Module mathcomp.reals_stdlib.Rstruct
# Compatibility with the real numbers of Coq
From Coq Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.
From Coq Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.
From Coq Require Import Rtrigo1 Reals.
From mathcomp Require Import all_ssreflect ssralg poly mxpoly ssrnum.
From mathcomp Require Import archimedean.
From HB Require Import structures.
From mathcomp Require Import mathcomp_extra.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope R_scope.
Lemma Req_EM_T (r1 r2 : R) : {r1 = r2} + {r1 <> r2}.
Proof.
case: (total_order_T r1 r2) => [[r1Lr2 | <-] | r1Gr2].
- by right=> r1Er2; case: (Rlt_irrefl r1); rewrite {2}r1Er2.
- by left.
by right=> r1Er2; case: (Rlt_irrefl r1); rewrite {1}r1Er2.
Qed.
- by right=> r1Er2; case: (Rlt_irrefl r1); rewrite {2}r1Er2.
- by left.
by right=> r1Er2; case: (Rlt_irrefl r1); rewrite {1}r1Er2.
Qed.
Definition eqr (r1 r2 : R) : bool :=
if Req_EM_T r1 r2 is left _ then true else false.
Lemma eqrP : Equality.axiom eqr.
#[hnf] HB.instance Definition _ := hasDecEq.Build R eqrP.
Fact inhR : inhabited R.
Proof.
Definition pickR (P : pred R) (n : nat) :=
let x := epsilon inhR P in if P x then Some x else None.
Fact pickR_some P n x : pickR P n = Some x -> P x.
Fact pickR_ex (P : pred R) :
(exists x : R, P x) -> exists n, pickR P n.
Proof.
Fact pickR_ext (P Q : pred R) : P =1 Q -> pickR P =1 pickR Q.
Proof.
#[hnf]
HB.instance Definition _ := hasChoice.Build R pickR_some pickR_ex pickR_ext.
Fact RplusA : associative (Rplus).
Proof.
#[hnf]
HB.instance Definition _ := GRing.isZmodule.Build R
RplusA Rplus_comm Rplus_0_l Rplus_opp_l.
Fact RmultA : associative Rmult.
Proof.
Fact R1_neq_0 : R1 != R0.
#[hnf]
HB.instance Definition _ := GRing.Zmodule_isRing.Build R
RmultA Rmult_1_l Rmult_1_r Rmult_plus_distr_r Rmult_plus_distr_l R1_neq_0.
#[hnf]
HB.instance Definition _ := GRing.Ring_hasCommutativeMul.Build R Rmult_comm.
Import Monoid.
HB.instance Definition _ := isComLaw.Build R 0 Rplus
RplusA Rplus_comm Rplus_0_l.
HB.instance Definition _ := isComLaw.Build R 1 Rmult
RmultA Rmult_comm Rmult_1_l.
HB.instance Definition _ := isMulLaw.Build R 0 Rmult Rmult_0_l Rmult_0_r.
HB.instance Definition _ := isAddLaw.Build R Rmult Rplus
Rmult_plus_distr_r Rmult_plus_distr_l.
Definition Rinvx r := if (r != 0) then / r else r.
Definition unit_R r := r != 0.
Lemma RmultRinvx : {in unit_R, left_inverse 1 Rinvx Rmult}.
Proof.
Lemma RinvxRmult : {in unit_R, right_inverse 1 Rinvx Rmult}.
Proof.
Lemma intro_unit_R x y : y * x = 1 /\ x * y = 1 -> unit_R x.
Proof.
Lemma Rinvx_out : {in predC unit_R, Rinvx =1 id}.
#[hnf]
HB.instance Definition _ := GRing.Ring_hasMulInverse.Build R
RmultRinvx RinvxRmult intro_unit_R Rinvx_out.
Lemma R_idomainMixin x y : x * y = 0 -> (x == 0) || (y == 0).
Proof.
