Context d (T : sigmaRingType d) (R : realType).
Variables (m : {measure set T -> \bar R}) (r : R) (f : {nnsfun T >-> R}).
Import HBNNSimple.
Lemma sintegralrM : sintegral m (cst r \* f)%R = r%:E * sintegral m f.
Proof.
by rewrite mul0e (eq_sintegral (cst 0%R)) ?sintegral0// => x/=; rewrite mul0r.
rewrite !sintegralET ge0_mule_fsumr; last exact: nnsfun_mulemu_ge0.
rewrite (reindex_fsbigT ( *%R r))/=; last first.
by exists ( *%R r^-1); [exact: mulKf|exact: mulVKf].
by apply: eq_fsbigr => x; rewrite preimage_cstM// [_ / r]mulrC mulKf// muleA.
Qed.
End sintegralrM.
Section sintegralD.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (m : {measure set T -> \bar R}).
Variables (D : set T) (mD : measurable D) (f g : {nnsfun T >-> R}).
Import HBNNSimple.
Lemma sintegralD : sintegral m (f \+ g)%R = sintegral m f + sintegral m g.
Proof.
pose pf x := f @^-1` [set x]; pose pg y := g @^-1` [set y].
transitivity (\sum_(z \in FG) z%:E * \sum_(a \in F) m (pf a `&` pg (z - a)%R)).
apply: eq_fsbigr => z _; rewrite preimage_add -fsbig_setU// measure_fsbig//.
by move=> x Fx; exact: measurableI.
exact/trivIset_setIr/trivIset_preimage1.
under eq_fsbigr do rewrite ge0_mule_fsumr//; rewrite exchange_fsbig//=.
transitivity (\sum_(x \in F) \sum_(y \in G) (x + y)%:E * m (pf x `&` pg y)).
apply: eq_fsbigr => x _; rewrite /pf /pg (fsbig_widen G setT)//=; last first.
by move=> y [_ /= /preimage10->]; rewrite setI0 measure0 mule0.
rewrite (fsbig_widen FG setT)//=; last first.
move=> z [_ /= FGz]; rewrite [X in m X](_ : _ = set0) ?measure0 ?mule0//.
rewrite -subset0 => //= {x}i /= [<-] /(canLR (@addrNK _ _)).
by apply: contra_not FGz => <-; exists i; rewrite //= addrC.
rewrite (reindex_fsbigT (+%R x))//=.
by apply: eq_fsbigr => y; rewrite addrC addrK.
transitivity (\sum_(x \in F) \sum_(y \in G) x%:E * m (pf x `&` pg y) +
\sum_(x \in F) \sum_(y \in G) y%:E * m (pf x `&` pg y)).
do 2![rewrite -fsbig_split//; apply: eq_fsbigr => _ /set_mem [? _ <-]].
by rewrite EFinD ge0_muleDl// ?lee_fin.
congr (_ + _)%E; last rewrite exchange_fsbig//; apply: eq_fsbigr => x _.
by rewrite -ge0_mule_fsumr// additive_nnsfunr nnsfun_cover setIT.
by rewrite -ge0_mule_fsumr// additive_nnsfunl nnsfun_cover setTI.
Qed.
End sintegralD.
Section le_sintegral.
Context d (T : measurableType d) (R : realType) (m : {measure set T -> \bar R}).
Variables f g : {nnsfun T >-> R}.
Import HBNNSimple.
Hypothesis fg : forall x, f x <= g x.
Let fgnn : @isNonNegFun T R (g \- f).
#[local] HB.instance Definition _ := fgnn.
Lemma le_sintegral : (sintegral m f <= sintegral m g)%E.
Proof.
by rewrite (eq_sintegral _ _ gfgf) sintegralD// leeDl // sintegral_ge0.
Qed.
End le_sintegral.
Section is_cvg_sintegral.
Import HBNNSimple.
Lemma is_cvg_sintegral d (T : measurableType d) (R : realType)
(m : {measure set T -> \bar R}) (f : {nnsfun T >-> R}^nat) :
(forall x, nondecreasing_seq (f ^~ x)) -> cvgn (sintegral m \o f).
Proof.
by apply: le_sintegral => // => x; exact/nd_f.
Qed.
End is_cvg_sintegral.
Definition proj_nnsfun d (T : measurableType d) (R : realType)
(f : {nnsfun T >-> R}) (A : set T) (mA : measurable A) :=
mul_nnsfun f (indic_nnsfun R mA).
Section mrestrict.
Import HBNNSimple.
Definition mrestrict d (T : measurableType d) (R : realType) (f : {nnsfun T >-> R})
A (mA : measurable A) : f \_ A = proj_nnsfun f mA.
End mrestrict.
Definition scale_nnsfun d (T : measurableType d) (R : realType)
(f : {nnsfun T >-> R}) (k : R) (k0 : 0 <= k) :=
mul_nnsfun (cst_nnsfun T (NngNum k0)) f.
Section sintegral_nondecreasing_limit_lemma.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Variables (g : {nnsfun T >-> R}^nat) (f : {nnsfun T >-> R}).
Import HBNNSimple.
Hypothesis nd_g : forall x, nondecreasing_seq (g^~ x).
Hypothesis gf : forall x, cvgn (g^~ x) -> f x <= limn (g^~ x).
Let fleg c : (set T)^nat := fun n => [set x | c * f x <= g n x].
Let nd_fleg c : {homo fleg c : n m / (n <= m)%N >-> (n <= m)%O}.
Proof.
by move: cfg => /le_trans; apply; exact: nd_g.
Qed.
Let mfleg c n : measurable (fleg c n).
Proof.
\big[setU/set0]_(x <- fset_set (range (g n)) | c * y <= x)
(f @^-1` [set y] `&` (g n @^-1` [set x]))).
apply: bigsetU_measurable => r _; apply: bigsetU_measurable => r' crr'.
exact/measurableI/measurable_sfunP.
rewrite predeqE => t; split => [/= cfgn|].
- rewrite -bigcup_seq; exists (f t); first by rewrite /= in_fset_set//= mem_set.
rewrite -bigcup_seq_cond; exists (g n t) => //=.
by rewrite in_fset_set// mem_set.
- rewrite bigsetU_fset_set// => -[r [x _ fxr]].
rewrite bigsetU_fset_set_cond// => -[r' [[x' _ gnx'r'] crr']].
by rewrite /preimage/= => -[-> ->].
Qed.
Let g1 c n : {nnsfun T >-> R} := proj_nnsfun f (mfleg c n).
Let le_ffleg c : {homo (fun p x => g1 c p x): m n / (m <= n)%N >-> (m <= n)%O}.
Proof.
Let bigcup_fleg c : c < 1 -> \bigcup_n fleg c n = setT.
Proof.
have := @fun_ge0 _ _ f x; rewrite le_eqVlt => /predU1P[|] gx0.
by exists O => //; rewrite /fleg /=; rewrite -gx0 mulr0 fun_ge0.
have [cf|df] := pselect (cvgn (g^~ x)).
have cfg : limn (g^~ x) > c * f x.
by rewrite (lt_le_trans _ (gf cf)) // gtr_pMl.
suff [n cfgn] : exists n, g n x >= c * f x by exists n.
move/(@lt_lim _ _ _ (nd_g x) cf) : cfg => [n _ nf].
by exists n; apply: nf => /=.
have /cvgryPge/(_ (c * f x))[n _ ncfgn]:= nondecreasing_dvgn_lt (nd_g x) df.
by exists n => //; rewrite /fleg /=; apply: ncfgn => /=.
Qed.
Local Open Scope ereal_scope.
Lemma nd_sintegral_lim_lemma : sintegral mu f <= limn (sintegral mu \o g).
Proof.
c%:E * sintegral mu f <= limn (sintegral mu \o g).
by apply/lee_mul01Pr => //; exact: sintegral_ge0.
move=> c /andP[c0 c1].
have cg1g n : c%:E * sintegral mu (g1 c n) <= sintegral mu (g n).
rewrite -sintegralrM (_ : (_ \* _)%R = scale_nnsfun (g1 c n) (ltW c0)) //.
apply: le_sintegral => // t.
suff : forall m x, (c * g1 c m x <= g m x)%R by move=> /(_ n t).
move=> m x; rewrite /g1 /proj_nnsfun/= mindicE.
by have [|] := boolP (_ \in _); [rewrite inE mulr1|rewrite 2!mulr0 fun_ge0].
suff {cg1g}<- : limn (fun n => sintegral mu (g1 c n)) = sintegral mu f.
have is_cvg_g1 : cvgn (fun n => sintegral mu (g1 c n)).
by apply: is_cvg_sintegral => //= x m n /(le_ffleg c)/lefP/(_ x).
rewrite -limeMl // lee_lim//; first exact: is_cvgeMl.
- by apply: is_cvg_sintegral => // m n mn; apply/lefP => t; apply: nd_g.
- by apply: nearW; exact: cg1g.
suff : sintegral mu (g1 c n) @[n \oo] --> sintegral mu f by apply/cvg_lim.
rewrite [X in X @ \oo --> _](_ : _ = fun n => \sum_(x <- fset_set (range f))
x%:E * mu (f @^-1` [set x] `&` fleg c n)); last first.
rewrite funeqE => n; rewrite sintegralE.
transitivity (\sum_(x \in range f) x%:E * mu (g1 c n @^-1` [set x])).
apply: eq_fbigl => r.
do 2 (rewrite in_finite_support; last exact/finite_setIl).
apply/idP/idP.
rewrite in_setI => /andP[]; rewrite inE/= => -[x _]; rewrite mindicE.
have [_|xcn] := boolP (_ \in _).
by rewrite mulr1 => <-; rewrite !inE/= => ?; split => //; exists x.
by rewrite mulr0 => /esym ->; rewrite !inE/= mul0e.
rewrite in_setI => /andP[]; rewrite inE => -[x _ <-].
rewrite !inE/= => h; split=> //; move: h; rewrite mindicE => /eqP.
rewrite mule_eq0 negb_or => /andP[_]; set S := (X in mu X) => mS0.
suff : S !=set0 by move=> [y yx]; exists y.
by apply/set0P; apply: contra mS0 => /eqP ->; rewrite measure0.
rewrite fsbig_finite//=; apply: eq_fbigr => r.
rewrite in_fset_set// inE => -[t _ ftr _].
have [->|r0] := eqVneq r 0%R; first by rewrite 2!mul0e.
congr (_ * mu _); apply/seteqP; split => x.
rewrite /preimage/= mindicE.
have [|_] := boolP (_ \in _); first by rewrite mulr1 inE.
by rewrite mulr0 => /esym/eqP; rewrite (negbTE r0).
by rewrite /preimage/= => -[fxr cnx]; rewrite mindicE mem_set// mulr1.
rewrite sintegralE fsbig_finite//=.
apply: cvg_nnesum=> [r _|r _].
near=> A; apply: (mulemu_ge0 (fun x => f @^-1` [set x] `&` fleg c A)) => r0.
by rewrite preimage_nnfun0// set0I.
apply: cvgeMl => //=; rewrite [X in _ --> X](_ : _ =
mu (\bigcup_n (f @^-1` [set r] `&` fleg c n))); last first.
by rewrite -setI_bigcupr bigcup_fleg// setIT.
have ? k i : measurable (f @^-1` [set k] `&` fleg c i) by exact: measurableI.
apply: nondecreasing_cvg_mu; [by []|exact: bigcupT_measurable|].
move=> n m nm; apply/subsetPset; apply: setIS.
by move/(nd_fleg c) : nm => /subsetPset.
Unshelve. all: by end_near. Qed.
End sintegral_nondecreasing_limit_lemma.
Section sintegral_nondecreasing_limit.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Variables (g : {nnsfun T >-> R}^nat) (f : {nnsfun T >-> R}).
Import HBNNSimple.
Hypothesis nd_g : forall x, nondecreasing_seq (g^~ x).
Hypothesis gf : forall x, g ^~ x @ \oo --> f x.
Let limg x : limn (g^~ x) = f x.
Lemma nd_sintegral_lim : sintegral mu f = limn (sintegral mu \o g).
Proof.
by apply: nd_sintegral_lim_lemma => // x; rewrite -limg.
have : nondecreasing_seq (sintegral mu \o g).
by move=> m n mn; apply: le_sintegral => // x; exact/nd_g.
move=> /ereal_nondecreasing_cvgn/cvg_lim -> //.
apply: ub_ereal_sup => _ [n _ <-] /=; apply: le_sintegral => // x.
rewrite -limg // (nondecreasing_cvgn_le (nd_g x)) //.
by apply/cvg_ex; exists (f x); exact: gf.
Qed.
End sintegral_nondecreasing_limit.
Section integral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Implicit Types (f g : T -> \bar R) (D : set T).
Import HBNNSimple.
Let nnintegral mu f := ereal_sup [set sintegral mu h |
h in [set h : {nnsfun T >-> R} | forall x, (h x)%:E <= f x]].
Definition integral mu D f (g := f \_ D) :=
nnintegral mu (g ^\+) - nnintegral mu (g ^\-).
Variable (mu : {measure set T -> \bar R}).
Let nnintegral_ge0 f : (forall x, 0 <= f x) -> 0 <= nnintegral mu f.
Proof.
Let eq_nnintegral g f : f =1 g -> nnintegral mu f = nnintegral mu g.
Proof.
Let nnintegral0 : nnintegral mu (cst 0) = 0.
Proof.
by apply/ereal_sup_ubound; exists nnsfun0; [|exact: sintegral0].
apply/ub_ereal_sup => /= x [f /= f0 <-]; have {}f0 : forall x, f x = 0%R.
by move=> y; apply/eqP; rewrite eq_le -2!lee_fin f0 //= lee_fin//.
by rewrite (eq_sintegral (@nnsfun0 _ T R)) ?sintegral0.
Qed.
Let nnintegral_nnsfun (h : {nnsfun T >-> R}) :
nnintegral mu (EFin \o h) = sintegral mu h.
Proof.
by apply/ub_ereal_sup => /= _ -[g /= gh <-]; rewrite le_sintegral.
by apply: ereal_sup_ubound => /=; exists h.
Qed.
Local Notation "\int_ ( x 'in' D ) F" := (integral mu D (fun x => F)%E)
(at level 36, F at level 36, x, D at level 50,
format "'[' \int_ ( x 'in' D ) '/ ' F ']'").
Lemma eq_integral D g f : {in D, f =1 g} ->
\int_(x in D) f x = \int_(x in D) g x.
Proof.
Lemma ge0_integralE D f : (forall x, D x -> 0 <= f x) ->
\int_(x in D) f x = nnintegral mu (f \_ D).
Proof.
have /eq_restrictP-> := ge0_funeposE f0.
have /eq_restrictP-> := ge0_funenegE f0.
by rewrite erestrict0 nnintegral0 sube0.
Qed.
Lemma ge0_integralTE f : (forall x, 0 <= f x) ->
\int_(x in setT) f x = nnintegral mu f.
Proof.
Lemma integralE D f :
\int_(x in D) f x = \int_(x in D) (f ^\+ x) - \int_(x in D) f ^\- x.
Proof.
Lemma integral0 D : \int_(x in D) (cst 0 x) = 0.
Proof.
Lemma integral0_eq D f :
(forall x, D x -> f x = 0) -> \int_(x in D) f x = 0.
Proof.
Lemma integral_ge0 D f : (forall x, D x -> 0 <= f x) -> 0 <= \int_(x in D) f x.
Proof.
by rewrite /patch; case: ifP; rewrite // inE => /f0->.
Qed.
Lemma integral_nnsfun D (mD : measurable D) (h : {nnsfun T >-> R}) :
\int_(x in D) (h x)%:E = sintegral mu (h \_ D).
Proof.
by move=> x Dx /=; rewrite lee_fin; exact: fun_ge0.
Qed.
End integral.
Notation "\int [ mu ]_ ( x 'in' D ) f" :=
(integral mu D (fun x => f)%E) : ereal_scope.
Notation "\int [ mu ]_ x f" :=
((integral mu setT (fun x => f)%E))%E : ereal_scope.
Arguments eq_integral {d T R mu D} g.
Section eq_measure_integral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType) (D : set T).
Implicit Types m : {measure set T -> \bar R}.
Import HBNNSimple.
Let eq_measure_integral0 m2 m1 (f : T -> \bar R) :
(forall A, measurable A -> A `<=` D -> m1 A = m2 A) ->
[set sintegral m1 h | h in
[set h : {nnsfun T >-> R} | (forall x, (h x)%:E <= (f \_ D) x)]] `<=`
[set sintegral m2 h | h in
[set h : {nnsfun T >-> R} | (forall x, (h x)%:E <= (f \_ D) x)]].
Proof.
have [hrD|hrD] := pselect (h @^-1` [set r] `<=` D); first by rewrite m12.
suff : r = 0%R by move=> ->; rewrite !mul0e.
apply: contra_notP hrD => /eqP r0 t/= htr.
have := hfD t.
rewrite /patch/=; case: ifPn; first by rewrite inE.
move=> tD.
move: r0; rewrite -htr => ht0.
by rewrite le_eqVlt eqe (negbTE ht0)/= lte_fin// ltNge// fun_ge0.
Qed.
Lemma eq_measure_integral m2 m1 (f : T -> \bar R) :
(forall A, measurable A -> A `<=` D -> m1 A = m2 A) ->
\int[m1]_(x in D) f x = \int[m2]_(x in D) f x.
Proof.
by congr (ereal_sup _ - ereal_sup _)%E; rewrite eqEsubset; split;
apply: eq_measure_integral0 => A /m12 // /[apply].
Qed.
End eq_measure_integral.
Arguments eq_measure_integral {d T R D} m2 {m1 f}.
Section integral_measure_zero.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Let sintegral_measure_zero (f : T -> R) : sintegral mzero f = 0.
Proof.
Import HBNNSimple.
Lemma integral_measure_zero (D : set T) (f : T -> \bar R) :
\int[mzero]_(x in D) f x = 0.
Proof.
h in [set h : {nnsfun T >-> R} | forall x, (h x)%:E <= g x]] = [set 0].
move=> g0; apply/seteqP; split => [_ [h/= Dt <-]|x -> /=].
by rewrite sintegral_measure_zero.
by exists (cst_nnsfun _ (@NngNum _ 0 (lexx _))).
rewrite integralE !ge0_integralE//= h ?ereal_sup1; last first.
by move=> r; rewrite erestrict_ge0.
by rewrite h ?ereal_sup1 ?subee// => r; rewrite erestrict_ge0.
Qed.
End integral_measure_zero.
Section domain_change.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Lemma integral_mkcond D f : \int[mu]_(x in D) f x = \int[mu]_x (f \_ D) x.
Proof.
Import HBNNSimple.
Lemma integralT_nnsfun (h : {nnsfun T >-> R}) :
\int[mu]_x (h x)%:E = sintegral mu h.
Proof.
Lemma integral_mkcondr D P f :
\int[mu]_(x in D `&` P) f x = \int[mu]_(x in D) (f \_ P) x.
Proof.
Lemma integral_mkcondl D P f :
\int[mu]_(x in P `&` D) f x = \int[mu]_(x in D) (f \_ P) x.
Proof.
End domain_change.
Arguments integral_mkcond {d T R mu} D f.
Lemma integral_set0 d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) (f : T -> \bar R) :
(\int[mu]_(x in set0) f x = 0)%E.
Proof.
by rewrite /restrict; case: ifPn => //; rewrite in_set0.
Qed.
Section nondecreasing_integral_limit.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (f : T -> \bar R)
(g : {nnsfun T >-> R}^nat).
Hypothesis f0 : forall x, 0 <= f x.
Hypothesis mf : measurable_fun setT f.
Import HBNNSimple.
Hypothesis nd_g : forall x, nondecreasing_seq (g^~x).
Hypothesis gf : forall x, EFin \o g^~ x @ \oo --> f x.
Local Open Scope ereal_scope.
Lemma nd_ge0_integral_lim : \int[mu]_x f x = limn (sintegral mu \o g).
Proof.
apply/eqP; rewrite eq_le; apply/andP; split; last first.
apply: lime_le; first exact: is_cvg_sintegral.
near=> n; apply: ereal_sup_ubound; exists (g n) => //= => x.
have <- : limn (EFin \o g ^~ x) = f x by apply/cvg_lim => //; exact: gf.
have : EFin \o g ^~ x @ \oo --> ereal_sup (range (EFin \o g ^~ x)).
by apply: ereal_nondecreasing_cvgn => p q pq /=; rewrite lee_fin; exact/nd_g.
by move/cvg_lim => -> //; apply: ereal_sup_ubound; exists n.
have := leey (\int[mu]_x (f x)).
rewrite [in X in X -> _]le_eqVlt => /predU1P[|] mufoo; last first.
have : \int[mu]_x (f x) \is a fin_num by rewrite ge0_fin_numE// integral_ge0.
rewrite ge0_integralTE// => /ub_ereal_sup_adherent h.
apply/lee_addgt0Pr => _/posnumP[e].
have {h} [/= _ [G Gf <-]] := h _ [gt0 of e%:num].
rewrite EFinN lteBlDr// => fGe.
have : forall x, cvgn (g^~ x) -> (G x <= limn (g ^~ x))%R.
move=> x cg; rewrite -lee_fin -(EFin_lim cg).
by have /cvg_lim gxfx := @gf x; rewrite (le_trans (Gf _))// gxfx.
move=> /(nd_sintegral_lim_lemma mu nd_g)/(leeD2r e%:num%:E).
by apply: le_trans; exact: ltW.
suff : limn (sintegral mu \o g) = +oo.
by move=> ->; rewrite -ge0_integralTE// mufoo.
apply/eqyP => r r0.
have [G [Gf rG]] : exists h : {nnsfun T >-> R},
(forall x, (h x)%:E <= f x) /\ (r%:E <= sintegral mu h).
have : r%:E < \int[mu]_x (f x).
move: (mufoo) => /eqyP/(_ _ (addr_gt0 r0 r0)).
by apply: lt_le_trans => //; rewrite lte_fin ltrDr.
rewrite ge0_integralTE// => /ereal_sup_gt[x [/= G Gf Gx rx]].
by exists G; split => //; rewrite (le_trans (ltW rx)) // Gx.
have : forall x, cvgn (g^~ x) -> (G x <= limn (g^~ x))%R.
move=> x cg; rewrite -lee_fin -(EFin_lim cg).
by have /cvg_lim gxfx := @gf x; rewrite (le_trans (Gf _)) // gxfx.
by move/(nd_sintegral_lim_lemma mu nd_g) => Gg; rewrite (le_trans rG).
Unshelve. all: by end_near. Qed.
End nondecreasing_integral_limit.
Section dyadic_interval.
Variable R : realType.
Definition dyadic_itv n k : interval R :=
`[(k%:R * 2 ^- n), (k.+1%:R * 2 ^- n)[.
Local Notation I := dyadic_itv.
Lemma dyadic_itv_subU n k : [set` I n k] `<=`
[set` I n.+1 k.*2] `|` [set` I n.+1 k.*2.+1].
Proof.
have [rk|rk] := ltP r (k.*2.+1%:R * (2%:R ^- n.+1)); [left|right].
- rewrite in_itv /= rk andbT (le_trans _ Ir)// -muln2.
rewrite natrM exprS invrM ?unitfE// ?expf_neq0// -mulrA (mulrCA 2).
by rewrite divrr ?unitfE// mulr1.
- rewrite in_itv /= rk /= (lt_le_trans rI)// -doubleS.
rewrite -muln2 natrM exprS invrM ?unitfE// ?expf_neq0// -mulrA (mulrCA 2).
by rewrite divrr ?unitfE// mulr1.
Qed.
Lemma bigsetU_dyadic_itv n : `[n%:R, n.+1%:R[%classic =
\big[setU/set0]_(n * 2 ^ n.+1 <= k < n.+1 * 2 ^ n.+1) [set` I n.+1 k].
Proof.
rewrite -bigcup_seq => -[/= k] /[!mem_index_iota] /andP[nk kn].
rewrite !in_itv /= => /andP[knr rkn]; apply/andP; split.
by rewrite (le_trans _ knr)// ler_pdivlMr// -natrX -natrM ler_nat.
by rewrite (lt_le_trans rkn)// ler_pdivrMr// -natrX -natrM ler_nat.
rewrite -bigcup_seq /=; exists `|floor (r * 2 ^+ n.+1)|%N.
rewrite /= mem_index_iota -ltz_nat -lez_nat gez0_abs; last first.
by rewrite floor_ge0 mulr_ge0// (le_trans _ nr).
rewrite -floor_ge_int -floor_lt_int.
by rewrite !PoszM -!natrXE !rmorphM !rmorphXn /= ler_wpM2r ?ltr_pM2r.
rewrite /= in_itv /= ler_pdivrMr// ltr_pdivlMr//.
rewrite pmulrn [(`|_|.+1%:R)]pmulrn intS addrC gez0_abs; last first.
by rewrite floor_ge0 mulr_ge0 ?exprn_ge0 // (le_trans _ nr).
by rewrite ge_floor lt_succ_floor.
Qed.
Lemma dyadic_itv_image n T (f : T -> \bar R) x :
(n%:R%:E <= f x < n.+1%:R%:E)%E ->
exists k, (2 ^ n.+1 * n <= k < 2 ^ n.+1 * n.+1)%N /\
f x \in EFin @` [set` I n.+1 k].
Proof.
by rewrite fin_numE; move: fxn; case: (f x) => // /andP[].
have : f x \in EFin @` `[n%:R, n.+1%:R[%classic.
rewrite inE /=; exists (fine (f x)); last by rewrite fineK.
by rewrite in_itv /= -lee_fin -lte_fin (fineK fxfin).
rewrite (bigsetU_dyadic_itv n) inE /= => -[r]; rewrite -bigcup_seq => -[k /=].
rewrite mem_index_iota => nk Ir rfx.
by exists k; split; [rewrite !(mulnC (2 ^ n.+1)%N)|rewrite !inE /=; exists r].
Qed.
End dyadic_interval.
Section approximation.
Context d (T : measurableType d) (R : realType).
Variables (D : set T) (mD : measurable D).
Variables (f : T -> \bar R) (mf : measurable_fun D f).
Local Notation I := (@dyadic_itv R).
Definition dyadic_approx n k := if (k < n * 2 ^ n)%N then
D `&` [set x | f x \in EFin @` [set` I n k]] else set0.
Definition integer_approx n := D `&` [set x | n%:R%:E <= f x]%E.
Local Notation A := dyadic_approx.
Local Notation B := integer_approx.
Definition approx : (T -> R)^nat := fun n x =>
\sum_(k < n * 2 ^ n) k%:R * 2 ^- n * \1_(A n k) x + n%:R * \1_(B n) x.
Let mA n k : measurable (A n k).
Proof.
by apply: mf => //; apply/measurable_image_EFin; exact: measurable_itv.
Qed.
Let trivIsetA n : trivIset setT (A n).
Proof.
wlog : i j / (i < j)%N.
move=> h; rewrite neq_lt => /orP[ij|ji].
by apply: h => //; rewrite lt_eqF.
by rewrite setIC; apply: h => //; rewrite lt_eqF.
move=> ij _.
rewrite /A; case: ifPn => /= ni; last by rewrite set0I.
case: ifPn => /= nj; last by rewrite setI0.
rewrite predeqE => t; split => // -[/=] [_].
rewrite inE => -[r /=]; rewrite in_itv /= => /andP[r1 r2] rft [_].
rewrite inE => -[s /=]; rewrite in_itv /= => /andP[s1 s2].
rewrite -rft => -[sr]; rewrite {}sr {s} in s1 s2.
by have := le_lt_trans s1 r2; rewrite ltr_pM2r// ltr_nat ltnS leqNgt ij.
Qed.
Let f0_A0 n (i : 'I_(n * 2 ^ n)) x : f x = 0%:E -> i != O :> nat ->
\1_(A n i) x = 0 :> R.
Proof.
Let fgen_A0 n x (i : 'I_(n * 2 ^ n)) : (n%:R%:E <= f x)%E ->
\1_(A n i) x = 0 :> R.
Proof.
Let disj_A0 x n (i k : 'I_(n * 2 ^ n)) : i != k -> x \in A n k ->
\1_(A n i) x = 0 :> R.
Proof.
Let mB n : measurable (B n)
Proof.
Let foo_B1 x n : D x -> f x = +oo%E -> \1_(B n) x = 1 :> R.
Let f0_B0 x n : f x = 0%:E -> n != 0%N -> \1_(B n) x = 0 :> R.
Let fgtn_B0 x n : (f x < n%:R%:E)%E -> \1_(B n) x = 0 :> R.
Let f0_approx0 n x : f x = 0%E -> approx n x = 0.
Proof.
Let fpos_approx_neq0 x : D x -> (0%E < f x < +oo)%E ->
\forall n \near \oo, approx n x != 0.
Proof.
have fxfin : f x \is a fin_num by rewrite gt0_fin_numE.
rewrite -(fineK fxfin) lte_fin in fx_gt0; near=> n.
rewrite /approx paddr_eq0//; last 2 first.
by apply: sumr_ge0 => i _; rewrite mulr_ge0.
by rewrite mulr_ge0.
rewrite psumr_eq0//; last by move=> i _; rewrite mulr_ge0.
apply/negP => /andP[/allP An0]; rewrite mulf_eq0 => /orP[|].
by apply/negP; near: n; exists 1%N => //= m /=; rewrite lt0n pnatr_eq0.
rewrite pnatr_eq0 => /eqP.
have [//|] := boolP (x \in B n).
rewrite notin_setE /B /setI /= => /not_andP[] // /negP.
rewrite -ltNge => fxn _.
have K : (`|floor (fine (f x) * 2 ^+ n)| < n * 2 ^ n)%N.
rewrite -ltz_nat gez0_abs; last by rewrite floor_ge0 mulr_ge0// ltW.
rewrite -(@ltr_int R); rewrite (le_lt_trans (ge_floor _))// PoszM intrM.
by rewrite -natrX ltr_pM2r// -lte_fin (fineK fxfin).
have /[!mem_index_enum]/(_ isT) := An0 (Ordinal K).
rewrite implyTb indicE mem_set ?mulr1; last first.
rewrite /A K /= inE; split=> //=; exists (fine (f x)); last by rewrite fineK.
rewrite in_itv /=; apply/andP; split.
rewrite ler_pdivrMr// (le_trans _ (ge_floor _))//.
by rewrite -(@gez0_abs (floor _))// floor_ge0 mulr_ge0// ltW.
rewrite ltr_pdivlMr// (lt_le_trans (lt_succ_floor _))//.
rewrite -[in leRHS]natr1 -intrD1 lerD2r// -{1}(@gez0_abs (floor _))//.
by rewrite floor_ge0// mulr_ge0// ltW.
rewrite mulf_eq0// -exprVn; apply/negP; rewrite negb_or expf_neq0//= andbT.
rewrite pnatr_eq0 -lt0n absz_gt0 floor_neq0// -ler_pdivrMr//.
apply/orP; right; apply/ltW; near: n.
exact: near_infty_natSinv_expn_lt (PosNum fx_gt0).
Unshelve. all: by end_near. Qed.
Let f_ub_approx n x : (f x < n%:R%:E)%E ->
approx n x == 0 \/ exists k,
[/\ (0 < k < n * 2 ^ n)%N,
x \in A n k, approx n x = k%:R / 2 ^+ n &
f x \in EFin @` [set` I n k]].
Proof.
set lhs := (X in X == 0); have [|] := eqVneq lhs 0; first by left.
rewrite {}/lhs psumr_eq0; last by move=> i _; rewrite mulr_ge0.
move=> /allPn[/= k _].
rewrite mulf_eq0 negb_or mulf_eq0 negb_or -andbA => /and3P[k_neq0 _].
rewrite pnatr_eq0 eqb0 negbK => xAnk; right.
rewrite (bigD1 k) //= indicE xAnk mulr1 big1 ?addr0; last first.
by move=> i ik; rewrite (disj_A0 k)// mulr0.
exists k; split => //; first by rewrite lt0n -(@pnatr_eq0 R) k_neq0/=.
by move: xAnk; rewrite inE /A ltn_ord /= inE /= => -[/[swap] Dx].
Qed.
Let notinD_approx0 x n : ~ D x -> approx n x = 0 :> R.
Proof.
Lemma nd_approx : nondecreasing_seq approx.
Proof.
have [Dx|Dx] := pselect (D x); last by rewrite ?notinD_approx0.
have [fxn|fxn] := ltP (f x) n%:R%:E.
rewrite {2}/approx fgtn_B0 ?mulr0 ?addr0; last first.
by rewrite (lt_trans fxn) // lte_fin ltr_nat.
have [/eqP ->|[k [/andP[k0 kn] xAnk -> _]]] := f_ub_approx fxn.
by apply: sumr_ge0 => i _; rewrite mulr_ge0.
move: (xAnk); rewrite inE {1}/A kn => -[_] /=.
rewrite inE => -[r] /dyadic_itv_subU[|] rnk rfx.
- have k2n : (k.*2 < n.+1 * 2 ^ n.+1)%N.
rewrite expnS mulnCA mul2n ltn_double (ltn_trans kn) //.
by rewrite ltn_mul2r expn_gt0 /= ltnS.
rewrite (bigD1 (Ordinal k2n)) //= indicE.
have xAn1k : x \in A n.+1 k.*2.
by rewrite inE /A k2n; split => //=; rewrite inE; exists r.
rewrite xAn1k mulr1 big1 ?addr0; last first.
by move=> i ik2n; rewrite (disj_A0 (Ordinal k2n)) ?mulr0.
rewrite exprS invrM ?unitfE// -muln2 natrM -mulrA (mulrCA 2).
by rewrite divrr ?mulr1 ?unitfE.
- have k2n : (k.*2.+1 < n.+1 * 2 ^ n.+1)%N.
move: kn; rewrite -ltn_double -(ltn_add2r 1) 2!addn1 => /leq_trans; apply.
by rewrite -muln2 -mulnA -expnSr ltn_mul2r expn_gt0 /= ltnS.
rewrite (bigD1 (Ordinal k2n)) //= indicE.
have xAn1k : x \in A n.+1 k.*2.+1.
by rewrite /A /= k2n inE; split => //=; rewrite inE/=; exists r.
rewrite xAn1k mulr1 big1 ?addr0; last first.
by move=> i ik2n; rewrite (disj_A0 (Ordinal k2n)) // mulr0.
rewrite -(@natr1 _ k.*2) mulrDl exprS -mul2n natrM -mulf_div divrr ?unitfE//.
by rewrite !mul1r lerDl.
have /orP[{}fxn|{}fxn] :
((n%:R%:E <= f x < n.+1%:R%:E) || (n.+1%:R%:E <= f x))%E.
- by move: fxn; case: leP => /= [_ _|_ ->//]; rewrite orbT.
- have [k [k1 k2]] := dyadic_itv_image fxn.
have xBn : x \in B n by rewrite /B /= inE /=; case/andP : fxn => ->.
rewrite /approx indicE xBn mulr1 big1 ?add0r; last first.
by move=> /= i _; rewrite fgen_A0 ?mulr0//; case/andP : fxn.
rewrite fgtn_B0 ?mulr0 ?addr0; last by case/andP : fxn.
have kn2 : (k < n.+1 * 2 ^ n.+1)%N by case/andP : k1 => _; rewrite mulnC.
rewrite (bigD1 (Ordinal kn2)) //=.
have xAn1k : x \in A n.+1 k by rewrite inE /A kn2.
rewrite indicE xAn1k mulr1 big1 ?addr0; last first.
by move=> i /= ikn2; rewrite (disj_A0 (Ordinal kn2)) // mulr0.
by rewrite -natrX ler_pdivlMr// mulrC -natrM ler_nat; case/andP : k1.
- have xBn : x \in B n by rewrite /B inE /= (le_trans _ fxn) // lee_fin ler_nat.
rewrite /approx indicE xBn mulr1.
have xBn1 : x \in B n.+1 by rewrite /B /= inE.
rewrite indicE xBn1 mulr1 big1 ?add0r.
by rewrite big1 ?add0r ?ler_nat// => /= i _; rewrite fgen_A0// mulr0.
by move=> /= i _; rewrite fgen_A0 ?mulr0// (le_trans _ fxn)// lee_fin ler_nat.
Qed.
Lemma cvg_approx x (f0 : forall x, D x -> (0 <= f x)%E) : D x ->
(f x < +oo)%E -> approx^~ x @ \oo --> fine (f x).
Proof.
apply/(@cvgrPdist_lt _ R^o) => _/posnumP[e].
have [fx0|fx0] := eqVneq (f x) 0%E.
by near=> n; rewrite f0_approx0 // fx0 /= subrr normr0.
have /(fpos_approx_neq0 Dx)[m _ Hm] : (0 < f x < +oo)%E by rewrite lt0e fx0 f0.
near=> n.
have mn : (m <= n)%N by near: n; exists m.
have : fine (f x) < n%:R.
near: n.
exists `|floor (fine (f x))|.+1%N => //= p /=.
rewrite -(@ler_nat R); apply: lt_le_trans.
rewrite -natr1 (_ : `| _ |%:R = (floor (fine (f x)))%:~R); last first.
by rewrite -[in RHS](@gez0_abs (floor _))// floor_ge0//; exact/fine_ge0/f0.
by rewrite intrD1 lt_succ_floor.
rewrite -lte_fin (fineK fxfin) => fxn.
have [approx_nx0|[k [/andP[k0 kn2n] ? ->]]] := f_ub_approx fxn.
by have := Hm _ mn; rewrite approx_nx0.
rewrite inE /= => -[r /=]; rewrite in_itv /= => /andP[k1 k2] rfx.
rewrite (@le_lt_trans _ _ (1 / 2 ^+ n)) //.
rewrite ler_norml; apply/andP; split.
rewrite lerBrDl -mulrBl -lee_fin (fineK fxfin) -rfx lee_fin.
by rewrite (le_trans _ k1)// ler_pM2r// lerBlDl lerDr.
by rewrite lerBlDr -mulrDl -lee_fin nat1r fineK// ltW// -rfx lte_fin.
by near: n; exact: near_infty_natSinv_expn_lt.
Unshelve. all: by end_near. Qed.
Lemma le_approx k x (f0 : forall x, D x -> (0 <= f x)%E) : D x ->
((approx k x)%:E <= f x)%E.
Proof.
by rewrite leye_eq => /eqP ->; rewrite leey.
have nd_ag : {homo approx ^~ x : n m / (n <= m)%N >-> n <= m}.
by move=> m n mn; exact/lefP/nd_approx.
have fi0 y : D y -> (0 <= f y)%E by move=> ?; exact: f0.
have cvg_af := cvg_approx fi0 Dx fixoo.
have is_cvg_af : cvgn (approx ^~ x) by apply/cvg_ex; eexists; exact: cvg_af.
have {is_cvg_af} := nondecreasing_cvgn_le nd_ag is_cvg_af k.
rewrite -lee_fin => /le_trans; apply.
rewrite -(@fineK _ (f x)); last by rewrite ge0_fin_numE// f0.
by move/(cvg_lim (@Rhausdorff R)) : cvg_af => ->.
Qed.
Lemma dvg_approx x : D x -> f x = +oo%E -> ~ cvgn (approx^~ x : _ -> R^o).
Proof.
rewrite /approx foo_B1// mulr1 big1 ?add0r// => /= i _.
by rewrite fgen_A0 // ?mulr0 // fxoo leey.
case/cvg_ex => /= l; have [l0|l0] := leP 0%R l.
- move=> /cvgrPdist_lt/(_ _ ltr01) -[n _].
move=> /(_ (`|ceil l|.+1 + n)%N) /= /(_ (leq_addl _ _)); apply/negP.
rewrite -leNgt approx_x distrC (le_trans _ (lerB_normD _ _))// normrN.
rewrite lerBrDl addSnnS natrD [leRHS]ger0_norm// lerD ?ler1n// natr_absz.
by rewrite !ger0_norm ?le_ceil// -ceil_ge0; apply: lt_le_trans l0.
- move=> /cvgrPdist_lt/(_ _ ltr01)[n _].
move=> /(_ (`|floor l|.+1 + n)%N)/(_ (leq_addl _ _)); apply/negP.
rewrite approx_x -leNgt distrC (le_trans _ (lerB_normD _ _))// normrN.
rewrite lerBrDl addSnnS natrD [leRHS]ger0_norm// lerD ?ler1n// natr_absz.
by rewrite !ltr0_norm -?floor_lt0// mulrNz lerN2 ge_floor.
Qed.
Lemma ecvg_approx (f0 : forall x, D x -> (0 <= f x)%E) x :
D x -> EFin \o approx^~x @ \oo --> f x.
Proof.
have dvg_approx := dvg_approx Dx fxoo.
have : {homo approx ^~ x : n m / (n <= m)%N >-> n <= m}.
by move=> m n mn; have := nd_approx mn => /lefP; exact.
move/nondecreasing_dvgn_lt => /(_ dvg_approx).
by rewrite fxoo => ?; apply/cvgeryP.
rewrite -(@fineK _ (f x)); first exact: (cvg_comp (cvg_approx f0 Dx fxoo)).
by rewrite ge0_fin_numE// f0.
