Module mathcomp.classical.functions
From mathcomp Require Import all_ssreflect finmap ssralg ssrnum ssrint rat.From HB Require Import structures.
From mathcomp Require Import mathcomp_extra boolp classical_sets.
Add Search Blacklist "__canonical__".
Add Search Blacklist "__functions_".
Add Search Blacklist "_factory_".
Add Search Blacklist "_mixin_".
# Theory of functions
This file provides a theory of functions $f : A\to B$ whose domain $A$
and codomain $B$ are represented by sets.
```
set_fun A B f == f : aT -> rT is a function with domain
A : set aT and codomain B : set rT
set_surj A B f == f is surjective
set_inj A B f == f is injective
set_bij A B f == f is bijective
{fun A >-> B} == type of functions f : aT -> rT from A : set aT
to B : set rT
`funS f` is a proof of `set_fun A B f`.
{oinv aT >-> rT} == type of functions with a partial inverse
{oinvfun A >-> B} == combination of {fun A >-> B} and
{oinv aT >-> rT}
{inv aT >-> rT} == type of functions with an inverse
f ^-1 == inverse of f : {inv aT >-> rT}
{invfun A >-> B} == combination of {fun A >-> B} and {inv aT >-> rT}
{surj A >-> B} == type of surjective functions
{surjfun A >-> B} == combination of {fun A >-> B} and {surj A >-> B}
{splitsurj A >-> B} == type of surjective functions with an inverse
{splitsurjfun A >-> B} == combination of {fun A >-> B} and
{splitsurj A >-> B}
{inj A >-> rT} == type of injective functions
{injfun A >-> B} == combination of {fun A >-> B} and {inj A >-> rT}
{splitinj A >-> B} == type of injective functions with an inverse
{splitinjfun A >-> B} == combination of {fun A >-> B} and
{splitinj A >-> B}
{bij A >-> B} == combination of {injfun A >-> B} and
{surjfun A >-> B}
{splitbij A >-> B} == combination of {splitinj A >-> B} and
{splitsurj A >-> B}
'inj_ f == proof of {in A &, injective f} where f has type
{splitinj A >-> _}
```
```
[fun f in A] == the function f from the set A to the set f @` A
with f : aT -> rT and A : set aT
This is a notation for funin A f, which is an HB
alias.
'split_ d f == partial injection from aT : Type to rT : Type,
f : aT -> rT, and d : rT -> aT
This is a notation for split_ d f which is an HB
alias.
split := 'split_(fun=> point)
@to_setT T == function that associates to x : T a dependent
pair of x with a proof that x belongs to setT
(i.e., the type set_type [set: T])
incl AB == identity function from T to T, where AB is a
proof of A `<=` B, with A, B : set T
inclT A := incl (@subsetT _ _)
eqincl AB == identity function from T to T, where AB is a
proof of A = B, with A, B : set T
mkfun fAB == builds a function {fun A >-> B} given a function
f : aT -> rT and a proof fAB that
{homo f : x / A x >-> B x}
@set_val T A == injection from set_type A to T, where A has
type set T
@ssquash T == function of type
{splitsurj [set: T] >-> [set: $| T |]}
@finset_val T X == function that turns an element x : X
(with X : {fset T}) into a dependent pair of x
with a proof that x belongs to X
(i.e., the type set_type [set` X])
@val_finset T X == function of type [set` X] -> X with X : {fset T}
that cancels finset_val
glue XY AB f g == function that behaves as f over X, as g over Y
XY is a proof that sets X and Y are disjoint,
AB is a proof that sets A and B are disjoint,
A and B are intended to be the ranges of f and g
'pinv_ d A f == inverse of the function [fun f in A] over
f @` A, function d outside of f @` A
This is a notation for pinv_ which is defined as
the inverse of a partial injection ('split_).
pinv := 'pinv_(fun=> point)
```
## Function restriction
```
patch d A f == "partial function" that behaves as the function
f over the set A and as the function d otherwise
restrict D f := patch (fun=> point) D f
f \_ D := restrict D f
sigL A f == "left restriction"; given a set A : set U and a
function f : U -> V, returns the corresponding
function of type set_type A -> V
sigR A f == "right restriction"; given a set B : set V and a
function f : {fun [set: U] >-> B}, returns the
corresponding function of type U -> set_type B
sigLR A B f == the function of type set_type A -> set_type B
corresponding to f : {fun A >-> B}
valL_ v == function cancelled by sigL A, with A : set U and
v : V
valR f == the function of type U -> V corresponding to
f : U -> set_type B, with B : set V
valR_fun == the function of type {fun [set: U] >-> B}
corresponding to f : U -> set_type B, with
B : set V
valLR v f == the function of type U -> V corresponding to
f : set_type A -> set_type B (where v : V),
i.e., 'valL_ v \o valR_fun
valLfun_ v A B f := [fun of valL_ f] with f : {fun [set: A] >-> B}
valL := 'valL_ point
valLRfun v := 'valLfun_ v \o valR_fun
```
```
Section function_space == canonical ringType and lmodType
structures for functions whose range is
a ringType, comRingType, or lmodType.
fctE == multi-rule for fct
```
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Reserved Notation "f \_ D" (at level 10).
Reserved Notation "'{' 'fun' A '>->' B '}'"
(format "'{' 'fun' A '>->' B '}'").
Reserved Notation "'{' 'oinv' T '>->' U '}'"
(format "'{' 'oinv' T '>->' U '}'").
Reserved Notation "'{' 'inv' T '>->' U '}'"
(format "'{' 'inv' T '>->' U '}'").
Reserved Notation "'{' 'oinvfun' T '>->' U '}'"
(format "'{' 'oinvfun' T '>->' U '}'").
Reserved Notation "'{' 'invfun' T '>->' U '}'"
(format "'{' 'invfun' T '>->' U '}'").
Reserved Notation "'{' 'inj' A '>->' T '}'"
(format "'{' 'inj' A '>->' T '}'").
Reserved Notation "'{' 'splitinj' A '>->' T '}'"
(format "'{' 'splitinj' A '>->' T '}'").
Reserved Notation "'{' 'surj' A '>->' B '}'"
(format "'{' 'surj' A '>->' B '}'").
Reserved Notation "'{' 'splitsurj' A '>->' B '}'"
(format "'{' 'splitsurj' A '>->' B '}'").
Reserved Notation "'{' 'injfun' A '>->' B '}'"
(format "'{' 'injfun' A '>->' B '}'").
Reserved Notation "'{' 'surjfun' A '>->' B '}'"
(format "'{' 'surjfun' A '>->' B '}'").
Reserved Notation "'{' 'splitinjfun' A '>->' B '}'"
(format "'{' 'splitinjfun' A '>->' B '}'").
Reserved Notation "'{' 'splitsurjfun' A '>->' B '}'"
(format "'{' 'splitsurjfun' A '>->' B '}'").
Reserved Notation "'{' 'bij' A '>->' B '}'"
(format "'{' 'bij' A '>->' B '}'").
Reserved Notation "'{' 'splitbij' A '>->' B '}'"
(format "'{' 'splitbij' A '>->' B '}'").
Reserved Notation "[ 'fun' 'of' f ]" (format "[ 'fun' 'of' f ]").
Reserved Notation "[ 'oinv' 'of' f ]" (format "[ 'oinv' 'of' f ]").
Reserved Notation "[ 'inv' 'of' f ]" (format "[ 'inv' 'of' f ]").
