Module mathcomp.reals.prodnormedzmodule
From HB Require Import structures.From mathcomp Require Import all_ssreflect fingroup ssralg poly ssrnum.
From mathcomp Require Import all_classical.
From mathcomp Require Import signed.
This file equips the product of two normedZmodTypes with a canonical
normedZmodType structure. It is a short file that has been added here for
convenience during the rebase of MathComp-Analysis on top of MathComp 1.1.
The contents is likely to be moved elsewhere.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope ring_scope.
Import Order.TTheory GRing.Theory Num.Theory.
Section Linear1.
Context (R : ringType) (U : lmodType R) (V : zmodType) (s : R -> V -> V).
HB.instance Definition _ := gen_eqMixin {linear U -> V | s}.
HB.instance Definition _ := gen_choiceMixin {linear U -> V | s}.
End Linear1.
Section Linear2.
Context (R : ringType) (U : lmodType R) (V : zmodType) (s : GRing.Scale.law R V).
HB.instance Definition _ :=
isPointed.Build {linear U -> V | GRing.Scale.Law.sort s} \0.
End Linear2.
Module ProdNormedZmodule.
Section ProdNormedZmodule.
Context {R : numDomainType} {U V : normedZmodType R}.
Definition norm (x : U * V) : R := Num.max `|x.1| `|x.2|.
Lemma normD x y : norm (x + y) <= norm x + norm y.
Proof.
rewrite /norm num_ge_max !(le_trans (ler_normD _ _)) ?lerD//;
by rewrite comparable_le_max ?lexx ?orbT// real_comparable.
Qed.
by rewrite comparable_le_max ?lexx ?orbT// real_comparable.
Qed.
Lemma norm_eq0 x : norm x = 0 -> x = 0.
Proof.
Lemma normMn x n : norm (x *+ n) = (norm x) *+ n.
Lemma normrN x : norm (- x) = norm x.
#[export]
HB.instance Definition _ := Num.Zmodule_isNormed.Build R (U * V)%type
normD norm_eq0 normMn normrN.
Lemma prod_normE (x : U * V) : `|x| = Num.max `|x.1| `|x.2|.
Proof.
by []. Qed.
End ProdNormedZmodule.
Module Exports.
HB.reexport.
Definition prod_normE := @prod_normE.
End Exports.
End ProdNormedZmodule.
Export ProdNormedZmodule.Exports.