Qed.
Let k2n_ge0 n (k : 'I_(n * 2 ^ n)) : 0 <= k%:R * 2 ^- n :> R.
Proof.
Definition nnsfun_approx : {nnsfun T >-> R}^nat := fun n => locked (add_nnsfun
(sum_nnsfun
(fun k => match Bool.bool_dec (k < (n * 2 ^ n))%N true with
| left h => scale_nnsfun (indic_nnsfun _ (mA n k)) (k2n_ge0 (Ordinal h))
| right _ => nnsfun0
end) (n * 2 ^ n)%N)
(scale_nnsfun (indic_nnsfun _ (mB n)) (ler0n _ n))).
Import HBNNSimple.
Lemma nnsfun_approxE n : nnsfun_approx n = approx n :> (T -> R).
Proof.
rewrite sum_nnsfunE; congr (_ + _).
by apply: eq_bigr => i _; case: Bool.bool_dec => [h|/negP]; [|rewrite ltn_ord].
Qed.
Lemma cvg_nnsfun_approx (f0 : forall x, D x -> (0 <= f x)%E) x :
D x -> EFin \o nnsfun_approx^~x @ \oo --> f x.
Proof.
Lemma nd_nnsfun_approx : nondecreasing_seq (nnsfun_approx : (T -> R)^nat).
Proof.
#[deprecated(since="mathcomp-analysis 1.8.0", note="use `nnsfun_approx`, `cvg_nnsfun_approx`, and `nd_nnsfun_approx` instead")]
Lemma approximation : (forall t, D t -> (0 <= f t)%E) ->
exists g : {nnsfun T >-> R}^nat, nondecreasing_seq (g : (T -> R)^nat) /\
(forall x, D x -> EFin \o g^~ x @ \oo --> f x).
Proof.
by move=> x Dx; exact: cvg_nnsfun_approx.
Qed.
End approximation.
Section ge0_linearityZ.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variables f1 f2 : T -> \bar R.
Hypothesis f10 : forall x, D x -> 0 <= f1 x.
Hypothesis mf1 : measurable_fun D f1.
Import HBNNSimple.
Lemma ge0_integralZl_EFin k : (0 <= k)%R ->
\int[mu]_(x in D) (k%:E * f1 x) = k%:E * \int[mu]_(x in D) f1 x.
Proof.
set h1 := f1 \_ D.
have h10 x : 0 <= h1 x by apply: erestrict_ge0.
have mh1 : measurable_fun setT h1 by exact/(measurable_restrictT _ _).1.
pose g := nnsfun_approx measurableT mh1.
pose kg := fun n => scale_nnsfun (g n) k0.
rewrite (@nd_ge0_integral_lim _ _ _ mu (fun x => k%:E * h1 x) kg).
- rewrite (_ : _ \o _ = fun n => sintegral mu (scale_nnsfun (g n) k0))//.
rewrite (_ : (fun _ => _) = (fun n => k%:E * sintegral mu (g n))).
rewrite limeMl //; last first.
by apply: is_cvg_sintegral => // x m n mn; exact/lefP/nd_nnsfun_approx.
by rewrite -(nd_ge0_integral_lim mu h10)// => [x m n mn|x];
[exact/lefP/nd_nnsfun_approx|exact: cvg_nnsfun_approx].
by under eq_fun do rewrite (sintegralrM mu k (g _)).
- by move=> t; rewrite mule_ge0.
- by move=> x m n mn; rewrite /kg ler_pM//; exact/lefP/nd_nnsfun_approx.
- move=> x.
rewrite [X in X @ \oo --> _](_ : _ = (fun n => k%:E * (g n x)%:E)) ?funeqE//.
by apply: cvgeMl => //; exact: cvg_nnsfun_approx.
Qed.
End ge0_linearityZ.
#[deprecated(since="mathcomp-analysis 0.6.4", note="use `ge0_integralZl_EFin` instead")]
Notation ge0_integralM_EFin := ge0_integralZl_EFin (only parsing).
Section ge0_linearityD.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Variables (D : set T) (mD : measurable D) (f1 f2 : T -> \bar R).
Hypothesis f10 : forall x, D x -> 0 <= f1 x.
Hypothesis mf1 : measurable_fun D f1.
Hypothesis f20 : forall x, D x -> 0 <= f2 x.
Hypothesis mf2 : measurable_fun D f2.
Import HBNNSimple.
Lemma ge0_integralD : \int[mu]_(x in D) (f1 x + f2 x) =
\int[mu]_(x in D) f1 x + \int[mu]_(x in D) f2 x.
Proof.
set h1 := f1 \_ D; set h2 := f2 \_ D.
have h10 x : 0 <= h1 x by apply: erestrict_ge0.
have h20 x : 0 <= h2 x by apply: erestrict_ge0.
have mh1 : measurable_fun setT h1 by exact/(measurable_restrictT _ _).1.
have mh2 : measurable_fun setT h2 by exact/(measurable_restrictT _ _).1.
pose g1 := nnsfun_approx measurableT mh1.
pose g2 := nnsfun_approx measurableT mh2.
pose g12 := fun n => add_nnsfun (g1 n) (g2 n).
rewrite (@nd_ge0_integral_lim _ _ _ mu _ g12) //; last 3 first.
- by move=> x; rewrite adde_ge0.
- by apply: nondecreasing_seqD => // x m n mn;
[exact/lefP/nd_nnsfun_approx|exact/lefP/nd_nnsfun_approx].
- move=> x; rewrite (_ : _ \o _ = (fun n => (g1 n x)%:E + (g2 n x)%:E))//.
apply: cvgeD => //; [|exact: cvg_nnsfun_approx..].
by apply: ge0_adde_def => //; rewrite !inE; [exact: h10|exact: h20].
under [_ \o _]eq_fun do rewrite sintegralD.
rewrite (@nd_ge0_integral_lim _ _ _ _ _ g1)//; last 2 first.
by move=> x m n mn; exact/lefP/nd_nnsfun_approx.
by move=> x; exact/cvg_nnsfun_approx.
rewrite (@nd_ge0_integral_lim _ _ _ _ _ g2)//; last 2 first.
by move=> x m n mn; exact/lefP/nd_nnsfun_approx.
by move=> x; exact/cvg_nnsfun_approx.
rewrite limeD//; [
by apply: is_cvg_sintegral => // x m n mn; exact/lefP/nd_nnsfun_approx..|].
by rewrite ge0_adde_def => //; rewrite inE; apply: lime_ge; solve[
(by apply: is_cvg_sintegral => // x m n mn; exact/lefP/nd_nnsfun_approx) ||
(by apply: nearW => n; exact: sintegral_ge0)].
Qed.
Lemma ge0_le_integral : (forall x, D x -> f1 x <= f2 x) ->
\int[mu]_(x in D) f1 x <= \int[mu]_(x in D) f2 x.
Proof.
set h1 := f1 \_ D; set h2 := f2 \_ D.
have h10 x : 0 <= h1 x by apply: erestrict_ge0.
have h20 x : 0 <= h2 x by apply: erestrict_ge0.
have mh1 : measurable_fun setT h1 by exact/(measurable_restrictT _ _).1.
have mh2 : measurable_fun setT h2 by exact/(measurable_restrictT _ _).1.
have h12 x : h1 x <= h2 x by apply: lee_restrict.
pose g1 := nnsfun_approx measurableT mh1.
rewrite (@nd_ge0_integral_lim _ _ _ _ _ g1)//; last 2 first.
by move=> x m n mn; exact/lefP/nd_nnsfun_approx.
by move=> x; exact: cvg_nnsfun_approx.
apply: lime_le.
by apply: is_cvg_sintegral => // t m n mn; exact/lefP/nd_nnsfun_approx.
near=> n; rewrite ge0_integralTE//; apply: ereal_sup_ubound => /=.
exists (g1 n) => // t; rewrite (le_trans _ (h12 _))//.
have := leey (h1 t); rewrite le_eqVlt => /predU1P[->|ftoo].
by rewrite leey.
have h1tfin : h1 t \is a fin_num.
by rewrite fin_numE gt_eqF/= ?lt_eqF// (lt_le_trans _ (h10 t)).
have /= := @cvg_nnsfun_approx _ _ _ _ measurableT _ mh1 (fun x _ => h10 x) t Logic.I.
rewrite -(fineK h1tfin) => /fine_cvgP[ft_near].
set u_ := (X in X --> _) => u_h1.
have <- : lim u_ = fine (h1 t) by exact/cvg_lim.
rewrite lee_fin; apply: nondecreasing_cvgn_le.
by move=> // a b ab; rewrite /u_ /=; exact/lefP/nd_nnsfun_approx.
by apply/cvg_ex; eexists; exact: u_h1.
Unshelve. all: by end_near. Qed.
End ge0_linearityD.
Section approximation_sfun.
Context d (T : measurableType d) (R : realType) (f : T -> \bar R).
Variables (D : set T) (mD : measurable D) (mf : measurable_fun D f).
Import HBSimple.
HB.instance Definition _ x : @FImFun T R (cst x) := FImFun.on (cst x).
Import HBNNSimple.
HB.instance Definition _ x : @NonNegFun T R (cst x%:num) :=
NonNegFun.on (cst x%:num).
Lemma approximation_sfun :
exists g : {sfun T >-> R}^nat, (forall x, D x -> EFin \o g ^~ x @ \oo --> f x).
Proof.
pose fn_ := nnsfun_approx mD (measurable_funeneg mf).
exists (fun n => fp_ n \+ cst (-1) \* fn_ n) => x /=.
rewrite [X in X @ \oo --> _](_ : _ =
EFin \o fp_^~ x \+ (-%E \o EFin \o fn_^~ x))%E; last first.
by apply/funext => n/=; rewrite EFinD mulN1r.
by move=> Dx; rewrite (funeposneg f); apply: cvgeD;
[exact: add_def_funeposneg|apply: cvg_nnsfun_approx|apply:cvgeN; apply: cvg_nnsfun_approx].
Qed.
End approximation_sfun.
Section lusin.
Hint Extern 0 (hausdorff_space _) => (exact: Rhausdorff) : core.
Local Open Scope ereal_scope.
Context (rT : realType) (A : set rT).
Let mu : measure _ _ := @lebesgue_measure rT.
Let R : measurableType _ := measurableTypeR rT.
Hypothesis mA : measurable A.
Hypothesis finA : mu A < +oo.
Import HBSimple.
Let lusin_simple (f : {sfun R >-> rT}) (eps : rT) : (0 < eps)%R ->
exists K, [/\ compact K, K `<=` A, mu (A `\` K) < eps%:E &
{within K, continuous f}].
Proof.
pose Af x : set R := A `&` f @^-1` [set x].
have mAf x : measurable (Af x) by exact: measurableI.
have finAf x : mu (Af x) < +oo.
by rewrite (le_lt_trans _ finA)// le_measure// ?inE//; exact: subIsetl.
have eNpos : (0 < eps%:num/N.+1%:R)%R by [].
have dK' x := lebesgue_regularity_inner (mAf x) (finAf x) eNpos.
pose dK x : set R := projT1 (cid (dK' x)); pose J i : set R := Af i `\` dK i.
have dkP x := projT2 (cid (dK' x)).
have mdK i : measurable (dK i).
by apply: closed_measurable; apply: compact_closed => //; case: (dkP i).
have mJ i : measurable (J i) by apply: measurableD => //; exact: measurableI.
have dKsub z : dK z `<=` f @^-1` [set z].
by case: (dkP z) => _ /subset_trans + _; apply => ? [].
exists (\bigcup_(i in range f) dK i); split.
- by rewrite -bigsetU_fset_set//; apply: bigsetU_compact=>// i _; case: (dkP i).
- by move=> z [y _ dy]; have [_ /(_ _ dy) []] := dkP y.
- have -> : A `\` \bigcup_(i in range f) dK i = \bigcup_(i in range f) J i.
rewrite -bigcupDr /= ?eqEsubset; last by exists (f point), point.
split => z; first by move=> /(_ (f z)) [//| ? ?]; exists (f z).
case => ? [? _ <-] [[zab /= <- nfz]] ? [r _ <-]; split => //.
by move: nfz; apply: contra_not => /[dup] /dKsub ->.
apply: (@le_lt_trans _ _ (\sum_(i \in range f) mu (J i))).
by apply: content_sub_fsum => //; exact: fin_bigcup_measurable.
apply: le_lt_trans.
apply: (@lee_fsum _ _ _ _ (fun=> (eps%:num / N.+1%:R)%:E * 1%:E)) => //.
by move=> i ?; rewrite mule1; apply: ltW; have [_ _] := dkP i.
rewrite /=-ge0_mule_fsumr // -esum_fset // finite_card_sum // -EFinM lte_fin.
by rewrite rfN -mulrA gtr_pMr // mulrC ltr_pdivrMr // mul1r ltr_nat.
- suff : closed (\bigcup_(i in range f) dK i) /\
{within \bigcup_(i in range f) dK i, continuous f} by case.
rewrite -bigsetU_fset_set //.
apply: (@big_ind _ (fun U => closed U /\ {within U, continuous f})).
+ by split; [exact: closed0 | exact: continuous_subspace0].
+ by move=> ? ? [? ?][? ?]; split; [exact: closedU|exact: withinU_continuous].
+ move=> i _; split; first by apply: compact_closed; have [] := dkP i.
apply: (continuous_subspaceW (dKsub i)).
apply: (@subspace_eq_continuous _ _ _ (fun=> i)).
by move=> ? /set_mem ->.
by apply: continuous_subspaceT => ?; exact: cvg_cst.
Qed.
Let measurable_almost_continuous' (f : rT -> rT) (eps : rT) :
(0 < eps)%R -> measurable_fun A f -> exists K,
[/\ measurable K, K `<=` A, mu (A `\` K) < eps%:E &
{within K, continuous f}].
Proof.
have mf' : measurable_fun A f' by exact/measurable_EFinP.
have [/= g_ gf'] := @approximation_sfun _ R rT _ _ mA mf'.
pose e2n n := (eps%:num / 2) / (2 ^ n.+1)%:R.
have e2npos n : (0 < e2n n)%R by rewrite divr_gt0.
have gK' n := @lusin_simple (g_ n) (e2n n) (e2npos n).
pose gK n := projT1 (cid (gK' n)); have gKP n := projT2 (cid (gK' n)).
pose K := \bigcap_i gK i; have mgK n : measurable (gK n).
by apply: closed_measurable; apply: compact_closed => //; have [] := gKP n.
have mK : measurable K by exact: bigcap_measurable.
have Kab : K `<=` A by move=> z /(_ O I); have [_ + _ _] := gKP O; apply.
have []// := @pointwise_almost_uniform _ rT R mu g_ f K (eps%:num / 2).
- by move=> n; apply: measurable_funTS.
- by rewrite (@le_lt_trans _ _ (mu A))// le_measure// ?inE.
- by move=> z Kz; have /fine_fcvg := gf' z (Kab _ Kz); rewrite -fmap_comp compA.
move=> D [/= mD Deps KDf]; exists (K `\` D); split => //.
- exact: measurableD.
- exact: subset_trans Kab.
- rewrite setDDr; apply: le_lt_trans => /=.
by apply: measureU2 => //; apply: measurableI => //; apply: measurableC.
rewrite [_%:num]splitr EFinD; apply: lee_ltD => //=; first 2 last.
+ by rewrite (@le_lt_trans _ _ (mu D)) ?le_measure ?inE//; exact: measurableI.
+ rewrite ge0_fin_numE// (@le_lt_trans _ _ (mu A))// le_measure ?inE//.
exact: measurableD.
rewrite setDE setC_bigcap setI_bigcupr.
apply: (@le_trans _ _(\sum_(k <oo) mu (A `\` gK k))).
apply: measure_sigma_subadditive => //; [|apply: bigcup_measurable => + _].
by move=> k /=; apply: measurableD => //; apply: mgK.
by move=> k /=; apply: measurableD => //; apply: mgK.
apply: (@le_trans _ _(\sum_(k <oo) (e2n k)%:E)); last exact: epsilon_trick0.
by apply: lee_nneseries => // k _; apply: ltW; have [] := gKP k.
apply: (@uniform_limit_continuous_subspace _ _ _ (g_ @ \oo)) => //.
near_simpl; apply: nearW => // n; apply: (@continuous_subspaceW _ _ _ (gK n)).
by move=> z [+ _]; apply.
by have [] := projT2 (cid (gK' n)).
Qed.
Lemma measurable_almost_continuous (f : rT -> rT) (eps : rT) :
(0 < eps)%R -> measurable_fun A f -> exists K,
[/\ compact K, K `<=` A, mu (A `\` K) < eps%:E &
{within K, continuous f}].
Proof.
have [K [mK KA ? ?]] := measurable_almost_continuous' e2pos mf.
have Kfin : mu K < +oo by rewrite (le_lt_trans _ finA)// le_measure ?inE.
have [D /= [cD DK KDe]] := lebesgue_regularity_inner mK Kfin e2pos.
exists D; split => //; last exact: (continuous_subspaceW DK).
exact: (subset_trans DK).
have -> : A `\` D = (A `\` K) `|` (K `\` D).
rewrite eqEsubset; split => z.
by case: (pselect (K z)) => // ? [? ?]; [right | left].
case; case=> az nz; split => //; [by move: z nz {az}; apply/subsetC|].
exact: KA.
apply: le_lt_trans.
apply: measureU2; apply: measurableD => //; apply: closed_measurable.
by apply: compact_closed; first exact: Rhausdorff.
by rewrite [_ eps]splitr EFinD lteD.
Qed.
End lusin.
Section emeasurable_fun.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Implicit Types (D : set T) (f g : T -> \bar R).
Import HBSimple.
Lemma emeasurable_funD D f g :
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \+ g).
Proof.
have Cnoom : measurable (~` [set -oo] : set (\bar R)) by apply: measurableC.
have Cpoom : measurable (~` [set +oo] : set (\bar R)) by apply: measurableC.
have mfg : measurable (D `&` [set x | f x +? g x]).
suff -> : [set x | f x +? g x] =
(f @^-1` (~` [set +oo]) `|` g @^-1` (~` [set -oo])) `&`
(f @^-1` (~` [set -oo]) `|` g @^-1` (~` [set +oo])).
by rewrite setIIr; apply: measurableI;
rewrite setIUr; apply: measurableU; do ?[apply: mf|apply: mg].
apply/predeqP=> x; rewrite /preimage/= /adde_def !(negb_and, negb_or).
by rewrite !(rwP2 eqP idP) !(rwP2 negP idP) !(rwP2 orP idP) !(rwP2 andP idP).
wlog fg : D mD mf mg mfg / forall x, D x -> f x +? g x => [hwlogD|]; last first.
have [f_ f_cvg] := approximation_sfun mD mf.
have [g_ g_cvg] := approximation_sfun mD mg.
apply: (emeasurable_fun_cvg (fun n x => (f_ n x + g_ n x)%:E)) => //.
by move=> n; exact/measurable_EFinP/measurable_funTS/measurable_funD.
move=> x Dx; under eq_fun do rewrite EFinD.
exact: cvgeD (fg _ _) (f_cvg _ _) (g_cvg _ _).
move=> A mA; wlog NAnoo: A mD mf mg mA / ~ (A -oo) => [hwlogA|].
have [] := pselect (A -oo); last exact: hwlogA.
move=> /(@setD1K _ -oo)<-; rewrite preimage_setU setIUr.
apply: measurableU; last by apply: hwlogA=> //; [exact: measurableD|case=>/=].
have -> : (f \+ g) @^-1` [set -oo] = f @^-1` [set -oo] `|` g @^-1` [set -oo].
apply/seteqP; split=> x /= => [/eqP|[]]; rewrite /preimage/=.
- by rewrite adde_eq_ninfty => /orP[] /eqP ->; [left|right].
- by move=> ->.
- by move=> ->; rewrite addeC.
by rewrite setIUr; apply: measurableU; [apply: mf|apply: mg].
have-> : D `&` (f \+ g) @^-1` A =
(D `&` [set x | f x +? g x]) `&` (f \+ g) @^-1` A.
rewrite -setIA; congr (_ `&` _).
apply/seteqP; split=> x; rewrite /preimage/=; last by case.
move=> Afgx; split=> //.
by case: (f x) (g x) Afgx => [rf||] [rg||].
have Dfg : D `&` [set x | f x +? g x] `<=` D by apply: subIset; left.
apply: hwlogD => //.
- by apply: (measurable_funS mD) => //; do ?exact: measurableI.
- by apply: (measurable_funS mD) => //; do ?exact: measurableI.
- by rewrite -setIA setIid.
- by move=> ? [].
Qed.
Lemma emeasurable_sum D I s (h : I -> (T -> \bar R)) :
(forall n, measurable_fun D (h n)) ->
measurable_fun D (fun x => \sum_(i <- s) h i x).
Proof.
by under eq_fun do rewrite big_nil; exact: measurable_cst.
under eq_fun do rewrite big_cons //=; apply: emeasurable_funD => //.
exact: ih.
Qed.
Lemma emeasurable_fsum D (I : choiceType) (A : set I)
(h : I -> (T -> \bar R)) : finite_set A ->
(forall n, measurable_fun D (h n)) ->
measurable_fun D (fun x => \sum_(i \in A) h i x).
Proof.
Lemma ge0_emeasurable_sum D (h : nat -> (T -> \bar R)) (P : pred nat) :
(forall k x, D x -> P k -> 0 <= h k x) ->
(forall k, P k -> measurable_fun D (h k)) ->
measurable_fun D (fun x => \sum_(i <oo | i \in P) h i x).
Proof.
rewrite [X in measurable_fun _ X](_ : _ =
(fun x => \sum_(0 <= i <oo | i \in P) (h i \_ D) x)); last first.
apply/funext => x/=; rewrite /patch; case: ifPn => // xD.
by rewrite eseries0.
rewrite [X in measurable_fun _ X](_ : _ =
(fun x => limn_esup (fun n => \sum_(0 <= i < n | P i) (h i) \_ D x))); last first.
apply/funext=> x; rewrite is_cvg_limn_esupE//.
apply: is_cvg_nneseries_cond => n Pn; rewrite patchE.
by case: ifPn => // xD; rewrite h0//; exact/set_mem.
apply: measurable_fun_limn_esup => k.
under eq_fun do rewrite big_mkcond.
apply: emeasurable_sum => n.
have [|] := boolP (n \in P); last by rewrite /in_mem/= => /negbTE ->.
rewrite /in_mem/= => Pn; rewrite Pn.
by apply/(measurable_restrictT _ _).1 => //; exact: mh.
Qed.
Lemma emeasurable_funB D f g :
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \- g).
Proof.
Lemma emeasurable_funM D f g :
measurable_fun D f -> measurable_fun D g -> measurable_fun D (f \* g).
Proof.
have m0 : measurable ([set 0] : set (\bar R)) by [].
have mC0 : measurable ([set~ 0] : set (\bar R)) by apply: measurableC.
have mCoo : measurable (~` [set -oo; +oo] : set (\bar R)).
exact/measurableC/measurableU.
have mfg : measurable (D `&` [set x | f x *? g x]).
suff -> : [set x | f x *? g x] =
(f @^-1` (~` [set 0]) `|` g @^-1` (~` [set -oo; +oo])) `&`
(g @^-1` (~` [set 0]) `|` f @^-1` (~` [set -oo; +oo])).
by rewrite setIIr; apply: measurableI;
rewrite setIUr; apply: measurableU; do ?[apply: mf|apply: mg].
apply/predeqP=> x; rewrite /preimage/= /mule_def !(negb_and, negb_or).
rewrite !(rwP2 eqP idP) !(rwP2 negP idP) !(rwP2 orP idP).
rewrite !(rwP2 negP idP) !(rwP2 orP idP) !(rwP2 andP idP).
rewrite eqe_absl leey andbT (orbC (g x == +oo)).
by rewrite eqe_absl leey andbT (orbC (f x == +oo)).
wlog fg : D mD mf mg mfg / forall x, D x -> f x *? g x => [hwlogM|]; last first.
have [f_ f_cvg] := approximation_sfun mD mf.
have [g_ g_cvg] := approximation_sfun mD mg.
apply: (emeasurable_fun_cvg (fun n x => (f_ n x * g_ n x)%:E)) => //.
move=> n; apply/measurable_EFinP.
by apply: measurable_funM => //; exact: measurable_funTS.
move=> x Dx; under eq_fun do rewrite EFinM.
exact: cvgeM (fg _ _) (f_cvg _ _) (g_cvg _ _).
move=> A mA; wlog NA0: A mD mf mg mA / ~ (A 0) => [hwlogA|].
have [] := pselect (A 0); last exact: hwlogA.
move=> /(@setD1K _ 0)<-; rewrite preimage_setU setIUr.
apply: measurableU; last by apply: hwlogA=> //; [exact: measurableD|case=>/=].
have -> : (fun x => f x * g x) @^-1` [set 0] =
f @^-1` [set 0] `|` g @^-1` [set 0].
apply/seteqP; split=> x /= => [/eqP|[]]; rewrite /preimage/=.
by rewrite mule_eq0 => /orP[] /eqP->; [left|right].
by move=> ->; rewrite mul0e.
by move=> ->; rewrite mule0.
by rewrite setIUr; apply: measurableU; [apply: mf|apply: mg].
have-> : D `&` (fun x => f x * g x) @^-1` A =
(D `&` [set x | f x *? g x]) `&` (fun x => f x * g x) @^-1` A.
rewrite -setIA; congr (_ `&` _).
apply/seteqP; split=> x; rewrite /preimage/=; last by case.
move=> Afgx; split=> //; apply: neq0_mule_def.
by apply: contra_notT NA0; rewrite negbK => /eqP <-.
have Dfg : D `&` [set x | f x *? g x] `<=` D by apply: subIset; left.
apply: hwlogM => //.
- by apply: (measurable_funS mD) => //; do ?exact: measurableI.
- by apply: (measurable_funS mD) => //; do ?exact: measurableI.
- by rewrite -setIA setIid.
- by move=> ? [].
Qed.
Lemma measurable_funeM D (f : T -> \bar R) (k : \bar R) :
measurable_fun D f -> measurable_fun D (fun x => k * f x)%E.
Proof.
End emeasurable_fun.
#[deprecated(since="mathcomp-analysis 1.8.0", note="renamed to `emeasurable_sum`")]
Notation emeasurable_fun_sum := emeasurable_sum (only parsing).
#[deprecated(since="mathcomp-analysis 1.8.0", note="renamed to `emeasurable_fsum`")]
Notation emeasurable_fun_fsum := emeasurable_fsum (only parsing).
#[deprecated(since="mathcomp-analysis 1.8.0", note="renamed to `ge0_emeasurable_sum`")]
Notation ge0_emeasurable_fun_sum := ge0_emeasurable_sum (only parsing).
Section measurable_fun.
Context d (T : measurableType d) (R : realType).
Implicit Types (D : set T) (f g : T -> R).
Lemma measurable_sum D I s (h : I -> (T -> R)) :
(forall n, measurable_fun D (h n)) ->
measurable_fun D (fun x => \sum_(i <- s) h i x).
Proof.
rewrite (_ : _ \o _ = (fun t => \sum_(i <- s) (h i t)%:E)); last first.
by apply/funext => t/=; rewrite -sumEFin.
by apply/emeasurable_sum => i; exact/measurable_EFinP.
Qed.
End measurable_fun.
Section measurable_fun_measurable2.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (D : set T) (mD : measurable D).
Implicit Types f g : T -> \bar R.
Lemma emeasurable_fun_lt f g : measurable_fun D f -> measurable_fun D g ->
measurable (D `&` [set x | f x < g x]).
Proof.
by apply: emeasurable_fun_o_infty => //; exact: emeasurable_funB.
Qed.
Lemma emeasurable_fun_le f g : measurable_fun D f -> measurable_fun D g ->
measurable (D `&` [set x | f x <= g x]).
Proof.
by apply: emeasurable_fun_infty_c => //; exact: emeasurable_funB.
Qed.
Lemma emeasurable_fun_eq f g : measurable_fun D f -> measurable_fun D g ->
measurable (D `&` [set x | f x = g x]).
Proof.
Lemma emeasurable_fun_neq f g : measurable_fun D f -> measurable_fun D g ->
measurable (D `&` [set x | f x != g x]).
Proof.
End measurable_fun_measurable2.
Section ge0_integral_sum.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variables (I : Type) (f : I -> (T -> \bar R)).
Hypothesis mf : forall n, measurable_fun D (f n).
Hypothesis f0 : forall n x, D x -> 0 <= f n x.
Lemma ge0_integral_sum (s : seq I) :
\int[mu]_(x in D) (\sum_(k <- s) f k x) =
\sum_(k <- s) \int[mu]_(x in D) (f k x).
Proof.
by (under eq_fun do rewrite big_nil); rewrite big_nil integral0.
rewrite big_cons /= -ih -ge0_integralD//.
- by apply: eq_integral => x Dx; rewrite big_cons.
- by move=> *; exact: f0.
- by move=> *; apply: sume_ge0 => // k _; exact: f0.
- exact: emeasurable_sum.
Qed.
End ge0_integral_sum.
Section ge0_integral_fsum.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variables (I : choiceType) (f : I -> (T -> \bar R)).
Hypothesis mf : forall n, measurable_fun D (f n).
Hypothesis f0 : forall n x, D x -> 0 <= f n x.
Lemma ge0_integral_fsum (A : set I) : finite_set A ->
\int[mu]_(x in D) (\sum_(k \in A) f k x) =
\sum_(k \in A) \int[mu]_(x in D) f k x.
Proof.
by apply: eq_integral => x xD; rewrite fsbig_finite.
Qed.
End ge0_integral_fsum.
Section monotone_convergence_theorem.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Variables (D : set T) (mD : measurable D) (g' : (T -> \bar R)^nat).
Hypothesis mg' : forall n, measurable_fun D (g' n).
Hypothesis g'0 : forall n x, D x -> 0 <= g' n x.
Hypothesis nd_g' : forall x, D x -> nondecreasing_seq (g'^~ x).
Let f' := fun x => limn (g'^~ x).
Let g n := (g' n \_ D).
Let g0 n x : 0 <= g n x
Proof.
Let mg n : measurable_fun setT (g n).
Proof.
Let nd_g x : nondecreasing_seq (g^~ x).
Let f := fun x => limn (g^~ x).
Let is_cvg_g t : cvgn (g^~ t).
Proof.
Local Definition g2' n : (T -> R)^nat := approx setT (g n).
Local Definition g2 n : {nnsfun T >-> R}^nat := nnsfun_approx measurableT (mg n).
Local Definition max_g2' : (T -> R)^nat :=
fun k t => (\big[maxr/0]_(i < k) (g2' i k) t)%R.
Local Definition max_g2 : {nnsfun T >-> R}^nat :=
fun k => bigmax_nnsfun (g2^~ k) k.
Import HBNNSimple.
Let is_cvg_g2 n t : cvgn (EFin \o (g2 n ^~ t)).
Proof.
by rewrite lee_fin 2!nnsfun_approxE; exact/lefP/nd_approx.
Qed.
Let nd_max_g2 : nondecreasing_seq (max_g2 : (T -> R)^nat).
Proof.
rewrite (@le_trans _ _ (\big[maxr/0]_(i < n) g2 i n.+1 x)%R) //.
apply: le_bigmax2 => i _; apply: (nondecreasing_seqP (g2 i ^~ x)).2 => a b ab.
by rewrite !nnsfun_approxE; exact/lefP/nd_approx.
rewrite (bigmaxD1 ord_max)// le_max; apply/orP; right.
rewrite [leRHS](eq_bigl (fun i => nat_of_ord i < n)%N).
by rewrite (big_ord_narrow (leqnSn n)).
move=> i /=; rewrite neq_lt; apply/orP/idP => [[//|]|]; last by left.
by move=> /(leq_trans (ltn_ord i)); rewrite ltnn.
Qed.
Let is_cvg_max_g2 t : cvgn (EFin \o max_g2 ^~ t).
Proof.
Let max_g2_g k x : ((max_g2 k x)%:E <= g k x)%O.
Proof.
apply: (@le_trans _ _ (\big[maxe/0%:E]_(i < k) g k x)); last first.
by apply/bigmax_leP; split => //; apply: g0D.
rewrite (big_morph _ (@EFin_max R) erefl) //.
apply: le_bigmax2 => i _; rewrite nnsfun_approxE /=.
by rewrite (le_trans (le_approx _ _ _)) => //; exact/nd_g/ltnW.
Qed.
Let lim_max_g2_f t : limn (EFin \o max_g2 ^~ t) <= f t.
Let lim_g2_max_g2 t n : limn (EFin \o g2 n ^~ t) <= limn (EFin \o max_g2 ^~ t).
Proof.
near=> k; rewrite /= bigmax_nnsfunE lee_fin.
have nk : (n < k)%N by near: k; exists n.+1.
exact: (bigmax_sup (Ordinal nk)).
Unshelve. all: by end_near. Qed.
Let cvg_max_g2_f t : EFin \o max_g2 ^~ t @ \oo --> f t.
Proof.
suff : l == f t by move=> /eqP <-.
rewrite eq_le; apply/andP; split.
by rewrite /f (le_trans _ (lim_max_g2_f _)) // (cvg_lim _ g_l).
have := leey l; rewrite [in X in X -> _]le_eqVlt => /predU1P[->|loo].
by rewrite leey.
rewrite -(cvg_lim _ g_l) //= lime_le => //.
near=> n.
have := leey (g n t); rewrite le_eqVlt => /predU1P[|] fntoo.
have h := @dvg_approx _ _ _ setT _ t Logic.I fntoo.
have g2oo : limn (EFin \o g2 n ^~ t) = +oo.
apply/cvg_lim => //; apply/cvgeryP.
under [in X in X --> _]eq_fun do rewrite nnsfun_approxE.
have : {homo (approx setT (g n))^~ t : n0 m / (n0 <= m)%N >-> (n0 <= m)%R}.
exact/lef_at/nd_approx.
by move/nondecreasing_dvgn_lt => /(_ h).
have -> : limn (EFin \o max_g2 ^~ t) = +oo.
by have := lim_g2_max_g2 t n; rewrite g2oo leye_eq => /eqP.
by rewrite leey.
- have approx_g_g := @cvg_approx _ _ _ setT _ t (fun t _ => g0 n t) Logic.I fntoo.
suff : limn (EFin \o g2 n ^~ t) = g n t.
by move=> <-; exact: (le_trans _ (lim_g2_max_g2 t n)).
have /cvg_lim <- // : EFin \o (approx setT (g n)) ^~ t @ \oo --> g n t.
move/cvg_comp : approx_g_g; apply.
by rewrite -(@fineK _ (g n t))// ge0_fin_numE// g0.
rewrite (_ : _ \o _ = EFin \o approx setT (g n) ^~ t)// funeqE => m.
by rewrite [in RHS]/= -nnsfun_approxE.
Unshelve. all: by end_near. Qed.
Lemma monotone_convergence :
\int[mu]_(x in D) (f' x) = limn (fun n => \int[mu]_(x in D) (g' n x)).
Proof.
under [in RHS]eq_fun do rewrite integral_mkcond -/(g _).
have -> : f' \_ D = f.
apply/funext => x; rewrite /f /f' /g /patch /=; case: ifPn => //=.
by rewrite lim_cst.
apply/eqP; rewrite eq_le; apply/andP; split; last first.
have nd_int_g : nondecreasing_seq (fun n => \int[mu]_x g n x).
move=> m n mn; apply: ge0_le_integral => //.
by move=> *; exact: nd_g.
have ub n : \int[mu]_x g n x <= \int[mu]_x f x.
apply: ge0_le_integral => //.
- move=> x _; apply: lime_ge => //.
by apply: nearW => k; exact/g0.
- apply: emeasurable_fun_cvg mg _ => x _.
exact: ereal_nondecreasing_is_cvgn.
- move=> x Dx; apply: lime_ge => //.
near=> m; have nm : (n <= m)%N by near: m; exists n.
exact/nd_g.
by apply: lime_le => //; [exact:ereal_nondecreasing_is_cvgn|exact:nearW].
rewrite (@nd_ge0_integral_lim _ _ _ mu _ max_g2) //; last 2 first.
- move=> t; apply: lime_ge => //.
by apply: nearW => n; exact: g0.
- by move=> t m n mn; exact/lefP/nd_max_g2.
apply: lee_lim.
- by apply: is_cvg_sintegral => // t m n mn; exact/lefP/nd_max_g2.
- apply: ereal_nondecreasing_is_cvgn => // n m nm; apply: ge0_le_integral => //.
by move=> *; exact/nd_g.
- apply: nearW => n; rewrite ge0_integralTE//.
by apply: ereal_sup_ubound; exists (max_g2 n) => // t; exact: max_g2_g.
Unshelve. all: by end_near. Qed.
Lemma cvg_monotone_convergence :
\int[mu]_(x in D) g' n x @[n \oo] --> \int[mu]_(x in D) f' x.
Proof.
by apply: ge0_le_integral => // t Dt; [exact: g'0|exact: g'0|exact: nd_g'].
Qed.
End monotone_convergence_theorem.
Section integral_nneseries.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variable f : (T -> \bar R)^nat.
Hypothesis mf : forall n, measurable_fun D (f n).
Hypothesis f0 : forall n x, D x -> 0 <= f n x.
Lemma integral_nneseries : \int[mu]_(x in D) (\sum_(n <oo) f n x) =
\sum_(n <oo) (\int[mu]_(x in D) (f n x)).
Proof.
- by rewrite -lim_mkord; under eq_fun do rewrite ge0_integral_sum// big_mkord.
- by move=> n; exact: emeasurable_sum.
- by move=> n x Dx; apply: sume_ge0 => m _; exact: f0.
- by move=> x Dx m n mn; apply: lee_sum_nneg_natr => // k _ _; exact: f0.
Qed.
End integral_nneseries.
Generalization of ge0_integralZl_EFin
to a constant potentially
Local Open Scope ereal_scope.
Context d {T : measurableType d} {R : realType}.
Variable mu : {measure set T -> \bar R}.
Variables (D : set T) (mD : measurable D) (f : T -> \bar R).
Hypothesis mf : measurable_fun D f.
Implicit Type k : \bar R.
Lemma ge0_integralZl k : (forall x, D x -> 0 <= f x) ->
0 <= k -> \int[mu]_(x in D) (k * f x) = k * \int[mu]_(x in D) (f x).
Proof.
pose g : (T -> \bar R)^nat := fun n x => n%:R%:E * f x.
have mg n : measurable_fun D (g n) by apply: measurable_funeM.
have g0 n x : D x -> 0 <= g n x.
by move=> Dx; apply: mule_ge0; [rewrite lee_fin|exact:f0].
have nd_g x : D x -> nondecreasing_seq (g ^~ x).
by move=> Dx m n mn; rewrite lee_wpmul2r ?f0// lee_fin ler_nat.
pose h := fun x => limn (g^~ x).
transitivity (\int[mu]_(x in D) limn (g^~ x)).
apply: eq_integral => x Dx; apply/esym/cvg_lim => //.
have [fx0|fx0|fx0] := ltgtP 0 (f x).
- rewrite gt0_mulye//; apply/cvgeyPgey; near=> M.
have M0 : (0 <= M)%R by [].
rewrite /g; case: (f x) fx0 => [r r0|_|//]; last first.
by exists 1%N => // m /= m0; rewrite mulry gtr0_sg// ?ltr0n// mul1e leey.
near=> n; rewrite lee_fin -ler_pdivrMr//.
near: n; exists `|ceil (M / r)|%N => // m /=.
rewrite -(ler_nat R); apply: le_trans.
rewrite natr_absz ger0_norm ?ceil_ge//.
by rewrite -(ceil0 R) ceil_le// divr_ge0// ltW.
- rewrite lt0_mulye//; apply/cvgeNyPleNy; near=> M;
have M0 : (M <= 0)%R by [].
rewrite /g; case: (f x) fx0 => [r r0|//|_]; last first.
by exists 1%N => // m /= m0; rewrite mulrNy gtr0_sg// ?ltr0n// mul1e leNye.
near=> n; rewrite lee_fin -ler_ndivrMr//.
near: n; exists `|ceil (M / r)|%N => // m /=.
rewrite -(ler_nat R); apply: le_trans.
by rewrite pmulrn abszE ceil_ge_int ler_norm.