Reserved Notation "[ 'oinv' 'of' f ]" (format "[ 'oinv' 'of' f ]").
Reserved Notation "[ 'inv' 'of' f ]" (format "[ 'inv' 'of' f ]").
Reserved Notation "[ 'inj' 'of' f ]" (format "[ 'inj' 'of' f ]").
Reserved Notation "[ 'splitinj' 'of' f ]" (format "[ 'splitinj' 'of' f ]").
Reserved Notation "[ 'surj' 'of' f ]" (format "[ 'surj' 'of' f ]").
Reserved Notation "[ 'splitsurj' 'of' f ]" (format "[ 'splitsurj' 'of' f ]").
Reserved Notation "[ 'injfun' 'of' f ]" (format "[ 'injfun' 'of' f ]").
Reserved Notation "[ 'surjfun' 'of' f ]" (format "[ 'surjfun' 'of' f ]").
Reserved Notation "[ 'splitinjfun' 'of' f ]"
(format "[ 'splitinjfun' 'of' f ]").
Reserved Notation "[ 'splitsurjfun' 'of' f ]"
(format "[ 'splitsurjfun' 'of' f ]").
Reserved Notation "[ 'bij' 'of' f ]" (format "[ 'bij' 'of' f ]").
Reserved Notation "[ 'splitbij' 'of' f ]" (format "[ 'splitbij' 'of' f ]").
Reserved Notation "''oinv_' f" (at level 8, f at level 2, format "''oinv_' f").
Reserved Notation "''funS_' f" (at level 8, f at level 2, format "''funS_' f").
Reserved Notation "''mem_fun_' f"
(at level 8, f at level 2, format "''mem_fun_' f").
Reserved Notation "''oinvK_' f"
(at level 8, f at level 2, format "''oinvK_' f").
Reserved Notation "''oinvS_' f"
(at level 8, f at level 2, format "''oinvS_' f").
Reserved Notation "''oinvP_' f"
(at level 8, f at level 2, format "''oinvP_' f").
Reserved Notation "''oinvT_' f"
(at level 8, f at level 2, format "''oinvT_' f").
Reserved Notation "''invK_' f"
(at level 8, f at level 2, format "''invK_' f").
Reserved Notation "''invS_' f"
(at level 8, f at level 2, format "''invS_' f").
Reserved Notation "''funoK_' f"
(at level 8, f at level 2, format "''funoK_' f").
Reserved Notation "''inj_' f"
(at level 8, f at level 2, format "''inj_' f").
Reserved Notation "''funK_' f"
(at level 8, f at level 2, format "''funK_' f").
Reserved Notation "''totalfun_' A"
(at level 8, A at level 2, format "''totalfun_' A").
Reserved Notation "''surj_' f"
(at level 8, f at level 2, format "''surj_' f").
Reserved Notation "''split_' a"
(at level 8, a at level 2, format "''split_' a").
Reserved Notation "''bijTT_' f"
(at level 8, f at level 2, format "''bijTT_' f").
Reserved Notation "''bij_' f" (at level 8, f at level 2, format "''bij_' f").
Reserved Notation "''valL_' v" (at level 8, v at level 2, format "''valL_' v").
Reserved Notation "''valLfun_' v"
(at level 8, v at level 2, format "''valLfun_' v").
Reserved Notation "''pinv_' dflt"
(at level 8, dflt at level 2, format "''pinv_' dflt").
Reserved Notation "''pPbij_' dflt"
(at level 8, dflt at level 2, format "''pPbij_' dflt").
Reserved Notation "''pPinj_' dflt"
(at level 8, dflt at level 2, format "''pPinj_' dflt").
Reserved Notation "''injpPfun_' dflt"
(at level 8, dflt at level 2, format "''injpPfun_' dflt").
Reserved Notation "''funpPinj_' dflt"
(at level 8, dflt at level 2, format "''funpPinj_' dflt").
Local Open Scope classical_set_scope.
Section MainProperties.
Context {aT rT} (A : set aT) (B : set rT) (f : aT -> rT).
Definition set_fun := {homo f : x / A x >-> B x}.
Definition set_surj := B `<=` f @` A.
Definition set_inj := {in A &, injective f}.
Definition set_bij := [/\ set_fun, set_inj & set_surj].
End MainProperties.
HB.mixin Record isFun {aT rT} (A : set aT) (B : set rT) (f : aT -> rT) :=
{ funS : set_fun A B f }.
HB.structure Definition Fun {aT rT} (A : set aT) (B : set rT) :=
{ f of isFun _ _ A B f }.
Notation "{ 'fun' A >-> B }" := (@Fun.type _ _ A B) : form_scope.
Notation "[ 'fun' 'of' f ]" := [the {fun _ >-> _} of f : _ -> _] : form_scope.
HB.mixin Record OInv {aT rT} (f : aT -> rT) := { oinv : rT -> option aT }.
HB.structure Definition OInversible aT rT := {f of OInv aT rT f}.
Notation "{ 'oinv' aT >-> rT }" := (@OInversible.type aT rT) : type_scope.
Notation "[ 'oinv' 'of' f ]" := [the {oinv _ >-> _} of f : _ -> _] :
form_scope.
Definition phant_oinv aT rT (f : {oinv aT >-> rT})
of phantom (_ -> _) f := @oinv _ _ f.
Notation "''oinv_' f" := (@phant_oinv _ _ _ (Phantom (_ -> _) f%FUN)).
HB.structure Definition OInvFun aT rT A B :=
{f of OInv aT rT f & isFun aT rT A B f}.
Notation "{ 'oinvfun' A >-> B }" := (@OInvFun.type _ _ A B) : type_scope.
Notation "[ 'oinvfun' 'of' f ]" :=
[the {oinvfun _ >-> _} of f : _ -> _] : form_scope.
HB.mixin Record OInv_Inv {aT rT} (f : aT -> rT) of OInv _ _ f := {
inv : rT -> aT;
oliftV : olift inv = 'oinv_f
}.
HB.factory Record Inv {aT rT} (f : aT -> rT) := { inv : rT -> aT }.
HB.builders Context {aT rT} (f : aT -> rT) of Inv _ _ f.
HB.instance Definition _ := OInv.Build _ _ f (olift inv).
HB.instance Definition _ := OInv_Inv.Build _ _ f erefl.
HB.end.
HB.structure Definition Inversible aT rT := {f of Inv aT rT f}.
Notation "{ 'inv' aT >-> rT }" := (@Inversible.type aT rT) : type_scope.
Notation "[ 'inv' 'of' f ]" := [the {inv _ >-> _} of f : _ -> _] : form_scope.
Definition phant_inv aT rT (f : {inv aT >-> rT}) of phantom (_ -> _) f :=
@inv _ _ f.
Notation "f ^-1" := (@inv _ _ f%function) (only printing) : function_scope.
Notation "f ^-1" :=
(@phant_inv _ _ _ (Phantom (_ -> _) f%function)) : function_scope.
Notation "f ^-1" := (@inv _ _ f%FUN) (only printing) : fun_scope.
Notation "f ^-1" := (@phant_inv _ _ _ (Phantom (_ -> _) f%FUN)) : fun_scope.
HB.structure Definition InvFun aT rT A B :=
{f of Inv aT rT f & isFun aT rT A B f}.
Notation "{ 'invfun' A >-> B }" := (@InvFun.type _ _ A B) : type_scope.