#[hnf]
HB.instance Definition _ := GRing.ComUnitRing_isIntegral.Build R
R_idomainMixin.
Lemma R_fieldMixin : GRing.field_axiom R
Proof.
by []. Qed.
Reflect the order on the reals to bool
Definition Rleb r1 r2 := if Rle_dec r1 r2 is left _ then true else false.
Definition Rltb r1 r2 := Rleb r1 r2 && (r1 != r2).
Definition Rgeb r1 r2 := Rleb r2 r1.
Definition Rgtb r1 r2 := Rltb r2 r1.
Lemma RlebP r1 r2 : reflect (r1 <= r2) (Rleb r1 r2).
Lemma RltbP r1 r2 : reflect (r1 < r2) (Rltb r1 r2).
Proof.
Section ssreal_struct.
Import GRing.Theory.
Import Num.Theory.
Import Num.Def.
Local Open Scope R_scope.
Lemma Rleb_norm_add x y : Rleb (Rabs (x + y)) (Rabs x + Rabs y).
Proof.
Lemma addr_Rgtb0 x y : Rltb 0 x -> Rltb 0 y -> Rltb 0 (x + y).
Proof.
Lemma Rnorm0_eq0 x : Rabs x = 0 -> x = 0.
Proof.
Lemma Rleb_leVge x y : Rleb 0 x -> Rleb 0 y -> (Rleb x y) || (Rleb y x).
Proof.
Lemma RnormM : {morph Rabs : x y / x * y}.
Proof.
Lemma Rleb_def x y : (Rleb x y) = (Rabs (y - x) == y - x).
Proof.
apply/(sameP (RlebP x y))/(iffP idP)=> [/eqP H| /Rle_minus H].
apply: Rminus_le; rewrite -Ropp_minus_distr.
apply/Rge_le/Ropp_0_le_ge_contravar.
by rewrite -H; apply: Rabs_pos.
apply/eqP/Rabs_pos_eq.
rewrite -Ropp_minus_distr.
by apply/Ropp_0_ge_le_contravar/Rle_ge.
Qed.
apply: Rminus_le; rewrite -Ropp_minus_distr.
apply/Rge_le/Ropp_0_le_ge_contravar.
by rewrite -H; apply: Rabs_pos.
apply/eqP/Rabs_pos_eq.
rewrite -Ropp_minus_distr.
by apply/Ropp_0_ge_le_contravar/Rle_ge.
Qed.
Lemma Rltb_def x y : (Rltb x y) = (y != x) && (Rleb x y).
Proof.
apply/(sameP (RltbP x y))/(iffP idP).
case/andP=> /eqP H /RlebP/Rle_not_gt H2.
by case: (Rtotal_order x y)=> // [][] // /esym.
move=> H; apply/andP; split; [apply/eqP|apply/RlebP].
exact: Rgt_not_eq.
exact: Rlt_le.
Qed.
case/andP=> /eqP H /RlebP/Rle_not_gt H2.
by case: (Rtotal_order x y)=> // [][] // /esym.
move=> H; apply/andP; split; [apply/eqP|apply/RlebP].
exact: Rgt_not_eq.
exact: Rlt_le.
Qed.
HB.instance Definition _ := Num.IntegralDomain_isNumRing.Build R
Rleb_norm_add addr_Rgtb0 Rnorm0_eq0 Rleb_leVge RnormM Rleb_def Rltb_def.
Lemma RleP : forall x y, reflect (Rle x y) (x <= y)%R.
Proof.
Proof.
Lemma Rreal_axiom (x : R) : (0 <= x)%R || (x <= 0)%R.
Proof.
Lemma R_total : total (<=%O : rel R).
Proof.
HB.instance Definition _ := Order.POrder_isTotal.Build _ R R_total.
Lemma Rarchimedean_axiom : Num.archimedean_axiom R.