- rewrite -fx0 mule0 /g -fx0.
under eq_fun do rewrite mule0/=. (*TODO: notation broken*)
exact: cvg_cst.
rewrite (monotone_convergence mu mD mg g0 nd_g).
under eq_fun do rewrite /g ge0_integralZl_EFin//.
have : 0 <= \int[mu]_(x in D) f x by exact: integral_ge0.
rewrite le_eqVlt => /predU1P[<-|if_gt0].
by rewrite mule0; under eq_fun do rewrite mule0; rewrite lim_cst.
rewrite gt0_mulye//; apply/cvg_lim => //; apply/cvgeyPgey; near=> M.
have M0 : (0 <= M)%R by [].
near=> n; have [ifoo|] := ltP (\int[mu]_(x in D) f x) +oo; last first.
rewrite leye_eq => /eqP ->; rewrite mulry muleC gt0_mulye ?leey//.
by near: n; exists 1%N => // n /= n0; rewrite gtr0_sg// ?lte_fin// ltr0n.
rewrite -(@fineK _ (\int[mu]_(x in D) f x)); last first.
by rewrite fin_numElt ifoo (le_lt_trans _ if_gt0).
rewrite -lee_pdivrMr//; last first.
by move: if_gt0 ifoo; case: (\int[mu]_(x in D) f x).
near: n.
exists `|ceil (M * (fine (\int[mu]_(x in D) f x))^-1)|%N => //.
move=> n /=; rewrite -(@ler_nat R) -lee_fin; apply: le_trans.
rewrite lee_fin natr_absz ger0_norm ?ceil_ge//.
by rewrite -(ceil0 R) ceil_le// divr_ge0//; exact/fine_ge0/integral_ge0.
Unshelve. all: by end_near. Qed.
Lemma ge0_integralZr k : (forall x, D x -> 0 <= f x) ->
0 <= k -> \int[mu]_(x in D) (f x * k) = \int[mu]_(x in D) (f x) * k.
Proof.
End ge0_integralZ.
#[deprecated(since="mathcomp-analysis 0.6.4", note="use `ge0_integralZl` instead")]
Notation ge0_integralM := ge0_integralZl (only parsing).
Section integral_indic.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Implicit Type A : set T.
Import HBNNSimple.
Lemma integral_indic A : measurable A ->
\int[mu]_(x in D) (\1_A x)%:E = mu (A `&` D).
Proof.
by rewrite restrict_indic sintegral_indic//; exact: measurableI.
Qed.
End integral_indic.
Section integralZl_indic.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (m : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Lemma integralZl_indic (f : R -> set T) (k : R) :
((k < 0)%R -> f k = set0) -> measurable (f k) ->
\int[m]_(x in D) (k * \1_(f k) x)%:E =
k%:E * \int[m]_(x in D) (\1_(f k) x)%:E.
Proof.
rewrite integral0_eq//; last by move=> x _; rewrite fk0// indic0 mulr0.
by rewrite integral0_eq ?mule0// => x _; rewrite fk0// indic0.
under eq_integral do rewrite EFinM.
rewrite ge0_integralZl//; first exact/measurable_EFinP.
by move=> y _; rewrite lee_fin.
Qed.
Import HBNNSimple.
Lemma integralZl_indic_nnsfun (f : {nnsfun T >-> R}) (k : R) :
\int[m]_(x in D) (k * \1_(f @^-1` [set k]) x)%:E =
k%:E * \int[m]_(x in D) (\1_(f @^-1` [set k]) x)%:E.
Proof.
End integralZl_indic.
Arguments integralZl_indic {d T R m D} mD f.
#[deprecated(since="mathcomp-analysis 0.6.4", note="use `integralZl_indic` instead")]
Notation integralM_indic := integralZl_indic (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.4", note="use `integralZl_indic_nnsfun` instead")]
Notation integralM_indic_nnsfun := integralZl_indic_nnsfun (only parsing).
Section integral_mscale.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (m : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variables (k : {nonneg R}) (f : T -> \bar R).
Let integral_mscale_indic E : measurable E ->
\int[mscale k m]_(x in D) (\1_E x)%:E =
k%:num%:E * \int[m]_(x in D) (\1_E x)%:E.
Proof.
Import HBNNSimple.
Let integral_mscale_nnsfun (h : {nnsfun T >-> R}) :
\int[mscale k m]_(x in D) (h x)%:E = k%:num%:E * \int[m]_(x in D) (h x)%:E.
Proof.
rewrite [LHS]ge0_integral_fsum//; last 2 first.
- by move=> r; exact/measurable_EFinP/measurableT_comp.
- by move=> n x _; rewrite EFinM nnfun_muleindic_ge0.
rewrite -[RHS]ge0_integralZl//; last 2 first.
- by apply: measurableT_comp => //; exact: measurable_funTS.
- by move=> x _; rewrite lee_fin.
under [RHS]eq_integral.
move=> x xD; rewrite fimfunE -fsumEFin// ge0_mule_fsumr; last first.
by move=> r; rewrite EFinM nnfun_muleindic_ge0.
over.
rewrite [RHS]ge0_integral_fsum//; last 2 first.
- by move=> r; apply/measurable_EFinP; do 2 apply/measurableT_comp => //.
- by move=> n x _; rewrite EFinM mule_ge0// nnfun_muleindic_ge0.
apply: eq_fsbigr => r _; rewrite ge0_integralZl//.
- by rewrite !integralZl_indic_nnsfun//= integral_mscale_indic// muleCA.
- exact/measurable_EFinP/measurableT_comp.
- by move=> t _; rewrite nnfun_muleindic_ge0.
Qed.
Lemma ge0_integral_mscale (mf : measurable_fun D f) :
(forall x, D x -> 0 <= f x) ->
\int[mscale k m]_(x in D) f x = k%:num%:E * \int[m]_(x in D) f x.
Proof.
transitivity (limn (fun n => \int[mscale k m]_(x in D) (f_ n x)%:E)).
rewrite -monotone_convergence//=.
- by apply: eq_integral => x /[!inE] xD; apply/esym/cvg_lim => //=; exact: cvg_nnsfun_approx.
- by move=> n; apply: measurableT_comp => //; exact: measurable_funTS.
- by move=> n x _; rewrite lee_fin.
- by move=> x _ a b ab; rewrite lee_fin//; exact/lefP/nd_nnsfun_approx.
rewrite (_ : \int[m]_(x in D) _ =
limn (fun n => \int[m]_(x in D) (f_ n x)%:E)); last first.
rewrite -monotone_convergence//=.
- by apply: eq_integral => x /[!inE] xD; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
- by move=> n; exact/measurable_EFinP/measurable_funTS.
- by move=> n x _; rewrite lee_fin.
- by move=> x _ a b ab; rewrite lee_fin//; exact/lefP/nd_nnsfun_approx.
rewrite -limeMl//.
by congr (limn _); apply/funext => n /=; rewrite integral_mscale_nnsfun.
apply/ereal_nondecreasing_is_cvgn => a b ab; apply: ge0_le_integral => //.
- by move=> x _; rewrite lee_fin.
- exact/measurable_EFinP/measurable_funTS.
- by move=> x _; rewrite lee_fin.
- exact/measurable_EFinP/measurable_funTS.
- by move=> x _; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
Qed.
End integral_mscale.
Section fatou.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variable (f : (T -> \bar R)^nat).
Hypothesis mf : forall n, measurable_fun D (f n).
Hypothesis f0 : forall n x, D x -> 0 <= f n x.
Lemma fatou : \int[mu]_(x in D) limn_einf (f^~ x) <=
limn_einf (fun n => \int[mu]_(x in D) f n x).
Proof.
have mg := measurable_fun_einfs mf.
have g0 n x : D x -> 0 <= g n x.
by move=> Dx; apply: lb_ereal_inf => _ [m /= nm <-]; exact: f0.
under eq_integral do rewrite limn_einf_lim.
rewrite limn_einf_lim monotone_convergence //; last first.
move=> x Dx m n mn /=; apply: le_ereal_inf => _ /= [p /= np <-].
by exists p => //=; rewrite (leq_trans mn).
apply: lee_lim.
- apply/cvg_ex; eexists; apply/ereal_nondecreasing_cvgn => a b ab.
apply: ge0_le_integral => //; [exact: g0| exact: mg| exact: g0| exact: mg|].
move=> x Dx; apply: le_ereal_inf => _ [n /= bn <-].
by exists n => //=; rewrite (leq_trans ab).
- apply/cvg_ex; eexists; apply/ereal_nondecreasing_cvgn => a b ab.
apply: le_ereal_inf => // _ [n /= bn <-].
by exists n => //=; rewrite (leq_trans ab).
- apply: nearW => m.
have : forall n p, (p >= n)%N ->
\int[mu]_(x in D) g n x <= einfs (fun k => \int[mu]_(x in D) f k x) n.
move=> n p np; apply: lb_ereal_inf => /= _ [k /= nk <-].
apply: ge0_le_integral => //; [exact: g0|exact: mg|exact: f0|].
by move=> x Dx; apply: ereal_inf_lbound; exists k.
exact.
Qed.
End fatou.
Section integralN.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Lemma integralN D (f : T -> \bar R) :
\int[mu]_(x in D) f^\+ x +? (- \int[mu]_(x in D) f^\- x) ->
\int[mu]_(x in D) - f x = - \int[mu]_(x in D) f x.
Proof.
rewrite integralE// [in RHS]integralE// fin_num_oppeD ?fin_numN// oppeK addeC.
by rewrite funenegN.
rewrite fin_numE negb_and 2!negbK => /orP[nfoo|/eqP nfoo].
exfalso; move/negP : nfoo; apply; rewrite -leeNy_eq; apply/negP.
by rewrite -ltNge (lt_le_trans _ (integral_ge0 _ _)).
rewrite nfoo adde_defEninfty -leye_eq -ltNge ltey_eq => /orP[f_fin|/eqP pfoo].
rewrite integralE [in RHS]integralE nfoo [in RHS]addeC/= funenegN.
by rewrite addye// eqe_oppLR/= (andP (eqbLR (fin_numE _) f_fin)).2.
by rewrite integralE// [in RHS]integralE// funeposN funenegN nfoo pfoo.
Qed.
Lemma integral_ge0N (D : set T) (f : T -> \bar R) :
(forall x, D x -> 0 <= f x) ->
\int[mu]_(x in D) - f x = - \int[mu]_(x in D) f x.
Proof.
by rewrite oppe0 fin_num_adde_defl.
Qed.
End integralN.
Section integral_cst.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Variables (f : T -> \bar R) (D : set T) (mD : measurable D).
Lemma sintegral_EFin_cst (x : {nonneg R}) :
sintegral mu (cst x%:num \_ D) = x%:num%:E * mu D.
Proof.
- have [->|x0] := eqVneq x%:num 0%R; first by rewrite setUid fsbig_set1 !mul0e.
rewrite fsbigU0//=; last by move=> y [->]/esym; apply/eqP.
rewrite !fsbig_set1 mul0e add0e preimage_restrict//.
by rewrite ifN ?set0U ?setIidl//= notin_setE => /esym; exact/eqP.
- by move=> y [t _ <-] /=; rewrite /patch; case: ifPn; [right|left].
- by move=> y [_ /=/preimage10->]; rewrite measure0 mule0.
Qed.
Import HBNNSimple.
Local Lemma integral_cstr r : \int[mu]_(x in D) r%:E = r%:E * mu D.
Proof.
move=> h; have [|r0] := leP 0%R r; first exact: h.
rewrite -[in RHS](opprK r) EFinN mulNe -h ?oppr_ge0; last exact: ltW.
rewrite -integral_ge0N//; last by move=> t ?; rewrite /= lee_fin oppr_ge0 ltW.
by under [RHS]eq_integral do rewrite /= opprK.
rewrite (eq_integral (EFin \o cst_nnsfun T (NngNum r0)))//.
by rewrite integral_nnsfun// sintegral_EFin_cst.
Qed.
Local Lemma integral_csty : mu D != 0 -> \int[mu]_(x in D) (cst +oo) x = +oo.
Proof.
have <- : (fun t => limn (g^~ t)) = cst +oo.
rewrite funeqE => t; apply/cvg_lim => //=.
apply/cvgeryP/cvgryPge => M; exists `|ceil M|%N => //= m.
by rewrite /= pmulrn ceil_ge_int// -lez_nat abszE; apply/le_trans/ler_norm.
rewrite monotone_convergence //.
- under [in LHS]eq_fun do rewrite integral_cstr.
apply/cvg_lim => //; apply/cvgeyPge => M.
have [muDoo|muDoo] := ltP (mu D) +oo; last first.
exists 1%N => // m /= m0; move: muDoo; rewrite leye_eq => /eqP ->.
by rewrite mulry gtr0_sg ?mul1e ?leey// ltr0n.
exists `|ceil (M / fine (mu D))|%N => // m /=.
rewrite -lez_nat abszE => MDm; rewrite -(@fineK _ (mu D)) ?ge0_fin_numE//.
rewrite -lee_pdivrMr; last by rewrite fine_gt0// lt0e muD0 measure_ge0.
by rewrite lee_fin pmulrn ceil_ge_int// (le_trans _ MDm)// ler_norm.
- by move=> n; exact: measurable_cst.
- by move=> n x Dx; rewrite lee_fin.
- by move=> t Dt n m nm; rewrite /g lee_fin ler_nat.
Qed.
Local Lemma integral_cstNy : mu D != 0 -> \int[mu]_(x in D) (cst -oo) x = -oo.
Proof.
End integral_cst.
Section ge0_transfer.
Local Open Scope ereal_scope.
Context d1 d2 (X : measurableType d1) (Y : measurableType d2) (R : realType).
Variables (phi : X -> Y) (mphi : measurable_fun setT phi).
Variables (mu : {measure set X -> \bar R}).
Import HBNNSimple.
Lemma ge0_integral_pushforward (f : Y -> \bar R) :
measurable_fun setT f -> (forall y, 0 <= f y) ->
\int[pushforward mu mphi]_y f y = \int[mu]_x (f \o phi) x.
Proof.
pose f_ := nnsfun_approx measurableT mf.
transitivity (limn (fun n => \int[pushforward mu mphi]_x (f_ n x)%:E)).
rewrite -monotone_convergence//.
- by apply: eq_integral => y _; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
- by move=> n; exact/measurable_EFinP.
- by move=> n y _; rewrite lee_fin.
- by move=> y _ m n mn; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
rewrite (_ : (fun _ => _) = (fun n => \int[mu]_x (EFin \o f_ n \o phi) x)).
rewrite -monotone_convergence//; last 3 first.
- by move=> n /=; apply: measurableT_comp => //; exact: measurableT_comp.
- by move=> n x _ /=; rewrite lee_fin.
- by move=> x _ m n mn; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
by apply: eq_integral => x _ /=; apply/cvg_lim => //; exact: cvg_nnsfun_approx.
apply/funext => n.
have mfnphi r : measurable (f_ n @^-1` [set r] \o phi).
rewrite -[_ \o _]/(phi @^-1` (f_ n @^-1` [set r])) -(setTI (_ @^-1` _)).
exact/mphi.
transitivity (\sum_(k \in range (f_ n))
\int[mu]_x (k * \1_((f_ n @^-1` [set k]) \o phi) x)%:E).
under eq_integral do rewrite fimfunE -fsumEFin//.
rewrite ge0_integral_fsum//; last 2 first.
- by move=> y; apply/measurable_EFinP; exact: measurable_funM.
- by move=> y x _; rewrite nnfun_muleindic_ge0.
apply: eq_fsbigr => r _; rewrite integralZl_indic_nnsfun// integral_indic//=.
rewrite (integralZl_indic _ (fun r => f_ n @^-1` [set r] \o phi))//.
by congr (_ * _); rewrite [RHS](@integral_indic).
by move=> r0; rewrite preimage_nnfun0.
rewrite -ge0_integral_fsum//; last 2 first.
- by move=> r; apply/measurable_EFinP; exact: measurable_funM.
- by move=> r x _; rewrite nnfun_muleindic_ge0.
by apply: eq_integral => x _; rewrite fsumEFin// -fimfunE.
Qed.
End ge0_transfer.
Section integral_dirac.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (a : T) (R : realType).
Variables (D : set T) (mD : measurable D).
Import HBNNSimple.
Let ge0_integral_dirac (f : T -> \bar R) (mf : measurable_fun D f)
(f0 : forall x, D x -> 0 <= f x) :
D a -> \int[\d_a]_(x in D) (f x) = f a.
Proof.
transitivity (limn (fun n => \int[\d_ a]_(x in D) (f_ n x)%:E)).
rewrite -monotone_convergence//.
- by apply: eq_integral => x /set_mem Dx; apply/esym/cvg_lim => //; apply: cvg_nnsfun_approx.
- by move=> n; apply/measurable_EFinP; exact/measurable_funTS.
- by move=> *; rewrite lee_fin.
- by move=> x _ m n mn; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
rewrite (_ : (fun _ => _) = (fun n => (f_ n a)%:E)).
by apply/cvg_lim => //; exact: cvg_nnsfun_approx.
apply/funext => n.
under eq_integral do rewrite fimfunE// -fsumEFin//.
rewrite ge0_integral_fsum//.
- under eq_fsbigr do rewrite integralZl_indic_nnsfun//.
rewrite /= (fsbigD1 (f_ n a))//=; last by exists a.
rewrite integral_indic//= diracE mem_set// mule1.
rewrite fsbig1 ?adde0// => r /= [_ rfna].
rewrite integral_indic//= diracE memNset ?mule0//=.
by apply/not_andP; left; exact/nesym.
- by move=> r; exact/measurable_EFinP/measurableT_comp.
- by move=> r x _; rewrite nnfun_muleindic_ge0.
Qed.
Lemma integral_dirac (f : T -> \bar R) (mf : measurable_fun D f) :
\int[\d_ a]_(x in D) f x = \d_a D * f a.
Proof.
rewrite integralE ge0_integral_dirac//; last exact/measurable_funepos.
rewrite ge0_integral_dirac//; last exact/measurable_funeneg.
by rewrite [in RHS](funeposneg f) diracE mem_set// mul1e.
rewrite diracE (negbTE aD) mul0e -(integral_measure_zero D f)//.
apply: eq_measure_integral => //= S mS DS; rewrite /dirac indicE memNset//.
by move=> /DS/mem_set; exact/negP.
Qed.
End integral_dirac.
Section integral_measure_sum_nnsfun.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (m_ : {measure set T -> \bar R}^nat) (N : nat).
Let m := msum m_ N.
Let integral_measure_sum_indic (E D : set T) (mE : measurable E)
(mD : measurable D) :
\int[m]_(x in E) (\1_D x)%:E = \sum_(n < N) \int[m_ n]_(x in E) (\1_D x)%:E.
Proof.
Import HBNNSimple.
Let integralT_measure_sum (f : {nnsfun T >-> R}) :
\int[m]_x (f x)%:E = \sum_(n < N) \int[m_ n]_x (f x)%:E.
Proof.
rewrite ge0_integral_fsum//; last 2 first.
- by move=> r /=; apply: measurableT_comp => //; exact: measurableT_comp.
- by move=> r t _; rewrite EFinM nnfun_muleindic_ge0.
transitivity (\sum_(i \in range f)
(\sum_(n < N) i%:E * \int[m_ n]_x (\1_(f @^-1` [set i]) x)%:E)).
apply: eq_fsbigr => r _.
rewrite integralZl_indic_nnsfun// integral_measure_sum_indic//.
by rewrite ge0_sume_distrr// => n _; apply: integral_ge0 => t _; rewrite lee_fin.
rewrite fsbig_finite//= exchange_big/=; apply: eq_bigr => i _.
rewrite integralT_nnsfun sintegralE fsbig_finite//=; apply: eq_bigr => r _.
by congr (_ * _); rewrite integral_indic// setIT.
Qed.
Lemma integral_measure_sum_nnsfun (D : set T) (mD : measurable D)
(f : {nnsfun T >-> R}) :
\int[m]_(x in D) (f x)%:E = \sum_(n < N) \int[m_ n]_(x in D) (f x)%:E.
Proof.
transitivity (\int[m]_x (proj_nnsfun f mD x)%:E).
by apply: eq_integral => t _ /=; rewrite /patch mindicE;
case: ifPn => // tD; rewrite ?mulr1 ?mulr0.
rewrite integralT_measure_sum; apply: eq_bigr => i _.
rewrite [RHS]integral_mkcond; apply: eq_integral => t _.
rewrite /= /patch /mindic indicE.
by case: (boolP (t \in D)) => tD; rewrite ?mulr1 ?mulr0.
Qed.
End integral_measure_sum_nnsfun.
Section integral_measure_add_nnsfun.
Import HBNNSimple.
Lemma integral_measure_add_nnsfun d (T : measurableType d) (R : realType)
(m1 m2 : {measure set T -> \bar R}) (D : set T) (mD : measurable D)
(f : {nnsfun T >-> R}) :
(\int[measure_add m1 m2]_(x in D) (f x)%:E =
\int[m1]_(x in D) (f x)%:E + \int[m2]_(x in D) (f x)%:E)%E.
Proof.
End integral_measure_add_nnsfun.
Section integral_mfun_measure_sum.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable m_ : {measure set T -> \bar R}^nat.
Import HBNNSimple.
Lemma ge0_integral_measure_sum (D : set T) (mD : measurable D)
(f : T -> \bar R) :
(forall x, D x -> 0 <= f x) -> measurable_fun D f -> forall N,
\int[msum m_ N]_(x in D) f x = \sum_(n < N) \int[m_ n]_(x in D) f x.
Proof.
elim => [|N ih]; first by rewrite big_ord0 msum_mzero integral_measure_zero.
rewrite big_ord_recr/= -ih.
rewrite (_ : _ m_ N.+1 = measure_add (msum m_ N) (m_ N)); last first.
by apply/funext => A; rewrite measure_addE /msum/= big_ord_recr.
have mf_ n : measurable_fun D (fun x => (f_ n x)%:E).
exact/measurable_funTS/measurable_EFinP.
have f_ge0 n x : D x -> 0 <= (f_ n x)%:E by move=> Dx; rewrite lee_fin.
have cvg_f_ (m : {measure set T -> \bar R}) :
cvgn (fun x => \int[m]_(x0 in D) (f_ x x0)%:E).
apply: ereal_nondecreasing_is_cvgn => a b ab.
apply: ge0_le_integral => //; [exact: f_ge0|exact: f_ge0|].
by move=> t Dt; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
transitivity (limn (fun n =>
\int[measure_add (msum m_ N) (m_ N)]_(x in D) (f_ n x)%:E)).
rewrite -monotone_convergence//; last first.
by move=> t Dt a b ab; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
by apply: eq_integral => t /[!inE] Dt; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
transitivity (limn (fun n =>
\int[msum m_ N]_(x in D) (f_ n x)%:E + \int[m_ N]_(x in D) (f_ n x)%:E)).
by congr (limn _); apply/funext => n; by rewrite integral_measure_add_nnsfun.
rewrite limeD//; do?[exact: cvg_f_]; last first.
by apply: ge0_adde_def; rewrite inE; apply: lime_ge => //; do?[exact: cvg_f_];
apply: nearW => n; apply: integral_ge0 => //; exact: f_ge0.
by congr (_ + _); (rewrite -monotone_convergence//; [
apply: eq_integral => t /[!inE] Dt; apply/cvg_lim => //; exact: cvg_nnsfun_approx |
move=> t Dt a b ab; rewrite lee_fin; exact/lefP/nd_nnsfun_approx]).
Qed.
End integral_mfun_measure_sum.
Lemma ge0_integral_measure_add d (T : measurableType d) (R : realType)
(m1 m2 : {measure set T -> \bar R}) (D : set T) (mD : measurable D)
(f : T -> \bar R) :
(forall x, D x -> 0 <= f x)%E -> measurable_fun D f ->
(\int[measure_add m1 m2]_(x in D) f x =
\int[m1]_(x in D) f x + \int[m2]_(x in D) f x)%E.
Proof.
by rewrite big_ord0 adde0.
Qed.
Section integral_measure_series.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable m_ : {measure set T -> \bar R}^nat.
Let m := mseries m_ O.
Let integral_measure_series_indic (D : set T) (mD : measurable D) :
\int[m]_x (\1_D x)%:E = \sum_(n <oo) \int[m_ n]_x (\1_D x)%:E.
Proof.
by rewrite integral_indic// setIT.
Qed.
Import HBNNSimple.
Lemma integral_measure_series_nnsfun (D : set T) (mD : measurable D)
(f : {nnsfun T >-> R}) :
\int[m]_x (f x)%:E = \sum_(n <oo) \int[m_ n]_x (f x)%:E.
Proof.
rewrite ge0_integral_fsum//; last 2 first.
- by move=> r /=; apply: measurableT_comp => //; exact: measurableT_comp.
- by move=> r t _; rewrite EFinM nnfun_muleindic_ge0.
transitivity (\sum_(i \in range f)
(\sum_(n <oo) i%:E * \int[m_ n]_x (\1_(f @^-1` [set i]) x)%:E)).
apply: eq_fsbigr => r _.
rewrite integralZl_indic_nnsfun// integral_measure_series_indic// nneseriesZl//.
by move=> n _; apply: integral_ge0 => t _; rewrite lee_fin.
rewrite fsbig_finite//= -nneseries_sum; last first.
move=> r j _.
have [r0|r0] := leP 0%R r.
by rewrite mule_ge0//; apply: integral_ge0 => // t _; rewrite lee_fin.
rewrite integral0_eq ?mule0// => x _.
by rewrite preimage_nnfun0// indicE in_set0.
apply: eq_eseriesr => k _.
rewrite integralT_nnsfun sintegralE fsbig_finite//=; apply: eq_bigr => r _.
by congr (_ * _); rewrite integral_indic// setIT.
Qed.
End integral_measure_series.
Section ge0_integral_measure_series.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable m_ : {measure set T -> \bar R}^nat.
Let m := mseries m_ O.
Import HBNNSimple.
Lemma ge0_integral_measure_series (D : set T) (mD : measurable D) (f : T -> \bar R) :
(forall t, D t -> 0 <= f t) ->
measurable_fun D f ->
\int[m]_(x in D) f x = \sum_(n <oo) \int[m_ n]_(x in D) f x.
Proof.
apply/eqP; rewrite eq_le; apply/andP; split; last first.
suff : forall n, \sum_(k < n) \int[m_ k]_(x in D) f x <= \int[m]_(x in D) f x.
move=> n; apply: lime_le => //.
by apply: is_cvg_ereal_nneg_natsum => k _; exact: integral_ge0.
by apply: nearW => x; rewrite big_mkord.
move=> n.
rewrite [X in _ <= X](_ : _ = \sum_(k < n) \int[m_ k]_(x in D) f x +
\int[mseries m_ n]_(x in D) f x); last first.
transitivity (\int[measure_add (msum m_ n) (mseries m_ n)]_(x in D) f x).
congr (\int[_]_(_ in D) _); apply/funext => A.
rewrite measure_addE/= /msum -(big_mkord xpredT (m_ ^~ A)).
exact: nneseries_split.
by rewrite ge0_integral_measure_add// -ge0_integral_measure_sum.
by apply: leeDl; exact: integral_ge0.
rewrite ge0_integralE//=; apply: ub_ereal_sup => /= _ [g /= gf] <-.
rewrite -integralT_nnsfun (integral_measure_series_nnsfun _ mD).
apply: lee_nneseries => n _.
by apply: integral_ge0 => // x _; rewrite lee_fin.
rewrite [leRHS]integral_mkcond; apply: ge0_le_integral => //.
- by move=> x _; rewrite lee_fin.
- exact/measurable_EFinP.
- by move=> x _; rewrite erestrict_ge0.
- exact/(measurable_restrictT _ mD).
Qed.
End ge0_integral_measure_series.
Section subset_integral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Lemma ge0_integral_setU (A B : set T) (mA : measurable A) (mB : measurable B)
(f : T -> \bar R) : measurable_fun (A `|` B) f ->
(forall x, (A `|` B) x -> 0 <= f x) -> [disjoint A & B] ->
\int[mu]_(x in A `|` B) f x = \int[mu]_(x in A) f x + \int[mu]_(x in B) f x.
Proof.
transitivity (\int[mu]_(x in A `|` B) ((f \_ A) x + (f \_ B) x)).
apply: eq_integral => x; rewrite inE => -[xA|xB].
rewrite /patch mem_set// ifF ?adde0//; apply/negbTE/negP; rewrite inE => xB.
by move: AB; rewrite disj_set2E => /eqP; apply/eqP/set0P; exists x.
rewrite /patch addeC mem_set// ifF ?adde0//; apply/negbTE/negP; rewrite inE => xA.
by move: AB; rewrite disj_set2E => /eqP; apply/eqP/set0P; exists x.
rewrite ge0_integralD//; last 5 first.
- exact: measurableU.
- by move=> x _; apply: erestrict_ge0 => y Ay; apply: f0; left.
- apply/measurable_restrict => //; first exact: measurableU.
apply: measurable_funS mf; [exact: measurableU|exact: subIsetl].
- by move=> x _; apply: erestrict_ge0 => y By; apply: f0; right.
- apply/measurable_restrict => //; first exact: measurableU.
apply: measurable_funS mf; [exact: measurableU|exact: subIsetl].
by rewrite -integral_mkcondl setIC setUK -integral_mkcondl setKU.
Qed.
Lemma ge0_subset_integral (A B : set T) (mA : measurable A) (mB : measurable B)
(f : T -> \bar R) : measurable_fun B f -> (forall x, B x -> 0 <= f x) ->
A `<=` B -> \int[mu]_(x in A) f x <= \int[mu]_(x in B) f x.
Proof.
- exact: measurableD.
- by rewrite setDUK.
- by move=> x; rewrite setDUK//; exact: f0.
- by rewrite disj_set2E setDIK.
by apply: leeDl; apply: integral_ge0 => x [Bx _]; exact: f0.
Qed.
Lemma ge0_integral_bigsetU (I : eqType) (F : I -> set T) (f : T -> \bar R)
(s : seq I) : (forall n, measurable (F n)) -> uniq s ->
trivIset [set` s] F ->
let D := \big[setU/set0]_(i <- s) F i in
measurable_fun D f ->
(forall x, D x -> 0 <= f x) ->
\int[mu]_(x in D) f x = \sum_(i <- s) \int[mu]_(x in F i) f x.
Proof.
by rewrite /D 2!big_nil integral_set0.
rewrite /D big_cons ge0_integral_setU//.
- rewrite big_cons ih//.
+ by move: us => /= /andP[].
+ by apply: sub_trivIset tF => /= i /= it; rewrite inE it orbT.
+ apply: measurable_funS mf => //; first exact: bigsetU_measurable.
by rewrite /D big_cons; exact: subsetUr.
+ by move=> x UFx; apply: f0; rewrite /D big_cons; right.
- exact: bigsetU_measurable.
- by move: mf; rewrite /D big_cons.
- by move: f0; rewrite /D big_cons.
- apply/eqP; rewrite big_distrr/= big_seq big1// => i it.
move/trivIsetP : tF; apply => //=; rewrite ?mem_head//.
+ by rewrite inE it orbT.
+ by apply/eqP => hi; move: us => /=; rewrite hi it.
Qed.
Lemma le_integral_abse (D : set T) (mD : measurable D) (g : T -> \bar R) a :
measurable_fun D g -> (0 < a)%R ->
a%:E * mu (D `&` [set x | `|g x| >= a%:E]) <= \int[mu]_(x in D) `|g x|.
Proof.
by apply: emeasurable_fun_c_infty => //; exact: measurableT_comp.
apply: (@le_trans _ _ (\int[mu]_(x in D `&` [set x | `|g x| >= a%:E]) `|g x|)).
rewrite -integral_cstr//; apply: ge0_le_integral => //.
- by move=> x _ /=; exact/ltW.
- by apply: measurableT_comp => //; exact: measurable_funS mg.
- by move=> x /= [].
by apply: ge0_subset_integral => //; exact: measurableT_comp.
Qed.
End subset_integral.
#[deprecated(since="mathcomp-analysis 1.0.1", note="use `ge0_integral_setU` instead")]
Notation integral_setU := ge0_integral_setU (only parsing).
Local Open Scope ereal_scope.
Lemma integral_setU_EFin d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) (A B : set T) (f : T -> R) :
measurable A -> measurable B ->
measurable_fun (A `|` B) f ->
[disjoint A & B] ->
\int[mu]_(x in (A `|` B)) (f x)%:E = \int[mu]_(x in A) (f x)%:E +
\int[mu]_(x in B) (f x)%:E.
Proof.
rewrite integralE/=.
rewrite ge0_integral_setU//; last exact/measurable_funepos/measurable_EFinP.
rewrite ge0_integral_setU//; last exact/measurable_funeneg/measurable_EFinP.
rewrite [X in _ = X + _]integralE/=.
rewrite [X in _ = _ + X]integralE/=.
set ap : \bar R := \int[mu]_(x in A) _; set an : \bar R := \int[mu]_(x in A) _.
set bp : \bar R := \int[mu]_(x in B) _; set bn : \bar R := \int[mu]_(x in B) _.
rewrite oppeD 1?addeACA//.
by rewrite ge0_adde_def// inE integral_ge0.
Qed.
Section Rintegral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Definition Rintegral (D : set T) (f : T -> R) :=
fine (\int[mu]_(x in D) (f x)%:E).
End Rintegral.
Notation "\int [ mu ]_ ( x 'in' D ) f" :=
(Rintegral mu D (fun x => f)%R) : ring_scope.
Notation "\int [ mu ]_ x f" :=
(Rintegral mu setT (fun x => f)%R) : ring_scope.
HB.lock Definition integrable {d} {T : measurableType d} {R : realType}
(mu : set T -> \bar R) D f :=
`[< measurable_fun D f /\ (\int[mu]_(x in D) `|f x| < +oo)%E >].
Canonical integrable_unlockable := Unlockable integrable.unlock.
Lemma integrableP d T R mu D f :
reflect (measurable_fun D f /\ (\int[mu]_(x in D) `|f x| < +oo)%E)
(@integrable d T R mu D f).
Lemma measurable_int d T R mu D f :
@integrable d T R mu D f -> measurable_fun D f.
Arguments measurable_int {d T R} mu {D f}.
Section integrable_theory.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}).
Variables (D : set T) (mD : measurable D).
Implicit Type f g : T -> \bar R.
Notation mu_int := (integrable mu D).
Lemma integrable0 : mu_int (cst 0).
Proof.
by rewrite integral0.
Qed.
Lemma eq_integrable f g : {in D, f =1 g} -> mu_int f -> mu_int g.
Proof.
exact: eq_measurable_fun mf.
rewrite (le_lt_trans _ fi)//; apply: ge0_le_integral=> //.
by apply: measurableT_comp => //; exact: eq_measurable_fun mf.
by apply: measurableT_comp => //; exact: eq_measurable_fun mf.
by move=> x Dx; rewrite fg// inE.
Qed.
Lemma le_integrable f g : measurable_fun D f ->
(forall x, D x -> `|f x| <= `|g x|) -> mu_int g -> mu_int f.
Proof.
by apply: le_lt_trans goo; apply: ge0_le_integral => //; exact: measurableT_comp.
Qed.
Lemma integrableN f : mu_int f -> mu_int (-%E \o f).
Proof.
by rewrite /comp; under eq_fun do rewrite abseN.
by rewrite /comp; exact: measurableT_comp.
Qed.
Lemma integrableZl (k : R) f : mu_int f -> mu_int (fun x => k%:E * f x).
Proof.
exact: measurable_funeM.
under eq_fun do rewrite abseM.
by rewrite ge0_integralZl// ?lte_mul_pinfty//; exact: measurableT_comp.
Qed.
Lemma integrableZr (k : R) f : mu_int f -> mu_int (f \* cst k%:E).
Proof.
Lemma integrableD f g : mu_int f -> mu_int g -> mu_int (f \+ g).
Proof.
exact: emeasurable_funD.
apply: (@le_lt_trans _ _ (\int[mu]_(x in D) (`|f x| + `|g x|))).
apply: ge0_le_integral => //.
- by apply: measurableT_comp => //; exact: emeasurable_funD.
- by move=> ? ?; apply: adde_ge0.
- by apply: emeasurable_funD; apply: measurableT_comp.
- by move=> *; exact: lee_abs_add.
by rewrite ge0_integralD //; [exact: lte_add_pinfty|
exact: measurableT_comp|exact: measurableT_comp].
Qed.
Lemma integrable_sum (s : seq (T -> \bar R)) :
(forall h, h \in s -> mu_int h) -> mu_int (fun x => \sum_(h <- s) h x).
Proof.
by under eq_fun do rewrite big_nil; exact: integrable0.
under eq_fun do rewrite big_cons; apply: integrableD => //.
- by apply: hs; rewrite in_cons eqxx.
- by apply: ih => k ks; apply: hs; rewrite in_cons ks orbT.
Qed.
Lemma integrableB f g : mu_int f -> mu_int g -> mu_int (f \- g).
Proof.
Lemma integrable_add_def f : mu_int f ->
\int[mu]_(x in D) f^\+ x +? - \int[mu]_(x in D) f^\- x.
Proof.
rewrite ge0_integralD // in foo; last 2 first.
- exact: measurable_funepos.
- exact: measurable_funeneg.
apply: ltpinfty_adde_def.
- by apply: le_lt_trans foo; rewrite leeDl// integral_ge0.
- by rewrite inE (@le_lt_trans _ _ 0)// leeNl oppe0 integral_ge0.
Qed.
Lemma integrable_funepos f : mu_int f -> mu_int f^\+.
Proof.
exact: measurable_funepos.
apply: le_lt_trans foo; apply: ge0_le_integral => //.
- by apply/measurableT_comp => //; exact: measurable_funepos.
- exact/measurableT_comp.
- by move=> t Dt; rewrite -/((abse \o f) t) fune_abse gee0_abs// leeDl.
Qed.
Lemma integrable_funeneg f : mu_int f -> mu_int f^\-.
Proof.
exact: measurable_funeneg.
apply: le_lt_trans foo; apply: ge0_le_integral => //.
- by apply/measurableT_comp => //; exact: measurable_funeneg.
- exact/measurableT_comp.
- by move=> t Dt; rewrite -/((abse \o f) t) fune_abse gee0_abs// leeDr.
Qed.
Lemma integral_funeneg_lt_pinfty f : mu_int f ->
\int[mu]_(x in D) f^\- x < +oo.
Proof.
- exact: measurable_funeneg.
- exact: measurableT_comp.
- move=> x Dx; have [fx0|/ltW fx0] := leP (f x) 0.
rewrite lee0_abs// /funeneg.
by move: fx0; rewrite -{1}oppe0 -leeNr => /max_idPl ->.
rewrite gee0_abs// /funeneg.
by move: (fx0); rewrite -{1}oppe0 -leeNl => /max_idPr ->.
Qed.
Lemma integral_funepos_lt_pinfty f : mu_int f ->
\int[mu]_(x in D) f^\+ x < +oo.
Proof.
- exact: measurable_funepos.
- exact: measurableT_comp.
- move=> x Dx; have [fx0|/ltW fx0] := leP (f x) 0.
rewrite lee0_abs// /funepos.
by move: (fx0) => /max_idPr ->; rewrite -leeNr oppe0.
by rewrite gee0_abs// /funepos; move: (fx0) => /max_idPl ->.
Qed.
Lemma integrable_neg_fin_num f :
mu_int f -> \int[mu]_(x in D) f^\- x \is a fin_num.
Proof.
rewrite fin_numElt; apply/andP; split.
by rewrite (@lt_le_trans _ _ 0) ?lte_ninfty//; exact: integral_ge0.
case: fi => mf; apply: le_lt_trans; apply: ge0_le_integral => //.
- exact/measurable_funeneg.
- exact/measurableT_comp.
- by move=> x Dx; rewrite -/((abse \o f) x) (fune_abse f) leeDr.
Qed.
Lemma integrable_pos_fin_num f :
mu_int f -> \int[mu]_(x in D) f^\+ x \is a fin_num.
Proof.
rewrite fin_numElt; apply/andP; split.
by rewrite (@lt_le_trans _ _ 0) ?lte_ninfty//; exact: integral_ge0.
case: fi => mf; apply: le_lt_trans; apply: ge0_le_integral => //.
- exact/measurable_funepos.
- exact/measurableT_comp.
- by move=> x Dx; rewrite -/((abse \o f) x) (fune_abse f) leeDl.
Qed.
Lemma integrableMr (h : T -> R) g :
measurable_fun D h -> [bounded h x | x in D] ->
mu_int g -> mu_int ((EFin \o h) \* g).
Proof.
by apply: emeasurable_funM => //; [exact: measurableT_comp|
exact: measurable_int gi].
under eq_integral do rewrite abseM.
have: \int[mu]_(x in D) (`|M + 1|%:E * `|g x|) < +oo.
rewrite ge0_integralZl ?lte_mul_pinfty//; first by case/integrableP : gi.
by apply: measurableT_comp => //; exact: measurable_int gi.
apply/le_lt_trans/ge0_le_integral => //.
- apply/emeasurable_funM; last exact/measurableT_comp/(measurable_int _ gi).
exact/measurable_EFinP/measurableT_comp.
- apply/emeasurable_funM => //; apply/measurableT_comp => //.
exact: measurable_int gi.