Notation "[ 'invfun' 'of' f ]" :=
[the {invfun _ >-> _} of f : _ -> _] : form_scope.
HB.mixin Record OInv_CanV {aT rT} {A : set aT} {B : set rT}
(f : aT -> rT) of OInv _ _ f := {
oinvS : {homo 'oinv_f : x / B x >-> (some @` A) x};
oinvK : {in B, ocancel 'oinv_f f};
}.
HB.factory Record OCanV {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) := {
oinv; oinvS : {homo oinv : x / B x >-> (some @` A) x};
oinvK : {in B, ocancel oinv f};
}.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT)
of OCanV _ _ A B f.
HB.instance Definition _ := OInv.Build _ _ f oinv.
HB.instance Definition _ := OInv_CanV.Build _ _ A B f oinvS oinvK.
HB.end.
HB.structure Definition Surject {aT rT A B} := {f of @OCanV aT rT A B f}.
Notation "{ 'surj' A >-> B }" := (@Surject.type _ _ A B) : type_scope.
Notation "[ 'surj' 'of' f ]" :=
[the {surj _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SurjFun aT rT A B :=
{f of @Surject aT rT A B f & @Fun _ _ A B f}.
Notation "{ 'surjfun' A >-> B }" := (@SurjFun.type _ _ A B) : type_scope.
Notation "[ 'surjfun' 'of' f ]" :=
[the {surjfun _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SplitSurj aT rT A B :=
{f of @Surject aT rT A B f & @Inv _ _ f}.
Notation "{ 'splitsurj' A >-> B }" := (@SplitSurj.type _ _ A B) : type_scope.
Notation "[ 'splitsurj' 'of' f ]" :=
[the {splitsurj _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SplitSurjFun aT rT A B :=
{f of @SplitSurj aT rT A B f & @Fun _ _ A B f}.
Notation "{ 'splitsurjfun' A >-> B }" :=
(@SplitSurjFun.type _ _ A B) : type_scope.
Notation "[ 'splitsurjfun' 'of' f ]" :=
[the {splitsurjfun _ >-> _} of f : _ -> _] : form_scope.
HB.mixin Record OInv_Can aT rT (A : set aT) (f : aT -> rT) of OInv _ _ f :=
{ funoK : {in A, pcancel f 'oinv_f} }.
HB.structure Definition Inject aT rT A :=
{f of OInv aT rT f & OInv_Can aT rT A f}.
Notation "{ 'inj' A >-> rT }" := (@Inject.type _ rT A) : type_scope.
Notation "[ 'inj' 'of' f ]" := [the {inj _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition InjFun {aT rT} (A : set aT) (B : set rT) :=
{ f of @Fun _ _ A B f & @Inject _ _ A f }.
Notation "{ 'injfun' A >-> B }" := (@InjFun.type _ _ A B) : type_scope.
Notation "[ 'injfun' 'of' f ]" :=
[the {injfun _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SplitInj aT rT (A : set aT) :=
{f of @Inv aT rT f & @Inject aT rT A f}.
Notation "{ 'splitinj' A >-> rT }" := (@SplitInj.type _ rT A) : type_scope.
Notation "[ 'splitinj' 'of' f ]" :=
[the {splitinj _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition SplitInjFun aT rT (A : set aT) (B : set rT) :=
{f of @SplitInj _ rT A f & @isFun _ _ A B f}.
Notation "{ 'splitinjfun' A >-> B }" := (@SplitInjFun.type _ _ A B) : type_scope.
Notation "[ 'splitinjfun' 'of' f ]" :=
[the {splitinjfun _ >-> _} of f : _ -> _] : form_scope.
HB.structure Definition Bij {aT rT} {A : set aT} {B : set rT} :=
{f of @InjFun _ _ A B f & @SurjFun _ _ A B f}.
Notation "{ 'bij' A >-> B }" := (@Bij.type _ _ A B) : type_scope.
Notation "[ 'bij' 'of' f ]" := [the {bij _ >-> _} of f] : form_scope.
HB.structure Definition SplitBij {aT rT} {A : set aT} {B : set rT} :=
{f of @SplitInjFun _ _ A B f & @SplitSurjFun _ _ A B f}.
Notation "{ 'splitbij' A >-> B }" := (@SplitBij.type _ _ A B) : type_scope.
Notation "[ 'splitbij' 'of' f ]" := [the {splitbij _ >-> _} of f] : form_scope.
Module ShortFunSyntax.
Notation "A ~> B" := {fun A >-> B} (at level 70) : type_scope.
Notation "aT <=> rT" := {oinv aT >-> rT} (at level 70) : type_scope.
Notation "A <~ B" := {oinvfun A >-> B} (at level 70) : type_scope.
Notation "aT <<=> rT" := {inv aT >-> rT} (at level 70) : type_scope.
Notation "A <<~ B" := {invfun A >-> B} (at level 70) : type_scope.
Notation "A =>> B" := {surj A >-> B} (at level 70) : type_scope.
Notation "A ~>> B" := {surjfun A >-> B} (at level 70) : type_scope.
Notation "A ==>> B" := {splitsurj A >-> B} (at level 70) : type_scope.
Notation "A ~~>> B" := {splitsurjfun A >-> B} (at level 70) : type_scope.
Notation "A >=> rT" := {inj A >-> rT} (at level 70) : type_scope.
Notation "A >~> B" := {injfun A >-> B} (at level 70) : type_scope.
Notation "A >>=> rT" := {splitinj A >-> rT} (at level 70) : type_scope.
Notation "A >>~> B" := {splitinjfun A >-> B} (at level 70) : type_scope.
Notation "A <~> B" := {bij A >-> B} (at level 70) : type_scope.
Notation "A <<~> B" := {splitbij A >-> B} (at level 70) : type_scope.
End ShortFunSyntax.
## Theory
Definition phant_funS aT rT (A : set aT) (B : set rT)
(f : {fun A >-> B}) of phantom (_ -> _) f := @funS _ _ _ _ f.
Notation "'funS_ f" := (phant_funS (Phantom (_ -> _) f))
(at level 8, f at level 2) : form_scope.
#[global] Hint Extern 0 (set_fun _ _ _) => solve [apply: funS] : core.
#[global] Hint Extern 0 (prop_in1 _ _) => solve [apply: funS] : core.
Definition fun_image_sub aT rT (A : set aT) (B : set rT) (f : {fun A >-> B}) :=
image_subP.2 (@funS _ _ _ _ f).
Arguments fun_image_sub {aT rT A B}.
#[global] Hint Extern 0 (_ @` _ `<=` _) => solve [apply: fun_image_sub] : core.
Definition mem_fun aT rT (A : set aT) (B : set rT) (f : {fun A >-> B}) :=
homo_setP.2 (@funS _ _ _ _ f).
#[global] Hint Extern 0 (prop_in1 _ _) => solve [apply: mem_fun] : core.
Definition phant_mem_fun aT rT (A : set aT) (B : set rT)
(f : {fun A >-> B}) of phantom (_ -> _) f := homo_setP.2 (@funS _ _ _ _ f).
Notation "'mem_fun_ f" := (phant_mem_fun (Phantom (_ -> _) f))
(at level 8, f at level 2) : form_scope.
Lemma some_inv {aT rT} (f : {inv aT >-> rT}) x : Some (f^-1 x) = 'oinv_f x.
Proof.
Definition phant_oinvK aT rT (A : set aT) (B : set rT)
(f : {surj A >-> B}) of phantom (_ -> _) f := @oinvK _ _ _ _ f.