Proof.
move=> x; exists (Z.abs_nat (up x) + 2)%N.
have [Hx1 Hx2]:= (archimed x).
have Hz (z : Z): z = (z - 1 + 1)%Z by rewrite Zplus_comm Zplus_minus.
have Zabs_nat_Zopp z : Z.abs_nat (- z)%Z = Z.abs_nat z by case: z.
apply/RltbP/Rabs_def1.
apply: (Rlt_trans _ ((Z.abs_nat (up x))%:R)%R); last first.
rewrite -[((Z.abs_nat _)%:R)%R]Rplus_0_r mulrnDr.
by apply/Rplus_lt_compat_l/Rlt_0_2.
apply: (Rlt_le_trans _ (IZR (up x)))=> //.
elim/(well_founded_ind (Zwf_well_founded 0)): (up x) => z IHz.
case: (Z_lt_le_dec 0 z) => [zp | zn].
rewrite [z]Hz plus_IZR Zabs_nat_Zplus //; last exact: Zlt_0_le_0_pred.
rewrite plusE mulrnDr.
apply/Rplus_le_compat_r/IHz; split; first exact: Zlt_le_weak.
exact: Zlt_pred.
apply: (Rle_trans _ (IZR 0)); first exact: IZR_le.
by apply/RlebP/(ler0n R (Z.abs_nat z)).
apply: (Rlt_le_trans _ (IZR (up x) - 1)).
apply: Ropp_lt_cancel; rewrite Ropp_involutive.
rewrite Ropp_minus_distr /Rminus -opp_IZR -{2}(Z.opp_involutive (up x)).
elim/(well_founded_ind (Zwf_well_founded 0)): (- up x)%Z => z IHz .
case: (Z_lt_le_dec 0 z) => [zp | zn].
rewrite [z]Hz Zabs_nat_Zopp plus_IZR.
rewrite Zabs_nat_Zplus //; last exact: Zlt_0_le_0_pred.
rewrite plusE -Rplus_assoc -addnA [(_ + 2)%N]addnC addnA mulrnDr.
apply: Rplus_lt_compat_r; rewrite -Zabs_nat_Zopp.
apply: IHz; split; first exact: Zlt_le_weak.
exact: Zlt_pred.
apply: (Rle_lt_trans _ 1).
rewrite -{2}[1]Rplus_0_r; apply: Rplus_le_compat_l.
by rewrite -/(IZR 0); apply: IZR_le.
rewrite mulrnDr; apply: (Rlt_le_trans _ 2).
by rewrite -{1}[1]Rplus_0_r; apply/Rplus_lt_compat_l/Rlt_0_1.
rewrite -[2]Rplus_0_l; apply: Rplus_le_compat_r.
by apply/RlebP/(ler0n R (Z.abs_nat _)).
apply: Rminus_le.
rewrite /Rminus Rplus_assoc [- _ + _]Rplus_comm -Rplus_assoc -!/(Rminus _ _).
exact: Rle_minus.
Qed.
have [Hx1 Hx2]:= (archimed x).
have Hz (z : Z): z = (z - 1 + 1)%Z by rewrite Zplus_comm Zplus_minus.
have Zabs_nat_Zopp z : Z.abs_nat (- z)%Z = Z.abs_nat z by case: z.
apply/RltbP/Rabs_def1.
apply: (Rlt_trans _ ((Z.abs_nat (up x))%:R)%R); last first.
rewrite -[((Z.abs_nat _)%:R)%R]Rplus_0_r mulrnDr.
by apply/Rplus_lt_compat_l/Rlt_0_2.
apply: (Rlt_le_trans _ (IZR (up x)))=> //.
elim/(well_founded_ind (Zwf_well_founded 0)): (up x) => z IHz.
case: (Z_lt_le_dec 0 z) => [zp | zn].
rewrite [z]Hz plus_IZR Zabs_nat_Zplus //; last exact: Zlt_0_le_0_pred.
rewrite plusE mulrnDr.
apply/Rplus_le_compat_r/IHz; split; first exact: Zlt_le_weak.