- move=> x Dx; rewrite lee_wpmul2r//= lee_fin Mh//=.
by rewrite (lt_le_trans _ (ler_norm _))// ltrDl.
Qed.
Lemma integrableMl f (h : T -> R) :
mu_int f -> measurable_fun D h -> [bounded h x | x in D] ->
mu_int (f \* (EFin \o h)).
Proof.
by apply/congr1/funext => ?; rewrite muleC.
Qed.
Lemma integrable_restrict (E : set T) (mE : d.-measurable E) f :
integrable mu (E `&` D) f <-> integrable mu E (f \_ D).
Proof.
- exact/measurable_restrict.
- by move: intfoo; rewrite integral_mkcondr/= restrict_abse.
- exact/measurable_restrict.
- by move: intfoo; rewrite integral_mkcondr/= restrict_abse.
Qed.
Lemma le_integral f g : mu_int f -> mu_int g ->
{in D, forall x, f x <= g x} -> \int[mu]_(x in D) f x <= \int[mu]_(x in D) g x.
Proof.
- apply: ge0_le_integral => //.
+ by move/integrableP : intf => [+ _]; exact: measurable_funepos.
+ by move/integrableP : intg => [+ _]; exact: measurable_funepos.
+ by move=> x /mem_set; exact: funepos_le.
- apply: ge0_le_integral => //.
+ by move/integrableP : intg => [+ _]; exact: measurable_funeneg.
+ by move/integrableP : intf => [+ _]; exact: measurable_funeneg.
+ by move=> x /mem_set; exact: funeneg_le.
Qed.
End integrable_theory.
Notation "mu .-integrable" := (integrable mu) : type_scope.
Arguments eq_integrable {d T R mu D} mD f.
Section integrable_theory_finite_measure.
Context {R : realType} d (T : measurableType d).
Variable mu : {finite_measure set T -> \bar R}.
Local Open Scope ereal_scope.
Lemma integrable_indic A : measurable A ->
mu.-integrable [set: T] (fun x : T => (\1_A x)%:E).
Proof.
rewrite (eq_integral (fun x => (\1_A x)%:E)); last first.
by move=> t _; rewrite gee0_abs// lee_fin.
rewrite integral_indic// setIT.
rewrite (@le_lt_trans _ _ (mu setT)) ?le_measure ?inE//.
by rewrite ?ltry ?fin_num_fun_lty//; exact: fin_num_measure.
Qed.
End integrable_theory_finite_measure.
Section sequence_measure.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable m_ : {measure set T -> \bar R}^nat.
Let m := mseries m_ O.
Lemma integral_measure_series (D : set T) (mD : measurable D) (f : T -> \bar R) :
(forall n, integrable (m_ n) D f) ->
measurable_fun D f ->
\sum_(n <oo) `|\int[m_ n]_(x in D) f^\- x | < +oo%E ->
\sum_(n <oo) `|\int[m_ n]_(x in D) f^\+ x | < +oo%E ->
\int[m]_(x in D) f x = \sum_(n <oo) \int[m_ n]_(x in D) f x.
Proof.
rewrite ge0_integral_measure_series//; last exact/measurable_funepos.
rewrite ge0_integral_measure_series//; last exact/measurable_funeneg.
transitivity (\sum_(n <oo) (fine (\int[m_ n]_(x in D) f^\+ x)%E)%:E -
\sum_(n <oo) (fine (\int[m_ n]_(x in D) f^\- x))%:E).
by congr (_ - _); apply: eq_eseriesr => n _; rewrite fineK//;
[exact: integrable_pos_fin_num|exact: integrable_neg_fin_num].
have fineKn : \sum_(n <oo) `|\int[m_ n]_(x in D) f^\- x| =
\sum_(n <oo) `|(fine (\int[m_ n]_(x in D) f^\- x))%:E|.
apply: eq_eseriesr => n _; congr abse; rewrite fineK//.
exact: integrable_neg_fin_num.
have fineKp : \sum_(n <oo) `|\int[m_ n]_(x in D) f^\+ x| =
\sum_(n <oo) `|(fine (\int[m_ n]_(x in D) f^\+ x))%:E|.
apply: eq_eseriesr => n _; congr abse; rewrite fineK//.
exact: integrable_pos_fin_num.
rewrite nneseries_esum; last by move=> n _; exact/fine_ge0/integral_ge0.
rewrite nneseries_esum; last by move=> n _; exact/fine_ge0/integral_ge0.
rewrite -esumB//; last 4 first.
- by rewrite /= /summable -nneseries_esum// -fineKp.
- by rewrite /summable /= -nneseries_esum// -fineKn; exact: fmoo.
- by move=> n _; exact/fine_ge0/integral_ge0.
- by move=> n _; exact/fine_ge0/integral_ge0.
rewrite -summable_eseries_esum; last first.
apply: (@le_lt_trans _ _ (\esum_(i in (fun=> true))
`|(fine (\int[m_ i]_(x in D) f x))%:E|)).
by apply: le_esum => k _; rewrite -EFinB -fineB// -?integralE//;
[exact: integrable_pos_fin_num|exact: integrable_neg_fin_num].
rewrite -nneseries_esum; last by [].
apply: (@le_lt_trans _ _
(\sum_(n <oo) `|(fine (\int[m_ n]_(x in D) f^\+ x))%:E| +
\sum_(n <oo) `|(fine (\int[m_ n]_(x in D) f^\- x))%:E|)).
rewrite -nneseriesD//; apply: lee_nneseries => // n _.
rewrite integralE fineB// ?EFinB.
- exact: (le_trans (lee_abs_sub _ _)).
- exact: integrable_pos_fin_num.
- exact: integrable_neg_fin_num.
apply: lte_add_pinfty; first by rewrite -fineKp.
by rewrite -fineKn; exact: fmoo.
by apply: eq_eseriesr => k _; rewrite !fineK// -?integralE//;
[exact: integrable_neg_fin_num|exact: integrable_pos_fin_num].
Qed.
End sequence_measure.
Section integrable_lemmas.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Lemma ge0_integral_bigcup (F : (set _)^nat) (f : T -> \bar R) :
(forall k, measurable (F k)) ->
let D := \bigcup_k F k in
measurable_fun D f ->
(forall x, D x -> 0 <= f x) ->
trivIset setT F ->
\int[mu]_(x in D) f x = \sum_(i <oo) \int[mu]_(x in F i) f x.
Proof.
pose f_ N := f \_ (\big[setU/set0]_(0 <= i < N) F i).
have lim_f_ t : f_ ^~ t @ \oo --> (f \_ D) t.
rewrite [X in _ --> X](_ : _ = ereal_sup (range (f_ ^~ t))); last first.
apply/eqP; rewrite eq_le; apply/andP; split.
rewrite /restrict; case: ifPn => [|_].
rewrite in_setE => -[n _ Fnt]; apply: ereal_sup_ubound; exists n.+1=>//.
by rewrite /f_ big_mkord patchT// in_setE big_ord_recr/=; right.
rewrite (@le_trans _ _ (f_ O t))// ?ereal_sup_ubound//.
by rewrite /f_ patchN// big_mkord big_ord0 inE/= in_set0.
apply: ub_ereal_sup => x [n _ <-].
by rewrite /f_ restrict_lee// big_mkord; exact: bigsetU_bigcup.
apply: ereal_nondecreasing_cvgn => a b ab.
rewrite /f_ !big_mkord restrict_lee //; last exact: subset_bigsetU.
by move=> x Dx; apply: f0 => //; exact: bigsetU_bigcup Dx.
transitivity (\int[mu]_x limn (f_ ^~ x)).
rewrite integral_mkcond; apply: eq_integral => x _.
by apply/esym/cvg_lim => //; exact: lim_f_.
rewrite monotone_convergence//; last 3 first.
- move=> n; apply/(measurable_restrictT f) => //.
by apply: bigsetU_measurable => k _; exact: mF.
move: mf; apply/measurable_funS =>//; first exact: bigcup_measurable.
by rewrite big_mkord; exact: bigsetU_bigcup.
- move=> n x _; apply: erestrict_ge0 => y; rewrite big_mkord => Dy; apply: f0.
exact: bigsetU_bigcup Dy.
- move=> x _ a b ab; apply: restrict_lee.
by move=> y; rewrite big_mkord => Dy; apply: f0; exact: bigsetU_bigcup Dy.
by rewrite 2!big_mkord; apply: subset_bigsetU.
transitivity (limn (fun N => \int[mu]_(x in \big[setU/set0]_(i < N) F i) f x)).
by apply/congr_lim/funext => n; rewrite /f_ [in RHS]integral_mkcond big_mkord.
apply/congr_lim/funext => /= n.
rewrite -(big_mkord xpredT) ge0_integral_bigsetU ?big_mkord//.
- exact: iota_uniq.
- exact: sub_trivIset tF.
- move: mf; apply: measurable_funS => //; first exact: bigcup_measurable.
exact: bigsetU_bigcup.
- by move=> y Dy; apply: f0; exact: bigsetU_bigcup Dy.
Qed.
Lemma integrableS (E D : set T) (f : T -> \bar R) :
measurable E -> measurable D -> D `<=` E ->
mu.-integrable E f -> mu.-integrable D f.
Proof.
exact: measurable_funS mf.
apply: le_lt_trans ifoo; apply: ge0_subset_integral => //.
exact: measurableT_comp.
Qed.
Lemma integrable_mkcond D f : measurable D ->
mu.-integrable D f <-> mu.-integrable setT (f \_ D).
Proof.
rewrite unlock; apply: asbool_equiv; rewrite [in X in X <-> _]integral_mkcond.
under [in X in X <-> _]eq_integral do rewrite restrict_abse.
split => [|] [mf foo].
- by split; [exact/(measurable_restrictT _ _).1| exact: le_lt_trans foo].
- by split; [exact/(measurable_restrictT _ _).2| exact: le_lt_trans foo].
Qed.
End integrable_lemmas.
Arguments integrable_mkcond {d T R mu D} f.
Lemma finite_measure_integrable_cst d (T : measurableType d) (R : realType)
(mu : {finite_measure set T -> \bar R}) k :
mu.-integrable [set: T] (EFin \o cst k).
Proof.
have [k0|k0] := leP 0 k.
- under eq_integral do rewrite /= ger0_norm//.
rewrite integral_cstr//= lte_mul_pinfty// fin_num_fun_lty//.
exact: fin_num_measure.
- under eq_integral do rewrite /= ltr0_norm//.
rewrite integral_cstr//= lte_mul_pinfty//.
by rewrite lee_fin lerNr oppr0 ltW.
by rewrite fin_num_fun_lty//; exact: fin_num_measure.
Qed.
Section integrable_ae.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variable f : T -> \bar R.
Hypotheses fint : mu.-integrable D f.
Lemma integrable_ae : {ae mu, forall x, D x -> f x \is a fin_num}.
Proof.
by exists D; split => // t /= /not_implyP[].
pose E := [set x | `|f x| = +oo /\ D x ].
have mE : measurable E.
rewrite (_ : E = D `&` f @^-1` [set -oo; +oo]).
by apply: (measurable_int _ fint) => //; exact: measurableU.
rewrite /E predeqE => t; split=> [[/eqP]|[Dt [|]/= ->//]].
by rewrite eqe_absl leey andbT /preimage/= => /orP[|]/eqP; tauto.
have [ET|ET] := eqVneq E setT.
have foo t : `|f t| = +oo by have [] : E t by rewrite ET.
suff: \int[mu]_(x in D) `|f x| = +oo.
by case: (integrableP _ _ _ fint) => _; rewrite ltey => /eqP.
by rewrite -(integral_csty mD muD0)//; exact: eq_integral.
suff: mu E = 0.
move=> muE0; exists E; split => // t /= /not_implyP[Dt].
by rewrite fin_num_abs => /negP; rewrite -leNgt leye_eq => /eqP.
have [->|/set0P E0] := eqVneq E set0; first by rewrite measure0.
have [M M0 muM] : exists2 M, (0 <= M)%R &
forall n, n%:R%:E * mu (E `&` D) <= M%:E.
exists (fine (\int[mu]_(x in D) `|f x|)); first exact/fine_ge0/integral_ge0.
move=> n; rewrite -integral_indic// -ge0_integralZl//; last 2 first.
- exact: measurableT_comp.
- by move=> *; rewrite lee_fin.
rewrite fineK//; last first.
case: (integrableP _ _ _ fint) => _ foo.
by rewrite ge0_fin_numE// integral_ge0.
apply: ge0_le_integral => //.
- by move=> *; rewrite lee_fin /indic.
- exact/measurable_EFinP/measurableT_comp.
- by apply: measurableT_comp => //; exact: measurable_int fint.
- move=> x Dx; rewrite /= indicE.
have [|xE] := boolP (x \in E); last by rewrite mule0.
by rewrite /E inE /= => -[->]; rewrite leey.
apply/eqP/negPn/negP => /eqP muED0; move/not_forallP : muM; apply.
have [muEDoo|] := ltP (mu (E `&` D)) +oo; last first.
by rewrite leye_eq => /eqP ->; exists 1%N; rewrite mul1e leye_eq.
exists `|ceil (M * (fine (mu (E `&` D)))^-1)|%N.+1.
apply/negP; rewrite -ltNge.
rewrite -[X in _ * X](@fineK _ (mu (E `&` D))); last first.
by rewrite fin_numElt muEDoo (lt_le_trans _ (measure_ge0 _ _)).
rewrite lte_fin -ltr_pdivrMr.
rewrite pmulrn floor_lt_int intS ltz1D abszE.
by apply: le_trans (ler_norm _); rewrite ceil_floor//= lerDl.
rewrite -lte_fin fineK.
rewrite lt0e measure_ge0 andbT.
suff: E `&` D = E by move=> ->; exact/eqP.
by rewrite predeqE => t; split=> -[].
by rewrite ge0_fin_numE// measure_ge0//; exact: measurableI.
Qed.
End integrable_ae.
Section linearityZ.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variable (f : T -> \bar R).
Hypothesis intf : mu.-integrable D f.
Let mesf : measurable_fun D f
Proof.
Lemma integralZl r :
\int[mu]_(x in D) (r%:E * f x) = r%:E * \int[mu]_(x in D) f x.
Proof.
- rewrite [in LHS]integralE// le0_funeposM// le0_funenegM//.
rewrite (ge0_integralZl_EFin _ _ _ (measurable_funeneg _)) ?oppr_ge0//.
rewrite (ge0_integralZl_EFin _ _ _ (measurable_funepos _)) ?oppr_ge0//.
rewrite !EFinN addeC !mulNe oppeK -muleBr ?integrable_add_def//.
by rewrite [in RHS]integralE.
- rewrite [in LHS]integralE// ge0_funeposM// ge0_funenegM//=.
rewrite (ge0_integralZl_EFin _ _ _ (measurable_funepos _) r0)//.
rewrite (ge0_integralZl_EFin _ _ _ (measurable_funeneg _) r0)//.
by rewrite -muleBr 1?[in RHS]integralE// integrable_add_def.
Qed.
Lemma integralZr r :
\int[mu]_(x in D) (f x * r%:E) = (\int[mu]_(x in D) f x) * r%:E.
Proof.
End linearityZ.
#[deprecated(since="mathcomp-analysis 0.6.4", note="use `integralZl` instead")]
Notation integralM := integralZl (only parsing).
Section linearityD_EFin.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variables f1 f2 : T -> R.
Let g1 := EFin \o f1.
Let g2 := EFin \o f2.
Hypothesis if1 : mu.-integrable D g1.
Hypothesis if2 : mu.-integrable D g2.
Let mf1 : measurable_fun D g1
Proof.
Proof.
Lemma integralD_EFin :
\int[mu]_(x in D) (g1 \+ g2) x =
\int[mu]_(x in D) g1 x + \int[mu]_(x in D) g2 x.
Proof.
\int[mu]_(x in D) (g2^\- x) =
\int[mu]_(x in D) ((g1 \+ g2)^\- x) + \int[mu]_(x in D) (g1^\+ x) +
\int[mu]_(x in D) (g2^\+ x).
move=> h; rewrite [in LHS]integralE.
move/eqP : h; rewrite -[in eqbRHS]addeA [in eqbRHS]addeC.
have g12pos :
\int[mu]_(x in D) (g1^\+ x) + \int[mu]_(x in D) (g2^\+ x) \is a fin_num.
rewrite ge0_fin_numE//.
by rewrite lte_add_pinfty//; exact: integral_funepos_lt_pinfty.
by rewrite adde_ge0// integral_ge0.
have g12neg :
\int[mu]_(x in D) (g1^\- x) + \int[mu]_(x in D) (g2^\- x) \is a fin_num.
rewrite ge0_fin_numE//.
by rewrite lte_add_pinfty// ; exact: integral_funeneg_lt_pinfty.
by rewrite adde_ge0// integral_ge0.
rewrite -sube_eq; last 2 first.
- rewrite ge0_fin_numE.
apply: lte_add_pinfty; last exact: integral_funeneg_lt_pinfty.
apply: lte_add_pinfty; last exact: integral_funeneg_lt_pinfty.
exact: integral_funepos_lt_pinfty (integrableD _ _ _).
rewrite adde_ge0//; last exact: integral_ge0.
by rewrite adde_ge0// integral_ge0.
- by rewrite fin_num_adde_defr.
rewrite -(addeA (\int[mu]_(x in D) (g1 \+ g2)^\+ x)).
rewrite (addeC (\int[mu]_(x in D) (g1 \+ g2)^\+ x)) -[eqbLHS]addeA.
rewrite (addeC (\int[mu]_(x in D) g1^\- x + \int[mu]_(x in D) g2^\- x)).
rewrite eq_sym -(sube_eq g12pos) ?fin_num_adde_defl// => /eqP <-.
rewrite fin_num_oppeD; last first.
rewrite ge0_fin_numE; first exact: integral_funeneg_lt_pinfty if2.
exact: integral_ge0.
by rewrite addeACA (integralE _ _ g1) (integralE _ _ g2).
have : (g1 \+ g2)^\+ \+ g1^\- \+ g2^\- = (g1 \+ g2)^\- \+ g1^\+ \+ g2^\+.
rewrite funeqE => x.
apply/eqP; rewrite -2!addeA [in eqbRHS]addeC -sube_eq; last 2 first.
by rewrite /funepos /funeneg -!fine_max.
by rewrite /funepos /funeneg -!fine_max.
rewrite addeAC eq_sym -sube_eq; last 2 first.
by rewrite /funepos /funeneg -!fine_max.
by rewrite /funepos /funeneg -!fine_max.
apply/eqP.
rewrite -[LHS]/((g1^\+ \+ g2^\+ \- (g1^\- \+ g2^\-)) x) -funeD_posD.
by rewrite -[RHS]/((_ \- _) x) -funeD_Dpos.
move/(congr1 (fun y => \int[mu]_(x in D) (y x) )).
rewrite (ge0_integralD mu mD); last 4 first.
- by move=> x _; rewrite adde_ge0.
- apply: emeasurable_funD; last exact: measurable_funeneg.
exact/measurable_funepos/emeasurable_funD.
- by [].
- exact: measurable_funeneg.
rewrite (ge0_integralD mu mD); last 4 first.
- by [].
- exact/measurable_funepos/emeasurable_funD.
- by [].
- exact/measurable_funepos/measurableT_comp.
move=> ->.
rewrite (ge0_integralD mu mD); last 4 first.
- by move=> x _; exact: adde_ge0.
- apply: emeasurable_funD; last exact: measurable_funepos.
exact/measurable_funeneg/emeasurable_funD.
- by [].
- exact: measurable_funepos.
rewrite (ge0_integralD mu mD) //; last exact: measurable_funepos.
exact/measurable_funeneg/emeasurable_funD.
Qed.
End linearityD_EFin.
Lemma integralB_EFin d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) (D : set T) (f1 f2 : T -> R)
(mD : measurable D) :
mu.-integrable D (EFin \o f1) -> mu.-integrable D (EFin \o f2) ->
(\int[mu]_(x in D) ((f1 x)%:E - (f2 x)%:E) =
(\int[mu]_(x in D) (f1 x)%:E - \int[mu]_(x in D) (f2 x)%:E))%E.
Proof.
by rewrite (_ : _ \o _ = (fun x => - (f2 x)%:E))%E; [exact: integrableN|by []].
by rewrite -integralN//; exact: integrable_add_def.
Qed.
Lemma le_abse_integral d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) (D : set T) (f : T -> \bar R)
(mD : measurable D) : measurable_fun D f ->
(`| \int[mu]_(x in D) (f x) | <= \int[mu]_(x in D) `|f x|)%E.
Proof.
rewrite integralE (le_trans (lee_abs_sub _ _))// gee0_abs; last first.
exact: integral_ge0.
rewrite gee0_abs; last exact: integral_ge0.
by rewrite -ge0_integralD // -?fune_abse//;
[exact: measurable_funepos | exact: measurable_funeneg].
Qed.
Lemma EFin_normr_Rintegral d (T : measurableType d) {R : realType}
(mu : {measure set T -> \bar R}) (A : set T) (f : T -> R) : measurable A ->
mu.-integrable A (EFin \o f) ->
`| \int[mu]_(x in A) f x |%:E = `| \int[mu]_(x in A) (f x)%:E |%E.
Proof.
- rewrite /= fine_abse// fin_num_abs.
exact: (le_lt_trans (le_abse_integral _ _ _)).
- rewrite abse_fin_num fin_num_abs.
exact: (le_lt_trans (le_abse_integral _ _ _)).
Qed.
Lemma abse_integralP d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) (D : set T) (f : T -> \bar R) :
measurable D -> measurable_fun D f ->
(`| \int[mu]_(x in D) f x | < +oo <-> \int[mu]_(x in D) `|f x| < +oo)%E.
Proof.
exact: (le_lt_trans (le_abse_integral mu mD mf) foo).
under eq_integral do rewrite -/((abse \o f) _) fune_abse.
rewrite ge0_integralD//;[|exact/measurable_funepos|exact/measurable_funeneg].
move: foo; rewrite integralE/= -fin_num_abs fin_numB => /andP[fpoo fnoo].
by rewrite lte_add_pinfty// ltey_eq ?fpoo ?fnoo.
Qed.
Section integral_patch.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Lemma __deprecated__integral_setI_indic (E D : set T) (mD : measurable D) (f : T -> \bar R) :
measurable E ->
\int[mu]_(x in E `&` D) f x = \int[mu]_(x in E) (f x * (\1_D x)%:E).
Proof.
Lemma __deprecated__integralEindic (D : set T) (mD : measurable D) (f : T -> \bar R) :
\int[mu]_(x in D) f x = \int[mu]_(x in D) (f x * (\1_D x)%:E).
Proof.
Lemma integralEpatch (D : set T) (mD : measurable D) (f : T -> \bar R) :
\int[mu]_(x in D) f x = \int[mu]_(x in D) (f \_ D) x.
Proof.
End integral_patch.
#[deprecated(since="mathcomp-analysis 1.3.0", note="use `integral_mkcondr` instead")]
Notation integral_setI_indic := __deprecated__integral_setI_indic (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="use `integralEpatch` instead")]
Notation integralEindic := __deprecated__integralEindic (only parsing).
Section ae_eq_integral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Local Notation ae_eq := (ae_eq mu).
Let ae_eq_integral_abs_bounded (D : set T) (mD : measurable D) (f : T -> \bar R)
M : measurable_fun D f -> (forall x, D x -> `|f x| <= M%:E) ->
ae_eq D f (cst 0) -> \int[mu]_(x in D) `|f x|%E = 0.
Proof.
pose Df_neq0 := D `&` [set x | f x != 0].
have mDf_neq0 : measurable Df_neq0 by exact: emeasurable_neq.
pose f' : T -> R := indic Df_neq0.
have le_f_M t : D t -> `|f t| <= M%:E * (f' t)%:E.
move=> Dt; rewrite /f' indicE; have [|] := boolP (t \in Df_neq0).
by rewrite inE => -[_ _]; rewrite mule1 fM.
by rewrite notin_setE=> /not_andP[//|/negP/negPn/eqP ->]; rewrite abse0 mule0.
have : 0 <= \int[mu]_(x in D) `|f x| <= `|M|%:E * mu Df_neq0.
rewrite integral_ge0//= /Df_neq0 -{2}(setIid D) setIAC -integral_indic//.
rewrite -/Df_neq0 -ge0_integralZl//; last 2 first.
- exact: measurableT_comp.
- by move=> x ?; rewrite lee_fin.
apply: ge0_le_integral => //.
- exact: measurableT_comp.
- by move=> x Dx; rewrite mule_ge0// lee_fin.
- by apply: emeasurable_funM => //; exact: measurableT_comp.
- move=> x Dx; rewrite (le_trans (le_f_M _ Dx))// lee_fin /f' indicE.
by case: (_ \in _) => //; rewrite ?mulr1 ?mulr0// ler_norm.
have -> : mu Df_neq0 = 0.
apply: (subset_measure0 _ _ _ mN0) => //.
apply: subset_trans Df0N => /= x [/= f0 Dx] /=.
by apply/not_implyP; split => //; exact/eqP.
by rewrite mule0 -eq_le => /eqP.
Qed.
Lemma ae_eq_integral_abs (D : set T) (mD : measurable D) (f : T -> \bar R) :
measurable_fun D f -> \int[mu]_(x in D) `|f x| = 0 <-> ae_eq D f (cst 0).
Proof.
exists (D `&` [set x | f x != 0]); split;
[exact: emeasurable_neq| |by move=> t /= /not_implyP [Dt /eqP ft0]].
have muDf a : (0 < a)%R -> mu (D `&` [set x | a%:E <= `|f x|]) = 0.
move=> a0; apply/eqP; rewrite -measure_le0.
by have := le_integral_abse mu mD mf a0; rewrite iDf0 pmule_rle0 ?lte_fin.
rewrite [X in mu X](_ : _ =
\bigcup_n (D `&` [set x | `|f x| >= n.+1%:R^-1%:E])); last first.
rewrite predeqE => t; split=> [[Dt ft0]|[n _ /= [Dt nft]]].
have [ftoo|ftoo] := eqVneq `|f t| +oo.
by exists 0%N => //; split => //=; rewrite ftoo /= leey.
pose m := `|ceil (fine `|f t|)^-1|%N.
have ftfin : `|f t|%E \is a fin_num by rewrite ge0_fin_numE// ltey.
exists m => //; split => //=.
rewrite -(@fineK _ `|f t|) // lee_fin -ler_pV2; last 2 first.
- rewrite inE unitfE fine_eq0// abse_eq0 ft0/= fine_gt0//.
by rewrite lt0e abse_ge0 abse_eq0 ft0 ltey.
- by rewrite inE unitfE invr_eq0 pnatr_eq0 /= invr_gt0.
rewrite invrK /m -natr1 natr_absz ger0_norm; last first.
by rewrite -(ceil0 R) ceil_le.
by rewrite intrD1 ceil_ge_int lerDl.
by split => //; apply: contraTN nft => /eqP ->; rewrite abse0 -ltNge.
transitivity (limn (fun n => mu (D `&` [set x | `|f x| >= n.+1%:R^-1%:E]))).
apply/esym/cvg_lim => //; apply: nondecreasing_cvg_mu.
- move=> i; apply: emeasurable_fun_c_infty => //.
exact: measurableT_comp.
- apply: bigcupT_measurable => i.
by apply: emeasurable_fun_c_infty => //; exact: measurableT_comp.
- move=> m n mn; apply/subsetPset; apply: setIS => t /=.
by apply: le_trans; rewrite lee_fin lef_pV2 // ?ler_nat // posrE.
by rewrite (_ : (fun _ => _) = cst 0) ?lim_cst//= funeqE => n /=; rewrite muDf.
pose f_ := fun n x => mine `|f x| n%:R%:E.
have -> : (fun x => `|f x|) = (fun x => limn (f_^~ x)).
rewrite funeqE => x; apply/esym/cvg_lim => //; apply/cvg_ballP => _/posnumP[e].
near=> n; rewrite /ball /= /ereal_ball /= /f_.
have [->|fxoo] := eqVneq `|f x|%E +oo.
rewrite -[contract +oo](@divrr _ (1 + n%:R)%R) ?unitfE ?nat1r//=.
rewrite (@ger0_norm _ n%:R)// nat1r -mulrBl -natrB// subSnn ger0_norm//.
by rewrite div1r; near: n; exact: near_infty_natSinv_lt.
have fxn : `|f x| <= n%:R%:E.
rewrite -(@fineK _ `|f x|); last by rewrite ge0_fin_numE// ltey.
rewrite lee_fin; near: n; exists (Num.bound (fine `|f x|)) => //= n/=.
by rewrite -(ler_nat R); apply: le_trans; exact/ltW/archi_boundP.
by rewrite min_l// subrr normr0.
transitivity (limn (fun n => \int[mu]_(x in D) (f_ n x) )).
apply/esym/cvg_lim => //; apply: cvg_monotone_convergence => //.
- by move=> n; apply: measurable_mine => //; exact: measurableT_comp.
- by move=> n t Dt; rewrite /f_ lexI abse_ge0 //= lee_fin.
- move=> t Dt m n mn; rewrite /f_ lexI.
have [ftm|ftm] := leP `|f t|%E m%:R%:E.
by rewrite lexx /= (le_trans ftm)// lee_fin ler_nat.
by rewrite (ltW ftm) /= lee_fin ler_nat.
have ae_eq_f_ n : ae_eq D (f_ n) (cst 0).
case: Df0 => N [mN muN0 DfN].
exists N; split => // t /= /not_implyP[Dt fnt0].
apply: DfN => /=; apply/not_implyP; split => //.
apply: contra_not fnt0 => ft0.
by rewrite /f_ ft0 /= normr0 min_l// lee_fin.
have f_bounded n x : D x -> `|f_ n x| <= n%:R%:E.
move=> Dx; rewrite /f_; have [|_] := leP `|f x| n%:R%:E.
by rewrite abse_id.
by rewrite gee0_abs// lee_fin.
have if_0 n : \int[mu]_(x in D) `|f_ n x| = 0.
apply: (@ae_eq_integral_abs_bounded _ _ _ n%:R) => //.
by apply: measurable_mine => //; exact: measurableT_comp.
exact: f_bounded.
rewrite (_ : (fun _ => _) = cst 0) // ?lim_cst// funeqE => n.
by rewrite -(if_0 n); apply: eq_integral => x _; rewrite gee0_abs// /f_.
Unshelve. all: by end_near. Qed.
Lemma integral_abs_eq0 D (N : set T) (f : T -> \bar R) :
measurable N -> measurable D -> N `<=` D -> measurable_fun D f ->
mu N = 0 -> \int[mu]_(x in N) `|f x| = 0.
Proof.
rewrite (eq_integral (abse \o (f \_ N))); last first.
by move=> t _; rewrite restrict_abse.
apply/ae_eq_integral_abs => //.
apply/measurable_restrict => //; rewrite setIidr//.
exact: (measurable_funS mD).
exists N; split => // t /= /not_implyP[_].
by rewrite patchE; case: ifPn => //; rewrite inE.
Qed.
Lemma negligible_integrable (D N : set T) (f : T -> \bar R) :
measurable N -> measurable D -> measurable_fun D f ->
mu N = 0 -> mu.-integrable D f <-> mu.-integrable (D `\` N) f.
Proof.
pose mCN := measurableC mN.
have /integrableP intone : mu.-integrable D (f \_ N).
apply/integrableP; split.
by apply/measurable_restrict => //; exact: measurable_funS mf.
rewrite (eq_integral ((abse \o f) \_ N)); last first.
by move=> t _; rewrite restrict_abse.
rewrite -integral_mkcondr (@integral_abs_eq0 D)//; first exact: measurableI.
by apply: (subset_measure0 _ _ _ muN0) => //; exact: measurableI.
have h1 : mu.-integrable D f <-> mu.-integrable D (f \_ ~` N).
split=> [/integrableP intf|/integrableP intCf].
apply/integrableP; split.
by apply/measurable_restrict => //; exact: measurable_funS mf.
rewrite (eq_integral ((abse \o f) \_ ~` N)); last first.
by move=> t _; rewrite restrict_abse.
rewrite -integral_mkcondr; case: intf => _; apply: le_lt_trans.
by apply: ge0_subset_integral => //=; [exact:measurableI|
exact:measurableT_comp].
apply/integrableP; split => //; rewrite (funID N f).
have ? : measurable_fun D (f \_ ~` N).
by apply/measurable_restrict => //; exact: measurable_funS mf.
have ? : measurable_fun D (f \_ N).
by apply/measurable_restrict => //; exact: measurable_funS mf.
apply: (@le_lt_trans _ _
(\int[mu]_(x in D) (`|(f \_ ~` N) x| + `|(f \_ N) x|))).
apply: ge0_le_integral => //.
- by apply: measurableT_comp => //; exact: emeasurable_funD.
- by move=> ? ?; apply: adde_ge0.
- by apply: emeasurable_funD; exact: measurableT_comp.
- by move=> *; rewrite lee_abs_add.
rewrite ge0_integralD//; [|exact: measurableT_comp|exact: measurableT_comp].
by apply: lte_add_pinfty; [case: intCf|case: intone].
have h2 : mu.-integrable (D `\` N) f <-> mu.-integrable D (f \_ ~` N).
split=> [/integrableP intCf|/integrableP intCf]; apply/integrableP.
split.
by apply/measurable_restrict => //; exact: measurable_funS mf.
rewrite (eq_integral ((abse \o f) \_ ~` N)); last first.
by move=> t _; rewrite restrict_abse.
rewrite -integral_mkcondr //; case: intCf => _; apply: le_lt_trans.
apply: ge0_subset_integral => //=; [exact: measurableI|exact: measurableD|].
by apply: measurableT_comp => //; apply: measurable_funS mf => // ? [].
split.
move=> mDN A mA; rewrite setDE (setIC D) -setIA; apply: measurableI => //.
exact: mf.
rewrite integral_mkcondr/=.
under eq_integral do rewrite restrict_abse.
by case: intCf.
by apply: (iff_trans h1); exact: iff_sym.
Qed.
Lemma ge0_negligible_integral (D N : set T) (f : T -> \bar R) :
measurable N -> measurable D -> measurable_fun D f ->
(forall x, D x -> 0 <= f x) ->
mu N = 0 -> \int[mu]_(x in D) f x = \int[mu]_(x in D `\` N) f x.
Proof.
rewrite {1}(funID N f) ge0_integralD//; last 4 first.
- by move=> x Dx; rewrite patchE; case: ifPn => // _; exact: f0.
- apply/measurable_restrict => //; first exact/measurableC.
exact: measurable_funS mf.
- by move=> x Dx; rewrite patchE; case: ifPn => // _; exact: f0.
- by apply/measurable_restrict => //; exact: measurable_funS mf.
rewrite -integral_mkcondr [X in _ + X = _](_ : _ = 0) ?adde0//.
rewrite -integral_mkcondr (eq_integral (abse \o f)); last first.
move=> x; rewrite in_setI => /andP[xD xN].
by rewrite /= gee0_abs// f0//; rewrite inE in xD.
rewrite (@integral_abs_eq0 D)//; first exact: measurableI.
by apply: (subset_measure0 _ _ _ muN0) => //; exact: measurableI.
Qed.
Lemma ge0_ae_eq_integral (D : set T) (f g : T -> \bar R) :
measurable D -> measurable_fun D f -> measurable_fun D g ->
(forall x, D x -> 0 <= f x) -> (forall x, D x -> 0 <= g x) ->
ae_eq D f g -> \int[mu]_(x in D) (f x) = \int[mu]_(x in D) (g x).
Proof.
rewrite integralEpatch// [RHS]integralEpatch//.
rewrite (ge0_negligible_integral mN)//; last 2 first.
- by apply/measurable_restrict => //; rewrite setIidr.
- by move=> x Dx; rewrite /= patchE (mem_set Dx) f0.
rewrite [RHS](ge0_negligible_integral mN)//; last 2 first.
- by apply/measurable_restrict => //; rewrite setIidr.
- by move=> x Dx; rewrite /= patchE (mem_set Dx) g0.
apply: eq_integral => x;rewrite in_setD => /andP[_ xN].
apply: contrapT; rewrite !patchE; case: ifPn => xD //.
move: xN; rewrite notin_setE; apply: contra_not => fxgx; apply: subN => /=.
by apply/not_implyP; split => //; exact/set_mem.
Qed.
Lemma ae_eq_integral (D : set T) (g f : T -> \bar R) :
measurable D -> measurable_fun D f -> measurable_fun D g ->
ae_eq D f g -> integral mu D f = integral mu D g.
Proof.
rewrite integralE// [in RHS]integralE//; congr (_ - _).
by apply: ge0_ae_eq_integral => //; [exact: measurable_funepos|
exact: measurable_funepos].
by apply: ge0_ae_eq_integral => //; [exact: measurable_funeneg|
exact: measurable_funeneg].
Qed.
End ae_eq_integral.
Arguments ae_eq_integral {d T R mu D} g.
Local Open Scope ereal_scope.
Lemma integral_cst d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) (D : set T) : d.-measurable D ->
forall r, \int[mu]_(x in D) (cst r) x = r * mu D.
Proof.
by rewrite (ae_eq_integral (cst 0))// ?integral0 ?D0 ?mule0//; exact: ae_eq0.
- by rewrite integral_cstr.
- by rewrite integral_csty// gt0_mulye// lt0e D0/=.
- by rewrite integral_cstNy// gt0_mulNye// lt0e D0/=.
Qed.
Lemma le_integral_comp_abse d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D)
(g : T -> \bar R) a (f : \bar R -> \bar R) (mf : measurable_fun setT f)
(f0 : forall r, 0 <= r -> 0 <= f r)
(f_nd : {in `[0, +oo[%classic &, {homo f : x y / x <= y}}) :
measurable_fun D g -> (0 < a)%R ->
(f a%:E) * mu (D `&` [set x | (`|g x| >= a%:E)%E]) <= \int[mu]_(x in D) f `|g x|.
Proof.
by apply: emeasurable_fun_c_infty => //; exact: measurableT_comp.
apply: (@le_trans _ _ (\int[mu]_(x in D `&` [set x | `|g x| >= a%:E]) f `|g x|)).
rewrite -integral_cst//; apply: ge0_le_integral => //.
- by move=> x _ /=; rewrite f0 // lee_fin ltW.
- by move=> x _ /=; rewrite f0.
- apply: measurableT_comp => //; apply: measurableT_comp => //.
exact: measurable_funS mg.
- by move=> x /= [Dx]; apply: f_nd;
rewrite inE /= in_itv /= andbT// lee_fin ltW.
apply: ge0_subset_integral => //; last by move=> x _ /=; rewrite f0.
by apply: measurableT_comp => //; exact: measurableT_comp.
Qed.
Local Close Scope ereal_scope.
Section ae_measurable_fun.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Hypothesis cmu : measure_is_complete mu.
Variables (D : set T) (f g : T -> \bar R).
Lemma ae_measurable_fun : ae_eq mu D f g ->
measurable_fun D f -> measurable_fun D g.
Proof.
apply: (measurability (ErealGenOInfty.measurableE R)) => // _ [_ [x ->] <-].
rewrite [X in measurable X](_ : _ = D `&` ~` N `&` (f @^-1` `]x%:E, +oo[)
`|` (D `&` N `&` g @^-1` `]x%:E, +oo[)); last first.
apply/seteqP; split=> [y /= [Dy gyxoo]|y /= [[[Dy Ny] fyxoo]|]].
- have [->|fgy] := eqVneq (f y) (g y).
have [yN|yN] := boolP (y \in N).
by right; split => //; rewrite inE in yN.
by left; split => //; rewrite notin_setE in yN.
by right; split => //; split => //; apply: subN => /= /(_ Dy); exact/eqP.
- split => //; have [<-//|fgy] := eqVneq (f y) (g y).
by exfalso; apply/Ny/subN => /= /(_ Dy); exact/eqP.
- by move=> [[]].
apply: measurableU.
- rewrite setIAC; apply: measurableI; last exact/measurableC.
exact/mf/emeasurable_itv.
- by apply: cmu; exists N; split => //; rewrite setIAC; apply: subIset; right.
Qed.
End ae_measurable_fun.
Section integralD.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variables (f1 f2 : T -> \bar R).
Hypotheses (if1 : mu.-integrable D f1) (if2 : mu.-integrable D f2).
Let mf1 : measurable_fun D f1
Proof.
Proof.
Lemma integralD : \int[mu]_(x in D) (f1 x + f2 x) =
\int[mu]_(x in D) f1 x + \int[mu]_(x in D) f2 x.