Notation "'oinvK_ f" := (phant_oinvK (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve oinvK : core.
Definition phant_oinvS aT rT (A : set aT) (B : set rT)
(f : {surj A >-> B}) of phantom (_ -> _) f := @oinvS _ _ _ _ f.
Notation "'oinvS_ f" := (phant_oinvS (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve oinvS : core.
Variant oinv_spec {aT} {rT} {A : set aT} {B : set rT} (f : {surj A >-> B}) y :
rT -> option aT -> Type :=
OInvSpec (x : aT) of A x & f x = y : oinv_spec f y (f x) (Some x).
Lemma oinvP aT rT (A : set aT) (B : set rT) (f : {surj A >-> B}) y :
B y -> oinv_spec f y y ('oinv_f y).
Proof.
Definition phant_oinvP aT rT (A : set aT) (B : set rT)
(f : {surj A >-> B}) of phantom (_ -> _) f := @oinvP _ _ _ _ f.
Notation "'oinvP_ f" := (phant_oinvP (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve oinvP : core.
Lemma oinvT {aT rT} {A : set aT} {B : set rT} {f : {surj A >-> B}} x :
B x -> 'oinv_f x.
Proof.
(f : {surj A >-> B}) of phantom (_ -> _) f := @oinvT _ _ _ _ f.
Notation "'oinvT_ f" := (phant_oinvT (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve oinvT : core.
Lemma invK {aT rT} {A : set aT} {B : set rT} {f : {splitsurj A >-> B}} :
{in B, cancel f^-1 f}.
Definition phant_invK aT rT (A : set aT) (B : set rT)
(f : {splitsurj A >-> B}) of phantom (_ -> _) f := @invK _ _ _ _ f.
Notation "'invK_ f" := (phant_invK (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve invK : core.
Lemma invS {aT rT} {A : set aT} {B : set rT} {f : {splitsurj A >-> B}} :
{homo f^-1 : x / B x >-> A x}.
Definition phant_invS aT rT (A : set aT) (B : set rT)
{f : {splitsurjfun A >-> B}} of phantom (_ -> _) f := @invS _ _ _ _ f.
Notation "'invS_ f" := (phant_invS (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve invS : core.
Definition phant_funoK aT rT (A : set aT) (f : {inj A >-> rT})
of phantom (_ -> _) f := @funoK _ _ _ f.
Notation "'funoK_ f" := (phant_funoK (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve funoK : core.
Definition inj {aT rT : nonPropType} {A : set aT} {f : {inj A >-> rT}} :
{in A &, injective f} := pcan_in_inj funoK.
Definition phant_inj aT rT (A : set aT) (f : {inj A >-> rT}) of
phantom (_ -> _) f := @inj _ _ _ f.
Notation "'inj_ f" := (phant_inj (Phantom (_ -> _) f)) : form_scope.
Definition inj_hint {aT rT} {A : set aT} {f : {inj A >-> rT}} :
{in A &, injective f} := inj.
#[global] Hint Extern 0 {in _ &, injective _} => solve [apply: inj_hint] : core.
#[global] Hint Extern 0 (set_inj _ _) => solve [apply: inj_hint] : core.
Lemma injT {aT rT} {f : {inj [set: aT] >-> rT}} : injective f.
#[global] Hint Extern 0 (injective _) => solve [apply: injT] : core.
Lemma funK {aT rT : Type} {A : set aT} {s : {splitinj A >-> rT}} :
{in A, cancel s s^-1}.
Definition phant_funK aT rT (A : set aT) (f : {splitinj A >-> rT})
of phantom (_ -> _) f := @funK _ _ _ f.
Notation "'funK_ f" := (phant_funK (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Resolve funK : core.
Structure Equality
Lemma funP {aT rT} {A : set aT} {B : set rT} (f g : {fun A >-> B}) :
f = g <-> f =1 g.
Proof.
case: f g => [f [[ffun]]] [g [[gfun]]]/=; split=> [[->//]|/funext eqfg].
rewrite eqfg in ffun *; congr {| Fun.sort := _; Fun.class := {|
Fun.functions_isFun_mixin := {|isFun.funS := _|}|}|}.
exact: Prop_irrelevance.
Qed.
rewrite eqfg in ffun *; congr {| Fun.sort := _; Fun.class := {|
Fun.functions_isFun_mixin := {|isFun.funS := _|}|}|}.
exact: Prop_irrelevance.
Qed.
Preliminary Builders
HB.factory Record Inv_Can {aT rT} {A : set aT} (f : aT -> rT) of Inv _ _ f :=
{ funK : {in A, cancel f f^-1} }.
HB.builders Context {aT rT} A (f : aT -> rT) of @Inv_Can _ _ A f.
Local Lemma funoK: {in A, pcancel f 'oinv_f}.
Proof.
HB.end.
HB.factory Record Inv_CanV {aT rT} {A : set aT} {B : set rT} (f : aT -> rT)
of Inv aT rT f := {
invS : {homo f^-1 : x / B x >-> A x};
invK : {in B, cancel f^-1 f};
}.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT)
of Inv_CanV _ _ A B f.
#[local] Lemma oinvK : {in B, ocancel 'oinv_f f}.
#[local] Lemma oinvS : {homo 'oinv_f : x / B x >-> (some @` A) x}.
HB.instance Definition _ := OInv_CanV.Build _ _ _ _ f oinvS oinvK.
HB.end.
Trivial instances
Section OInverse.
Context {aT rT : Type} {A : set aT} {B : set rT}.
HB.instance Definition _ {f : {oinv aT >-> rT}} :=
OInv.Build _ _ 'oinv_f (omap f).
Lemma oinvV {f : {oinv aT >-> rT}} : 'oinv_('oinv_f) = omap f.
Proof.
by []. Qed.
HB.instance Definition _ (f : {surj A >-> B}) :=
isFun.Build rT (option aT) B (some @` A) 'oinv_f oinvS.
Lemma surjoinv_inj_subproof (f : {surj A >-> B}) : OInv_Can _ _ B 'oinv_f.
Proof.
Lemma injoinv_surj_subproof (f : {injfun A >-> B}) :
OInv_CanV _ _ B (some @` A) 'oinv_f.
Proof.
HB.instance Definition _ {f : {bij A >-> B}} := InjFun.on 'oinv_f.
End OInverse.
Section Inverse.
Context {aT rT : Type} {A : set aT} {B : set rT}.
HB.instance Definition _ (f : {inv aT >-> rT}) := Inv.Build rT aT f^-1 f.
HB.instance Definition _ (f : {inv aT >-> rT}) := Inversible.copy inv f^-1.
Lemma invV (f : {inv aT >-> rT}) : f^-1^-1 = f
Proof.
by []. Qed.
HB.instance Definition _ (f : {splitsurj A >-> B}) :=
isFun.Build rT aT B A f^-1 invS.
HB.instance Definition _ (f : {splitsurj A >-> B}) := Fun.copy inv f^-1.
HB.instance Definition _ {f : {splitsurj A >-> B}} :=
Inv_Can.Build _ _ _ f^-1 'invK_f.
HB.instance Definition _ (f : {splitinjfun A >-> B}) :=
Inv_CanV.Build _ _ _ _ f^-1 funS funK.
HB.instance Definition _ {f : {splitbij A >-> B}} := InjFun.on f^-1.