exact: Zlt_pred.
apply: (Rle_trans _ (IZR 0)); first exact: IZR_le.
by apply/RlebP/(ler0n R (Z.abs_nat z)).
apply: (Rlt_le_trans _ (IZR (up x) - 1)).
apply: Ropp_lt_cancel; rewrite Ropp_involutive.
rewrite Ropp_minus_distr /Rminus -opp_IZR -{2}(Z.opp_involutive (up x)).
elim/(well_founded_ind (Zwf_well_founded 0)): (- up x)%Z => z IHz .
case: (Z_lt_le_dec 0 z) => [zp | zn].
rewrite [z]Hz Zabs_nat_Zopp plus_IZR.
rewrite Zabs_nat_Zplus //; last exact: Zlt_0_le_0_pred.
rewrite plusE -Rplus_assoc -addnA [(_ + 2)%N]addnC addnA mulrnDr.
apply: Rplus_lt_compat_r; rewrite -Zabs_nat_Zopp.
apply: IHz; split; first exact: Zlt_le_weak.
exact: Zlt_pred.
apply: (Rle_lt_trans _ 1).
rewrite -{2}[1]Rplus_0_r; apply: Rplus_le_compat_l.
by rewrite -/(IZR 0); apply: IZR_le.
rewrite mulrnDr; apply: (Rlt_le_trans _ 2).
by rewrite -{1}[1]Rplus_0_r; apply/Rplus_lt_compat_l/Rlt_0_1.
rewrite -[2]Rplus_0_l; apply: Rplus_le_compat_r.
by apply/RlebP/(ler0n R (Z.abs_nat _)).
apply: Rminus_le.
rewrite /Rminus Rplus_assoc [- _ + _]Rplus_comm -Rplus_assoc -!/(Rminus _ _).
exact: Rle_minus.
Qed.
HB.instance Definition _ := Num.NumDomain_bounded_isArchimedean.Build R
Rarchimedean_axiom.
Here are the lemmas that we will use to prove that R has
the rcfType structure.
Lemma continuity_eq f g : f =1 g -> continuity f -> continuity g.
Proof.
move=> Hfg Hf x eps Heps.
have [y [Hy1 Hy2]]:= Hf x eps Heps.
by exists y; split=> // z; rewrite -!Hfg; exact: Hy2.
Qed.
have [y [Hy1 Hy2]]:= Hf x eps Heps.
by exists y; split=> // z; rewrite -!Hfg; exact: Hy2.
Qed.
Lemma continuity_sum (I : finType) F (P : pred I):
(forall i, P i -> continuity (F i)) ->
continuity (fun x => (\sum_(i | P i) ((F i) x)))%R.
Proof.
move=> H; elim: (index_enum I)=> [|a l IHl].
set f:= fun _ => _.
have Hf: (fun x=> 0) =1 f by move=> x; rewrite /f big_nil.
by apply: (continuity_eq Hf); exact: continuity_const.
set f := fun _ => _.
case Hpa: (P a).
have Hf: (fun x => F a x + \sum_(i <- l | P i) F i x)%R =1 f.
by move=> x; rewrite /f big_cons Hpa.
apply: (continuity_eq Hf); apply: continuity_plus=> //.
exact: H.
have Hf: (fun x => \sum_(i <- l | P i) F i x)%R =1 f.
by move=> x; rewrite /f big_cons Hpa.
exact: (continuity_eq Hf).
Qed.
set f:= fun _ => _.
have Hf: (fun x=> 0) =1 f by move=> x; rewrite /f big_nil.
by apply: (continuity_eq Hf); exact: continuity_const.
set f := fun _ => _.
case Hpa: (P a).
have Hf: (fun x => F a x + \sum_(i <- l | P i) F i x)%R =1 f.
by move=> x; rewrite /f big_cons Hpa.
apply: (continuity_eq Hf); apply: continuity_plus=> //.
exact: H.
have Hf: (fun x => \sum_(i <- l | P i) F i x)%R =1 f.
by move=> x; rewrite /f big_cons Hpa.
exact: (continuity_eq Hf).