Proof.
pose B := D `&` [set x | f2 x \is a fin_num].
have mA : measurable A by exact: emeasurable_fin_num.
have mB : measurable B by exact: emeasurable_fin_num.
have mAB : measurable (A `&` B) by apply: measurableI.
pose g1 := (fine \o f1 \_ (A `&` B))%R.
pose g2 := (fine \o f2 \_ (A `&` B))%R.
have ig1 : mu.-integrable D (EFin \o g1).
rewrite (_ : _ \o _ = f1 \_ (A `&` B)) //.
apply: (integrableS measurableT)=>//; apply/(integrable_mkcond _ _).1 => //.
by apply: integrableS if1=>//; rewrite -setIAC -setIA; apply: subIset; left.
rewrite /g1 funeqE => x //=; rewrite !/restrict; case: ifPn => //.
rewrite 2!in_setI => /andP[/andP[xA f1xfin] _] /=.
by rewrite fineK//; rewrite inE in f1xfin.
have mg1 := measurable_int _ ig1.
have ig2 : mu.-integrable D (EFin \o g2).
rewrite (_ : _ \o _ = f2 \_ (A `&` B)) //.
apply: (integrableS measurableT)=>//; apply/(integrable_mkcond _ _).1 => //.
by apply: integrableS if2=>//; rewrite -setIAC -setIA; apply: subIset; left.
rewrite /g2 funeqE => x //=; rewrite !/restrict; case: ifPn => //.
rewrite in_setI => /andP[_]; rewrite in_setI => /andP[xB f2xfin] /=.
by rewrite fineK//; rewrite inE in f2xfin.
have mg2 := measurable_int _ ig2.
transitivity (\int[mu]_(x in D) (EFin \o (g1 \+ g2)%R) x).
apply: ae_eq_integral => //.
- exact: emeasurable_funD.
- rewrite (_ : _ \o _ = (EFin \o g1) \+ (EFin \o g2))//.
exact: emeasurable_funD.
- apply: (filterS2 _ _ (integrable_ae mD if1) (integrable_ae mD if2)).
move=> x + + Dx => /(_ Dx) f1fin /(_ Dx) f2fin /=.
rewrite EFinD /g1 /g2 /restrict /=; have [|] := boolP (x \in A `&` B).
by rewrite in_setI => /andP[xA xB] /=; rewrite !fineK.
by rewrite in_setI negb_and => /orP[|];
rewrite in_setI negb_and /= (mem_set Dx)/= notin_setE/=.
- rewrite (_ : _ \o _ = (EFin \o g1) \+ (EFin \o g2))// integralD_EFin//.
congr (_ + _); apply: ae_eq_integral => //.
+ apply: (filterS2 _ _ (integrable_ae mD if1) (integrable_ae mD if2)).
move=> x + + Dx => /(_ Dx) f1fin /(_ Dx) f2fin /=; rewrite /g1 /restrict /=.
have [/=|] := boolP (x \in A `&` B); first by rewrite fineK.
by rewrite in_setI negb_and => /orP[|];
rewrite in_setI negb_and /= (mem_set Dx) /= notin_setE/=.
+ apply: (filterS2 _ _ (integrable_ae mD if1) (integrable_ae mD if2)).
move=> x + + Dx => /(_ Dx) f1fin /(_ Dx) f2fin /=; rewrite /g2 /restrict /=.
have [/=|] := boolP (x \in A `&` B); first by rewrite fineK.
by rewrite in_setI negb_and => /orP[|];
rewrite in_setI negb_and /= (mem_set Dx) /= notin_setE.
Qed.
End integralD.
Section integralB.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T).
Variables (mD : measurable D) (f1 f2 : T -> \bar R).
Hypotheses (if1 : mu.-integrable D f1) (if2 : mu.-integrable D f2).
Lemma integralB : \int[mu]_(x in D) (f1 \- f2) x =
\int[mu]_(x in D) f1 x - \int[mu]_(x in D) f2 x.
Proof.
by rewrite -[in RHS]integralD//; exact: integrableN.
Qed.
End integralB.
Section transfer.
Context d1 d2 (X : measurableType d1) (Y : measurableType d2) (R : realType).
Variable phi : X -> Y.
Hypothesis mphi : measurable_fun [set: X] phi.
Variable mu : {measure set X -> \bar R}.
Variables f : Y -> \bar R.
Hypotheses (mf : measurable_fun [set: Y] f)
(intf : mu.-integrable [set: X] (f \o phi)).
Lemma integrable_pushforward :
(pushforward mu mphi).-integrable [set: Y] f.
Proof.
move/integrableP : (intf) => [_]; apply: le_lt_trans.
by rewrite ge0_integral_pushforward//=; exact: measurableT_comp.
Qed.
Local Open Scope ereal_scope.
Lemma integral_pushforward :
\int[pushforward mu mphi]_y f y = \int[mu]_x (f \o phi) x.
Proof.
by apply: eq_integral => x _; rewrite [in RHS](funeposneg (f \o phi)).
rewrite integralB//; [|exact: integrable_funepos|exact: integrable_funeneg].
rewrite -[X in _ = X - _]ge0_integral_pushforward//; last first.
exact: measurable_funepos.
rewrite -[X in _ = _ - X]ge0_integral_pushforward//; last first.
exact: measurable_funeneg.
rewrite -integralB//=; last first.
- by apply: integrable_funeneg => //=; exact: integrable_pushforward.
- by apply: integrable_funepos => //=; exact: integrable_pushforward.
- by apply/eq_integral => x _; rewrite /= [in LHS](funeposneg f).
Qed.
End transfer.
Section integral_measure_add.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(m1 m2 : {measure set T -> \bar R}) (D : set T).
Hypothesis mD : measurable D.
Variable f : T -> \bar R.
Hypothesis intf1 : m1.-integrable D f.
Hypothesis intf2 : m2.-integrable D f.
Hypothesis mf : measurable_fun D f.
Lemma integral_measure_add : \int[measure_add m1 m2]_(x in D) f x =
\int[m1]_(x in D) f x + \int[m2]_(x in D) f x.
Proof.
\int[m2]_(x in D) (f^\+ \- f^\-) x); last first.
by congr +%E; apply: eq_integral => x _; rewrite [in RHS](funeposneg f).
rewrite integralB//; [|exact: integrable_funepos|exact: integrable_funeneg].
rewrite integralB//; [|exact: integrable_funepos|exact: integrable_funeneg].
rewrite addeACA -ge0_integral_measure_add//; last first.
by apply: measurable_funepos; exact: measurable_int intf1.
rewrite -oppeD; last by rewrite ge0_adde_def// inE integral_ge0.
rewrite -ge0_integral_measure_add// 1?integralE//.
by apply: measurable_funeneg; exact: measurable_int intf1.
Qed.
End integral_measure_add.
Section negligible_integral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType)
(mu : {measure set T -> \bar R}).
Lemma negligible_integral (D N : set T) (f : T -> \bar R) :
measurable N -> measurable D -> mu.-integrable D f ->
mu N = 0 -> \int[mu]_(x in D) f x = \int[mu]_(x in D `\` N) f x.
Proof.
- exact: integrable_funeneg.
- exact: integrable_funepos.
- apply: (integrableS mD) => //; first exact: measurableD.
exact: integrable_funeneg.
- apply: (integrableS mD) => //; first exact: measurableD.
exact: integrable_funepos.
- exact: measurableD.
congr (_ - _); apply: ge0_negligible_integral => //; apply: (measurable_int mu).
exact: integrable_funepos.
exact: integrable_funeneg.
Qed.
Lemma null_set_integral (N : set T) (f : T -> \bar R) :
measurable N -> mu.-integrable N f ->
mu N = 0 -> \int[mu]_(x in N) f x = 0.
Proof.
End negligible_integral.
Add Search Blacklist "ge0_negligible_integral".
Section integrable_fune.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Local Open Scope ereal_scope.
Lemma integral_fune_lt_pinfty (f : T -> \bar R) :
mu.-integrable D f -> \int[mu]_(x in D) f x < +oo.
Proof.
[|exact: integrable_funepos|exact: integrable_funeneg].
rewrite lte_add_pinfty ?integral_funepos_lt_pinfty// lteNl ltNye_eq.
by rewrite integrable_neg_fin_num.
Qed.
Lemma integral_fune_fin_num (f : T -> \bar R) :
mu.-integrable D f -> \int[mu]_(x in D) f x \is a fin_num.
Proof.
rewrite lteNl -integralN; first exact/integral_fune_lt_pinfty/integrableN.
by rewrite fin_num_adde_defl// fin_numN integrable_neg_fin_num.
Qed.
End integrable_fune.
Section integral_counting.
Local Open Scope ereal_scope.
Variable R : realType.
Lemma counting_dirac (A : set nat) :
counting A = \sum_(n <oo) \d_ n A :> \bar R.
Proof.
rewrite nneseries_esum// (_ : [set _ | _] = setT); last exact/seteqP.
rewrite [in LHS](esumID A)// !setTI [X in _ + X](_ : _ = 0) ?adde0//.
by apply: esum1 => i Ai; rewrite /= /dirac indicE memNset.
rewrite /counting/=; case: ifPn => /asboolP finA.
by rewrite -finite_card_dirac.
by rewrite infinite_card_dirac.
Qed.
Lemma summable_integral_dirac (a : nat -> \bar R) : summable setT a ->
\sum_(n <oo) `|\int[\d_ n]_x a x| < +oo.
Proof.
apply: (@le_lt_trans _ _ (\sum_(i <oo) `|fine (a i)|%:E)).
apply: lee_nneseries => // n _; rewrite integral_dirac//.
move: (@summable_pinfty _ _ _ _ sa n Logic.I).
by case: (a n) => //= r _; rewrite indicE/= mem_set// mul1r.
move: (sa); rewrite /summable -fun_true -nneseries_esum//; apply: le_lt_trans.
by apply lee_nneseries => // n _ /=; case: (a n) => //; rewrite leey.
Qed.
Lemma integral_count (a : nat -> \bar R) : summable setT a ->
\int[counting]_t (a t) = \sum_(k <oo) (a k).
Proof.
transitivity (\int[mseries (fun n => \d_ n) O]_t a t).
congr (integral _ _ _); apply/funext => A.
by rewrite /= counting_dirac.
rewrite (@integral_measure_series _ _ R (fun n => \d_ n) setT)//=.
- by apply: eq_eseriesr=> i _; rewrite integral_dirac//= diracT mul1e.
- move=> n; apply/integrableP; split=> [//|].
by rewrite integral_dirac//= diracT mul1e (summable_pinfty sa).
- by apply: summable_integral_dirac => //; exact: summable_funeneg.
- by apply: summable_integral_dirac => //; exact: summable_funepos.
Qed.
Lemma ge0_integral_count (a : nat -> \bar R) : (forall k, 0 <= a k) ->
\int[counting]_t (a t) = \sum_(k <oo) (a k).
Proof.
End integral_counting.
Section subadditive_countable.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable (mu : {measure set T -> \bar R}).
Lemma integrable_abse (D : set T) (f : T -> \bar R) :
mu.-integrable D f -> mu.-integrable D (abse \o f).
Proof.
exact: measurableT_comp.
by under eq_integral do rewrite abse_id.
Qed.
Lemma integrable_summable (F : (set T)^nat) (g : T -> \bar R):
trivIset setT F -> (forall k, measurable (F k)) ->
mu.-integrable (\bigcup_k F k) g ->
summable [set: nat] (fun i => \int[mu]_(x in F i) g x).
Proof.
rewrite /summable -(_ : [set _ | true] = setT); last exact/seteqP.
rewrite -nneseries_esum//.
have [mf {fi}] := integrableP _ _ _ fi.
rewrite ge0_integral_bigcup//; last exact: measurableT_comp.
apply: le_lt_trans; apply: lee_lim.
- exact: is_cvg_ereal_nneg_natsum_cond.
- by apply: is_cvg_ereal_nneg_natsum_cond => n _ _; exact: integral_ge0.
- apply: nearW => n; apply: lee_sum => m _; apply: le_abse_integral => //.
apply: measurable_funS mf => //; [exact: bigcup_measurable|].
exact: bigcup_sup.
Qed.
Lemma integral_bigcup (F : (set _)^nat) (g : T -> \bar R) :
trivIset setT F -> (forall k, measurable (F k)) ->
mu.-integrable (\bigcup_k F k) g ->
(\int[mu]_(x in \bigcup_i F i) g x = \sum_(i <oo) \int[mu]_(x in F i) g x)%E.
Proof.
have ? : \int[mu]_(x in \bigcup_i F i) g x \is a fin_num.
rewrite fin_numElt -(lte_absl _ +oo).
apply: le_lt_trans (integrableP _ _ _ fi).2; apply: le_abse_integral => //.
exact: bigcupT_measurable.
exact: measurable_int fi.
transitivity (\int[mu]_(x in \bigcup_i F i) g^\+ x -
\int[mu]_(x in \bigcup_i F i) g^\- x)%E.
rewrite -integralB; last 3 first.
- exact: bigcupT_measurable.
- by apply: integrable_funepos => //; exact: bigcupT_measurable.
- by apply: integrable_funeneg => //; exact: bigcupT_measurable.
by apply: eq_integral => t Ft; rewrite [in LHS](funeposneg g).
transitivity (\sum_(i <oo) (\int[mu]_(x in F i) g^\+ x -
\int[mu]_(x in F i) g^\- x)); last first.
by apply: eq_eseriesr => // i; rewrite [RHS]integralE.
transitivity ((\sum_(i <oo) \int[mu]_(x in F i) g^\+ x) -
(\sum_(i <oo) \int[mu]_(x in F i) g^\- x))%E.
rewrite ge0_integral_bigcup//; last first.
by apply: measurable_funepos; case/integrableP : fi.
rewrite ge0_integral_bigcup//.
apply: measurable_funepos; apply: measurableT_comp => //.
by case/integrableP : fi.
rewrite [X in X - _]nneseries_esum; last by move=> n _; exact: integral_ge0.
rewrite [X in _ - X]nneseries_esum; last by move=> n _; exact: integral_ge0.
rewrite set_true -esumB//=; last 4 first.
- apply: integrable_summable => //; apply: integrable_funepos => //.
exact: bigcup_measurable.
- apply: integrable_summable => //; apply: integrable_funepos => //.
exact: bigcup_measurable.
- exact: integrableN.
- by move=> n _; exact: integral_ge0.
- by move=> n _; exact: integral_ge0.
rewrite summable_eseries; last first.
under [X in summable _ X]eq_fun do rewrite -integralE.
by rewrite fun_true; exact: integrable_summable.
by congr (_ - _)%E; rewrite nneseries_esum// set_true.
Qed.
End subadditive_countable.
Section dominated_convergence_lemma.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variables (f_ : (T -> \bar R)^nat) (f : T -> \bar R) (g : T -> \bar R).
Hypothesis mf_ : forall n, measurable_fun D (f_ n).
Hypothesis f_f : forall x, D x -> f_ ^~ x @ \oo --> f x.
Hypothesis fing : forall x, D x -> g x \is a fin_num.
Hypothesis ig : mu.-integrable D g.
Hypothesis absfg : forall n x, D x -> `|f_ n x| <= g x.
Let g0 x : D x -> 0 <= g x.
Let mf : measurable_fun D f.
Proof.
Local Lemma dominated_integrable : mu.-integrable D f.
Proof.
move=> Dx; have /(@cvg_lim _) <- // : `|f_ n x| @[n --> \oo] --> `|f x|.
by apply: cvg_abse => //; exact: f_f.
apply: lime_le => //.
- by apply: is_cvg_abse; apply/cvg_ex; eexists; exact: f_f.
- by apply: nearW => n; exact: absfg.
move: ig => /integrableP[mg]; apply: le_lt_trans; apply: ge0_le_integral => //.
- exact: measurableT_comp.
- exact: measurableT_comp.
- by move=> x Dx /=; rewrite (gee0_abs (g0 Dx)); exact: Dfg.
Qed.
Let g_ n x := `|f_ n x - f x|.
Let cvg_g_ x : D x -> g_ ^~ x @ \oo --> 0.
Proof.
move: (f_f Dx); case: (f x) => [r|/=|/=].
- by move=> f_r; apply/cvge_sub0.
- move/cvgeyPge/(_ (fine (g x) + 1)%R) => [n _]/(_ _ (leqnn n))/= h.
have : (fine (g x) + 1)%:E <= g x.
by rewrite (le_trans h)// (le_trans _ (absfg n Dx))// lee_abs.
by case: (g x) (fing Dx) => [r _| |]//; rewrite leNgt EFinD lteDl ?lte01.
- move/cvgeNyPle/(_ (- (fine (g x) + 1))%R) => [n _]/(_ _ (leqnn n)) h.
have : (fine (g x) + 1)%:E <= g x.
move: h; rewrite EFinN leeNr => /le_trans ->//.
by rewrite (le_trans _ (absfg n Dx))// -abseN lee_abs.
by case: (g x) (fing Dx) => [r _| |]//; rewrite leNgt EFinD lteDl ?lte01.
Qed.
Let gg_ n x : D x -> 0 <= 2%:E * g x - g_ n x.
Proof.
rewrite -(fineK (fing Dx)) -EFinM mulr_natl mulr2n /g_.
rewrite (le_trans (lee_abs_sub _ _))// [in leRHS]EFinD leeD//.
by rewrite fineK// ?fing// absfg.
have f_fx : `|(f_ n x)| @[n --> \oo] --> `|f x| by apply: cvg_abse; exact: f_f.
move/cvg_lim : (f_fx) => <-//.
apply: lime_le; first by apply/cvg_ex; eexists; exact: f_fx.
by apply: nearW => k; rewrite fineK ?fing//; apply: absfg.
Qed.
Let mgg n : measurable_fun D (fun x => 2%:E * g x - g_ n x).
Proof.
by apply/measurableT_comp => //; exact: emeasurable_funB.
Qed.
Let gg_ge0 n x : D x -> 0 <= 2%:E * g x - g_ n x.
Proof.
Local Lemma dominated_cvg0 : [sequence \int[mu]_(x in D) g_ n x]_n @ \oo --> 0.
Proof.
rewrite [X in X <= _ -> _](_ : _ = \int[mu]_(x in D) (2%:E * g x) ); last first.
apply: eq_integral => t; rewrite inE => Dt.
rewrite limn_einf_shift//; last by rewrite fin_numM// fing.
rewrite is_cvg_limn_einfE//; last first.
by apply: is_cvgeN; apply/cvg_ex; eexists; exact: cvg_g_.
rewrite [X in _ + X](_ : _ = 0) ?adde0//; apply/cvg_lim => //.
by rewrite -oppe0; apply: cvgeN; exact: cvg_g_.
have i2g : \int[mu]_(x in D) (2%:E * g x) < +oo.
rewrite integralZl// lte_mul_pinfty// ?lee_fin//; case: (integrableP _ _ _ ig) => _.
apply: le_lt_trans; rewrite le_eqVlt; apply/orP; left; apply/eqP.
by apply: eq_integral => t Dt; rewrite gee0_abs// g0//; rewrite inE in Dt.
have ? : \int[mu]_(x in D) (2%:E * g x) \is a fin_num.
by rewrite ge0_fin_numE// integral_ge0// => ? ?; rewrite mule_ge0 ?lee_fin ?g0.
rewrite [X in _ <= X -> _](_ : _ = \int[mu]_(x in D) (2%:E * g x) + -
limn_esup (fun n => \int[mu]_(x in D) g_ n x)); last first.
rewrite (_ : (fun _ => _) = (fun n => \int[mu]_(x in D) (2%:E * g x) +
\int[mu]_(x in D) - g_ n x)); last first.
rewrite funeqE => n; rewrite integralB//.
- by rewrite -integral_ge0N// => x Dx//; rewrite /g_.
- exact: integrableZl.
- have integrable_normfn : mu.-integrable D (abse \o f_ n).
apply: le_integrable ig => //; first exact: measurableT_comp.
by move=> x Dx /=; rewrite abse_id (le_trans (absfg _ Dx))// lee_abs.
suff: mu.-integrable D (fun x => `|f_ n x| + `|f x|).
apply: le_integrable => //.
- by apply: measurableT_comp => //; exact: emeasurable_funB.
- move=> x Dx.
by rewrite /g_ abse_id (le_trans (lee_abs_sub _ _))// lee_abs.
apply: integrableD; [by []| by []|].
apply: le_integrable dominated_integrable => //.
- exact: measurableT_comp.
- by move=> x Dx; rewrite /= abse_id.
rewrite limn_einf_shift // -limn_einfN; congr (_ + limn_einf _).
by rewrite funeqE => n /=; rewrite -integral_ge0N// => x Dx; rewrite /g_.
rewrite addeC -leeBlDr// subee// leeNr oppe0 => lim_ge0.
by apply/limn_esup_le_cvg => // n; rewrite integral_ge0// => x _; rewrite /g_.
Qed.
Local Lemma dominated_cvg :
\int[mu]_(x in D) f_ n x @[n \oo] --> \int[mu]_(x in D) f x.
Proof.
<= \int[mu]_(x in D) g_ n x.
rewrite -(integralB _ _ dominated_integrable)//; last first.
by apply: le_integrable ig => // x Dx /=; rewrite (gee0_abs (g0 Dx)) absfg.
by apply: le_abse_integral => //; exact: emeasurable_funB.
suff: `| \int[mu]_(x in D) f_ n x - \int[mu]_(x in D) f x | @[n \oo] --> 0.
move/cvg_abse0P/cvge_sub0; apply.
rewrite fin_numElt (_ : -oo = - +oo)// -lte_absl.
move: dominated_integrable => /integrableP[?]; apply: le_lt_trans.
by apply: (le_trans _ (@le_abse_integral _ _ _ mu D f mD _)).
apply: (@squeeze_cvge _ _ _ _ (cst 0) _ (fun n => \int[mu]_(x in D) g_ n x)).
- by apply: nearW => n; rewrite abse_ge0//=; exact: h.
- exact: cvg_cst.
- exact: dominated_cvg0.
Qed.
End dominated_convergence_lemma.
Arguments dominated_integrable {d T R mu D} _ f_ f g.
Section dominated_convergence_theorem.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (D : set T) (mD : measurable D).
Variables (f_ : (T -> \bar R)^nat) (f : T -> \bar R) (g : T -> \bar R).
Hypothesis mf_ : forall n, measurable_fun D (f_ n).
Hypothesis mf : measurable_fun D f.
Hypothesis f_f : {ae mu, forall x, D x -> f_ ^~ x @ \oo --> f x}.
Hypothesis ig : mu.-integrable D g.
Hypothesis f_g : {ae mu, forall x n, D x -> `|f_ n x| <= g x}.
Let g_ n x := `|f_ n x - f x|.
Theorem dominated_convergence : [/\ mu.-integrable D f,
[sequence \int[mu]_(x in D) (g_ n x)]_n @ \oo --> 0 &
[sequence \int[mu]_(x in D) (f_ n x)]_n @ \oo --> \int[mu]_(x in D) (f x) ].
Proof.
have [N2 [mN2 N20 subN2]] := f_g.
have [N3 [mN3 N30 subN3]] := integrable_ae mD ig.
pose N := N1 `|` N2 `|` N3.
have mN : measurable N by apply: measurableU => //; exact: measurableU.
have N0 : mu N = 0.
by rewrite null_set_setU// ?null_set_setU//; exact: measurableU.
pose f' := f \_ (D `\` N); pose g' := g \_ (D `\` N).
pose f_' := fun n => f_ n \_ (D `\` N).
have f_f' x : D x -> f_' ^~ x @ \oo --> f' x.
move=> Dx; rewrite /f_' /f' /restrict in_setD mem_set//=.
have [/= xN|/= xN] := boolP (x \in N); first exact: cvg_cst.
apply: contraPP (xN) => h; apply/negP; rewrite negbK inE; left; left.
by apply: subN1 => /= /(_ Dx); exact: contra_not h.
have f_g' n x : D x -> `|f_' n x| <= g' x.
move=> Dx; rewrite /f_' /g' /restrict in_setD mem_set//=.
have [/=|/= xN] := boolP (x \in N); first by rewrite normr0.
apply: contrapT => fg; move: xN; apply/negP; rewrite negbK inE; left; right.
by apply: subN2 => /= /(_ n Dx).
have mu_ n : measurable_fun D (f_' n).
apply/measurable_restrict => //; first exact: measurableD.
exact: measurable_funS (mf_ _).
have ig' : mu.-integrable D g'.
apply: (integrableS measurableT) => //.
apply/(integrable_mkcond g (measurableD mD mN)).1.
by apply: integrableS ig => //; exact: measurableD.
have finv x : D x -> g' x \is a fin_num.
move=> Dx; rewrite /g' /restrict in_setD// mem_set//=.
have [//|xN /=] := boolP (x \in N).
apply: contrapT => fing; move: xN; apply/negP; rewrite negbK inE; right.
by apply: subN3 => /= /(_ Dx).
split.
- have /integrableP if' : mu.-integrable D f'.
exact: (dominated_integrable _ f_' _ g').
apply/integrableP; split => //.
move: if' => [?]; apply: le_lt_trans.
rewrite le_eqVlt; apply/orP; left; apply/eqP/ae_eq_integral => //;
[exact: measurableT_comp|exact: measurableT_comp|].
exists N; split => //; rewrite -(setCK N); apply: subsetC => x Nx Dx.
by rewrite /f' /restrict mem_set.
- have := @dominated_cvg0 _ _ _ _ _ mD _ _ _ mu_ f_f' finv ig' f_g'.
set X := (X in _ -> X @ \oo --> _).
rewrite [X in X @ \oo --> _ -> _](_ : _ = X) //.
apply/funext => n; apply: ae_eq_integral => //.
+ apply: measurableT_comp => //; apply: emeasurable_funB => //.
apply/measurable_restrict => //; first exact: measurableD.
exact: (measurable_funS mD).
+ by rewrite /g_; apply: measurableT_comp => //; exact: emeasurable_funB.
+ exists N; split => //; rewrite -(setCK N); apply: subsetC => x /= Nx Dx.
by rewrite /f_' /f' /restrict mem_set.
- have := @dominated_cvg _ _ _ _ _ mD _ _ _ mu_ f_f' finv ig' f_g'.
set X := (X in _ -> X @ \oo --> _).
rewrite [X in X @ \oo --> _ -> _](_ : _ = X) //; last first.
apply/funext => n; apply: ae_eq_integral => //.
exists N; split => //; rewrite -(setCK N); apply: subsetC => x /= Nx Dx.
by rewrite /f_' /restrict mem_set.
set Y := (X in _ -> _ --> X); rewrite [X in _ --> X -> _](_ : _ = Y) //.
apply: ae_eq_integral => //.
apply/measurable_restrict => //; first exact: measurableD.
exact: (measurable_funS mD).
exists N; split => //; rewrite -(setCK N); apply: subsetC => x /= Nx Dx.
by rewrite /f' /restrict mem_set.
Qed.
End dominated_convergence_theorem.
Section Rintegral.
Context d {T : measurableType d} {R : realType}.
Variable mu : {measure set T -> \bar R}.
Implicit Types (D A B : set T) (f : T -> R).
Lemma eq_Rintegral D g f : {in D, f =1 g} ->
\int[mu]_(x in D) f x = \int[mu]_(x in D) g x.
Proof.
Lemma Rintegral_mkcond D f : \int[mu]_(x in D) f x = \int[mu]_x (f \_ D) x.
Proof.
Lemma Rintegral_mkcondr D P f :
\int[mu]_(x in D `&` P) f x = \int[mu]_(x in D) (f \_ P) x.
Proof.
Lemma Rintegral_mkcondl D P f :
\int[mu]_(x in P `&` D) f x = \int[mu]_(x in D) (f \_ P) x.
Proof.
Lemma RintegralZl D f r : measurable D -> mu.-integrable D (EFin \o f) ->
\int[mu]_(x in D) (r * f x) = r * \int[mu]_(x in D) f x.
Proof.
exact: integral_fune_fin_num.
by congr fine; under eq_integral do rewrite EFinM; exact: integralZl.
Qed.
Lemma RintegralZr D f r : measurable D -> mu.-integrable D (EFin \o f) ->
\int[mu]_(x in D) (f x * r) = \int[mu]_(x in D) f x * r.
Proof.
Lemma Rintegral_ge0 D f : (forall x, D x -> 0 <= f x) ->
0 <= \int[mu]_(x in D) f x.
Proof.
Lemma le_normr_integral D f : measurable D -> mu.-integrable D (EFin \o f) ->
`|\int[mu]_(t in D) f t| <= \int[mu]_(t in D) `|f t|.
Proof.
rewrite -lee_fin; apply: le_trans.
apply: (le_trans _ (le_abse_integral mu mA mf)).
rewrite /abse.
have [/fineK <-//|] := boolP (\int[mu]_(x in D) (EFin \o f) x \is a fin_num)%E.
by rewrite fin_numEn => /orP[|] /eqP ->; rewrite leey.
rewrite /Rintegral.
move: ifoo.
rewrite -ge0_fin_numE; last exact: integral_ge0.
move/fineK ->.
by apply: ge0_le_integral => //=; do 2 apply: measurableT_comp => //;
exact/measurable_EFinP.
Qed.
Lemma Rintegral_setU_EFin (A B : set T) (f : T -> R) :
d.-measurable A -> d.-measurable B ->
mu.-integrable (A `|` B) (EFin \o f) -> [disjoint A & B] ->
\int[mu]_(x in (A `|` B)) f x = \int[mu]_(x in A) f x + \int[mu]_(x in B) f x.
Proof.
exact/measurable_EFinP/(measurable_int mu).
have mAf : mu.-integrable A (EFin \o f).
by apply: integrableS mf => //; exact: measurableU.
have mBf : mu.-integrable B (EFin \o f).
by apply: integrableS mf => //; exact: measurableU.
move/integrableP : mAf => [mAf itAfoo].
move/integrableP : mBf => [mBf itBfoo].
rewrite fineD//.
- by rewrite fin_num_abs (le_lt_trans _ itAfoo)//; exact: le_abse_integral.
- by rewrite fin_num_abs (le_lt_trans _ itBfoo)//; exact: le_abse_integral.
Qed.
Lemma Rintegral_set0 f : \int[mu]_(x in set0) f x = 0.
Proof.
End Rintegral.
Section ae_ge0_le_integral.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType).
Variable mu : {measure set T -> \bar R}.
Variables (D : set T) (mD : measurable D) (f1 f2 : T -> \bar R).
Hypothesis f10 : forall x, D x -> 0 <= f1 x.
Hypothesis mf1 : measurable_fun D f1.
Hypothesis f20 : forall x, D x -> 0 <= f2 x.
Hypothesis mf2 : measurable_fun D f2.
Lemma ae_ge0_le_integral : {ae mu, forall x, D x -> f1 x <= f2 x} ->
\int[mu]_(x in D) f1 x <= \int[mu]_(x in D) f2 x.
Proof.
rewrite [leRHS](ge0_negligible_integral _ _ _ _ muN)//.
apply: ge0_le_integral; first exact: measurableD.
- by move=> t [Dt _]; exact: f10.
- exact: measurable_funS mf1.
- by move=> t [Dt _]; exact: f20.
- exact: measurable_funS mf2.
- by move=> t [Dt Nt]; move/subsetCl : f1f2N; apply.
Qed.
End ae_ge0_le_integral.
Section integral_bounded.
Context d {T : measurableType d} {R : realType}.
Variable mu : {measure set T -> \bar R}.
Local Open Scope ereal_scope.
Lemma integral_le_bound (D : set T) (f : T -> \bar R) (M : \bar R) :
measurable D -> measurable_fun D f -> 0 <= M ->
{ae mu, forall x, D x -> `|f x| <= M} ->
\int[mu]_(x in D) `|f x| <= M * mu D.
Proof.
by apply: ae_ge0_le_integral => //; exact: measurableT_comp.
Qed.
End integral_bounded.
Arguments integral_le_bound {d T R mu D f} M.
Section integral_ae_eq.
Local Open Scope ereal_scope.
Context d (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}).
Let integral_measure_lt (D : set T) (mD : measurable D) (g f : T -> \bar R) :
mu.-integrable D f -> mu.-integrable D g ->
(forall E, E `<=` D -> measurable E ->
\int[mu]_(x in E) f x = \int[mu]_(x in E) g x) ->
mu (D `&` [set x | g x < f x]) = 0.
Proof.
have msf := measurable_int _ itf.
have msg := measurable_int _ itg.
have mE j : measurable (E j).
rewrite /E; apply: emeasurable_fun_le => //.
by apply/(emeasurable_funD msf)/measurableT_comp => //; case: mg.
have muE j : mu (E j) = 0.
apply/eqP; rewrite -measure_le0.
have fg0 : \int[mu]_(x in E j) (f \- g) x = 0.
rewrite integralB//; last 2 first.
by apply: integrableS itf => //; exact: subIsetl.
by apply: integrableS itg => //; exact: subIsetl.
rewrite fg//; last apply: subIsetl.
rewrite subee// fin_num_abs (le_lt_trans (le_abse_integral _ _ _))//.
by apply: measurable_funS msg => //; first exact: subIsetl.
apply: le_lt_trans (integrableP _ _ _ itg).2.
apply: ge0_subset_integral => //; first exact: measurableT_comp msg.
exact: subIsetl.
suff : mu (E j) <= j.+1%:R%:E * \int[mu]_(x in E j) (f \- g) x.
by rewrite fg0 mule0.
apply: (@le_trans _ _ (j.+1%:R%:E * \int[mu]_(x in E j) j.+1%:R^-1%:E)).
by rewrite integral_cst// muleA -EFinM divrr ?unitfE// mul1e.
rewrite lee_pmul//; first exact: integral_ge0.
apply: ge0_le_integral => //; [| |by move=> x []].
- by move=> x [_/=]; exact: le_trans.
- apply: emeasurable_funB.
+ by apply: measurable_funS msf => //; exact: subIsetl.
+ by apply: measurable_funS msg => //; exact: subIsetl.
have nd_E : {homo E : n0 m / (n0 <= m)%N >-> (n0 <= m)%O}.
move=> i j ij; apply/subsetPset => x [Dx /= ifg]; split => //.
by move: ifg; apply: le_trans; rewrite lee_fin lef_pV2// ?posrE// ler_nat.
rewrite set_lte_bigcup.
have /cvg_lim h1 : (mu \o E) x @[x --> \oo]--> 0.
by apply: cvg_near_cst; exact: nearW.
have := @nondecreasing_cvg_mu _ _ _ mu E mE (bigcupT_measurable E mE) nd_E.
by move/cvg_lim => h2; rewrite setI_bigcupr -h2// h1.
Qed.
Lemma integral_ae_eq (D : set T) (mD : measurable D) (g f : T -> \bar R) :
mu.-integrable D f -> measurable_fun D g ->
(forall E, E `<=` D -> measurable E ->
\int[mu]_(x in E) f x = \int[mu]_(x in E) g x) ->
ae_eq mu D f g.
Proof.
apply/integrableP; split => //; apply/abse_integralP => //; rewrite -fg//.
by apply/abse_integralP => //; case/integrableP : fi.
have mugf : mu (D `&` [set x | g x < f x]) = 0 by apply: integral_measure_lt.
have mufg : mu (D `&` [set x | f x < g x]) = 0.
by apply: integral_measure_lt => // E ED mE; rewrite fg.
have h : ~` [set x | D x -> f x = g x] = D `&` [set x | f x != g x].
apply/seteqP; split => [x/= /not_implyP[? /eqP]//|x/= [Dx fgx]].
by apply/not_implyP; split => //; exact/eqP.
apply/negligibleP.
by rewrite h; apply: emeasurable_fun_neq.
rewrite h set_neq_lt setIUr measureU//.
- by rewrite [X in X + _]mufg add0e [LHS]mugf.
- exact: emeasurable_fun_lt.
- exact: emeasurable_fun_lt.
- apply/seteqP; split => [x [[Dx/= + [_]]]|//].
by move=> /lt_trans => /[apply]; rewrite ltxx.
Qed.
End integral_ae_eq.
Section measurable_section.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Implicit Types (A : set (T1 * T2)).
Lemma measurable_xsection A x : measurable A -> measurable (xsection A x).
Proof.
Lemma measurable_ysection A y : measurable A -> measurable (ysection A y).
Proof.
End measurable_section.
Section ndseq_closed_B.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Implicit Types A : set (T1 * T2).
Section xsection.
Variables (pt2 : T2) (m2 : T1 -> {measure set T2 -> \bar R}).
Let phi A x := m2 x (xsection A x).
Let B := [set A | measurable A /\ measurable_fun setT (phi A)].
Lemma xsection_ndseq_closed : ndseq_closed B.
Proof.
by apply: bigcupT_measurable => n; have [] := BF n.
have phiF x : phi (F i) x @[i \oo] --> phi (\bigcup_i F i) x.
rewrite /phi /= xsection_bigcup; apply: nondecreasing_cvg_mu.
- by move=> n; apply: measurable_xsection; case: (BF n).
- by apply: bigcupT_measurable => i; apply: measurable_xsection; case: (BF i).
- by move=> m n mn; exact/subsetPset/le_xsection/subsetPset/ndF.
apply: (emeasurable_fun_cvg (phi \o F)) => //.
- by move=> i; have [] := BF i.
- by move=> x _; exact: phiF.
Qed.
Section ysection.
Variable m1 : {measure set T1 -> \bar R}.
Let psi A := m1 \o ysection A.
Let B := [set A | measurable A /\ measurable_fun setT (psi A)].
Lemma ysection_ndseq_closed : ndseq_closed B.
Proof.
by apply: bigcupT_measurable => n; have [] := BF n.
have psiF x : psi (F i) x @[i \oo] --> psi (\bigcup_i F i) x.
rewrite /psi /= ysection_bigcup; apply: nondecreasing_cvg_mu.
- by move=> n; apply: measurable_ysection; case: (BF n).
- by apply: bigcupT_measurable => i; apply: measurable_ysection; case: (BF i).
- by move=> m n mn; exact/subsetPset/le_ysection/subsetPset/ndF.
apply: (emeasurable_fun_cvg (psi \o F)) => //.
- by move=> i; have [] := BF i.
- by move=> x _; exact: psiF.
Qed.
End ndseq_closed_B.
Section measurable_prod_subset.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Implicit Types A : set (T1 * T2).
Section xsection.
Variable (m2 : {measure set T2 -> \bar R}) (D : set T2) (mD : measurable D).
Let m2D := mrestr m2 mD.
HB.instance Definition _ := Measure.on m2D.
Let phi A := m2D \o xsection A.
Let B := [set A | measurable A /\ measurable_fun setT (phi A)].
Lemma measurable_prod_subset_xsection
(m2D_bounded : exists M, forall X, measurable X -> (m2D X < M%:E)%E) :
measurable `<=` B.
Proof.
set C := [set A1 `*` A2 | A1 in measurable & A2 in measurable].
have CI : setI_closed C.
move=> X Y [X1 mX1 [X2 mX2 <-{X}]] [Y1 mY1 [Y2 mY2 <-{Y}]].
exists (X1 `&` Y1); first exact: measurableI.
by exists (X2 `&` Y2); [exact: measurableI|rewrite setXI].
have CT : C setT by exists setT => //; exists setT => //; rewrite setXTT.
have CB : C `<=` B.
move=> X [X1 mX1 [X2 mX2 <-{X}]]; split; first exact: measurableX.
have -> : phi (X1 `*` X2) = (fun x => m2D X2 * (\1_X1 x)%:E)%E.
rewrite funeqE => x; rewrite indicE /phi /m2/= /mrestr.
have [xX1|xX1] := boolP (x \in X1); first by rewrite mule1 in_xsectionX.
by rewrite mule0 notin_xsectionX// set0I measure0.
exact/measurable_funeM/measurable_EFinP.
suff lsystemB : lambda_system setT B by exact: lambda_system_subset.
split => //; [exact: CB| |exact: xsection_ndseq_closed].
move=> X Y XY [mX mphiX] [mY mphiY]; split; first exact: measurableD.
have -> : phi (X `\` Y) = (fun x => phi X x - phi Y x)%E.
rewrite funeqE => x; rewrite /phi/= xsectionD// /m2D measureD.
- by rewrite setIidr//; exact: le_xsection.
- exact: measurable_xsection.
- exact: measurable_xsection.
- move: m2D_bounded => [M m2M].
rewrite (lt_le_trans (m2M (xsection X x) _))// ?leey//.
exact: measurable_xsection.
exact: emeasurable_funB.
Qed.
End xsection.
Section ysection.
Variable (m1 : {measure set T1 -> \bar R}) (D : set T1) (mD : measurable D).
Let m1D := mrestr m1 mD.
HB.instance Definition _ := Measure.on m1D.
Let psi A := m1D \o ysection A.
Let B := [set A | measurable A /\ measurable_fun setT (psi A)].
Lemma measurable_prod_subset_ysection
(m1_bounded : exists M, forall X, measurable X -> (m1D X < M%:E)%E) :
measurable `<=` B.