End Inverse.
Section Some.
Context {T} {A : set T}.
HB.instance Definition _ := OInv.Build _ _ (@Some T) id.
Lemma oinv_some : 'oinv_(@Some T) = id
Proof.
by []. Qed.
Lemma some_can_subproof : @OInv_Can _ _ A (@Some T)
Proof.
by split. Qed.
Lemma some_canV_subproof : OInv_CanV _ _ A (some @` A) (@Some T).
Proof.
Lemma some_fun_subproof : isFun _ _ A (some @` A) (@Some T).
Proof.
by split=> x; exists x. Qed.
End Some.
Section OApply.
Context {aT rT} {A : set aT} {B : set rT} {b0 : rT}.
Local Notation oapp f := (oapp f b0).
HB.instance Definition _ {f : {oinv aT >-> rT}} :=
Inv.Build _ _ (oapp f) 'oinv_f.
Lemma inv_oapp {f : {oinv aT >-> rT}} : (oapp f)^-1 = 'oinv_f.
Proof.
by []. Qed.
Proof.
Lemma oapp_can_subproof (f : {inj A >-> rT}) : Inv_Can _ _ (some @` A) (oapp f).
HB.instance Definition _ f := oapp_can_subproof f.
Lemma oapp_surj_subproof (f : {surj A >-> B}) : Inv_CanV _ _ (some @` A) B (oapp f).
HB.instance Definition _ f := oapp_surj_subproof f.
Lemma oapp_fun_subproof (f : {fun A >-> B}) : isFun _ _ (some @` A) B (oapp f).
Proof.
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (oapp f).
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (oapp f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (oapp f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (oapp f).
HB.instance Definition _ (f : {splitbij A >-> B}) := Fun.on (oapp f).
End OApply.
Section OBind.
Context {aT rT} {A : set aT} {B : set (option rT)}.
Local Notation b f := (oapp f None).
Local Notation orT := (option rT).
HB.instance Definition _ {f : {oinv aT >-> orT}} :=
Inv.Build _ _ (obind f) 'oinv_f.
Lemma inv_obind {f : {oinv aT >-> orT}} : (obind f)^-1 = 'oinv_f.
Proof.
by []. Qed.
Proof.
by []. Qed.
HB.instance Definition _ (f : {fun A >-> B}) := Fun.copy (obind f) (b f).
HB.instance Definition _ (f : {inj A >-> orT}) := Inject.copy (obind f) (b f).
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (obind f).
HB.instance Definition _ (f : {surj A >-> B}) := Surject.copy (obind f) (b f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (obind f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (obind f).
End OBind.
Section Composition.
Context {aT rT sT} {A : set aT} {B : set rT} {C : set sT}.
Local Lemma comp_fun_subproof (f : {fun A >-> B}) (g : {fun B >-> C}) :
isFun _ _ A C (g \o f).
HB.instance Definition _ f g := comp_fun_subproof f g.
Section OInv.
Context {f : {oinv aT >-> rT}} {g : {oinv rT >-> sT}}.
HB.instance Definition _ := OInv.Build _ _ (g \o f) (obind 'oinv_f \o 'oinv_g).
Lemma oinv_comp : 'oinv_(g \o f) = (obind 'oinv_f) \o 'oinv_g.
Proof.
by []. Qed.
Section OInv.
Context {f : {inv aT >-> rT}} {g : {inv rT >-> sT}}.
Lemma some_comp_inv : olift (f^-1 \o g^-1) = 'oinv_(g \o f).
HB.instance Definition _ := OInv_Inv.Build aT sT (g \o f) some_comp_inv.
Lemma inv_comp : (g \o f)^-1 = f^-1 \o g^-1
Proof.
by []. Qed.
Lemma comp_can_subproof (f : {injfun A >-> B}) (g : {inj B >-> sT}) :
OInv_Can aT sT A (g \o f).
HB.instance Definition _ f g := comp_can_subproof f g.
HB.instance Definition _ (f : {injfun A >-> B}) (g : {injfun B >-> C}) :=
Inject.on (g \o f).
HB.instance Definition _ (f : {splitinjfun A >-> B})
(g : {splitinj B >-> sT}) := Inject.on (g \o f).
HB.instance Definition _ (f : {splitinjfun A >-> B})
(g : {splitinjfun B >-> C}) := Inject.on (g \o f).
End Composition.
Section Composition.
Context {aT rT sT} {A : set aT} {B : set rT} {C : set sT}.
Lemma comp_surj_subproof (f : {surj A >-> B}) (g : {surj B >-> C}) :
OInv_CanV _ _ A C (g \o f).
Proof.
split; first exact: funS.
apply: (@ocan_in_comp _ _ _ (mem B)) oinvK oinvK.
by move=> ? /set_mem; rewrite pred_oapp_set inE; apply: funS.
Qed.
apply: (@ocan_in_comp _ _ _ (mem B)) oinvK oinvK.
by move=> ? /set_mem; rewrite pred_oapp_set inE; apply: funS.
Qed.
HB.instance Definition _ f g := comp_surj_subproof f g.
HB.instance Definition _ (f : {splitsurj A >-> B}) (g : {splitsurj B >-> C}) :=
Surject.on (g \o f).
HB.instance Definition _ (f : {surjfun A >-> B}) (g : {surjfun B >-> C}) :=
Surject.on (g \o f).
HB.instance Definition _ (f : {splitsurjfun A >-> B})
(g : {splitsurjfun B >-> C}) := Surject.on (g \o f).
HB.instance Definition _ (f : {bij A >-> B}) (g : {bij B >-> C}) :=
Surject.on (g \o f).
HB.instance Definition _ (f : {splitbij A >-> B}) (g : {splitbij B >-> C}) :=
Surject.on (g \o f).
End Composition.
Section totalfun.
Context {aT rT : Type}.
Definition totalfun_ (A : set aT) (f : aT -> rT) := f.
Context {A : set aT}.
Local Notation totalfun := (totalfun_ A).
HB.instance Definition _ (f : aT -> rT) :=
isFun.Build _ _ A setT (totalfun f) (fun _ _ => I).
HB.instance Definition _ (f : {inj A >-> rT}) := Inject.on (totalfun f).
HB.instance Definition _ (f : {splitinj A >-> rT}) := SplitInj.on (totalfun f).
HB.instance Definition _ (f : {surj A >-> [set: rT]}) :=
Surject.on (totalfun f).
HB.instance Definition _ (f : {splitsurj A >-> [set: rT]}) :=
SplitSurj.on (totalfun f).
End totalfun.
Notation "''totalfun_' A" := (totalfun_ A) : form_scope.
Notation totalfun := (totalfun_ setT).
Section Olift.
Context {aT rT} {A : set aT} {B : set rT}.
HB.instance Definition _ {f : {oinv aT >-> rT}} := OInversible.copy (olift f)
(Some \o f).
Lemma oinv_olift {f : {oinv aT >-> rT}} : 'oinv_(olift f) = obind 'oinv_f.
Proof.
by []. Qed.
HB.instance Definition _ (f : {inj A >-> rT}) :=
Inject.copy (olift f) (Some \o ('totalfun_A f)).
HB.instance Definition _ (f : {surj A >-> B}) :=
Surject.copy (olift f) (Some \o f).
HB.instance Definition _ (f : {fun A >-> B}) := Fun.copy (olift f) (Some \o f).
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (olift f).
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (olift f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (olift f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (olift f).
