Module mathcomp.reals.nsatz_realtype
From Coq Require Import Nsatz.From mathcomp Require Import all_ssreflect ssralg ssrint ssrnum.
From mathcomp Require Import boolp reals constructive_ereal.
# nsatz for realType
This file registers the ring corresponding to the MathComp-Analysis type
realType to the tactic nsatz of Coq. This enables some automation used for
example in the file trigo.v.
Reference:
- https://coq.inria.fr/refman/addendum/nsatz.html
Import GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Section Nsatz_realType.
Variable T : realType.
Lemma Nsatz_realType_Setoid_Theory : Setoid.Setoid_Theory T (@eq T).
Proof.
by constructor => [x //|x y //|x y z ->]. Qed.
Definition Nsatz_realType0 := (0%:R : T).
Definition Nsatz_realType1 := (1%:R : T).
Definition Nsatz_realType_add (x y : T) := (x + y)%R.
Definition Nsatz_realType_mul (x y : T) := (x * y)%R.
Definition Nsatz_realType_sub (x y : T) := (x - y)%R.
Definition Nsatz_realType_opp (x : T) := (- x)%R.
#[global]
Instance Nsatz_realType_Ring_ops:
(@Ncring.Ring_ops T Nsatz_realType0 Nsatz_realType1
Nsatz_realType_add
Nsatz_realType_mul
Nsatz_realType_sub
Nsatz_realType_opp (@eq T)).
Proof.
Defined.
#[global]
Instance Nsatz_realType_Ring : (Ncring.Ring (Ro:=Nsatz_realType_Ring_ops)).
Proof.
constructor => //.
- exact: Nsatz_realType_Setoid_Theory.
- by move=> x y -> x1 y1 ->.
- by move=> x y -> x1 y1 ->.
- by move=> x y -> x1 y1 ->.
- by move=> x y ->.
- exact: add0r.
- exact: addrC.
- exact: addrA.
- exact: mul1r.
- exact: mulr1.
- exact: mulrA.
- exact: mulrDl.
- move=> x y z; exact: mulrDr.
- exact: subrr.
Defined.
- exact: Nsatz_realType_Setoid_Theory.
- by move=> x y -> x1 y1 ->.
- by move=> x y -> x1 y1 ->.
- by move=> x y -> x1 y1 ->.
- by move=> x y ->.
- exact: add0r.
- exact: addrC.
- exact: addrA.
- exact: mul1r.
- exact: mulr1.
- exact: mulrA.
- exact: mulrDl.
- move=> x y z; exact: mulrDr.
- exact: subrr.
Defined.
#[global]
Instance Nsatz_realType_Cring: (Cring.Cring (Rr:=Nsatz_realType_Ring)).
Proof.
#[global]
Instance Nsatz_realType_Integral_domain :
(Integral_domain.Integral_domain (Rcr:=Nsatz_realType_Cring)).
Proof.
End Nsatz_realType.
Tactic Notation "nsatz" := nsatz_default.