Proof.
set C := [set A1 `*` A2 | A1 in measurable & A2 in measurable].
have CI : setI_closed C.
move=> X Y [X1 mX1 [X2 mX2 <-{X}]] [Y1 mY1 [Y2 mY2 <-{Y}]].
exists (X1 `&` Y1); first exact: measurableI.
by exists (X2 `&` Y2); [exact: measurableI|rewrite setXI].
have CT : C setT by exists setT => //; exists setT => //; rewrite setXTT.
have CB : C `<=` B.
move=> X [X1 mX1 [X2 mX2 <-{X}]]; split; first exact: measurableX.
have -> : psi (X1 `*` X2) = (fun x => m1D X1 * (\1_X2 x)%:E)%E.
rewrite funeqE => y; rewrite indicE /psi /m1/= /mrestr.
have [yX2|yX2] := boolP (y \in X2); first by rewrite mule1 in_ysectionX.
by rewrite mule0 notin_ysectionX// set0I measure0.
exact/measurable_funeM/measurable_EFinP.
suff lsystemB : lambda_system setT B by exact: lambda_system_subset.
split => //; [exact: CB| |exact: ysection_ndseq_closed].
move=> X Y XY [mX mphiX] [mY mphiY]; split; first exact: measurableD.
rewrite (_ : psi _ = (psi X \- psi Y)%E); first exact: emeasurable_funB.
rewrite funeqE => y; rewrite /psi/= ysectionD// /m1D measureD.
- by rewrite setIidr//; exact: le_ysection.
- exact: measurable_ysection.
- exact: measurable_ysection.
- have [M m1M] := m1_bounded.
rewrite (lt_le_trans (m1M (ysection X y) _))// ?leey//.
exact: measurable_ysection.
Qed.
End ysection.
End measurable_prod_subset.
Section measurable_fun_xsection.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m2 : {sigma_finite_measure set T2 -> \bar R}.
Implicit Types A : set (T1 * T2).
Let phi A := m2 \o xsection A.
Let B := [set A | measurable A /\ measurable_fun setT (phi A)].
Lemma measurable_fun_xsection A : measurable A -> measurable_fun setT (phi A).
Proof.
have /sigma_finiteP [F [F_T F_nd F_oo]] := sigma_finiteT m2 => X mX.
have -> : X = \bigcup_n (X `&` (setT `*` F n)).
by rewrite -setI_bigcupr -setX_bigcupr -F_T setXTT setIT.
apply: xsection_ndseq_closed.
move=> m n mn; apply/subsetPset; apply: setIS; apply: setSX => //.
exact/subsetPset/F_nd.
move=> n; rewrite -/B; have [? ?] := F_oo n.
pose m2Fn := mrestr m2 (F_oo n).1.
have m2Fn_bounded : exists M, forall X, measurable X -> (m2Fn X < M%:E)%E.
exists (fine (m2Fn (F n)) + 1) => Y mY.
rewrite [in ltRHS]EFinD lte_spadder// fineK; last first.
by rewrite ge0_fin_numE ?measure_ge0//= /m2Fn /mrestr setIid.
by rewrite /m2Fn /mrestr/= setIid le_measure// inE//; exact: measurableI.
pose phi' A := m2Fn \o xsection A.
pose B' := [set A | measurable A /\ measurable_fun setT (phi' A)].
have subset_B' : measurable `<=` B' by exact: measurable_prod_subset_xsection.
split=> [|_ Y mY]; first by apply: measurableI => //; exact: measurableX.
have [_ /(_ measurableT Y mY)] := subset_B' X mX.
have ->// : phi' X = m2 \o xsection (X `&` setT `*` F n).
by apply/funext => x/=; rewrite /phi' setTX xsectionI xsection_preimage_snd.
Qed.
End measurable_fun_xsection.
Section measurable_fun_ysection.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m1 : {sigma_finite_measure set T1 -> \bar R}.
Implicit Types A : set (T1 * T2).
Let phi A := m1 \o ysection A.
Let B := [set A | measurable A /\ measurable_fun setT (phi A)].
Lemma measurable_fun_ysection A : measurable A -> measurable_fun setT (phi A).
Proof.
have /sigma_finiteP[F [F_T F_nd F_oo]] := sigma_finiteT m1 => X mX.
have -> : X = \bigcup_n (X `&` (F n `*` setT)).
by rewrite -setI_bigcupr -setX_bigcupl -F_T setXTT setIT.
apply: ysection_ndseq_closed.
move=> m n mn; apply/subsetPset; apply: setIS; apply: setSX => //.
exact/subsetPset/F_nd.
move=> n; have [? ?] := F_oo n; rewrite -/B.
pose m1Fn := mrestr m1 (F_oo n).1.
have m1Fn_bounded : exists M, forall X, measurable X -> (m1Fn X < M%:E)%E.
exists (fine (m1Fn (F n)) + 1) => Y mY.
rewrite [in ltRHS]EFinD lte_spadder// fineK; last first.
by rewrite ge0_fin_numE ?measure_ge0// /m1Fn/= /mrestr setIid.
by rewrite /m1Fn/= /mrestr setIid le_measure// inE//=; exact: measurableI.
pose psi' A := m1Fn \o ysection A.
pose B' := [set A | measurable A /\ measurable_fun setT (psi' A)].
have subset_B' : measurable `<=` B' by exact: measurable_prod_subset_ysection.
split=> [|_ Y mY]; first by apply: measurableI => //; exact: measurableX.
have [_ /(_ measurableT Y mY)] := subset_B' X mX.
have ->// : psi' X = m1 \o (ysection (X `&` F n `*` setT)).
by apply/funext => y/=; rewrite /psi' setXT ysectionI// ysection_preimage_fst.
Qed.
End measurable_fun_ysection.
Section product_measures.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Context (m1 : set T1 -> \bar R) (m2 : set T2 -> \bar R).
Definition product_measure1 := (fun A => \int[m1]_x (m2 \o xsection A) x)%E.
Definition product_measure2 := (fun A => \int[m2]_x (m1 \o ysection A) x)%E.
End product_measures.
Notation "m1 '\x' m2" := (product_measure1 m1 m2) : ereal_scope.
Notation "m1 '\x^' m2" := (product_measure2 m1 m2) : ereal_scope.
Section product_measure1.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m1 : {measure set T1 -> \bar R}.
Variable m2 : {sigma_finite_measure set T2 -> \bar R}.
Implicit Types A : set (T1 * T2).
Let pm10 : (m1 \x m2) set0 = 0.
Proof.
Let pm1_ge0 A : 0 <= (m1 \x m2) A.
Proof.
Let pm1_sigma_additive : semi_sigma_additive (m1 \x m2).
Proof.
rewrite [X in _ --> X](_ : _ = \sum_(n <oo) (m1 \x m2) (F n)).
by apply/cvg_closeP; split; [exact: is_cvg_nneseries|rewrite closeE].
rewrite -integral_nneseries//; last by move=> n; exact: measurable_fun_xsection.
apply: eq_integral => x _; apply/esym/cvg_lim => //=; rewrite xsection_bigcup.
apply: (measure_sigma_additive _ (trivIset_xsection tF)) => ?.
exact: measurable_xsection.
Qed.
HB.instance Definition _ := isMeasure.Build _ _ _ (m1 \x m2)
pm10 pm1_ge0 pm1_sigma_additive.
End product_measure1.
Section product_measure1E.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m1 : {measure set T1 -> \bar R}.
Variable m2 : {sigma_finite_measure set T2 -> \bar R}.
Implicit Types A : set (T1 * T2).
Lemma product_measure1E (A1 : set T1) (A2 : set T2) :
measurable A1 -> measurable A2 -> (m1 \x m2) (A1 `*` A2) = m1 A1 * m2 A2.
Proof.
rewrite (eq_integral (fun x => (\1_A1 x)%:E * m2 A2)); last first.
by move=> x _; rewrite indicE; have [xA1|xA1] /= := boolP (x \in A1);
[rewrite in_xsectionX// mul1e|rewrite mul0e notin_xsectionX].
rewrite ge0_integralZr//; last by move=> x _; rewrite lee_fin.
- by rewrite integral_indic// setIT.
- exact: measurableT_comp.
Qed.
End product_measure1E.
Section product_measure_unique.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m1 : {sigma_finite_measure set T1 -> \bar R}.
Variable m2 : {sigma_finite_measure set T2 -> \bar R}.
Let product_measure_sigma_finite : sigma_finite setT (m1 \x m2).
Proof.
have /sigma_finiteP[G [TG ndG Goo]] := sigma_finiteT m2.
exists (fun n => F n `*` G n).
rewrite -setXTT TF TG predeqE => -[x y]; split.
move=> [/= [n _ Fnx] [k _ Gky]]; exists (maxn n k) => //; split.
- by move: x Fnx; exact/subsetPset/ndF/leq_maxl.
- by move: y Gky; exact/subsetPset/ndG/leq_maxr.
by move=> [n _ []/= ? ?]; split; exists n.
move=> k; have [? ?] := Foo k; have [? ?] := Goo k.
split; first exact: measurableX.
by rewrite product_measure1E// lte_mul_pinfty// ge0_fin_numE.
Qed.
HB.instance Definition _ := Measure_isSigmaFinite.Build _ _ _ (m1 \x m2)
product_measure_sigma_finite.
Lemma product_measure_unique
(m' : {measure set (T1 * T2) -> \bar R}) :
(forall A B, measurable A -> measurable B -> m' (A `*` B) = m1 A * m2 B) ->
forall X : set (T1 * T2), measurable X -> (m1 \x m2) X = m' X.
Proof.
have /sigma_finiteP[F [TF ndF Foo]] := sigma_finiteT m1.
have /sigma_finiteP[G [TG ndG Goo]] := sigma_finiteT m2.
have UFGT : \bigcup_k (F k `*` G k) = setT.
rewrite -setXTT TF TG predeqE => -[x y]; split.
by move=> [n _ []/= ? ?]; split; exists n.
move=> [/= [n _ Fnx] [k _ Gky]]; exists (maxn n k) => //; split.
- by move: x Fnx; exact/subsetPset/ndF/leq_maxl.
- by move: y Gky; exact/subsetPset/ndG/leq_maxr.
pose C : set (set (T1 * T2)) :=
[set C | exists A, measurable A /\ exists B, measurable B /\ C = A `*` B].
have CI : setI_closed C.
move=> /= _ _ [X1 [mX1 [X2 [mX2 ->]]]] [Y1 [mY1 [Y2 [mY2 ->]]]].
rewrite -setXI; exists (X1 `&` Y1); split; first exact: measurableI.
by exists (X2 `&` Y2); split => //; exact: measurableI.
move=> X mX; apply: (measure_unique C (fun n => F n `*` G n)) => //.
- rewrite measurable_prod_measurableType //; congr (<<s _ >>).
rewrite predeqE; split => [[A mA [B mB <-]]|[A [mA [B [mB ->]]]]].
by exists A; split => //; exists B.
by exists A => //; exists B.
- move=> n; rewrite /C /=; exists (F n); split; first by have [] := Foo n.
by exists (G n); split => //; have [] := Goo n.
- by move=> A [A1 [mA1 [A2 [mA2 ->]]]]; rewrite m'E//= product_measure1E.
- move=> k; have [? ?] := Foo k; have [? ?] := Goo k.
by rewrite /= product_measure1E// lte_mul_pinfty// ge0_fin_numE.
Qed.
End product_measure_unique.
Section product_measure2.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m1 : {sigma_finite_measure set T1 -> \bar R}.
Variable m2 : {measure set T2 -> \bar R}.
Implicit Types A : set (T1 * T2).
Let pm20 : (m1 \x^ m2) set0 = 0.
Proof.
Let pm2_ge0 A : 0 <= (m1 \x^ m2) A.
Proof.
Let pm2_sigma_additive : semi_sigma_additive (m1 \x^ m2).
Proof.
rewrite [X in _ --> X](_ : _ = \sum_(n <oo) (m1 \x^ m2) (F n)).
apply/cvg_closeP; split; last by rewrite closeE.
by apply: is_cvg_nneseries => *; exact: integral_ge0.
rewrite -integral_nneseries//; last first.
by move=> n; apply: measurable_fun_ysection => //; rewrite inE.
apply: eq_integral => y _; apply/esym/cvg_lim => //=; rewrite ysection_bigcup.
apply: (measure_sigma_additive _ (trivIset_ysection tF)) => ?.
exact: measurable_ysection.
Qed.
HB.instance Definition _ := isMeasure.Build _ _ _ (m1 \x^ m2)
pm20 pm2_ge0 pm2_sigma_additive.
End product_measure2.
Section product_measure2E.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m1 : {sigma_finite_measure set T1 -> \bar R}.
Variable m2 : {measure set T2 -> \bar R}.
Lemma product_measure2E (A1 : set T1) (A2 : set T2)
(mA1 : measurable A1) (mA2 : measurable A2) :
(m1 \x^ m2) (A1 `*` A2) = m1 A1 * m2 A2.
Proof.
transitivity (\int[m2]_y (m1 \o ysection (A1 `*` A2)) y) => //.
rewrite (_ : _ \o _ = fun y => m1 A1 * (\1_A2 y)%:E).
rewrite ge0_integralZl//.
- by rewrite integral_indic ?setIT ?mul1e.
- exact: measurableT_comp.
- by move=> y _; rewrite lee_fin.
rewrite funeqE => y; rewrite indicE.
have [yA2|yA2] := boolP (y \in A2); first by rewrite mule1 /= in_ysectionX.
by rewrite mule0 /= notin_ysectionX.
Qed.
End product_measure2E.
Section simple_density_L1.
Context d (T : measurableType d) (R : realType).
Variables (mu : {measure set T -> \bar R}) (E : set T) (mE : measurable E).
Local Open Scope ereal_scope.
Lemma measurable_bounded_integrable (f : T -> R^o) :
mu E < +oo -> measurable_fun E f ->
[bounded f x | x in E] -> mu.-integrable E (EFin \o f).
Proof.
have [M [_ mrt]] := bdA; apply: le_lt_trans.
apply: (integral_le_bound (`|M| + 1)%:E) => //; first exact: measurableT_comp.
by apply: aeW => z Az; rewrite lee_fin mrt// ltr_pwDr// ler_norm.
by rewrite lte_mul_pinfty.
Qed.
Import HBSimple.
Let sfun_dense_L1_pos (f : T -> \bar R) :
mu.-integrable E f -> (forall x, E x -> 0 <= f x) ->
exists g_ : {sfun T >-> R}^nat,
[/\ forall n, mu.-integrable E (EFin \o g_ n),
forall x, E x -> EFin \o g_^~ x @ \oo --> f x &
(fun n => \int[mu]_(z in E) `|f z - (g_ n z)%:E|) @ \oo --> 0].
Proof.
pose g_ n := nnsfun_approx mE mfE n.
Import HBNNSimple.
have [] // := @dominated_convergence _ _ _ mu _ mE (fun n => EFin \o g_ n) f f.
- by move=> ?; exact/measurable_EFinP/measurable_funTS.
- apply: aeW => ? ?; under eq_fun => ? do rewrite /g_ nnsfun_approxE.
exact: ecvg_approx.
- apply: aeW => /= ? ? ?; rewrite ger0_norm // /g_ nnsfun_approxE.
exact: le_approx.
move=> _ /= fg0 gfcvg; exists g_; split.
- move=> n; apply: (le_integrable mE _ _ intf).
exact/measurable_EFinP/measurable_funTS.
move=> ? ?; rewrite /g_ !gee0_abs ?lee_fin//; last exact: fpos.
by rewrite /= nnsfun_approxE le_approx.
- exact: cvg_nnsfun_approx.
- by apply: cvg_trans fg0; under eq_fun => ? do under eq_fun => t do
rewrite EFinN -[_ - _]oppeK fin_num_oppeB // abseN addeC.
Qed.
Lemma approximation_sfun_integrable (f : T -> \bar R):
mu.-integrable E f ->
exists g_ : {sfun T >-> R}^nat,
[/\ forall n, mu.-integrable E (EFin \o g_ n),
forall x, E x -> EFin \o g_^~ x @ \oo --> f x &
(fun n => \int[mu]_(z in E) `|f z - (g_ n z)%:E|) @ \oo --> 0].
Proof.
have [//|p_ [intp pf pl1]] := sfun_dense_L1_pos (integrable_funepos mE intf).
have [//|n_ [intn nf nl1]] := sfun_dense_L1_pos (integrable_funeneg mE intf).
exists (fun n => p_ n - n_ n)%R; split.
- move=> n; rewrite /comp; under eq_fun => ? do rewrite sfunB /= EFinB.
by apply: integrableB => //; [exact: intp | exact: intn].
- move=> ? ?; rewrite /comp; under eq_fun => ? do rewrite sfunB /= EFinB.
rewrite [f]funeposneg; apply: cvgeB => //;[|exact: pf|exact:nf].
exact: add_def_funeposneg.
have fpn z n : f z - ((p_ n - n_ n) z)%:E =
(f^\+ z - (p_ n z)%:E) - (f^\- z - (n_ n z)%:E).
rewrite sfunB EFinB fin_num_oppeB // {1}[f]funeposneg -addeACA.
by congr (_ _); rewrite fin_num_oppeB.
case/integrableP: (intf) => mf _.
have mfpn n : mu.-integrable E (fun z => f z - ((p_ n - n_ n) z)%:E).
under eq_fun => ? do rewrite fpn; apply: integrableB => //.
by apply: integrableB => //; [exact: integrable_funepos | exact: intp].
by apply: integrableB => //; [exact: integrable_funeneg | exact: intn].
apply/fine_cvgP; split => //.
near=> N; case/integrableP: (mfpn N) => _; rewrite ge0_fin_numE //.
exact: integral_ge0.
apply/cvg_ballP=> _/posnumP[eps]; have e2p : (0 < eps%:num/2)%R by [].
case/fine_cvgP: pl1 => + /cvg_ballP/(_ _ e2p); apply: filter_app2.
case/fine_cvgP: nl1 => + /cvg_ballP/(_ _ e2p); apply: filter_app2.
near=> n; rewrite /ball /=; do 3 rewrite distrC subr0.
move=> finfn ne2 finfp pe2; rewrite [_%:num]splitr.
rewrite (le_lt_trans _ (ltrD pe2 ne2))// (le_trans _ (ler_normD _ _))//.
under [fun z => _ (f^\+ z + _)]eq_fun => ? do rewrite EFinN.
under [fun z => _ (f^\- z + _)]eq_fun => ? do rewrite EFinN.
have mfp : mu.-integrable E (fun z => `|f^\+ z - (p_ n z)%:E|).
apply/integrable_abse/integrableB => //; first exact: integrable_funepos.
exact: intp.
have mfn : mu.-integrable E (fun z => `|f^\- z - (n_ n z)%:E|).
apply/integrable_abse/integrableB => //; first exact: integrable_funeneg.
exact: intn.
rewrite -[x in (_ <= `|x|)%R]fineD // -integralD //.
rewrite !ger0_norm ?fine_ge0 ?integral_ge0 ?fine_le//.
- by apply: integral_fune_fin_num => //; exact/integrable_abse/mfpn.
- by apply: integral_fune_fin_num => //; exact: integrableD.
- apply: ge0_le_integral => //.
+ by apply: measurableT_comp => //; case/integrableP: (mfpn n).
+ by move=> x Ex; rewrite adde_ge0.
+ by apply: emeasurable_funD; [move: mfp | move: mfn]; case/integrableP.
+ by move=> ? ?; rewrite fpn; exact: lee_abs_sub.
+ by move=> x Ex; rewrite adde_ge0.
Unshelve. all: by end_near. Qed.
Section continuous_density_L1.
Context (rT : realType).
Let mu : measure _ _ := @lebesgue_measure rT.
Let R : measurableType _ := measurableTypeR rT.
Local Open Scope ereal_scope.
Lemma compact_finite_measure (A : set R^o) : compact A -> mu A < +oo.
Proof.
have AN1 : (A `<=` `[- (`|N| + 1), `|N| + 1])%R.
by move=> z Az; rewrite set_itvcc /= -ler_norml N1x// ltr_pwDr// ler_norm.
rewrite (le_lt_trans (le_measure _ _ _ AN1)) ?inE//=.
by rewrite lebesgue_measure_itv/= lte_fin gtrN// EFinD ltry.
Qed.
Lemma continuous_compact_integrable (f : R -> R^o) (A : set R^o) :
compact A -> {within A, continuous f} -> mu.-integrable A (EFin \o f).
Proof.
- exact: compact_measurable.
- exact: compact_finite_measure.
- by apply: subspace_continuous_measurable_fun => //; exact: compact_measurable.
- have /compact_bounded[M [_ mrt]] := continuous_compact ctsfA cptA.
by exists M; split; rewrite ?num_real // => ? ? ? ?; exact: mrt.
Qed.
Import HBSimple.
Lemma approximation_continuous_integrable (E : set _) (f : rT -> rT):
measurable E -> mu E < +oo -> mu.-integrable E (EFin \o f) ->
exists g_ : (rT -> rT)^nat,
[/\ forall n, continuous (g_ n),
forall n, mu.-integrable E (EFin \o g_ n) &
\int[mu]_(z in E) `|(f z - g_ n z)%:E| @[n --> \oo] --> 0].
Proof.
have mf : measurable_fun E f by case/integrableP : intf => /measurable_EFinP.
suff apxf eps : exists h : rT -> rT, (eps > 0)%R ->
[/\ continuous h,
mu.-integrable E (EFin \o h) &
\int[mu]_(z in E) `|(f z - h z)%:E| < eps%:E].
pose g_ n := projT1 (cid (apxf n.+1%:R^-1)); exists g_; split.
- by move=> n; have [] := projT2 (cid (apxf n.+1%:R^-1)).
- by move=> n; have [] := projT2 (cid (apxf n.+1%:R^-1)).
apply/cvg_ballP => eps epspos.
have /cvg_ballP/(_ eps epspos)[N _ Nball] := @cvge_harmonic rT.
exists N => //; apply: (subset_trans Nball) => n.
rewrite /ball /= /ereal_ball contract0 !sub0r !normrN => /(lt_trans _); apply.
rewrite ?ger0_norm; first last.
- by rewrite -le_expandLR // ?inE ?normr0// expand0 integral_ge0.
- by rewrite -le_expandLR // ?inE ?normr0// expand0.
have [] := projT2 (cid (apxf n.+1%:R^-1)) => // _ _ ipaxfn.
by rewrite -lt_expandRL ?contractK// inE contract_le1.
have [|] := ltP 0%R eps; last by exists point.
move: eps => _/posnumP[eps].
have [g [gfe2 ig]] : exists g : {sfun R >-> rT},
\int[mu]_(z in E) `|(f z - g z)%:E| < (eps%:num / 2)%:E /\
mu.-integrable E (EFin \o g).
have [g_ [intG ?]] := approximation_sfun_integrable mE intf.
move/fine_fcvg/cvg_ballP/(_ (eps%:num / 2)) => -[] // n _ Nb; exists (g_ n).
have fg_fin_num : \int[mu]_(z in E) `|(f z - g_ n z)%:E| \is a fin_num.
rewrite integral_fune_fin_num// integrable_abse//.
by under eq_fun do rewrite EFinB; apply: integrableB => //; exact: intG.
split; last exact: intG.
have /= := Nb _ (leqnn n); rewrite /ball/= sub0r normrN -fine_abse// -lte_fin.
by rewrite fineK ?abse_fin_num// => /le_lt_trans; apply; exact: lee_abs.
have mg : measurable_fun E g by exact: measurable_funTS.
have [M Mpos Mbd] : (exists2 M, 0 < M & forall x, `|g x| <= M)%R.
have [M [_ /= bdM]] := simple_bounded g.
exists (`|M| + 1)%R; first exact: ltr_pwDr.
by move=> x; rewrite bdM// ltr_pwDr// ler_norm.
have [] // := @measurable_almost_continuous _ _ mE _ g (eps%:num / 2 / (M *+ 2)).
by rewrite divr_gt0// mulrn_wgt0.
move=> A [cptA AE /= muAE ctsAF].
have [] := continuous_bounded_extension _ _ Mpos ctsAF.
- exact: pseudometric_normal.
- by apply: compact_closed => //; exact: Rhausdorff.
- by move=> ? ?; exact: Mbd.
have mA : measurable A := compact_measurable cptA.
move=> h [gh ctsh hbdM]; have mh : measurable_fun E h.
by apply: subspace_continuous_measurable_fun=> //; exact: continuous_subspaceT.
have intg : mu.-integrable E (EFin \o h).
apply: measurable_bounded_integrable => //.
exists M; split; rewrite ?num_real // => x Mx y _ /=.
by rewrite (le_trans _ (ltW Mx)).
exists h; split => //; rewrite [eps%:num]splitr; apply: le_lt_trans.
pose fgh x := `|(f x - g x)%:E| + `|(g x - h x)%:E|.
apply: (@ge0_le_integral _ _ _ mu _ mE _ fgh) => //.
- apply: (measurable_funS mE) => //; do 2 apply: measurableT_comp => //.
exact: measurable_funB.
- by move=> z _; rewrite adde_ge0.
- apply: measurableT_comp => //; apply: measurable_funD => //;
apply: (measurable_funS mE) => //; (apply: measurableT_comp => //);
exact: measurable_funB.
- move=> x _; rewrite -(subrK (g x) (f x)) -(addrA (_ + _)%R) lee_fin.
by rewrite ler_normD.
rewrite integralD//; first last.
- by apply: integrable_abse; under eq_fun do rewrite EFinB; apply: integrableB.
- by apply: integrable_abse; under eq_fun do rewrite EFinB; apply: integrableB.
rewrite EFinD lteD// -(setDKU AE) ge0_integral_setU => //; first last.
- by rewrite /disj_set setDKI.
- rewrite setDKU //; do 2 apply: measurableT_comp => //.
exact: measurable_funB.
- exact: measurableD.
rewrite (@ae_eq_integral _ _ _ mu A (cst 0)) //; first last.
- by apply: aeW => z Az; rewrite (gh z) ?inE// subrr abse0.
- apply: (measurable_funS mE) => //; do 2 apply: measurableT_comp => //.
exact: measurable_funB.
rewrite integral0 adde0.
apply: (le_lt_trans (integral_le_bound (M *+ 2)%:E _ _ _ _)) => //.
- exact: measurableD.
- apply: (measurable_funS mE) => //; apply: measurableT_comp => //.
exact: measurable_funB.
- by rewrite lee_fin mulrn_wge0// ltW.
- apply: aeW => z [Ez _]; rewrite /= lee_fin mulr2n.
by rewrite (le_trans (ler_normB _ _))// lerD.
by rewrite -lte_pdivlMl ?mulrn_wgt0// muleC -EFinM.
Qed.
End continuous_density_L1.
Section fubini_functions.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variables (m1 : {measure set T1 -> \bar R}) (m2 : {measure set T2 -> \bar R}).
Variable f : T1 * T2 -> \bar R.
Definition fubini_F x := \int[m2]_y f (x, y).
Definition fubini_G y := \int[m1]_x f (x, y).
End fubini_functions.
Section fubini_tonelli.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m1 : {sigma_finite_measure set T1 -> \bar R}.
Variable m2 : {sigma_finite_measure set T2 -> \bar R}.
Section indic_fubini_tonelli.
Variables (A : set (T1 * T2)) (mA : measurable A).
Implicit Types A : set (T1 * T2).
Let f : (T1 * T2) -> R := \1_A.
Let F := fubini_F m2 (EFin \o f).
Let G := fubini_G m1 (EFin \o f).
Lemma indic_fubini_tonelli_F_ge0 x : 0 <= F x.
Proof.
Lemma indic_fubini_tonelli_G_ge0 x : 0 <= G x.
Proof.
Lemma indic_fubini_tonelli_FE : F = m2 \o xsection A.
Proof.
rewrite -[RHS]mul1e -integral_cst//; last exact: measurable_xsection.
rewrite /F /fubini_F /f [in RHS]integral_mkcond.
by apply: eq_integral => y _ /=; rewrite patchE mem_xsection indicE; case: ifPn.
Qed.
Lemma indic_fubini_tonelli_GE : G = m1 \o ysection A.
Proof.
rewrite -[RHS]mul1e -integral_cst//; last exact: measurable_ysection.
rewrite /G /fubini_G /f [in RHS]integral_mkcond.
by apply: eq_integral => y _ /=; rewrite patchE mem_ysection indicE; case: ifPn.
Qed.
Lemma indic_measurable_fun_fubini_tonelli_F : measurable_fun setT F.
Proof.
Lemma indic_measurable_fun_fubini_tonelli_G : measurable_fun setT G.
Proof.
Lemma indic_fubini_tonelli1 : \int[m1 \x m2]_z (f z)%:E = \int[m1]_x F x.
Proof.
Lemma indic_fubini_tonelli2 : \int[m1 \x^ m2]_z (f z)%:E = \int[m2]_y G y.
Proof.
Lemma indic_fubini_tonelli : \int[m1]_x F x = \int[m2]_y G y.
Proof.
rewrite integral_indic//= !setIT.
by apply: product_measure_unique => //= ? ? ? ?; rewrite product_measure2E.
Qed.
End indic_fubini_tonelli.
Section sfun_fubini_tonelli.
Variable f : {nnsfun T1 * T2 >-> R}.
Import HBNNSimple.
Let F := fubini_F m2 (EFin \o f).
Let G := fubini_G m1 (EFin \o f).
Lemma sfun_fubini_tonelli_FE : F = fun x =>
\sum_(k \in range f) k%:E * m2 (xsection (f @^-1` [set k]) x).
Proof.
under eq_fun do rewrite fimfunE -fsumEFin//.
rewrite ge0_integral_fsum //; last 2 first.
- move=> i; apply/measurable_EFinP/measurableT_comp => //=.
exact: measurableT_comp.
- by move=> r y _; rewrite EFinM nnfun_muleindic_ge0.
apply: eq_fsbigr => i; rewrite inE => -[/= t _ <-{i}].
under eq_fun do rewrite EFinM.
rewrite ge0_integralZl//; last by rewrite lee_fin.
- by rewrite -/((m2 \o xsection _) x) -indic_fubini_tonelli_FE.
- exact/measurable_EFinP/measurableT_comp.
- by move=> y _; rewrite lee_fin.
Qed.
Lemma sfun_measurable_fun_fubini_tonelli_F : measurable_fun [set: T1] F.
Proof.
exact/measurable_funeM/measurable_fun_xsection.
Qed.
Lemma sfun_fubini_tonelli_GE : G = fun y =>
\sum_(k \in range f) k%:E * m1 (ysection (f @^-1` [set k]) y).
Proof.
under eq_fun do rewrite fimfunE -fsumEFin//.
rewrite ge0_integral_fsum //; last 2 first.
- move=> i; apply/measurable_EFinP/measurableT_comp => //=.
exact: measurableT_comp.
- by move=> r x _; rewrite EFinM nnfun_muleindic_ge0.
apply: eq_fsbigr => i; rewrite inE => -[/= t _ <-{i}].
under eq_fun do rewrite EFinM.
rewrite ge0_integralZl//; last by rewrite lee_fin.
- by rewrite -/((m1 \o ysection _) y) -indic_fubini_tonelli_GE.
- exact/measurable_EFinP/measurableT_comp.
- by move=> x _; rewrite lee_fin.
Qed.
Lemma sfun_measurable_fun_fubini_tonelli_G : measurable_fun setT G.
Proof.
exact/measurable_funeM/measurable_fun_ysection.
Qed.
Let EFinf x : (f x)%:E =
\sum_(k \in range f) k%:E * (\1_(f @^-1` [set k]) x)%:E.
Lemma sfun_fubini_tonelli1 : \int[m1 \x m2]_z (f z)%:E = \int[m1]_x F x.
Proof.
do rewrite EFinf; rewrite ge0_integral_fsum //; last 2 first.
- by move=> r; exact/measurable_EFinP/measurableT_comp.
- by move=> r /= z _; exact: nnfun_muleindic_ge0.
transitivity (\sum_(k \in range f)
\int[m1]_x (k%:E * fubini_F m2 (EFin \o \1_(f @^-1` [set k])) x)).
apply: eq_fsbigr => i; rewrite inE => -[z _ <-{i}].
rewrite ge0_integralZl//; last 3 first.
- exact/measurable_EFinP.
- by move=> /= x _; rewrite lee_fin.
- by rewrite lee_fin.
rewrite indic_fubini_tonelli1// -ge0_integralZl//; last by rewrite lee_fin.
- exact: indic_measurable_fun_fubini_tonelli_F.
- by move=> /= x _; exact: indic_fubini_tonelli_F_ge0.
rewrite -ge0_integral_fsum //; last 2 first.
- by move=> r; apply/measurable_funeM/indic_measurable_fun_fubini_tonelli_F.
- move=> r x _; rewrite /fubini_F.
have [r0|r0] := leP 0%R r.
by rewrite mule_ge0//; exact: indic_fubini_tonelli_F_ge0.
rewrite integral0_eq ?mule0// => y _.
by rewrite preimage_nnfun0//= indicE in_set0.
apply: eq_integral => x _; rewrite sfun_fubini_tonelli_FE.
by under eq_fsbigr do rewrite indic_fubini_tonelli_FE//.
Qed.
Lemma sfun_fubini_tonelli2 : \int[m1 \x^ m2]_z (f z)%:E = \int[m2]_y G y.
Proof.
do rewrite EFinf; rewrite ge0_integral_fsum //; last 2 first.
- by move=> i; exact/measurable_EFinP/measurableT_comp.
- by move=> r /= z _; exact: nnfun_muleindic_ge0.
transitivity (\sum_(k \in range f)
\int[m2]_x (k%:E * (fubini_G m1 (EFin \o \1_(f @^-1` [set k])) x))).
apply: eq_fsbigr => i; rewrite inE => -[z _ <-{i}].
rewrite ge0_integralZl//; last 3 first.
- exact/measurable_EFinP.
- by move=> /= x _; rewrite lee_fin.
- by rewrite lee_fin.
rewrite indic_fubini_tonelli2// -ge0_integralZl//; last by rewrite lee_fin.
- exact: indic_measurable_fun_fubini_tonelli_G.
- by move=> /= x _; exact: indic_fubini_tonelli_G_ge0.
rewrite -ge0_integral_fsum //; last 2 first.
- by move=> r; apply/measurable_funeM/indic_measurable_fun_fubini_tonelli_G.
- move=> r y _; rewrite /fubini_G.
have [r0|r0] := leP 0%R r.
by rewrite mule_ge0//; exact: indic_fubini_tonelli_G_ge0.
rewrite integral0_eq ?mule0// => x _.
by rewrite preimage_nnfun0//= indicE in_set0.
apply: eq_integral => x _; rewrite sfun_fubini_tonelli_GE.
by under eq_fsbigr do rewrite indic_fubini_tonelli_GE//.
Qed.
Lemma sfun_fubini_tonelli :
\int[m1 \x m2]_z (f z)%:E = \int[m1 \x^ m2]_z (f z)%:E.
Proof.
by apply: product_measure_unique => //= *; rewrite product_measure2E.
Qed.
End sfun_fubini_tonelli.
Section fubini_tonelli.
Variable f : T1 * T2 -> \bar R.
Hypothesis mf : measurable_fun setT f.
Hypothesis f0 : forall x, 0 <= f x.
Let T : measurableType _ := (T1 * T2)%type.
Let F := fubini_F m2 f.
Let G := fubini_G m1 f.
Import HBNNSimple.
Let F_ (g : {nnsfun T >-> R}^nat) n x := \int[m2]_y (g n (x, y))%:E.
Let G_ (g : {nnsfun T >-> R}^nat) n y := \int[m1]_x (g n (x, y))%:E.
Lemma measurable_fun_fubini_tonelli_F : measurable_fun setT F.
Proof.
apply: (emeasurable_fun_cvg (F_ g)) => //.
- by move=> n; exact: sfun_measurable_fun_fubini_tonelli_F.
- move=> x _.
rewrite /F_ /F /fubini_F [in X in _ --> X](_ : (fun _ => _) =
fun y => limn (EFin \o g ^~ (x, y))); last first.
by rewrite funeqE => y; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
apply: cvg_monotone_convergence => //.
- by move=> n; apply/measurable_EFinP => //; exact/measurableT_comp.
- by move=> n y _; rewrite lee_fin//; exact: fun_ge0.
- by move=> y _ a b ab; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
Qed.
Lemma measurable_fun_fubini_tonelli_G : measurable_fun setT G.
Proof.
apply: (emeasurable_fun_cvg (G_ g)) => //.
- by move=> n; exact: sfun_measurable_fun_fubini_tonelli_G.
- move=> y _; rewrite /G_ /G /fubini_G [in X in _ --> X](_ : (fun _ => _) =
fun x => limn (EFin \o g ^~ (x, y))); last first.
by rewrite funeqE => x; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
apply: cvg_monotone_convergence => //.
- by move=> n; apply/measurable_EFinP => //; exact/measurableT_comp.
- by move=> n x _; rewrite lee_fin; exact: fun_ge0.
- by move=> x _ a b ab; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
Qed.
Lemma fubini_tonelli1 : \int[m1 \x m2]_z f z = \int[m1]_x F x.
Proof.
have F_F x : F x = limn (F_ g ^~ x).
rewrite [RHS](_ : _ = limn (fun n => \int[m2]_y (EFin \o g n) (x, y)))//.
rewrite -monotone_convergence//; last 3 first.
- by move=> n; exact/measurable_EFinP/measurableT_comp.
- by move=> n /= y _; rewrite lee_fin; exact: fun_ge0.
- by move=> y /= _ a b ab; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
by apply: eq_integral => y _; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
rewrite [RHS](_ : _ = limn (fun n => \int[m1 \x m2]_z (EFin \o g n) z)).
rewrite -monotone_convergence //; last 3 first.
- by move=> n; exact/measurable_EFinP.
- by move=> n /= x _; rewrite lee_fin; exact: fun_ge0.
- by move=> y /= _ a b ab; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
by apply: eq_integral => /= x _; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
rewrite [LHS](_ : _ =
limn (fun n => \int[m1]_x (\int[m2]_y (EFin \o g n) (x, y)))).
set r := fun _ => _; set l := fun _ => _; have -> // : l = r.
by apply/funext => n; rewrite /l /r sfun_fubini_tonelli1.
rewrite [RHS](_ : _ = limn (fun n => \int[m1]_x F_ g n x))//.
rewrite -monotone_convergence //; first exact: eq_integral.
- by move=> n; exact: sfun_measurable_fun_fubini_tonelli_F.
- move=> n x _; apply: integral_ge0 => // y _ /=; rewrite lee_fin.
exact: fun_ge0.
- move=> x /= _ a b ab; apply: ge0_le_integral => //.
+ by move=> y _; rewrite lee_fin; exact: fun_ge0.
+ exact/measurable_EFinP/measurableT_comp.
+ by move=> *; rewrite lee_fin; exact: fun_ge0.
+ exact/measurable_EFinP/measurableT_comp.
+ by move=> y _; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
Qed.
Lemma fubini_tonelli2 : \int[m1 \x m2]_z f z = \int[m2]_y G y.
Proof.
have G_G y : G y = limn (G_ g ^~ y).
rewrite /G /fubini_G.
rewrite [RHS](_ : _ = limn (fun n => \int[m1]_x (EFin \o g n) (x, y)))//.
rewrite -monotone_convergence//; last 3 first.
- by move=> n; exact/measurable_EFinP/measurableT_comp.
- by move=> n /= x _; rewrite lee_fin; exact: fun_ge0.
- by move=> x /= _ a b ab; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
by apply: eq_integral => x _; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
rewrite [RHS](_ : _ = limn (fun n => \int[m1 \x m2]_z (EFin \o g n) z)).
rewrite -monotone_convergence //; last 3 first.
- by move=> n; exact/measurable_EFinP.
- by move=> n /= x _; rewrite lee_fin; exact: fun_ge0.
- by move=> y /= _ a b ab; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
by apply: eq_integral => /= x _; apply/esym/cvg_lim => //; exact: cvg_nnsfun_approx.
rewrite [LHS](_ : _ = limn
(fun n => \int[m2]_y (\int[m1]_x (EFin \o g n) (x, y)))).
set r := fun _ => _; set l := fun _ => _; have -> // : l = r.
by apply/funext => n; rewrite /l /r sfun_fubini_tonelli sfun_fubini_tonelli2.
rewrite [RHS](_ : _ = limn (fun n => \int[m2]_y G_ g n y))//.
rewrite -monotone_convergence //; first exact: eq_integral.
- by move=> n; exact: sfun_measurable_fun_fubini_tonelli_G.
- by move=> n y _; apply: integral_ge0 => // x _ /=; rewrite lee_fin fun_ge0.
- move=> y /= _ a b ab; apply: ge0_le_integral => //.
+ by move=> x _; rewrite lee_fin fun_ge0.
+ exact/measurable_EFinP/measurableT_comp.
+ by move=> *; rewrite lee_fin fun_ge0.
+ exact/measurable_EFinP/measurableT_comp.
+ by move=> x _; rewrite lee_fin; exact/lefP/nd_nnsfun_approx.