End Olift.
Section Map.
Context {aT rT} {A : set aT} {B : set rT}.
Local Notation m f := (obind (olift f)).
HB.instance Definition _ (f : {fun A >-> B}) := Fun.copy (omap f) (m f).
HB.instance Definition _ {f : {oinv aT >-> rT}} :=
Inv.Build _ _ (omap f) (obind 'oinv_f).
Lemma inv_omap {f : {oinv aT >-> rT}} : (omap f)^-1 = obind 'oinv_f.
Proof.
by []. Qed.
Proof.
by []. Qed.
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (omap f).
HB.instance Definition _ (f : {inj A >-> rT}) := Inject.copy (omap f) (m f).
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (omap f).
HB.instance Definition _ (f : {surj A >-> B}) := Surject.copy (omap f) (m f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (omap f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (omap f).
End Map.
Builders
HB.factory Record CanV {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) :=
{ inv; invS : {homo inv : x / B x >-> A x}; invK : {in B, cancel inv f}; }.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of CanV _ _ A B f.
HB.instance Definition _ := Inv.Build _ _ f inv.
HB.instance Definition _ := Inv_CanV.Build _ _ _ _ f invS invK.
HB.end.
HB.factory Record OInv_Can2 {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@OInv _ _ f :=
{
funS : {homo f : x / A x >-> B x};
oinvS : {homo 'oinv_f : x / B x >-> (some @` A) x};
funoK : {in A, pcancel f 'oinv_f};
oinvK : {in B, ocancel 'oinv_f f};
}.
HB.builders Context {aT rT} A B (f : aT -> rT) of OInv_Can2 _ _ A B f.
HB.instance Definition _ := isFun.Build aT rT _ _ f funS.
HB.instance Definition _ := OInv_Can.Build aT rT _ f funoK.
HB.instance Definition _ := OInv_CanV.Build aT rT _ _ f oinvS oinvK.
HB.end.
HB.factory Record OCan2 {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) :=
{ oinv; funS : {homo f : x / A x >-> B x};
oinvS : {homo oinv : x / B x >-> (some @` A) x};
funoK : {in A, pcancel f oinv};
oinvK : {in B, ocancel oinv f};
}.
HB.builders Context {aT rT} A B (f : aT -> rT) of OCan2 _ _ A B f.
HB.instance Definition _ := OInv.Build aT rT f oinv.
HB.instance Definition _ := OInv_Can2.Build aT rT _ _ f funS oinvS funoK oinvK.
HB.end.
HB.factory Record Can {aT rT} {A : set aT} (f : aT -> rT) :=
{ inv; funK : {in A, cancel f inv} }.
HB.builders Context {aT rT} A (f : aT -> rT) of @Can _ _ A f.
HB.instance Definition _ := Inv.Build _ _ f inv.
HB.instance Definition _ := Inv_Can.Build _ _ _ f funK.
HB.end.
HB.factory Record Inv_Can2 {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
Inv _ _ f :=
{ funS : {homo f : x / A x >-> B x};
invS : {homo f^-1 : x / B x >-> A x};
funK : {in A, cancel f f^-1};
invK : {in B, cancel f^-1 f};
}.
HB.builders Context {aT rT} A B (f : aT -> rT) of Inv_Can2 _ _ A B f.
HB.instance Definition _ := isFun.Build aT rT A B f funS.
HB.instance Definition _ := Inv_Can.Build aT rT A f funK.
HB.instance Definition _ := @Inv_CanV.Build aT rT A B f invS invK.
HB.end.
HB.factory Record Can2 {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) :=
{ inv; funS : {homo f : x / A x >-> B x};
invS : {homo inv : x / B x >-> A x};
funK : {in A, cancel f inv};
invK : {in B, cancel inv f};
}.
HB.builders Context {aT rT} A B (f : aT -> rT) of Can2 _ _ A B f.
HB.instance Definition _ := Inv.Build aT rT f inv.
HB.instance Definition _ := Inv_Can2.Build aT rT A B f funS invS funK invK.
HB.end.
HB.factory Record SplitInjFun_CanV {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SplitInjFun _ _ A B f :=
{ invS : {homo f^-1 : x / B x >-> A x}; injV : {in B &, injective f^-1} }.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of SplitInjFun_CanV _ _ A B f.
Let mem_inv := homo_setP.2 invS.
Local Lemma invK : {in B, cancel f^-1 f}.
HB.instance Definition _ := Inv_CanV.Build aT rT A B f invS invK.
HB.end.
HB.factory Record BijTT {aT rT} (f : aT -> rT) := { bij : bijective f }.
HB.builders Context {aT rT} f of BijTT aT rT f.
Local Lemma exg : {g | cancel f g /\ cancel g f}.
HB.instance Definition _ := Can2.Build aT rT setT setT f
(fun x y => y) (fun x y => y)
(in1W (projT2 exg).1) (in1W (projT2 exg).2).
HB.end.
Fun in
Section surj_oinv.
Context {aT rT} {A : set aT} {B : set rT} {f : aT -> rT} (fsurj : set_surj A B f).
Let surjective_oinv (y : rT) :=
if pselect (B y) is left By then some (projT1 (cid2 (fsurj By))) else None.
Lemma surjective_oinvK : {in B, ocancel surjective_oinv f}.
Proof.
Lemma surjective_oinvS : set_fun B (some @` A) surjective_oinv.
Proof.
move=> y By /=; rewrite /surjective_oinv; case: pselect => // By'.
by case: cid2 => //= x Ax fxy; exists x.
Qed.
by case: cid2 => //= x Ax fxy; exists x.
Qed.
Coercion surjective_ocanV {aT rT} {A : set aT} {B : set rT} {f : aT -> rT}
(fS : set_surj A B f) :=
OCanV.Build aT rT A B f (surjective_oinvS fS) (surjective_oinvK fS).
Section Psurj.
Context {aT rT} {A : set aT} {B : set rT} {f : aT -> rT} (fsurj : set_surj A B f).
#[local] HB.instance Definition _ : OCanV _ _ A B f := fsurj.
Definition surjection_of_surj := [surj of f].
Lemma Psurj : {s : {surj A >-> B} | f = s}
End Psurj.
Coercion surjection_of_surj : set_surj >-> Surject.type.
Lemma oinv_surj {aT rT} {A : set aT} {B : set rT} {f : aT -> rT}
(fS : set_surj A B f) y :
'oinv_fS y = if pselect (B y) is left By then some (projT1 (cid2 (fS y By))) else None.
Proof.
by []. Qed.
Lemma surj {aT rT} {A : set aT} {B : set rT} {f : {surj A >-> B}} : set_surj A B f.
Proof.
Definition phant_surj aT rT (A : set aT) (B : set rT) (f : {surj A >-> B})
of phantom (_ -> _) f := @surj _ _ _ _ f.
Notation "'surj_ f" := (phant_surj (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Extern 0 (set_surj _ _ _) => solve [apply: surj] : core.
Section funin_surj.
Context {aT rT : Type}.
Definition funin (A : set aT) (f : aT -> rT) := f.
Context {A : set aT} {B : set rT} (f : aT -> rT).
Lemma set_fun_image : set_fun A (f @` A) f.
Proof.
exact/image_subP. Qed.
HB.instance Definition _ :=
@isFun.Build _ _ _ _ (funin A f) set_fun_image.
HB.instance Definition _ : OCanV _ _ A (f @` A) (funin A f) :=
((fun _ => id) : set_surj A (f @` A) f).