Qed.
Lemma continuity_exp f n: continuity f -> continuity (fun x => (f x)^+ n)%R.
Proof.
move=> Hf; elim: n=> [|n IHn]; first exact: continuity_const.
set g:= fun _ => _.
have Hg: (fun x=> f x * f x ^+ n)%R =1 g.
by move=> x; rewrite /g exprS.
by apply: (continuity_eq Hg); exact: continuity_mult.
Qed.
set g:= fun _ => _.
have Hg: (fun x=> f x * f x ^+ n)%R =1 g.
by move=> x; rewrite /g exprS.
by apply: (continuity_eq Hg); exact: continuity_mult.
Qed.
Lemma Rreal_closed_axiom : Num.real_closed_axiom R.
Proof.
move=> p a b; rewrite !le_eqVlt.
case Hpa: ((p.[a])%R == 0%R).
by move=> ? _ ; exists a=> //; rewrite lexx le_eqVlt.
case Hpb: ((p.[b])%R == 0%R).
by move=> ? _; exists b=> //; rewrite lexx le_eqVlt andbT.
case Hab: (a == b).
by move=> _; rewrite (eqP Hab) eq_sym Hpb (ltNge 0) /=; case/andP=> /ltW ->.
rewrite eq_sym Hpb /=; clear=> /RltbP Hab /andP [] /RltbP Hpa /RltbP Hpb.
suff Hcp: continuity (fun x => (p.[x])%R).
have [z [[Hza Hzb] /eqP Hz2]]:= IVT _ a b Hcp Hab Hpa Hpb.
by exists z=> //; apply/andP; split; apply/RlebP.
rewrite -[p]coefK poly_def.
set f := fun _ => _.
have Hf: (fun (x : R) => \sum_(i < size p) (p`_i * x^+i))%R =1 f.
move=> x; rewrite /f horner_sum.
by apply: eq_bigr=> i _; rewrite hornerZ hornerXn.
apply: (continuity_eq Hf); apply: continuity_sum=> i _.
apply:continuity_scal; apply: continuity_exp=> x esp Hesp.
by exists esp; split=> // y [].
Qed.
case Hpa: ((p.[a])%R == 0%R).
by move=> ? _ ; exists a=> //; rewrite lexx le_eqVlt.
case Hpb: ((p.[b])%R == 0%R).
by move=> ? _; exists b=> //; rewrite lexx le_eqVlt andbT.
case Hab: (a == b).
by move=> _; rewrite (eqP Hab) eq_sym Hpb (ltNge 0) /=; case/andP=> /ltW ->.
rewrite eq_sym Hpb /=; clear=> /RltbP Hab /andP [] /RltbP Hpa /RltbP Hpb.
suff Hcp: continuity (fun x => (p.[x])%R).
have [z [[Hza Hzb] /eqP Hz2]]:= IVT _ a b Hcp Hab Hpa Hpb.
by exists z=> //; apply/andP; split; apply/RlebP.
rewrite -[p]coefK poly_def.
set f := fun _ => _.
have Hf: (fun (x : R) => \sum_(i < size p) (p`_i * x^+i))%R =1 f.
move=> x; rewrite /f horner_sum.
by apply: eq_bigr=> i _; rewrite hornerZ hornerXn.
apply: (continuity_eq Hf); apply: continuity_sum=> i _.
apply:continuity_scal; apply: continuity_exp=> x esp Hesp.
by exists esp; split=> // y [].
Qed.
HB.instance Definition _ := Num.RealField_isClosed.Build R Rreal_closed_axiom.
End ssreal_struct.
Local Open Scope ring_scope.
From mathcomp Require Import boolp classical_sets.
From mathcomp Require Import reals.