Qed.
Lemma fubini_tonelli :
\int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y).
Proof.
End fubini_tonelli.
End fubini_tonelli.
Arguments fubini_tonelli1 {d1 d2 T1 T2 R m1 m2} f.
Arguments fubini_tonelli2 {d1 d2 T1 T2 R m1 m2} f.
Arguments fubini_tonelli {d1 d2 T1 T2 R m1 m2} f.
Arguments measurable_fun_fubini_tonelli_F {d1 d2 T1 T2 R m2} f.
Arguments measurable_fun_fubini_tonelli_G {d1 d2 T1 T2 R m1} f.
Section fubini.
Local Open Scope ereal_scope.
Context d1 d2 (T1 : measurableType d1) (T2 : measurableType d2) (R : realType).
Variable m1 : {sigma_finite_measure set T1 -> \bar R}.
Variable m2 : {sigma_finite_measure set T2 -> \bar R}.
Variable f : T1 * T2 -> \bar R.
Hypothesis imf : (m1 \x m2).-integrable setT f.
Let mf : measurable_fun setT f
Proof.
Lemma fubini1a :
(m1 \x m2).-integrable setT f <-> \int[m1]_x \int[m2]_y `|f (x, y)| < +oo.
Proof.
- by rewrite -(fubini_tonelli1 (abse \o f))//=; exact: measurableT_comp.
- by rewrite fubini_tonelli1//; exact: measurableT_comp.
Qed.
Lemma fubini1b :
(m1 \x m2).-integrable setT f <-> \int[m2]_y \int[m1]_x `|f (x, y)| < +oo.
Proof.
- by rewrite -(fubini_tonelli2 (abse \o f))//=; exact: measurableT_comp.
- by rewrite fubini_tonelli2//; exact: measurableT_comp.
Qed.
Let measurable_fun1 : measurable_fun setT (fun x => \int[m2]_y `|f (x, y)|).
Proof.
Let measurable_fun2 : measurable_fun setT (fun y => \int[m1]_x `|f (x, y)|).
Proof.
Lemma ae_integrable1 :
{ae m1, forall x, m2.-integrable setT (fun y => f (x, y))}.
Proof.
apply/integrableP; split => //.
rewrite (le_lt_trans _ (fubini1a.1 imf))// ge0_le_integral //.
- exact: measurableT_comp.
- by move=> *; exact: integral_ge0.
- by move=> *; rewrite gee0_abs//; exact: integral_ge0.
move/integrable_ae => /(_ measurableT); apply: filterS => x /= /(_ I) im2f.
apply/integrableP; split; first exact/measurableT_comp.
by move/fin_numPlt : im2f => /andP[].
Qed.
Lemma ae_integrable2 :
{ae m2, forall y, m1.-integrable setT (fun x => f (x, y))}.
Proof.
apply/integrableP; split => //.
rewrite (le_lt_trans _ (fubini1b.1 imf))// ge0_le_integral //.
- exact: measurableT_comp.
- by move=> *; exact: integral_ge0.
- by move=> *; rewrite gee0_abs//; exact: integral_ge0.
move/integrable_ae => /(_ measurableT); apply: filterS => x /= /(_ I) im2f.
apply/integrableP; split; first exact/measurableT_comp.
by move/fin_numPlt : im2f => /andP[].
Qed.
Let F := fubini_F m2 f.
Let Fplus x := \int[m2]_y f^\+ (x, y).
Let Fminus x := \int[m2]_y f^\- (x, y).
Let FE : F = Fplus \- Fminus
Let measurable_Fplus : measurable_fun setT Fplus.
Proof.
Let measurable_Fminus : measurable_fun setT Fminus.
Proof.
Lemma measurable_fubini_F : measurable_fun setT F.
Proof.
Let integrable_Fplus : m1.-integrable setT Fplus.
Proof.
apply: le_lt_trans (fubini1a.1 imf); apply: ge0_le_integral => //.
- exact: measurableT_comp.
- by move=> x _; exact: integral_ge0.
- move=> x _; apply: le_trans.
apply: le_abse_integral => //; apply: measurable_funepos => //.
exact: measurableT_comp.
apply: ge0_le_integral => //.
- apply: measurableT_comp => //.
by apply: measurable_funepos => //; exact: measurableT_comp.
- by apply: measurableT_comp => //; exact/measurableT_comp.
- by move=> y _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse leeDl.
Qed.
Let integrable_Fminus : m1.-integrable setT Fminus.
Proof.
apply: le_lt_trans (fubini1a.1 imf); apply: ge0_le_integral => //.
- exact: measurableT_comp.
- by move=> *; exact: integral_ge0.
- move=> x _; apply: le_trans.
apply: le_abse_integral => //; apply: measurable_funeneg => //.
exact: measurableT_comp.
apply: ge0_le_integral => //.
+ apply: measurableT_comp => //; apply: measurable_funeneg => //.
exact: measurableT_comp.
+ by apply: measurableT_comp => //; exact: measurableT_comp.
+ by move=> y _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse leeDr.
Qed.
Lemma integrable_fubini_F : m1.-integrable setT F.
Proof.
Let G := fubini_G m1 f.
Let Gplus y := \int[m1]_x f^\+ (x, y).
Let Gminus y := \int[m1]_x f^\- (x, y).
Let GE : G = Gplus \- Gminus
Let measurable_Gplus : measurable_fun setT Gplus.
Proof.
Let measurable_Gminus : measurable_fun setT Gminus.
Proof.
Lemma measurable_fubini_G : measurable_fun setT G.
Proof.
Let integrable_Gplus : m2.-integrable setT Gplus.
Proof.
apply: le_lt_trans (fubini1b.1 imf); apply: ge0_le_integral => //.
- exact: measurableT_comp.
- by move=> *; exact: integral_ge0.
- move=> y _; apply: le_trans.
apply: le_abse_integral => //; apply: measurable_funepos => //.
exact: measurableT_comp.
apply: ge0_le_integral => //.
- apply: measurableT_comp => //.
by apply: measurable_funepos => //; exact: measurableT_comp.
- by apply: measurableT_comp => //; exact: measurableT_comp.
- by move=> x _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse leeDl.
Qed.
Let integrable_Gminus : m2.-integrable setT Gminus.
Proof.
apply: le_lt_trans (fubini1b.1 imf); apply: ge0_le_integral => //.
- exact: measurableT_comp.
- by move=> *; exact: integral_ge0.
- move=> y _; apply: le_trans.
apply: le_abse_integral => //; apply: measurable_funeneg => //.
exact: measurableT_comp.
apply: ge0_le_integral => //.
+ apply: measurableT_comp => //.
by apply: measurable_funeneg => //; exact: measurableT_comp.
+ by apply: measurableT_comp => //; exact: measurableT_comp.
+ by move=> x _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse leeDr.
Qed.
Lemma fubini1 : \int[m1]_x F x = \int[m1 \x m2]_z f z.
Proof.
by rewrite [in RHS]integralE ?fubini_tonelli1//;
[exact: measurable_funeneg|exact: measurable_funepos].
Qed.
Lemma fubini2 : \int[m2]_x G x = \int[m1 \x m2]_z f z.
Proof.
by rewrite [in RHS]integralE ?fubini_tonelli2//;
[exact: measurable_funeneg|exact: measurable_funepos].
Qed.
Theorem Fubini :
\int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y).
End fubini.
Section sfinite_fubini.
Local Open Scope ereal_scope.
Context d d' (X : measurableType d) (Y : measurableType d') (R : realType).
Variables (m1 : {sfinite_measure set X -> \bar R}).
Variables (m2 : {sfinite_measure set Y -> \bar R}).
Variables (f : X * Y -> \bar R) (f0 : forall xy, 0 <= f xy).
Hypothesis mf : measurable_fun setT f.
Lemma sfinite_Fubini :
\int[m1]_x \int[m2]_y f (x, y) = \int[m2]_y \int[m1]_x f (x, y).
Proof.
pose s2 := sfinite_measure_seq m2.
rewrite [LHS](eq_measure_integral (mseries s1 0)); last first.
by move=> A mA _; rewrite /=; exact: sfinite_measure_seqP.
transitivity (\int[mseries s1 0]_x \int[mseries s2 0]_y f (x, y)).
apply: eq_integral => x _; apply: eq_measure_integral => ? ? _.
exact: sfinite_measure_seqP.
transitivity (\sum_(n <oo) \int[s1 n]_x \sum_(m <oo) \int[s2 m]_y f (x, y)).
rewrite ge0_integral_measure_series; [|by []| |]; last 2 first.
by move=> t _; exact: integral_ge0.
rewrite [X in measurable_fun _ X](_ : _ =
fun x => \sum_(n <oo) \int[s2 n]_y f (x, y)); last first.
apply/funext => x.
by rewrite ge0_integral_measure_series//; exact/measurableT_comp.
apply: ge0_emeasurable_sum; first by move=> k x *; exact: integral_ge0.
by move=> k _; exact: measurable_fun_fubini_tonelli_F.
apply: eq_eseriesr => n _; apply: eq_integral => x _.
by rewrite ge0_integral_measure_series//; exact/measurableT_comp.
transitivity (\sum_(n <oo) \sum_(m <oo) \int[s1 n]_x \int[s2 m]_y f (x, y)).
apply: eq_eseriesr => n _; rewrite integral_nneseries//.
by move=> m; exact: measurable_fun_fubini_tonelli_F.
by move=> m x _; exact: integral_ge0.
transitivity (\sum_(n <oo) \sum_(m <oo) \int[s2 m]_y \int[s1 n]_x f (x, y)).
apply: eq_eseriesr => n _; apply: eq_eseriesr => m _.
by rewrite fubini_tonelli//; exact: finite_measure_sigma_finite.
transitivity (\sum_(n <oo) \int[mseries s2 0]_y \int[s1 n]_x f (x, y)).
apply: eq_eseriesr => n _; rewrite ge0_integral_measure_series//.
by move=> y _; exact: integral_ge0.
exact: measurable_fun_fubini_tonelli_G.
transitivity (\int[mseries s2 0]_y \sum_(n <oo) \int[s1 n]_x f (x, y)).
rewrite integral_nneseries//.
by move=> n; apply: measurable_fun_fubini_tonelli_G.
by move=> n y _; exact: integral_ge0.
transitivity (\int[mseries s2 0]_y \int[mseries s1 0]_x f (x, y)).
apply: eq_integral => y _.
by rewrite ge0_integral_measure_series//; exact/measurableT_comp.
transitivity (\int[m2]_y \int[mseries s1 0]_x f (x, y)).
by apply: eq_measure_integral => A mA _ /=; rewrite sfinite_measure_seqP.
apply: eq_integral => y _; apply: eq_measure_integral => A mA _ /=.
by rewrite sfinite_measure_seqP.
Qed.
End sfinite_fubini.
Arguments sfinite_Fubini {d d' X Y R} m1 m2 f.
Section lebesgue_differentiation_continuous.
Context (rT : realType).
Let mu : measure _ _ := @lebesgue_measure rT.
Let R : measurableType _ := measurableTypeR rT.
Let ballE (x : R) (r : {posnum rT}) :
ball x r%:num = `](x - r%:num), (x + r%:num)[%classic :> set rT.
Proof.
Lemma lebesgue_differentiation_continuous (f : R -> rT^o) (A : set R) (x : R) :
open A -> mu.-integrable A (EFin \o f) -> {for x, continuous f} -> A x ->
(fun r => 1 / (r *+ 2) * \int[mu]_(z in ball x r) f z) @ 0^'+ -->
(f x : R^o).
Proof.
move: r => _/posnumP[r].
rewrite -setU1itv ?bnd_simp ?lerBlDr -?addrA ?ler_wpDr//.
rewrite -setUitv1 ?bnd_simp ?ltrBlDr -?addrA ?ltr_pwDr//.
rewrite setUA setUC setUA setDUl !ballE setDv setU0 setDidl// -subset0.
by move=> z /= [[]] ->; rewrite in_itv/= ltxx// andbF.
have ball_itv2 r : 0 < r -> ball x r = `[x - r, x + r] `\` [set x + r; x - r].
move: r => _/posnumP[r].
rewrite -ball_itvr // setDD setIC; apply/esym/setIidPl.
by rewrite ballE set_itvcc => ?/=; rewrite in_itv => /andP [/ltW -> /ltW ->].
have ritv r : 0 < r -> mu `[x - r, x + r]%classic = (r *+ 2)%:E.
move=> /gt0_cp rE; rewrite /= lebesgue_measure_itv/= lte_fin.
rewrite ler_ltD // ?rE // -EFinD; congr (_ _).
by rewrite opprB addrAC [_ - _]addrC addrA subrr add0r.
move=> oA intf ctsfx Ax.
apply: cvg_zero.
apply/cvgrPdist_le => eps epos; apply: filter_app (@nbhs_right_gt rT 0).
move/cvgrPdist_le/(_ eps epos)/at_right_in_segment : ctsfx; apply: filter_app.
apply: filter_app (open_itvcc_subset oA Ax).
have mA : measurable A := open_measurable oA.
near=> r => xrA; rewrite addrfctE opprfctE => feps rp.
have cptxr : compact `[x - r, x + r] := @segment_compact _ _ _.
rewrite distrC subr0.
have -> : \int[mu]_(z in ball x r) f z = \int[mu]_(z in `[x - r, x + r]) f z.
rewrite ball_itv2 //; congr (fine _); rewrite -negligible_integral //.
- by apply/measurableU; exact: measurable_set1.
- exact: (integrableS mA).
- by rewrite measureU0//; exact: lebesgue_measure_set1.
have r20 : 0 <= 1 / (r *+ 2) by rewrite ?divr_ge0 // mulrn_wge0.
have -> : f x = 1 / (r *+ 2) * \int[mu]_(z in `[x - r, x + r]) cst (f x) z.
rewrite /Rintegral /= integral_cst /= ?ritv // mulrC mul1r.
by rewrite -mulrA divff ?mulr1//; apply: lt0r_neq0; rewrite mulrn_wgt0.
have intRf : mu.-integrable `[x - r, x + r] (EFin \o f).
exact: (@integrableS _ _ _ mu _ _ _ _ _ xrA intf).
rewrite /= -mulrBr -fineB; first last.
- rewrite integral_fune_fin_num// continuous_compact_integrable// => ?.
exact: cvg_cst.
- by rewrite integral_fune_fin_num.
rewrite -integralB_EFin //; first last.
by apply: continuous_compact_integrable => // ?; exact: cvg_cst.
under [fun _ => _ + _ ]eq_fun => ? do rewrite -EFinD.
have int_fx : mu.-integrable `[x - r, x + r] (fun z => (f z - f x)%:E).
under [fun z => (f z - _)%:E]eq_fun => ? do rewrite EFinB.
rewrite integrableB// continuous_compact_integrable// => ?.
exact: cvg_cst.
rewrite normrM [ `|_/_| ]ger0_norm // -fine_abse //; first last.
by rewrite integral_fune_fin_num.
suff : (\int[mu]_(z in `[(x - r)%R, (x + r)%R]) `|f z - f x|%:E <=
(r *+ 2 * eps)%:E)%E.
move=> intfeps; apply: le_trans.
apply: (ler_pM r20 _ (le_refl _)); first exact: fine_ge0.
apply: fine_le; last apply: le_abse_integral => //.
- by rewrite abse_fin_num integral_fune_fin_num.
- by rewrite integral_fune_fin_num// integrable_abse.
- by case/integrableP : int_fx.
rewrite div1r ler_pdivrMl ?mulrn_wgt0 // -[_ * _]/(fine (_%:E)).
by rewrite fine_le// integral_fune_fin_num// integrable_abse.
apply: le_trans.
- apply: (@integral_le_bound _ _ _ _ _ (fun z => (f z - f x)%:E) eps%:E) => //.
+ by case/integrableP: int_fx.
+ exact: ltW.
+ by apply: aeW => ? ?; rewrite /= lee_fin distrC feps.
by rewrite ritv //= -EFinM lee_fin mulrC.
Unshelve. all: by end_near. Qed.
End lebesgue_differentiation_continuous.
Section locally_integrable.
Context {R : realType}.
Implicit Types (D : set R) (f g : R -> R).
Local Open Scope ereal_scope.
Local Notation mu := lebesgue_measure.
Definition locally_integrable D f := [/\ measurable_fun D f, open D &
forall K, K `<=` D -> compact K -> \int[mu]_(x in K) `|f x|%:E < +oo].
Lemma open_integrable_locally D f : open D ->
mu.-integrable D (EFin \o f) -> locally_integrable D f.
Proof.
move=> K KD cK; rewrite (le_lt_trans _ foo)// ge0_subset_integral//=.
- exact: compact_measurable.
- exact: open_measurable.
- apply/measurable_EFinP; apply: measurableT_comp => //.
exact/measurable_EFinP.
Qed.
Lemma locally_integrableN D f :
locally_integrable D f -> locally_integrable D (\- f)%R.
Proof.
by move=> K KD cK; under eq_integral do rewrite normrN; exact: foo.
Qed.
Lemma locally_integrableD D f g :
locally_integrable D f -> locally_integrable D g ->
locally_integrable D (f \+ g)%R.
Proof.
move=> K KD cK.
suff : lebesgue_measure.-integrable K ((EFin \o f) \+ (EFin \o g)).
by case/integrableP.
apply: integrableD => //=; first exact: compact_measurable.
- apply/integrableP; split; last exact: foo.
apply/measurable_EFinP; apply: measurable_funS mf => //.
exact: open_measurable.
- apply/integrableP; split; last exact: goo.
apply/measurable_EFinP; apply: measurable_funS mg => //.
exact: open_measurable.
Qed.
Lemma locally_integrableB D f g :
locally_integrable D f -> locally_integrable D g ->
locally_integrable D (f \- g)%R.
Proof.
Lemma locally_integrable_indic D (A : set R) :
open D -> measurable A -> locally_integrable D \1_A.
Proof.
apply: (@le_lt_trans _ _ (\int[mu]_(x in K) cst 1 x)).
apply: ge0_le_integral => //=; first exact: compact_measurable.
- by do 2 apply: measurableT_comp => //.
- move=> y Kx; rewrite indicE.
by case: (y \in A) => /=; rewrite ?(normr1,normr0,lexx,lee01).
by rewrite integral_cst//= ?mul1e; [exact: compact_finite_measure|
exact: compact_measurable].
Qed.
Lemma locally_integrableS (A B : set R) f :
measurable A -> measurable B -> A `<=` B ->
locally_integrable setT (f \_ B) -> locally_integrable setT (f \_ A).
Proof.
have ? : measurable_fun [set: R] (f \_ A).
apply/(measurable_restrictT _ _).1 => //; apply: (measurable_funS _ AB) => //.
exact/(measurable_restrictT _ _).2.
split => // K KT cK; apply: le_lt_trans (ifB _ KT cK).
apply: ge0_le_integral => //=; first exact: compact_measurable.
- apply/measurable_EFinP; apply/measurableT_comp => //.
exact/measurable_funTS.
- apply/measurable_EFinP; apply/measurableT_comp => //.
exact/measurable_funTS.
- move=> x Kx; rewrite lee_fin !patchE.
case: ifPn => xA; case: ifPn => xB //; last by rewrite normr0.
move: AB => /(_ x).
by move/set_mem : xA => /[swap] /[apply] /mem_set; rewrite (negbTE xB).
Qed.
Lemma integrable_locally_restrict f (A : set R) : measurable A ->
mu.-integrable A (EFin \o f) -> locally_integrable [set: R] (f \_ A).
Proof.
- move/integrableP : intf => [mf _].
by apply/(measurable_restrictT _ _).1 => //; exact/measurable_EFinP.
- exact: openT.
- move=> K _ cK.
move/integrableP : intf => [mf].
rewrite integral_mkcond/=.
under eq_integral do rewrite restrict_EFin restrict_normr.
apply: le_lt_trans.
apply: ge0_subset_integral => //=; first exact: compact_measurable.
apply/measurable_EFinP/measurableT_comp/measurable_EFinP => //=.
move/(measurable_restrictT _ _).1 : mf => /=.
by rewrite restrict_EFin; exact.
Qed.
End locally_integrable.
Section iavg.
Context {R : realType}.
Implicit Types (D A : set R) (f g : R -> R).
Local Open Scope ereal_scope.
Local Notation mu := lebesgue_measure.
Definition iavg f A := (fine (mu A))^-1%:E * \int[mu]_(y in A) `| (f y)%:E |.
Lemma iavg0 f : iavg f set0 = 0.
Proof.
Lemma iavg_ge0 f A : 0 <= iavg f A.
Lemma iavg_restrict f D A : measurable D -> measurable A ->
iavg (f \_ D) A = ((fine (mu A))^-1)%:E * \int[mu]_(y in D `&` A) `|f y|%:E.
Proof.
apply: eq_integral => /= y yx1.
by rewrite [in RHS]restrict_EFin/= restrict_normr.
Qed.
Lemma iavgD f g A : measurable A -> mu A < +oo ->
measurable_fun A f -> measurable_fun A g ->
iavg (f \+ g)%R A <= iavg f A + iavg g A.
Proof.
by rewrite /iavg r0/= invr0 !mul0e adde0.
rewrite -muleDr//=; last by rewrite ge0_adde_def// inE integral_ge0.
rewrite lee_pmul2l//; last first.
by rewrite lte_fin invr_gt0// fine_gt0// Aoo andbC/= lt0e r0/=.
rewrite -ge0_integralD//=; [|by do 2 apply: measurableT_comp..].
apply: ge0_le_integral => //=.
- by do 2 apply: measurableT_comp => //; exact: measurable_funD.
- by move=> /= x _; rewrite adde_ge0.
- by apply: measurableT_comp => //; apply: measurable_funD => //;
exact: measurableT_comp.
- by move=> /= x _; exact: ler_normD.
Qed.
End iavg.
Section hardy_littlewood.
Context {R : realType}.
Notation mu := (@lebesgue_measure R).
Implicit Types (D : set R) (f : R -> R).
Local Open Scope ereal_scope.
Definition HL_maximal f (x : R) : \bar R :=
ereal_sup [set iavg f (ball x r) | r in `]0, +oo[%classic%R].
Local Notation HL := HL_maximal.
Lemma HL_maximal_ge0 f D : locally_integrable D f ->
forall x, 0 <= HL (f \_ D) x.
Proof.
pose k := \int[mu]_(x in D `&` ball x 1) `|f x|%:E.
exists ((fine (mu (ball x 1)))^-1%:E * k); last first.
rewrite mule_ge0//; last exact: integral_ge0.
by rewrite lee_fin// invr_ge0// fine_ge0.
exists 1%R; first by rewrite in_itv/= ltr01.
rewrite iavg_restrict//; last exact: measurable_ball.
by case: Df => _ /open_measurable.
Qed.
Lemma HL_maximalT_ge0 f : locally_integrable setT f -> forall x, 0 <= HL f x.
Proof.
Let locally_integrable_ltbally (f : R -> R) (x r : R) :
locally_integrable setT f -> \int[mu]_(y in ball x r) `|(f y)%:E| < +oo.
Proof.
by rewrite (ball0 _ _).2// integral_set0.
rewrite (le_lt_trans _ (locf (closed_ball x r) _ (closed_ballR_compact _)))//.
apply: ge0_subset_integral => //; first exact: measurable_ball.
- by apply: measurable_closed_ball; exact/ltW.
- apply: measurable_funTS; apply/measurableT_comp => //=.
exact: measurableT_comp.
- exact: subset_closed_ball.
Qed.
Lemma lower_semicontinuous_HL_maximal f :
locally_integrable setT f -> lower_semicontinuous (HL f).
Proof.
have [a0|a0] := lerP 0 a; last first.
rewrite [X in open X](_ : _ = setT); first exact: openT.
by apply/seteqP; split=> // x _; exact: (lt_le_trans _ (HL_maximalT_ge0 _ _)).
rewrite openE /= => x /= /ereal_sup_gt[_ [r r0] <-] afxr.
rewrite /= in_itv /= andbT in r0.
rewrite /iavg in afxr; set k := \int[_]_(_ in _) _ in afxr.
apply: nbhs_singleton; apply: nbhs_interior; rewrite nbhsE /=.
have k_gt0 : 0 < k.
rewrite lt0e integral_ge0// andbT; apply/negP => /eqP k0.
by move: afxr; rewrite k0 mule0 lte_fin ltNge a0.
move: a0; rewrite le_eqVlt => /predU1P[a0|a0].
move: afxr; rewrite -{a}a0 => xrk.
near (0%R : R)^'+ => d.
have xrdk : 0 < (fine (mu (ball x (r + d))))^-1%:E * k.
rewrite mule_gt0// lte_fin invr_gt0// fine_gt0//.
rewrite lebesgue_measure_ball; last by rewrite addr_ge0// ltW.
by rewrite ltry andbT lte_fin pmulrn_lgt0// addr_gt0.
exists (ball x d).
by split; [exact: ball_open|exact: ballxx].
move=> y; rewrite /ball/= => xyd.
have ? : ball x r `<=` ball y (r + d).
move=> /= z; rewrite /ball/= => xzr; rewrite -(subrK x y) -(addrA (y - x)%R).
by rewrite (le_lt_trans (ler_normD _ _))// [ltLHS]addrC ltrD// distrC.
have ? : k <= \int[mu]_(y in ball y (r + d)) `|(f y)%:E|.
apply: ge0_subset_integral =>//; [exact:measurable_ball|
exact:measurable_ball|].
apply: measurable_funTS; apply: measurableT_comp => //=.
by apply/measurableT_comp => //=; case: locf.
have : iavg f (ball y (r + d)) <= HL f y.
apply: ereal_sup_ubound => /=; exists (r + d)%R => //.
by rewrite in_itv/= andbT addr_gt0.
apply/lt_le_trans/(lt_le_trans xrdk); rewrite /iavg.
do 2 (rewrite lebesgue_measure_ball; last by rewrite addr_ge0// ltW).
rewrite lee_wpmul2l// lee_fin invr_ge0// fine_ge0// lee_fin pmulrn_rge0//.
by rewrite addr_gt0.
have ka_pos : fine k / a \is Num.pos.
by rewrite posrE divr_gt0// fine_gt0 // k_gt0/= locally_integrable_ltbally.
have k_fin_num : k \is a fin_num.
by rewrite ge0_fin_numE ?locally_integrable_ltbally// integral_ge0.
have kar : (0 < 2^-1 * (fine k / a) - r)%R.
move: afxr; rewrite -{1}(fineK k_fin_num) -lte_pdivrMr; last first.
by rewrite fine_gt0// k_gt0/= ltey_eq k_fin_num.
rewrite (lebesgue_measure_ball _ (ltW r0))//.
rewrite -!EFinM !lte_fin -invf_div ltf_pV2 ?posrE ?pmulrn_lgt0//.
rewrite /= -[in X in X -> _]mulr_natl -ltr_pdivlMl//.
by rewrite -[in X in X -> _]subr_gt0.
near (0%R : R)^'+ => d.
have axrdk : a%:E < (fine (mu (ball x (r + d))))^-1%:E * k.
rewrite lebesgue_measure_ball//; last by rewrite addr_ge0// ltW.
rewrite -(fineK k_fin_num) -lte_pdivrMr; last first.
by rewrite fine_gt0// k_gt0/= locally_integrable_ltbally.
rewrite -!EFinM !lte_fin -invf_div ltf_pV2//; last first.
by rewrite posrE fine_gt0// ltry andbT lte_fin pmulrn_lgt0// addr_gt0.
rewrite -mulr_natl -ltr_pdivlMl// -ltrBrDl.
by near: d; exact: nbhs_right_lt.
exists (ball x d).
by split; [exact: ball_open|exact: ballxx].
move=> y; rewrite /ball/= => xyd.
have ? : ball x r `<=` ball y (r + d).
move=> /= z; rewrite /ball/= => xzr; rewrite -(subrK x y) -(addrA (y - x)%R).
by rewrite (le_lt_trans (ler_normD _ _))// [ltLHS]addrC ltrD// distrC.
have ? : k <= \int[mu]_(z in ball y (r + d)) `|(f z)%:E|.
apply: ge0_subset_integral => //; [exact: measurable_ball|
exact: measurable_ball|].
by apply: measurable_funTS; do 2 apply: measurableT_comp => //.
have afxrdi : a%:E < (fine (mu (ball x (r + d))))^-1%:E *
\int[mu]_(z in ball y (r + d)) `|(f z)%:E|.
by rewrite (lt_le_trans axrdk)// lee_wpmul2l// lee_fin invr_ge0// fine_ge0.
have /lt_le_trans : a%:E < iavg f (ball y (r + d)).
apply: (lt_le_trans afxrdi); rewrite /iavg.
do 2 (rewrite lebesgue_measure_ball; last by rewrite addr_ge0// ltW).
rewrite lee_wpmul2l// lee_fin invr_ge0// fine_ge0//= lee_fin pmulrn_rge0//.
by rewrite addr_gt0.
apply; apply: ereal_sup_ubound => /=.
by exists (r + d)%R => //; rewrite in_itv/= andbT addr_gt0.
Unshelve. all: by end_near. Qed.
Lemma measurable_HL_maximal f :
locally_integrable setT f -> measurable_fun setT (HL f).
Proof.
Let norm1 D f := \int[mu]_(y in D) `|(f y)%:E|.
Lemma maximal_inequality f c :
locally_integrable setT f -> (0 < c)%R ->
mu [set x | HL f x > c%:E] <= (3 / c)%:E * norm1 setT f.
Proof.
rewrite lebesgue_regularity_inner_sup//; last first.
rewrite -[X in measurable X]setTI; apply: emeasurable_fun_o_infty => //.
exact: measurable_HL_maximal.
apply: ub_ereal_sup => /= x /= [K [cK Kcmf <-{x}]].
have r_proof x : HL f x > c%:E -> {r | (0 < r)%R & iavg f (ball x r) > c%:E}.
move=> /ereal_sup_gt/cid2[y /= /cid2[r]].
by rewrite in_itv/= andbT => rg0 <-{y} Hc; exists r.
pose r_ x :=
if pselect (HL f x > c%:E) is left H then s2val (r_proof _ H) else 1%R.
have r_pos (x : R) : (0 < r_ x)%R.
by rewrite /r_; case: pselect => //= cMfx; case: (r_proof _ cMfx).
have cMfx_int x : c%:E < HL f x ->
\int[mu]_(y in ball x (r_ x)) `|(f y)|%:E > c%:E * mu (ball x (r_ x)).
move=> cMfx; rewrite /r_; case: pselect => //= => {}cMfx.
case: (r_proof _ cMfx) => /= r r0.
have ? : 0%R < (fine (mu (ball x r)))%:E.
rewrite lte_fin fine_gt0// (lebesgue_measure_ball _ (ltW r0))// ltry.
by rewrite lte_fin mulrn_wgt0.
rewrite /iavg -(@lte_pmul2r _ (fine (mu (ball x r)))%:E)//.
rewrite muleAC -[in X in _ < X]EFinM mulVf ?gt_eqF// mul1e fineK//.
by rewrite ge0_fin_numE// (lebesgue_measure_ball _ (ltW r0)) ltry.
set B := fun r => ball r (r_ r).
have {}Kcmf : K `<=` cover [set i | HL f i > c%:E] (fun i => ball i (r_ i)).
by move=> r /Kcmf /= cMfr; exists r => //; exact: ballxx.
have {Kcmf}[D Dsub Kcover] : finite_subset_cover [set i | c%:E < HL f i]
(fun i => ball i (r_ i)) K.
move: cK; rewrite compact_cover => /(_ _ _ _ _ Kcmf); apply.
by move=> /= x cMfx; exact/ball_open/r_pos.
have KDB : K `<=` cover [set` D] B.
by apply: (subset_trans Kcover) => /= x [r Dr] rx; exists r.
have is_ballB i : is_ball (B i) by exact: is_ball_ball.
have Bset0 i : B i !=set0 by exists i; exact: ballxx.
have [E [uE ED tEB DE]] := @vitali_lemma_finite_cover _ _ B is_ballB Bset0 D.
rewrite (@le_trans _ _ (3%:E * \sum_(i <- E) mu (B i)))//.
have {}DE := subset_trans KDB DE.
apply: (le_trans (@content_subadditive _ _ _ mu K
(fun i => 3 *` B (nth 0%R E i)) (size E) _ _ _)) => //.
- by move=> k ?; rewrite scale_ballE//; exact: measurable_ball.
- by apply: closed_measurable; apply: compact_closed => //; exact: Rhausdorff.
- apply: (subset_trans DE); rewrite /cover bigcup_seq.
by rewrite (big_nth 0%R)//= big_mkord.
- rewrite ge0_sume_distrr//= (big_nth 0%R) big_mkord; apply: lee_sum => i _.
rewrite scale_ballE// !lebesgue_measure_ball ?mulr_ge0 ?(ltW (r_pos _))//.
by rewrite -mulrnAr EFinM.
rewrite !EFinM -muleA lee_wpmul2l//=.
apply: (@le_trans _ _
(\sum_(i <- E) c^-1%:E * \int[mu]_(y in B i) `|(f y)|%:E)).
rewrite [in leLHS]big_seq [in leRHS]big_seq; apply: lee_sum => r /ED /Dsub /[!inE] rD.
by rewrite -lee_pdivrMl ?invr_gt0// invrK /B/=; exact/ltW/cMfx_int.
rewrite -ge0_sume_distrr//; last by move=> x _; rewrite integral_ge0.
rewrite lee_wpmul2l//; first by rewrite lee_fin invr_ge0 ltW.
rewrite -ge0_integral_bigsetU//=.
- apply: ge0_subset_integral => //.
+ by apply: bigsetU_measurable => ? ?; exact: measurable_ball.
+ by apply: measurableT_comp => //; apply: measurableT_comp => //; case: locf.
- by move=> n; exact: measurable_ball.
- apply: measurableT_comp => //; apply: measurable_funTS.
by apply: measurableT_comp => //; case: locf.
Qed.
End hardy_littlewood.
Section davg.
Context {R : realType}.
Local Notation mu := (@lebesgue_measure R).
Local Open Scope ereal_scope.
Implicit Types f g : R -> R.
Definition davg f x (r : R) := iavg (center (f x) \o f) (ball x r).
Lemma davg0 f x (r : R) : (r <= 0)%R -> davg f x r = 0.
Lemma davg_ge0 f x (r : R) : 0 <= davg f x r
Proof.
Lemma davgD f g (x r : R) :
measurable_fun (ball x r) f -> measurable_fun (ball x r) g ->
davg (f \+ g)%R x r <= (davg f x \+ davg g x) r.
Proof.
- rewrite le_eqVlt; apply/orP; left; apply/eqP => /=; congr iavg.
by apply/funext => e /=; rewrite opprD addrACA.
- exact: measurable_ball.
- have [r0|r0] := leP r 0%R; first by rewrite (ball0 _ _).2// measure0.
by rewrite (lebesgue_measure_ball _ (ltW r0)) ltry.
- exact: measurable_funB.
- exact: measurable_funB.
Qed.
Lemma near_davg f (a : itv_bound R) x (u : R) : (x < u)%R -> (a < BRight x)%E ->
\forall r \near 0^'+,
davg f x r = davg (f \_ [set` Interval a (BRight u)]) x r.
Proof.
- move=> ax; near=> r.
have fauf : {in ball x r : set R,
f \_ [set` Interval (BSide b a) (BRight u)] =1 f}.
move=> y.
rewrite ball_itv/= inE/= => yxr; rewrite patchE/= mem_set//=.
apply: subset_itvW yxr.
rewrite lerBrDl -lerBrDr.
by near: r; apply: nbhs_right_ltW; rewrite subr_gt0.
rewrite -lerBrDl.
by near: r; apply: nbhs_right_le; rewrite subr_gt0.
congr *%E; apply: eq_integral => y yxr /=.
by rewrite fauf// fauf// inE; exact: ballxx.
- near=> r.
have foouf : {in (ball x r : set R), f \_ `]-oo, u] =1 f}.
move=> y.
rewrite ball_itv/= inE/= => yxr; rewrite patchE/= mem_set//=.
move: yxr; rewrite !in_itv/= => /andP[_ /ltW/le_trans]; apply.
rewrite -lerBrDl.
by near: r; apply: nbhs_right_ltW; rewrite subr_gt0.
congr *%E; apply: eq_integral => y yxr /=.
by rewrite foouf// foouf// inE; exact: ballxx.
Unshelve. all: by end_near. Qed.
Section continuous_cvg_davg.
Context f (x : R) (U : set R).
Hypotheses (xU : open_nbhs x U) (mU : measurable U) (mUf : measurable_fun U f)
(fx : {for x, continuous f}).
Let continuous_integralB_fin_num :
\forall t \near 0%R,
\int[mu]_(y in ball x t) `|(f y)%:E - (f x)%:E| \is a fin_num.
Proof.
near (0%R:R)^'+ => e.
have e0 : (0 < e)%R by near: e; exact: nbhs_right_gt.
have [r /= r0 {}fx'] := fx' _ e0.
have [d/= d0 dxU] := open_subball xU.1 xU.2.
near=> t; rewrite ge0_fin_numE ?integral_ge0//.
have [t0|t0] := leP t 0%R; first by rewrite ((ball0 _ _).2 t0) integral_set0.
have xtU : ball x t `<=` U by apply: dxU => //=.
rewrite (@le_lt_trans _ _ (\int[mu]_(y in ball x t) e%:E))//; last first.
rewrite integral_cst//=; last exact: measurable_ball.
by rewrite (lebesgue_measure_ball _ (ltW t0)) ltry.
apply: ge0_le_integral => //=; first exact: measurable_ball.
- by do 2 apply: measurableT_comp => //=; apply: measurable_funB;
[exact: measurable_funS mUf|exact: measurable_cst].
- by move=> y _; rewrite lee_fin.
- move=> y xry; rewrite lee_fin distrC fx'//=; apply: (lt_le_trans xry).
by near: t; exact: nbhs0_ltW.
Unshelve. all: by end_near. Qed.
Let continuous_davg_fin_num :
\forall A \near 0%R, davg f x A \is a fin_num.
Proof.
move: fx => /cvgrPdist_le fx'.
near (0%R:R)^'+ => r.
have r0 : (0 < r)%R by near: r; exact: nbhs_right_gt.
have [d /= d0 {}fx'] := fx' _ e0.
near=> t; have [t0|t0] := leP t 0%R; first by rewrite davg0.
by rewrite fin_numM// exf/=.
Unshelve. all: by end_near. Qed.
Lemma continuous_cvg_davg : davg f x r @[r --> 0%R] --> 0.
Proof.
apply/cvgrPdist_le => e e0.
move: fx => /cvgrPdist_le /= fx'.
have [r /= r0 {}fx'] := fx' _ e0.
have [d /= d0 dfx] := continuous_davg_fin_num.
have [l/= l0 lxU] := open_subball xU.1 xU.2.
near=> t.
have [t0|t0] := leP t 0%R; first by rewrite /= davg0//= subrr normr0 ltW.
rewrite sub0r normrN /= ger0_norm; last by rewrite fine_ge0// davg_ge0.
rewrite -lee_fin fineK//; last by rewrite dfx//= sub0r normrN gtr0_norm.
rewrite /davg/= /iavg/= lee_pdivrMl//; last first.
by rewrite fine_gt0// lebesgue_measure_ball// ?ltry ?lte_fin ?mulrn_wgt0 ?ltW.
rewrite (@le_trans _ _ (\int[mu]_(y in ball x t) e%:E))//.
apply: ge0_le_integral => //=.
- exact: measurable_ball.
- do 2 apply: measurableT_comp => //=; apply: measurable_funB => //.
by apply: measurable_funS mUf => //; apply: lxU => //=.
- by move=> y xty; rewrite lee_fin ltW.
- move=> y xty; rewrite lee_fin distrC fx'//; apply: (lt_le_trans xty).
by near: t; exact: nbhs0_ltW.
rewrite integral_cst//=; last exact: measurable_ball.
by rewrite muleC fineK// (lebesgue_measure_ball _ (ltW t0)).
Unshelve. all: by end_near. Qed.
End continuous_cvg_davg.
End davg.
Section lim_sup_davg.
Context {R : realType}.
Local Open Scope ereal_scope.
Implicit Types f g : R -> R.
Definition lim_sup_davg f x := lime_sup (davg f x) 0.
Local Notation "f ^*" := (lim_sup_davg f).
Lemma lim_sup_davg_ge0 f x : 0 <= f^* x.
Proof.
Lemma lim_sup_davg_le f g x (U : set R) : open_nbhs x U -> measurable U ->
measurable_fun U f -> measurable_fun U g ->
(f \+ g)%R^* x <= (f^* \+ g^*) x.