End funin_surj.
Notation "[ 'fun' f 'in' A ]" := (funin A f)
(at level 0, f at next level,
format "[ 'fun' f 'in' A ]") : function_scope.
#[global] Hint Resolve set_fun_image : core.
Partial injection
Section split.
Context {aT rT} (A : set aT) (B : set rT).
Definition split_ (dflt : rT -> aT) (f : aT -> rT) := f.
Context (dflt : rT -> aT).
Local Notation split := (split_ dflt).
HB.instance Definition _ (f : {fun A >-> B}) := Fun.on (split f).
Section oinv.
Context (f : {oinv aT >-> rT}).
Let g y := odflt (dflt y) ('oinv_f y).
HB.instance Definition _ := Inv.Build _ _ (split f) g.
Lemma splitV : (split f)^-1 = g
Proof.
by []. Qed.
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (split f).
Lemma splitis_inj_subproof (f : {inj A >-> rT}) : Inv_Can _ _ A (split f).
HB.instance Definition _ f := splitis_inj_subproof f.
HB.instance Definition _ (f : {injfun A >-> B}) := Inject.on (split f).
Lemma splitid (f : {splitinjfun A >-> B}) : (split f)^-1 = f^-1.
Lemma splitsurj_subproof (f : {surj A >-> B}) : Inv_CanV _ _ A B (split f).
HB.instance Definition _ f := splitsurj_subproof f.
HB.instance Definition _ (f : {surjfun A >-> B}) := Surject.on (split f).
HB.instance Definition _ (f : {bij A >-> B}) := Surject.on (split f).
End split.
Notation "''split_' a" := (split_ a) : form_scope.
Notation split := 'split_(fun=> point).
More Builders
HB.factory Record Inj {aT rT} (A : set aT) (f : aT -> rT) :=
{ inj : {in A &, injective f} }.
HB.builders Context {aT rT} A (f : aT -> rT) of Inj _ _ A f.
HB.instance Definition _ := OInversible.copy f [fun f in A].
Lemma funoK : {in A, pcancel f 'oinv_f}.
Proof.
HB.end.
HB.factory Record SurjFun_Inj {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SurjFun _ _ A B f := { inj : {in A &, injective f} }.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SurjFun_Inj _ _ A B f.
Let g := f.
HB.instance Definition _ := Inj.Build _ _ A g inj.
Let fcan : OInv_Can aT rT A f.
Proof.
HB.end.
HB.factory Record SplitSurjFun_Inj {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SplitSurjFun _ _ A B f :=
{ inj : {in A &, injective f} }.
HB.builders Context {aT rT} {A : set aT} {B : set rT} (f : aT -> rT) of
@SplitSurjFun_Inj _ _ A B f.
Local Lemma funK : {in A, cancel f f^-1%FUN}.
HB.instance Definition _ := Inv_Can.Build aT rT _ f funK.
HB.end.
Section Inverses.
Context aT rT {A : set aT} {B : set rT}.
HB.instance Definition _ (f : {inj A >-> rT}) :=
SurjFun_Inj.Build _ _ _ _ [fun f in A] 'inj_f.
End Inverses.
## Simple Factories
Section Pinj.
Context {aT rT} {A : set aT} {f : aT -> rT} (finj : {in A &, injective f}).
#[local] HB.instance Definition _ := Inj.Build _ _ _ f finj.
Lemma Pinj : {i : {inj A >-> rT} | f = i}
End Pinj.
Section Pfun.
Context {aT rT} {A : set aT} {B : set rT} {f : aT -> rT}
(ffun : {homo f : x / A x >-> B x}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := isFun.Build _ _ _ _ g ffun.
Lemma Pfun : {i : {fun A >-> B} | f = i}
End Pfun.
Section injPfun.
Context {aT rT} {A : set aT} {B : set rT} {f : {inj A >-> rT}}
(ffun : {homo f : x / A x >-> B x}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := Inject.on g.
#[local] HB.instance Definition _ := isFun.Build _ _ A B g ffun.
Lemma injPfun : {i : {injfun A >-> B} | f = i :> (_ -> _)}.
End injPfun.
Section funPinj.
Context {aT rT} {A : set aT} {B : set rT} {f : {fun A >-> B}}
(finj : {in A &, injective f}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := Fun.on g.
#[local] HB.instance Definition _ := Inj.Build _ _ _ g finj.
Lemma funPinj : {i : {injfun A >-> B} | f = i}.
End funPinj.
Section funPsurj.
Context {aT rT} {A : set aT} {B : set rT} {f : {fun A >-> B}}
(fsurj : set_surj A B f).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := Fun.on g.
#[local] HB.instance Definition _ : OCanV _ _ A B g := fsurj.
Lemma funPsurj : {s : {surjfun A >-> B} | f = s}.
End funPsurj.
Section surjPfun.
Context {aT rT} {A : set aT} {B : set rT} {f : {surj A >-> B}}
(ffun : {homo f : x / A x >-> B x}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := Surject.on g.
#[local] HB.instance Definition _ := isFun.Build _ _ A B g ffun.
Lemma surjPfun : {s : {surjfun A >-> B} | f = s :> (_ -> _)}.
End surjPfun.
Section Psplitinj.
Context {aT rT} {A : set aT} {f : aT -> rT} {g} (funK : {in A, cancel f g}).
#[local] HB.instance Definition _ := Can.Build _ _ A f funK.
Lemma Psplitinj : {i : {splitinj A >-> rT} | f = i}.
End Psplitinj.
Section funPsplitinj.
Context {aT rT} {A : set aT} {B : set rT} {f : {fun A >-> B}}.
Context {g} (funK : {in A, cancel f g}).
Let f' : _ -> _ := f.
#[local] HB.instance Definition _ := Fun.on f'.
#[local] HB.instance Definition _ := Can.Build _ _ A f' funK.
Lemma funPsplitinj : {i : {splitinjfun A >-> B} | f = i}.
Proof.
Lemma PsplitinjT {aT rT} {f : aT -> rT} {g} : cancel f g ->
{i : {splitinj [set: aT] >-> rT} | f = i}.
Section funPsplitsurj.
Context {aT rT} {A : set aT} {B : set rT} {f : {fun A >-> B}}.
Context {g : {fun B >-> A}} (funK : {in B, cancel g f}).
Let f' : _ -> _ := f.
#[local] HB.instance Definition _ := Fun.on f'.
#[local] HB.instance Definition _ := CanV.Build _ _ A B f' funS funK.
Lemma funPsplitsurj : {s : {splitsurjfun A >-> B} | f = s :> (_ -> _)}.
Proof.
Lemma PsplitsurjT {aT rT} {f : aT -> rT} {g} : cancel g f ->
{s : {splitsurjfun [set: aT] >-> [set: rT]} | f = s}.
## Instances
The identity is a split bijection
HB.instance Definition _ T A := @Can2.Build T T A A idfun idfun
(fun x y => y) (fun x y => y) (fun _ _ => erefl) (fun _ _ => erefl).
Iteration preserves Fun, Injectivity, and Surjectivity
Section iter_inv.Context {aT} {A : set aT}.
Local Lemma iter_fun_subproof n (f : {fun A >-> A}) : isFun _ _ A A (iter n f).
Proof.
HB.instance Definition _ n f := iter_fun_subproof n f.
Section OInv.
Context {f : {oinv aT >-> aT}}.