Section ssreal_struct_contd.
Implicit Type E : set R.
Lemma is_upper_boundE E x : is_upper_bound E x = (ubound E) x.
Proof.
Lemma boundE E : bound E = has_ubound E.
Proof.
Lemma Rcondcomplete E : has_sup E -> {m | isLub E m}.
Proof.
move=> [E0 uE]; have := completeness E; rewrite boundE => /(_ uE E0)[x [E1 E2]].
exists x; split; first by rewrite -is_upper_boundE; apply: E1.
by move=> y; rewrite -is_upper_boundE => /E2/RleP.
Qed.
exists x; split; first by rewrite -is_upper_boundE; apply: E1.
by move=> y; rewrite -is_upper_boundE => /E2/RleP.
Qed.
Lemma Rsupremums_neq0 E : has_sup E -> (supremums E !=set0)%classic.
Proof.
Lemma Rsup_isLub x0 E : has_sup E -> isLub E (supremum x0 E).
Proof.
have [-> [/set0P]|E0 hsE] := eqVneq E set0; first by rewrite eqxx.
have [s [Es sE]] := Rcondcomplete hsE.
split => x Ex; first by apply/ge_supremum_Nmem=> //; exact: Rsupremums_neq0.
rewrite /supremum (negbTE E0); case: xgetP => /=.
by move=> _ -> [_ EsE]; apply/EsE.
by have [y Ey /(_ y)] := Rsupremums_neq0 hsE.
Qed.
have [s [Es sE]] := Rcondcomplete hsE.
split => x Ex; first by apply/ge_supremum_Nmem=> //; exact: Rsupremums_neq0.
rewrite /supremum (negbTE E0); case: xgetP => /=.
by move=> _ -> [_ EsE]; apply/EsE.
by have [y Ey /(_ y)] := Rsupremums_neq0 hsE.
Qed.
Lemma real_sup_adherent x0 E (eps : R) : (0 < eps) ->
has_sup E -> exists2 e, E e & (supremum x0 E - eps) < e.
Proof.
Lemma Rsup_ub x0 E : has_sup E -> (ubound E) (supremum x0 E).
Proof.
HB.instance Definition _ := ArchimedeanField_isReal.Build R
(@Rsup_ub (0 : R)) (real_sup_adherent 0).
Implicit Types (x y : R) (m n : nat).
Lemma expR0 : exp (0 : R) = 1.
Proof.
Lemma expRD x y : exp x * exp y = exp (x + y).
Proof.
Lemma expRX x n : exp x ^+ n = exp (x *+ n).
Proof.
Lemma sinD x y : sin (x + y) = sin x * cos y + cos x * sin y.
Proof.
Lemma cosD x y : cos (x + y) = (cos x * cos y - sin x * sin y).
Proof.
Lemma RplusE x y : Rplus x y = x + y
Proof.
by []. Qed.
Lemma RminusE x y : Rminus x y = x - y
Proof.
by []. Qed.
Lemma RmultE x y : Rmult x y = x * y
Proof.
by []. Qed.
Lemma RoppE x : Ropp x = - x
Proof.
by []. Qed.
Let neq0_RinvE x : x != 0 -> Rinv x = x^-1.
Proof.
Lemma RinvE x : Rinv x = x^-1.
Proof.
Lemma RdivE x y : Rdiv x y = x / y
Lemma INRE n : INR n = n%:R.
Note that rewrites using the following lemma `IZRposE` are
systematically followed by a rewrite using the lemma `INRE`.
Lemma IZRposE (p : positive) : IZR (Z.pos p) = INR (nat_of_pos p).Proof.
Lemma RsqrtE x : 0 <= x -> sqrt x = Num.sqrt x.
Proof.
Lemma RpowE x n : pow x n = x ^+ n.
Lemma RmaxE x y : Rmax x y = Num.max x y.
Proof.
Lemma RminE x y : Rmin x y = Num.min x y.
Proof.