Proof.
by rewrite ge0_adde_def// inE; exact: lim_sup_davg_ge0.
have [e/= e0 exU] := open_subball xU.1 xU.2.
apply: lime_sup_le; near=> r => y; rewrite neq_lt => /orP[y0|y0 ry].
by rewrite !davg0 ?adde0// ltW.
apply: davgD.
apply: measurable_funS mf => //; apply: exU => //=.
by rewrite (lt_le_trans ry)//; near: r; exact: nbhs_right_le.
apply: measurable_funS mg => //; apply: exU => //=.
by rewrite (lt_le_trans ry)//; near: r; exact: nbhs_right_le.
Unshelve. all: by end_near. Qed.
Lemma continuous_lim_sup_davg f x (U : set R) : open_nbhs x U -> measurable U ->
measurable_fun U f -> {for x, continuous f} ->
f^* x = 0.
Proof.
Lemma lim_sup_davgB f g x (U : set R) : open_nbhs x U -> measurable U ->
measurable_fun U f -> {for x, continuous g} ->
locally_integrable [set: R] g -> (f \- g)%R^* x = f^* x.
Proof.
- rewrite [leRHS](_ : _ = f^* x + (\- g)%R^* x).
apply: (lim_sup_davg_le xU) => //.
apply/(measurable_comp measurableT) => //.
by case: locg => + _ _; exact: measurable_funS.
rewrite (@continuous_lim_sup_davg (- g)%R _ _ xU mU); first by rewrite adde0.
- apply/(measurable_comp measurableT) => //.
by case: locg => + _ _; apply: measurable_funS.
+ by move=> y; exact/continuousN/cg.
- rewrite [leRHS](_ : _ = ((f \- g)%R^* \+ g^*) x)//.
rewrite {1}(_ : f = f \- g + g)%R; last by apply/funext => y; rewrite subrK.
apply: (lim_sup_davg_le xU mU).
apply: measurable_funB; [exact: mUf|].
by case: locg => + _ _; exact: measurable_funS.
by case: locg => + _ _; exact: measurable_funS.
rewrite [X in _ + X](@continuous_lim_sup_davg _ _ _ xU mU); [by rewrite adde0| |by[]].
by case: locg => + _ _; exact: measurable_funS.
Qed.
Local Notation mu := (@lebesgue_measure R).
Let is_cvg_ereal_sup_davg f x :
cvg (ereal_sup [set davg f x y | y in ball 0%R e `\ 0%R] @[e --> 0^'+]).
Proof.
rewrite !in_itv/= => /andP[y0 ye] /andP[z0 ze] yz.
apply: le_ereal_sup => _ /= -[b [yb b0]] <-.
by exists b => //; split => //; exact: le_ball yb.
Unshelve. all: by end_near. Qed.
Lemma lim_sup_davgT_HL_maximal f (x : R) : locally_integrable setT f ->
f^* x <= HL_maximal f x + `|f x|%:E.
Proof.
exact: is_cvg_ereal_sup_davg.
near=> e.
apply: ub_ereal_sup => _ [b [eb] /= b0] <-.
suff : forall r, davg f x r <= HL_maximal f x + `|f x|%:E by exact.
move=> r.
apply: (@le_trans _ _ ((fine (mu (ball x r)))^-1%:E *
\int[mu]_(y in ball x r) (`| (f y)%:E | + `|(f x)%:E|))).
- rewrite /davg lee_wpmul2l//.
by rewrite lee_fin invr_ge0 fine_ge0.
apply: ge0_le_integral => //.
+ exact: measurable_ball.
+ do 2 apply: measurableT_comp => //=; apply: measurable_funB => //.
exact: measurableT_comp.
+ by move=> *; rewrite adde_ge0.
+ apply: emeasurable_funD => //; do 2 apply: measurableT_comp => //.
exact: measurable_funS mf.
by move=> /= y xry; rewrite -EFinD lee_fin// ler_normB.
rewrite [leLHS](_ : _ = (fine (mu (ball x r)))^-1%:E *
(\int[mu]_(y in ball x r) `|(f y)%:E| +
\int[mu]_(y in ball x r) `|(f x)%:E|)); last first.
congr *%E; rewrite ge0_integralD//=; first exact: measurable_ball.
by do 2 apply: measurableT_comp => //; exact: measurable_funS mf.
have [r0|r0] := lerP r 0.
rewrite (ball0 _ _).2// !integral_set0 adde0 mule0 adde_ge0//.
by apply: HL_maximalT_ge0; split => //; exact: openT.
rewrite muleDr//; last by rewrite ge0_adde_def// inE integral_ge0.
rewrite leeD//.
by apply: ereal_sup_ubound => /=; exists r => //; rewrite in_itv/= r0.
under eq_integral do rewrite -(mule1 `| _ |).
rewrite ge0_integralZl//; last exact: measurable_ball.
rewrite integral_cst//; last exact: measurable_ball.
rewrite mul1e muleCA !(lebesgue_measure_ball _ (ltW r0)).
rewrite [X in _ * (_ * X)](_ : _ = mu (ball x r))//.
rewrite (lebesgue_measure_ball _ (ltW r0))//.
by rewrite /= -EFinM mulVr ?mulr1// unitfE mulrn_eq0/= gt_eqF.
Unshelve. all: by end_near. Qed.
End lim_sup_davg.
Definition lebesgue_pt {R : realType} (f : R -> R) (x : R) :=
davg f x r @[r --> (0%R:R)^'+] --> 0%E.
Lemma continuous_lebesgue_pt {R : realType} (f : R -> R) x (U : set R) :
open_nbhs x U -> measurable U -> measurable_fun U f ->
{for x, continuous f} -> lebesgue_pt f x.
Proof.
apply: cvg_at_right_filter; rewrite davg0//.
exact: (continuous_cvg_davg xU mU mUf).
Qed.
Lemma lebesgue_pt_restrict {R : realType} (f : R -> R) (a : itv_bound R) x u :
(x < u)%R -> (a < BRight x)%E ->
lebesgue_pt f x -> lebesgue_pt (f \_ [set` Interval a (BRight u)]) x.
Proof.
Section lebesgue_measure_integral.
Context {R : realType}.
Local Notation mu := (@lebesgue_measure R).
Local Open Scope ereal_scope.
Lemma integral_Sset1 (f : R -> \bar R) A (r : R) : A `<=` [set r] ->
(\int[mu]_(x in A) f x = 0)%E.
Proof.
rewrite (eq_integral (cst (f r)))/=; last by move=> x; rewrite inE/= => ->.
by rewrite integral_cst//= lebesgue_measure_set1 mule0.
Qed.
Lemma integral_set1 (f : R -> \bar R) (r : R) : \int[mu]_(x in [set r]) f x = 0.
Proof.
Lemma ge0_integral_closed_ball c (r : R) (r0 : (0 < r)%R) (f : R -> \bar R) :
measurable_fun (closed_ball c r : set R) f ->
(forall x, x \in closed_ball c r -> 0 <= f x) ->
\int[mu]_(x in closed_ball c r) f x = \int[mu]_(x in ball c r) f x.
Proof.
rewrite closed_ball_ball//= ge0_integral_setU//=; last 4 first.
by apply: measurableU => //; exact: measurable_ball.
by move: mf; rewrite closed_ball_ball.
by move=> x xcr; rewrite f0// closed_ball_ball// inE.
apply/disj_setPLR => x [->|]/=; rewrite /ball/=.
by apply/eqP; rewrite (addrC _ r) -subr_eq -addrA addrC subrK eqNr gt_eqF.
by move=> /[swap] ->; rewrite opprD addrA subrr sub0r normrN gtr0_norm// ltxx.
rewrite ge0_integral_setU//=.
- by rewrite !integral_set1//= add0e adde0.
- exact: measurable_ball.
- apply: measurable_funS mf; first exact: measurable_closed_ball.
by move=> x; rewrite closed_ball_ball//; left.
- by move=> x H; rewrite f0// closed_ball_ball// inE/=; left.
- apply/disj_setPRL => x /[swap] ->.
by rewrite /ball/= opprB addrCA subrr addr0 gtr0_norm// ltxx.
Qed.
Lemma integral_setD1_EFin (f : R -> R) r (D : set R) :
measurable (D `\ r) -> measurable_fun (D `\ r) f ->
\int[mu]_(x in D `\ r) (f x)%:E = \int[mu]_(x in D) (f x)%:E.
Proof.
rewrite -[in RHS](@setD1K _ r D)// integral_setU_EFin//=.
- by rewrite integral_set1// add0e.
- by apply/measurable_funU => //; split => //; exact: measurable_fun_set1.
- by rewrite disj_set2E setDIK.
Qed.
Lemma integral_itv_bndo_bndc (a : itv_bound R) (r : R) (f : R -> R) :
measurable_fun [set` Interval a (BLeft r)] f ->
\int[mu]_(x in [set` Interval a (BLeft r)]) (f x)%:E =
\int[mu]_(x in [set` Interval a (BRight r)]) (f x)%:E.
Proof.
- by rewrite -[RHS](@integral_setD1_EFin _ r) ?setDitv1r.
- by rewrite !set_itv_ge// -leNgt// ltW.
Qed.
Lemma integral_itv_obnd_cbnd (r : R) (b : itv_bound R) (f : R -> R) :
measurable_fun [set` Interval (BRight r) b] f ->
\int[mu]_(x in [set` Interval (BRight r) b]) (f x)%:E =
\int[mu]_(x in [set` Interval (BLeft r) b]) (f x)%:E.
Proof.
- by rewrite -[RHS](@integral_setD1_EFin _ r) ?setDitv1l.
- by rewrite !set_itv_ge// -leNgt -?ltBRight_leBLeft// ltW.
Qed.
Lemma integral_itv_bndoo (x y : R) (f : R -> R) (b0 b1 : bool) :
measurable_fun `]x, y[ f ->
\int[mu]_(z in [set` Interval (BSide b0 x) (BSide b1 y)]) (f z)%:E =
\int[mu]_(z in `]x, y[) (f z)%:E.
Proof.
- rewrite !set_itv_ge ?integral_set0//=.
+ by rewrite bnd_simp le_gtF// ltW.
+ by move: b0 b1 => [|] [|]; rewrite bnd_simp ?lt_geF// le_gtF// ltW.
- by move: b0 b1 => [|] [|]; rewrite !set_itvE ?integral_set0 ?integral_set1.
move=> mf.
transitivity (\int[mu]_(z in [set` Interval (BSide b0 x) (BLeft y)]) (f z)%:E).
case: b1 => //; rewrite -integral_itv_bndo_bndc//.
case: b0 => //.
exact: measurable_fun_itv_co mf.
by case: b0 => //; rewrite -integral_itv_obnd_cbnd.
Qed.
Lemma eq_integral_itv_bounded (x y : R) (g f : R -> R) (b0 b1 : bool) :
measurable_fun `]x, y[ f -> measurable_fun `]x, y[ g ->
{in `]x, y[, f =1 g} ->
\int[mu]_(z in [set` Interval (BSide b0 x) (BSide b1 y)]) (f z)%:E =
\int[mu]_(z in [set` Interval (BSide b0 x) (BSide b1 y)]) (g z)%:E.
Proof.
rewrite integral_itv_bndoo// (@integral_itv_bndoo _ _ g)//.
by apply: eq_integral => z; rewrite inE/= => zxy; congr EFin; exact: fg.
Qed.
End lebesgue_measure_integral.
Arguments integral_Sset1 {R f A} r.
Section Rintegral_lebesgue_measure.
Context {R : realType}.
Notation mu := (@lebesgue_measure R).
Implicit Type f : R -> R.
Lemma Rintegral_itv_bndo_bndc (a : itv_bound R) (r : R) f :
mu.-integrable [set` Interval a (BLeft r)] (EFin \o f) ->
\int[mu]_(x in [set` Interval a (BLeft r)]) (f x) =
\int[mu]_(x in [set` Interval a (BRight r)]) (f x).
Proof.
by apply/measurable_EFinP; exact: (measurable_int mu).
Qed.
Lemma Rintegral_itv_obnd_cbnd (r : R) (b : itv_bound R) f :
mu.-integrable [set` Interval (BRight r) b] (EFin \o f) ->
\int[mu]_(x in [set` Interval (BRight r) b]) (f x) =
\int[mu]_(x in [set` Interval (BLeft r) b]) (f x).
Proof.
by apply/measurable_EFinP; exact: (measurable_int mu).
Qed.
Lemma Rintegral_set1 f (r : R) : \int[mu]_(x in [set r]) f x = 0.
Proof.
Lemma Rintegral_itvB f (a b : itv_bound R) x :
mu.-integrable [set` (Interval a b)] (EFin \o f) ->
(a <= BRight x)%O -> (BRight x <= b)%O ->
\int[mu]_(t in [set` Interval a b]) f t -
\int[mu]_(t in [set` Interval a (BRight x)]) f t =
\int[mu]_(x in [set` Interval (BRight x) b]) f x.
Proof.
rewrite ax => _; rewrite [in X in _ - X]set_itv_ge ?bnd_simp//.
by rewrite Rintegral_set0 subr0.
rewrite (@itv_bndbnd_setU _ _ _ (BLeft x)); last 2 first.
by case: a ax {itf} => -[].
by rewrite (le_trans _ xb)// bnd_simp.
rewrite Rintegral_setU_EFin//=.
- rewrite addrAC Rintegral_itv_bndo_bndc//; last first.
apply: integrableS itf => //; apply: subset_itvl.
by rewrite (le_trans _ xb)// bnd_simp.
rewrite subrr add0r Rintegral_itv_obnd_cbnd//.
by apply: integrableS itf => //; exact/subset_itvr/ltW.
- by rewrite -itv_bndbnd_setU -?ltBRight_leBLeft// ltW.
- apply/disj_setPS => y [/=]; rewrite 2!in_itv/= => /andP[_ yx] /andP[].
by rewrite leNgt yx.
Qed.
End Rintegral_lebesgue_measure.
Section lebesgue_differentiation.
Context {R : realType}.
Local Notation mu := (@lebesgue_measure R).
Local Open Scope ereal_scope.
Implicit Types f : R -> R.
Local Notation "f ^*" := (lim_sup_davg f).
Let lebesgue_differentiation_suff (E : set R) f :
(forall a, (0 < a)%R -> mu.-negligible (E `&` [set x | a%:E < f^* x])) ->
{ae mu, forall x : R, E x -> lebesgue_pt f x}.
Proof.
suff -> : E `&` [set x | 0 < f^* x] =
E `&` \bigcup_n [set x | n.+1%:R^-1%:E < f^* x].
rewrite setI_bigcupr; apply: negligible_bigcup => k/=.
by apply: Ef; rewrite invr_gt0.
apply/seteqP; split; last first.
by move=> r [Er] [k ?] /=; split => //; exact: le_lt_trans q.
move=> x /= [Ex] fx0; split => //.
have [fxoo|fxoo] := eqVneq (f^* x) +oo.
by exists 1%N => //=; rewrite fxoo ltry.
near \oo => m; exists m => //=.
rewrite -(@fineK _ (f^* x)) ?gt0_fin_numE ?ltey// lte_fin.
rewrite invf_plt ?posrE//; last by rewrite fine_gt0// ltey fx0.
set r := _^-1; rewrite (@le_lt_trans _ _ `|ceil r|.+1%:R)//.
by rewrite (le_trans _ (abs_ceil_ge _))// ler_norm.
by rewrite ltr_nat ltnS; near: m; exact: nbhs_infty_gt.
apply: negligibleS => z /= /not_implyP[Ez H]; split => //.
rewrite ltNge; apply: contra_notN H.
rewrite le_eqVlt ltNge limf_esup_ge0/= ?orbF//; last first.
by move=> x; exact: iavg_ge0.
move=> /eqP fz0.
suff: lime_inf (davg f z) 0 = 0 by exact: lime_sup_inf_at_right.
apply/eqP; rewrite eq_le -[X in _ <= X <= _]fz0 lime_inf_sup/= fz0.
by apply: lime_inf_ge0 => x; exact: iavg_ge0.
Unshelve. all: by end_near. Qed.
Let lebesgue_differentiation_bounded f :
let B k : set R^o := ball 0%R k.+1.*2%:R in
let f_ k := f \_ (B k) in
(forall k, mu.-integrable setT (EFin \o f_ k)) ->
forall k, {ae mu, forall x, B k x -> lebesgue_pt (f_ k) x}.
Proof.
have mE : measurable (B k) by exact: measurable_ball.
have ex_g_ : exists g_ : (R -> R)^nat,
[/\ (forall n, continuous (g_ n)),
(forall n, mu.-integrable (B k) (EFin \o g_ n)) &
\int[mu]_(z in B k) `|f_ k z - g_ n z|%:E @[n --> \oo] --> 0 ].
apply: approximation_continuous_integrable => //=.
by rewrite lebesgue_measure_ball//= ltry.
exact: integrableS (intf_ _).
have {ex_g_} ex_gn n : exists gn : R -> R,
[/\ continuous gn,
mu.-integrable (B k) (EFin \o gn) &
\int[mu]_(z in B k) `|f_ k z - gn z|%:E <= n.+1%:R^-1%:E].
case: ex_g_ => g_ [cg intg] /fine_cvgP[] [m _ fgfin] /cvgrPdist_le.
move=> /(_ n.+1%:R^-1 ltac:(by []))[p _] /(_ _ (leq_addr m p)).
rewrite sub0r normrN -lee_fin => /= fg0.
exists (g_ (p + m)%N); split => //.
rewrite (le_trans _ fg0)// ger0_norm ?fine_ge0 ?integral_ge0// fineK//.
by rewrite fgfin//= leq_addl.
pose g_ n : R -> R := sval (cid (ex_gn n)).
have cg_ n : continuous (g_ n) by rewrite /g_ /sval /=; case: cid => // x [].
have intg n : mu.-integrable (B k) (EFin \o g_ n).
by rewrite /g_ /sval /=; case: cid => // x [].
have ifg_ub n : \int[mu]_(z in B k) `|f_ k z - g_ n z|%:E <= n.+1%:R^-1%:E.
by rewrite /g_ /sval /=; case: cid => // x [].
pose g_B n := g_ n \_ (B k).
have cg_B n : {in B k, continuous (g_B n)}.
move=> x xBk; rewrite /g_B patch_indic/=.
by apply: cvgM => //; [exact: cg_|exact: cvg_indic].
pose f_g_Be n : set _ := [set x | `| (f_ k \- g_B n) x |%:E >= (e / 2)%:E].
pose HLf_g_Be n : set _ :=
[set x | HL_maximal (f_ k \- g_B n)%R x > (e / 2)%:E].
pose Ee := \bigcap_n (B k `&` (HLf_g_Be n `|` f_g_Be n)).
case/integrableP: (intf_ k) => mf intf.
have mfg n : measurable_fun setT (f_ k \- g_ n)%R.
apply: measurable_funB; first by move/measurable_EFinP : mf.
by apply: continuous_measurable_fun; exact: cg_.
have locg_B n : locally_integrable [set: R] (g_B n).
split; [|exact: openT|].
- apply/(measurable_restrictT _ _).1 => //.
exact: measurable_funS (continuous_measurable_fun (cg_ n)).
- move=> K _ cK.
rewrite (@le_lt_trans _ _ (\int[mu]_(x in K) `|g_ n x|%:E))//; last first.
have : {within K, continuous (g_ n)} by apply: continuous_subspaceT.
by move/(continuous_compact_integrable cK) => /integrableP[_ /=].
apply: ge0_le_integral => //=.
+ exact: compact_measurable.
+ do 2 apply: measurableT_comp => //; apply/measurable_restrict => //.
exact: compact_measurable.
exact: measurable_funS (continuous_measurable_fun (cg_ n)).
+ do 2 apply: measurableT_comp => //; apply: measurable_funTS.
exact: continuous_measurable_fun.
+ move=> /= x Kx; rewrite /g_B patchE; case: ifPn => //=.
by rewrite normr0 lee_fin.
have locf_g_B n : locally_integrable setT (f_ k \- g_B n)%R.
apply: locally_integrableB => //; split.
- by move/measurable_EFinP : mf.
- exact: openT.
- move=> K _ cK; rewrite (le_lt_trans _ intf)//=.
apply: ge0_subset_integral => //.
+ exact: compact_measurable.
+ by do 2 apply: measurableT_comp => //; move/measurable_EFinP : mf.
have mEHL i : measurable (HLf_g_Be i).
rewrite /HLf_g_Be -[X in measurable X]setTI.
apply: emeasurable_fun_o_infty => //.
by apply: measurable_HL_maximal; exact: locf_g_B.
have mfge i : measurable (f_g_Be i).
rewrite /f_g_Be -[X in measurable X]setTI.
apply: emeasurable_fun_c_infty => //.
by do 2 apply: measurableT_comp => //; case: (locf_g_B i).
have mEe : measurable Ee.
apply: bigcapT_measurable => i.
by apply: measurableI; [exact: measurable_ball|exact: measurableU].
have davgfEe : B k `&` [set x | (f_ k)^* x > e%:E] `<=` Ee.
suff: forall n, B k `&` [set x | e%:E < (f_ k)^* x] `<=`
B k `&` (HLf_g_Be n `|` f_g_Be n).
by move=> suf r /= /suf hr n _; exact: hr.
move=> n; rewrite [X in X `<=`_](_ : _ =
B k `&` [set x | e%:E < (f_ k \- g_B n)%R^* x]); last first.
apply/seteqP; split => [x [Ex] /=|x [Ex] /=].
rewrite (@lim_sup_davgB _ _ _ _ (B k))//.
by split; [exact: ball_open|exact: Ex].
by move/measurable_EFinP : mf; apply: measurable_funS.
by apply: cg_B; rewrite inE.
rewrite (@lim_sup_davgB _ _ _ _ (B k))//.
by split; [exact: ball_open|exact: Ex].
by move/measurable_EFinP : mf; apply: measurable_funS.
by apply: cg_B; rewrite inE.
move=> r /= [Er] efgnr; split => //.
have {}efgnr := lt_le_trans efgnr (lim_sup_davgT_HL_maximal r (locf_g_B n)).
have [|h] := ltP (e / 2)%:E (HL_maximal (f_ k \- g_B n)%R r); first by left.
right; move: efgnr.
rewrite {1}(splitr e) EFinD -lteBrDl// => /ltW/le_trans; apply.
by rewrite leeBlDl// leeD.
suff: mu Ee = 0 by exists Ee.
have HL_null n : mu (HLf_g_Be n) <= (3 / (e / 2))%:E * n.+1%:R^-1%:E.
rewrite (le_trans (maximal_inequality _ _ )) ?divr_gt0//.
rewrite lee_pmul2l ?lte_fin ?divr_gt0//.
set h := (fun x => `|(f_ k \- g_ n) x|%:E) \_ (B k).
rewrite (@eq_integral _ _ _ mu setT h)//=.
by rewrite -integral_mkcond/=; exact: ifg_ub.
move=> x _; rewrite /h restrict_EFin restrict_normr/= /g_B /f_ !patchE.
by case: ifPn => /=; [rewrite patchE => ->|rewrite subrr].
have fgn_null n : mu [set x | `|(f_ k \- g_B n) x|%:E >= (e / 2)%:E] <=
(e / 2)^-1%:E * n.+1%:R^-1%:E.
rewrite lee_pdivlMl ?invr_gt0 ?divr_gt0// -[X in mu X]setTI.
apply: le_trans.
apply: (@le_integral_comp_abse _ _ _ mu _ measurableT
(EFin \o (f_ k \- g_B n)%R) (e / 2) id) => //=.
by apply: measurableT_comp => //; case: (locf_g_B n).
by rewrite divr_gt0.
set h := (fun x => `|(f_ k \- g_ n) x|%:E) \_ (B k).
rewrite (@eq_integral _ _ _ mu setT h)//=.
by rewrite -integral_mkcond/=; exact: ifg_ub.
move=> x _; rewrite /h restrict_EFin restrict_normr/= /g_B /f_ !patchE.
by case: ifPn => /=; [rewrite patchE => ->|rewrite subrr].
apply/eqP; rewrite eq_le measure_ge0 andbT.
apply/lee_addgt0Pr => r r0; rewrite add0e.
have incl n : Ee `<=` B k `&` (HLf_g_Be n `|` f_g_Be n) by move=> ?; apply.
near \oo => n.
rewrite (@le_trans _ _ (mu (B k `&` (HLf_g_Be n `|` f_g_Be n))))//.
rewrite le_measure// inE//; apply: measurableI; first exact: measurable_ball.
by apply: measurableU => //; [exact: mEHL|exact: mfge].
rewrite (@le_trans _ _ ((4 / (e / 2))%:E * n.+1%:R^-1%:E))//.
rewrite (@le_trans _ _ (mu (HLf_g_Be n `|` f_g_Be n)))//.
rewrite le_measure// inE//.
apply: measurableI => //.
by apply: measurableU => //; [exact: mEHL|exact: mfge].
by apply: measurableU => //; [exact: mEHL|exact: mfge].
rewrite (le_trans (measureU2 _ _ _))//=; [exact: mEHL|exact: mfge|].
apply: le_trans; first by apply: leeD; [exact: HL_null|exact: fgn_null].
rewrite -muleDl// lee_pmul2r// -EFinD lee_fin -{2}(mul1r (_^-1)) -div1r.
by rewrite -mulrDl natr1.
rewrite -lee_pdivlMl ?divr_gt0// -EFinM lee_fin -(@invrK _ r).
rewrite -invrM ?unitfE ?gt_eqF ?invr_gt0 ?divr_gt0//.
rewrite lef_pV2 ?posrE ?mulr_gt0 ?invr_gt0 ?divr_gt0//.
by rewrite -(@natr1 _ n) -lerBlDr; near: n; exact: nbhs_infty_ger.
Unshelve. all: by end_near. Qed.
Lemma lebesgue_differentiation f : locally_integrable setT f ->
{ae mu, forall x, lebesgue_pt f x}.
Proof.
pose B k : set R^o := ball 0%R (k.+1.*2)%:R.
pose fk k := f \_ (B k).
have mfk k : mu.-integrable setT (EFin \o fk k).
case: locf => mf _ intf.
apply/integrableP; split => /=.
by apply/measurable_EFinP/(measurable_restrictT _ _).1 => //=;
[exact: measurable_ball|exact: measurable_funS mf].
rewrite (_ : (fun x => _) = (EFin \o normr \o f) \_ (B k)); last first.
by apply/funext => x; rewrite restrict_EFin/= restrict_normr.
rewrite -integral_mkcond/= -ge0_integral_closed_ball//.
by rewrite intf//; exact: closed_ballR_compact.
by apply: measurable_funTS; do 2 apply: measurableT_comp.
have suf k : {ae mu, forall x, B k x -> lebesgue_pt (fk k) x}.
exact: lebesgue_differentiation_bounded.
pose E k : set _ := sval (cid (suf k)).
rewrite /= in E.
have HE k : mu (E k) = 0 /\ ~` [set x | B k x -> lebesgue_pt (fk k) x] `<=` E k.
by rewrite /E /sval; case: cid => // A [].
suff: ~` [set x | lebesgue_pt f x] `<=`
\bigcup_k (~` [set x | B k x -> lebesgue_pt (fk k) x]).
move/(@negligibleS _ _ _ mu); apply => /=.
by apply: negligible_bigcup => k /=; exact: suf.
move=> x /= fx; rewrite -setC_bigcap => h; apply: fx.
have fE y k r : (ball 0%R k.+1%:R) y -> (r < 1)%R ->
forall t, ball y r t -> f t = fk k t.
rewrite /ball/= sub0r normrN => yk1 r1 t.
rewrite ltr_distlC => /andP[xrt txr].
rewrite /fk patchE mem_set// /B /ball/= sub0r normrN.
have [t0|t0] := leP 0%R t.
rewrite ger0_norm// (lt_le_trans txr)// -lerBrDr.
rewrite (le_trans (ler_norm _))// (le_trans (ltW yk1))// -lerBlDr.
by rewrite opprK -lerBrDl -addnn natrD addrK (le_trans (ltW r1))// ler1n.
rewrite -opprB ltrNl in xrt.
rewrite ltr0_norm// (lt_le_trans xrt)// lerBlDl (le_trans (ltW r1))//.
rewrite -lerBlDl addrC -lerBrDr (le_trans (ler_norm _))//.
rewrite -normrN in yk1.
by rewrite (le_trans (ltW yk1))// lerBrDr natr1 ler_nat -muln2 ltn_Pmulr.
have := h `|ceil x|.+1%N Logic.I.
have Bxx : B `|ceil x|.+1 x.
rewrite /B /ball/= sub0r normrN (le_lt_trans (abs_ceil_ge _))// ltr_nat.
by rewrite -addnn addSnnS ltn_addl.
move=> /(_ Bxx)/fine_cvgP[davg_fk_fin_num davg_fk0].
have f_fk_ceil : \forall t \near 0^'+,
\int[mu]_(y in ball x t) `|(f y)%:E - (f x)%:E| =
\int[mu]_(y in ball x t) `|fk `|ceil x|.+1 y - fk `|ceil x|.+1 x|%:E.
near=> t.
apply: eq_integral => /= y /[1!inE] xty.
rewrite -(fE x _ t)//; last first.
by rewrite /ball/= sub0r normrN (le_lt_trans (abs_ceil_ge _))// ltr_nat.
rewrite -(fE x _ t)//; last first.
by apply: ballxx; near: t; exact: nbhs_right_gt.
by rewrite /ball/= sub0r normrN (le_lt_trans (abs_ceil_ge _))// ltr_nat.
apply/fine_cvgP; split=> [{davg_fk0}|{davg_fk_fin_num}].
- move: davg_fk_fin_num => -[M /= M0] davg_fk_fin_num.
apply: filter_app f_fk_ceil; near=> t => Ht.
by rewrite /davg /iavg Ht davg_fk_fin_num//= sub0r normrN gtr0_norm.
- move/cvgrPdist_le in davg_fk0; apply/cvgrPdist_le => e e0.
have [M /= M0 {}davg_fk0] := davg_fk0 _ e0.
apply: filter_app f_fk_ceil; near=> t; move=> Ht.
by rewrite /davg /iavg Ht// davg_fk0//= sub0r normrN gtr0_norm.
Unshelve. all: by end_near. Qed.
End lebesgue_differentiation.
Section density.
Context {R : realType}.
Local Notation mu := lebesgue_measure.
Local Open Scope ereal_scope.
Lemma lebesgue_density (A : set R) : measurable A ->
{ae mu, forall x, mu (A `&` ball x r) * (fine (mu (ball x r)))^-1%:E
@[r --> 0^'+] --> (\1_A x)%:E}.
Proof.
apply: filter_app; first exact: (ae_filter_ringOfSetsType mu).
apply: aeW => /= x Ax.
apply: (cvge_sub0 _ _).1 => //.
move: Ax; rewrite /lebesgue_pt /davg /= -/mu => Ax.
have : (fine (mu (ball x r)))^-1%:E *
`|\int[mu]_(y in ball x r) (\1_A y - \1_A x)%:E | @[r --> 0^'+] --> 0.
apply: (@squeeze_cvge _ _ _ R (cst 0) _ _ _ _ _ Ax) => //; [|exact: cvg_cst].
near=> a.
apply/andP; split; first by rewrite mule_ge0// lee_fin invr_ge0// fine_ge0.
rewrite lee_pmul2l//; last first.
rewrite lte_fin invr_gt0// fine_gt0//.
by rewrite lebesgue_measure_ball// ltry andbT lte_fin mulrn_wgt0.
apply: le_abse_integral => //; first exact: measurable_ball.
by apply/measurable_EFinP; exact: measurable_funB.
set f := (f in f r @[r --> 0^'+] --> _ -> _).
rewrite (_ : f = fun r => (fine (mu (ball x r)))^-1%:E *
`|mu (A `&` ball x r) - (\1_A x)%:E * mu (ball x r)|); last first.
apply/funext => r; rewrite /f integralB_EFin//=; last 3 first.
- exact: measurable_ball.
- apply/integrableP; split.
exact/measurable_EFinP/measurable_indic.
under eq_integral do rewrite /= ger0_norm//=.
rewrite integral_indic//=; last exact: measurable_ball.
rewrite -/mu (@le_lt_trans _ _ (mu (ball x r)))// ?le_measure// ?inE.
+ by apply: measurableI => //; exact: measurable_ball.
+ exact: measurable_ball.
+ have [r0|r0] := ltP r 0%R.
by rewrite ((ball0 _ _).2 (ltW r0))// /mu measure0.
by rewrite lebesgue_measure_ball//= ?ltry.
- apply/integrableP; split; first exact/measurable_EFinP/measurable_cst.
rewrite /= integral_cst//=; last exact: measurable_ball.
have [r0|r0] := ltP r 0%R.
by rewrite ((ball0 _ _).2 (ltW r0))// /mu measure0 mule0.
by rewrite lebesgue_measure_ball//= ?ltry.
rewrite integral_indic//=; last exact: measurable_ball.
by rewrite -/mu integral_cst//; exact: measurable_ball.
rewrite indicE; have [xA xrA0|xA] := boolP (x \in A); last first.
apply: iffRL; apply/propeqP; apply: eq_cvg => r.
by rewrite -mulNrn mulr0n adde0 mul0e sube0 gee0_abs// muleC.
have {xrA0} /cvgeN : (fine (mu (ball x r)))^-1%:E *
(mu (ball x r) - mu (A `&` ball x r)) @[r --> 0^'+] --> 0.
move: xrA0; apply: cvg_trans; apply: near_eq_cvg; near=> r.
rewrite mul1e lee0_abs; last first.
rewrite sube_le0 le_measure// ?inE/=; last exact: measurable_ball.
by apply: measurableI => //; exact: measurable_ball.
rewrite oppeB//; first by rewrite addeC.
rewrite fin_num_adde_defl// fin_numN ge0_fin_numE//.
by rewrite lebesgue_measure_ball// ltry.
rewrite oppe0; apply: cvg_trans; apply: near_eq_cvg; near=> r.
rewrite -mulNrn mulr1n muleBr//; last first.
by rewrite fin_num_adde_defr// ge0_fin_numE// lebesgue_measure_ball//= ?ltry.
rewrite (_ : (fine (mu (ball x r)))^-1%:E * mu (ball x r) = 1); last first.
rewrite -[X in _ * X](@fineK _ (mu (ball x r)))//; last first.
by rewrite lebesgue_measure_ball//= ?ltry.
by rewrite -EFinM mulVf// lebesgue_measure_ball//= gt_eqF// mulrn_wgt0.
by rewrite oppeB// addeC EFinN muleC.
Unshelve. all: by end_near. Qed.
End density.
Section nicely_shrinking.
Context {R : realType}.
Implicit Types (x : R) (E : (set R)^nat).
Local Notation mu := lebesgue_measure.
Definition nicely_shrinking x E :=
(forall n, measurable (E n)) /\
exists Cr : R * {posnum R}^nat, [/\ Cr.1 > 0,
(Cr.2 n)%:num @[n --> \oo] --> 0,
(forall n, E n `<=` ball x (Cr.2 n)%:num) &
(forall n, mu (ball x (Cr.2 n)%:num) <= Cr.1%:E * mu (E n))%E].
Lemma nicely_shrinking_gt0 x E : nicely_shrinking x E ->
forall n, (0 < mu (E n))%E.
Proof.
rewrite lebesgue_measure_ball// -lee_pdivrMl//.
apply: lt_le_trans.
by rewrite mule_gt0// lte_fin invr_gt0.
Qed.
Lemma nicely_shrinking_lty x E : nicely_shrinking x E ->
forall n, (mu (E n) < +oo)%E.
Proof.
rewrite (@le_lt_trans _ _ (lebesgue_measure (ball x (r_ n)%:num)))//.
by rewrite le_measure// inE; [exact: mE|exact: measurable_ball].
by rewrite lebesgue_measure_ball// ltry.
Qed.
End nicely_shrinking.
Section nice_lebesgue_differentiation.
Local Open Scope ereal_scope.
Context {R : realType}.
Variable E : R -> (set R)^nat.
Hypothesis hE : forall x, nicely_shrinking x (E x).
Local Notation mu := lebesgue_measure.
Lemma nice_lebesgue_differentiation (f : R -> R) :
locally_integrable setT f -> forall x, lebesgue_pt f x ->
(fine (mu (E x n)))^-1%:E * \int[mu]_(y in E x n) (f y)%:E
@[n --> \oo] --> (f x)%:E.
Proof.
pose r_ x : {posnum R} ^nat := (sval (cid (hE x).2)).2.
pose C := (sval (cid (hE x).2)).1.
have C_gt0 : (0 < C)%R by rewrite /C /sval/=; case: cid => -[? ?] [].
have r_0 y : (r_ y n)%:num @[n --> \oo] --> (0%R : R).
by rewrite /r_ /sval/=; case: cid => -[? ?] [].
have E_r_ n : E x n `<=` ball x (r_ x n)%:num.
by rewrite /r_ /sval/=; case: cid => -[? ?] [].
have muEr_ n : mu (ball x (r_ x n)%:num) <= C%:E * mu (E x n).
by rewrite /C /r_ /sval/=; case: cid => -[? ?] [].
apply: (@squeeze_cvge _ _ _ _ (cst 0) _
(fun n => C%:E * davg f x (r_ x n)%:num)); last 2 first.
exact: cvg_cst.
move/cvge_at_rightP: fx => /(_ (fun r => (r_ x r)%:num)) fx.
by rewrite -(mule0 C%:E); apply: cvgeM => //;[exact: mule_def_fin |
exact: cvg_cst | apply: fx; split => //; exact: r_0].
near=> n.
apply/andP; split => //=.
apply: (@le_trans _ _ ((fine (mu (E x n)))^-1%:E *
`| \int[mu]_(y in E x n) ((f y)%:E + (- f x)%:E) |)).
have fxE : (- f x)%:E =
(fine (mu (E x n)))^-1%:E * \int[mu]_(y in E x n) (- f x)%:E.
rewrite integral_cst//=; last exact: (hE _).1.
rewrite muleCA -[X in _ * (_ * X)](@fineK _ (mu (E x n))); last first.
by rewrite ge0_fin_numE// (nicely_shrinking_lty (hE x)).
rewrite -EFinM mulVf ?mulr1// neq_lt fine_gt0 ?orbT//.
by rewrite (nicely_shrinking_gt0 (hE x))//= (nicely_shrinking_lty (hE x)).
rewrite [in leLHS]fxE -muleDr//; last first.
rewrite integral_cst//=; last exact: (hE _).1.
rewrite fin_num_adde_defl// fin_numM// gt0_fin_numE.
by rewrite (nicely_shrinking_lty (hE x)).
by rewrite (nicely_shrinking_gt0 (hE x)).
rewrite abseM gee0_abs; last by rewrite lee_fin// invr_ge0// fine_ge0.
rewrite lee_pmul//; first by rewrite lee_fin// invr_ge0// fine_ge0.
rewrite integralD//=.
- exact: (hE x).1.
- apply/integrableP; split.
by apply/measurable_EFinP; case: locf => + _ _; exact: measurable_funS.
rewrite (@le_lt_trans _ _
(\int[mu]_(y in closed_ball x (r_ x n)%:num) `|(f y)%:E|))//.
apply: ge0_subset_integral => //.
+ exact: (hE _).1.
+ exact: measurable_closed_ball.
+ apply: measurableT_comp => //; apply/measurable_EFinP => //.
by case: locf => + _ _; exact: measurable_funS.
+ by apply: (subset_trans (E_r_ n)) => //; exact: subset_closed_ball.
by case: locf => _ _; apply => //; exact: closed_ballR_compact.
apply/integrableP; split; first exact: measurable_cst.
rewrite integral_cst //=; last exact: (hE _).1.
by rewrite lte_mul_pinfty// (nicely_shrinking_lty (hE x)).
rewrite muleA lee_pmul//.
- by rewrite lee_fin invr_ge0// fine_ge0.
- rewrite -(@invrK _ C) -EFinM -invfM lee_fin lef_pV2//; last 2 first.
rewrite posrE fine_gt0// (nicely_shrinking_gt0 (hE x))//=.
by rewrite (nicely_shrinking_lty (hE x)).
rewrite posrE mulr_gt0// ?invr_gt0// fine_gt0//.
by rewrite lebesgue_measure_ball// ltry andbT lte_fin mulrn_wgt0.
rewrite lter_pdivrMl // -lee_fin EFinM fineK; last first.
by rewrite lebesgue_measure_ball// ltry andbT lte_fin mulrn_wgt0.
rewrite fineK; last by rewrite ge0_fin_numE// (nicely_shrinking_lty (hE x)).
exact: muEr_.
- apply: le_trans.
+ apply: le_abse_integral => //; first exact: (hE x).1.
apply/measurable_EFinP; apply/measurable_funB => //.
by case: locf => + _ _; exact: measurable_funS.
+ apply: ge0_subset_integral => //; first exact: (hE x).1.
exact: measurable_ball.
+ apply/measurable_EFinP; apply: measurableT_comp => //.
apply/measurable_funB => //.
by case: locf => + _ _; exact: measurable_funS.
Unshelve. all: by end_near. Qed.
End nice_lebesgue_differentiation.