Section bigmaxr.
Context {R : realDomainType}.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Definition bigmaxr (r : R) s := \big[Num.max/head r s]_(i <- s) i.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_nil (x0 : R) : bigmaxr x0 [::] = x0.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_un (x0 x : R) : bigmaxr x0 [:: x] = x.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxrE (r : R) s : bigmaxr r s = foldr Num.max (head r s) (behead s).
Proof.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigrmax_dflt (x y : R) s : Num.max x (\big[Num.max/x]_(j <- y :: s) j) =
Num.max x (\big[Num.max/y]_(i <- y :: s) i).
Proof.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_cons (x0 x y : R) lr :
bigmaxr x0 (x :: y :: lr) = Num.max x (bigmaxr x0 (y :: lr)).
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_ler (x0 : R) s i :
(i < size s)%N -> (nth x0 s i) <= (bigmaxr x0 s).
Proof.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_addr (x0 : R) lr (x : R) :
bigmaxr (x0 + x) (map (fun y : R => y + x) lr) = (bigmaxr x0 lr) + x.
Proof.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_mem (x0 : R) lr : (0 < size lr)%N -> bigmaxr x0 lr \in lr.
Proof.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_mulr (A : finType) (s : seq A) (k : R) (x : A -> R) :
0 <= k -> bigmaxr 0 (map (fun i => k * x i) s) = k * bigmaxr 0 (map x s).
Proof.
move=> k0; elim: s => /= [|h [/=|h' t ih]].
by rewrite bigmaxr_nil mulr0.
by rewrite !bigmaxr_un.
by rewrite bigmaxr_cons {}ih bigmaxr_cons maxr_pMr.
Qed.
by rewrite bigmaxr_nil mulr0.
by rewrite !bigmaxr_un.
by rewrite bigmaxr_cons {}ih bigmaxr_cons maxr_pMr.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_index (x0 : R) lr :
(0 < size lr)%N -> (index (bigmaxr x0 lr) lr < size lr)%N.
Proof.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_lerP (x0 : R) lr (x : R) :
(0 < size lr)%N ->
reflect (forall i, (i < size lr)%N -> (nth x0 lr i) <= x) ((bigmaxr x0 lr) <= x).
Proof.
move=> lr_size; apply: (iffP idP) => [le_x i i_size | H].
by apply: (le_trans _ le_x); apply: bigmaxr_ler.
by move/(nthP x0): (bigmaxr_mem x0 lr_size) => [i i_size <-]; apply: H.
Qed.
by apply: (le_trans _ le_x); apply: bigmaxr_ler.
by move/(nthP x0): (bigmaxr_mem x0 lr_size) => [i i_size <-]; apply: H.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_ltrP (x0 : R) lr (x : R) :
(0 < size lr)%N ->
reflect (forall i, (i < size lr)%N -> (nth x0 lr i) < x) ((bigmaxr x0 lr) < x).
Proof.
move=> lr_size; apply: (iffP idP) => [lt_x i i_size | H].
by apply: le_lt_trans lt_x; apply: bigmaxr_ler.
by move/(nthP x0): (bigmaxr_mem x0 lr_size) => [i i_size <-]; apply: H.
Qed.
by apply: le_lt_trans lt_x; apply: bigmaxr_ler.
by move/(nthP x0): (bigmaxr_mem x0 lr_size) => [i i_size <-]; apply: H.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxrP (x0 : R) lr (x : R) :
(x \in lr /\ forall i, (i < size lr) %N -> (nth x0 lr i) <= x) -> (bigmaxr x0 lr = x).
Proof.
move=> [] /(nthP x0) [] j j_size j_nth x_ler; apply: le_anti; apply/andP; split.
by apply/bigmaxr_lerP => //; apply: (leq_trans _ j_size).
by rewrite -j_nth (bigmaxr_ler _ j_size).
Qed.
by apply/bigmaxr_lerP => //; apply: (leq_trans _ j_size).
by rewrite -j_nth (bigmaxr_ler _ j_size).
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bigmaxr_lerif (x0 : R) lr :
uniq lr -> forall i, (i < size lr)%N ->
(nth x0 lr i) <= (bigmaxr x0 lr) ?= iff (i == index (bigmaxr x0 lr) lr).
Proof.
move=> lr_uniq i i_size; rewrite /Num.leif (bigmaxr_ler _ i_size).
rewrite -(nth_uniq x0 i_size (bigmaxr_index _ (leq_trans _ i_size)) lr_uniq) //.
rewrite nth_index //.
by apply: bigmaxr_mem; apply: (leq_trans _ i_size).
Qed.
rewrite -(nth_uniq x0 i_size (bigmaxr_index _ (leq_trans _ i_size)) lr_uniq) //.
rewrite nth_index //.
by apply: bigmaxr_mem; apply: (leq_trans _ i_size).
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Definition bmaxrf n (f : {ffun 'I_n.+1 -> R}) :=
bigmaxr (f ord0) (codom f).
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bmaxrf_ler n (f : {ffun 'I_n.+1 -> R}) i :
(f i) <= (bmaxrf f).
Proof.
move: (@bigmaxr_ler (f ord0) (codom f) (nat_of_ord i)).
rewrite /bmaxrf size_codom card_ord => H; move: (ltn_ord i); move/H.
suff -> : nth (f ord0) (codom f) i = f i; first by [].
by rewrite /codom (nth_map ord0) ?size_enum_ord // nth_ord_enum.
Qed.
rewrite /bmaxrf size_codom card_ord => H; move: (ltn_ord i); move/H.
suff -> : nth (f ord0) (codom f) i = f i; first by [].
by rewrite /codom (nth_map ord0) ?size_enum_ord // nth_ord_enum.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bmaxrf_index n (f : {ffun 'I_n.+1 -> R}) :
(index (bmaxrf f) (codom f) < n.+1)%N.
Proof.
rewrite /bmaxrf.
rewrite [in X in (_ < X)%N](_ : n.+1 = size (codom f)); last first.
by rewrite size_codom card_ord.
by apply: bigmaxr_index; rewrite size_codom card_ord.
Qed.
rewrite [in X in (_ < X)%N](_ : n.+1 = size (codom f)); last first.
by rewrite size_codom card_ord.
by apply: bigmaxr_index; rewrite size_codom card_ord.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Definition index_bmaxrf n f := Ordinal (@bmaxrf_index n f).
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma ordnat i n (ord_i : (i < n)%N) : i = Ordinal ord_i :> nat.
Proof.
by []. Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma eq_index_bmaxrf n (f : {ffun 'I_n.+1 -> R}) :
f (index_bmaxrf f) = bmaxrf f.
Proof.
move: (bmaxrf_index f).
rewrite -[X in _ (_ < X)%N]card_ord -(size_codom f) index_mem.
move/(nth_index (f ord0)) => <-; rewrite (nth_map ord0).
by rewrite (ordnat (bmaxrf_index _)) /index_bmaxrf nth_ord_enum.
by rewrite size_enum_ord; apply: bmaxrf_index.
Qed.
rewrite -[X in _ (_ < X)%N]card_ord -(size_codom f) index_mem.
move/(nth_index (f ord0)) => <-; rewrite (nth_map ord0).
by rewrite (ordnat (bmaxrf_index _)) /index_bmaxrf nth_ord_enum.
by rewrite size_enum_ord; apply: bmaxrf_index.
Qed.
#[deprecated(note="To be removed. Use topology.v's bigmax/min lemmas instead.")]
Lemma bmaxrf_lerif n (f : {ffun 'I_n.+1 -> R}) :
injective f -> forall i,
(f i) <= (bmaxrf f) ?= iff (i == index_bmaxrf f).
Proof.
End bigmaxr.
End ssreal_struct_contd.