HB.instance Definition _ n := OInv.Build _ _ (iter n f)
(iter n (obind 'oinv_f) \o some).
Lemma oinv_iter n : 'oinv_(iter n f) = iter n (obind 'oinv_f) \o some.
Proof.
by []. Qed.
Section OInv.
Context {f : {inv aT >-> aT}}.
Lemma some_iter_inv n : olift (iter n f^-1) = 'oinv_(iter n f).
Proof.
Lemma inv_iter n : (iter n f)^-1 = iter n f^-1
Proof.
by []. Qed.
Lemma iter_can_subproof n (f : {injfun A >-> A}) : OInv_Can aT aT A (iter n f).
Proof.
HB.instance Definition _ f g := iter_can_subproof f g.
HB.instance Definition _ n (f : {injfun A >-> A}) := Inject.on (iter n f).
HB.instance Definition _ n (f : {splitinjfun A >-> A}) := Inject.on (iter n f).
End iter_inv.
Section iter_surj.
Context {aT} {A : set aT}.
Lemma iter_surj_subproof n (f : {surj A >-> A}) : OInv_CanV _ _ A A (iter n f).
Proof.
split; first exact: funS.
elim: n=> // n IH; rewrite oinv_iter iterfSr iterfS.
apply: (@ocan_in_comp _ _ _ (mem A)) => //; last exact: oinvK.
elim: n {IH} => // n IH x Ax; move: (IH _ Ax); rewrite pred_oapp_set ?inE.
case=> y Ay /= ynf; case: (@oinvS _ _ _ _ f _ Ay) => z ? zfinv; exists z => //.
by rewrite zfinv /= -ynf.
Qed.
elim: n=> // n IH; rewrite oinv_iter iterfSr iterfS.
apply: (@ocan_in_comp _ _ _ (mem A)) => //; last exact: oinvK.
elim: n {IH} => // n IH x Ax; move: (IH _ Ax); rewrite pred_oapp_set ?inE.
case=> y Ay /= ynf; case: (@oinvS _ _ _ _ f _ Ay) => z ? zfinv; exists z => //.
by rewrite zfinv /= -ynf.
Qed.
HB.instance Definition _ n f := iter_surj_subproof n f.
HB.instance Definition _ n (f : {splitsurj A >-> A}) := Surject.on (iter n f).
HB.instance Definition _ n (f : {surjfun A >-> A}) := Surject.on (iter n f).
HB.instance Definition _ n (f : {splitsurjfun A >-> A}) :=
Surject.on (iter n f).
HB.instance Definition _ n (f : {bij A >-> A}) := Surject.on (iter n f).
HB.instance Definition _ n (f : {splitbij A >-> A}) := Surject.on (iter n f).
End iter_surj.
Unbind
Section Unbind.
Context {aT rT} {A : set aT} {B : set rT} (dflt : aT -> rT).
Definition unbind (f : aT -> option rT) x := odflt (dflt x) (f x).
Lemma unbind_fun_subproof (f : {fun A >-> some @` B}) : isFun _ _ A B (unbind f).
HB.instance Definition _ f := unbind_fun_subproof f.
Section Oinv.
Context (f : {oinv aT >-> option rT}).
HB.instance Definition _ := OInv.Build _ _ (unbind f) ('oinv_f \o some).
Lemma oinv_unbind : 'oinv_(unbind f) = 'oinv_f \o some
Proof.
by []. Qed.
HB.instance Definition _ (f : {oinvfun A >-> some @` B}) := Fun.on (unbind f).
Section Inv.
Context (f : {inv aT >-> option rT}).
Lemma inv_unbind_subproof : olift (f^-1 \o some) = 'oinv_(unbind f).
Proof.
Lemma inv_unbind : (unbind f)^-1 = f^-1 \o some
Proof.
by []. Qed.
HB.instance Definition _ (f : {invfun A >-> some @` B}) := Fun.on (unbind f).
Lemma unbind_inj_subproof (f : {injfun A >-> some @` B}) :
@OInv_Can _ _ A (unbind f).
Proof.
HB.instance Definition _ (f : {splitinjfun A >-> some @` B}) :=
Inject.on (unbind f).
Lemma unbind_surj_subproof (f : {surj A >-> some @` B}) :
@OInv_CanV _ _ A B (unbind f).
Proof.
split=> [b|b /set_mem] Bb; rewrite oinv_unbind /unbind/=.
by case: oinvP => [|a]; [exists b | exists a].
by case: oinvP => [|a Aa /= ->]; first by exists b.
Qed.
by case: oinvP => [|a]; [exists b | exists a].
by case: oinvP => [|a Aa /= ->]; first by exists b.
Qed.
HB.instance Definition _ (f : {surjfun A >-> some @` B}) :=
Surject.on (unbind f).
HB.instance Definition _ (f : {splitsurj A >-> some @` B}) :=
Surject.on (unbind f).
HB.instance Definition _ (f : {splitsurjfun A >-> some @` B}) :=
Surject.on (unbind f).
HB.instance Definition _ (f : {bij A >-> some @` B}) := Surject.on (unbind f).
HB.instance Definition _ (f : {splitbij A >-> some @` B}) := Bij.on (unbind f).
End Unbind.
Odflt
Section Odflt.
Context {T} {A : set T} (x : T).
Lemma odflt_unbind : odflt x = unbind (fun=> x) idfun
Proof.
by []. Qed.
HB.instance Definition _ := Inv.Build _ _ (odflt x) some.
HB.instance Definition _ := SplitBij.copy (odflt x)
[the {splitbij some @` A >-> A} of @unbind (option T) T (fun=> x) idfun].
End Odflt.
Subtypes
Section SubType.
Context {T : Type} {P : pred T} (sT : subType P) (x0 : sT).
HB.instance Definition _ := OInv.Build sT T val insub.
Lemma oinv_val : 'oinv_val = insub
Proof.
by []. Qed.
Lemma val_bij_subproof : OInv_Can2 sT T setT [set` P] val.
Proof.
HB.instance Definition _ := Bij.copy insub 'oinv_val.
HB.instance Definition _ := SplitBij.copy (insubd x0)
(odflt x0 \o 'split_(fun=> val x0) insub).
Lemma inv_insubd : (insubd x0)^-1 = val
Proof.
by []. Qed.
End SubType.
To setT
Definition to_setT {T} (x : T) : [set: T] :=
@SigSub _ _ _ x (mem_set I : x \in setT).
HB.instance Definition _ T := Can.Build T [set: T] setT to_setT
((fun _ _ => erefl) : {in setT, cancel to_setT val}).
HB.instance Definition _ T := isFun.Build T _ setT setT to_setT (fun _ _ => I).
HB.instance Definition _ T :=
SplitInjFun_CanV.Build T _ _ _ to_setT (fun x y => I) inj.
Definition setTbij {T} := [splitbij of @to_setT T].
Lemma inv_to_setT T : (@to_setT T)^-1 = val
Proof.
by []. Qed.
Subfun
Section subfun.
Context {T} {A B : set T}.
Definition subfun (AB : A `<=` B) (a : A) : B :=
SigSub (mem_set (AB _ (set_valP a))).
Lemma subfun_inj {AB : A `<=` B} : injective (subfun AB).
HB.instance Definition _ (AB : A `<=` B) :=
SurjFun.copy (subfun AB) [fun subfun AB in setT].
HB.instance Definition _ (AB : A `<=` B) :=
SurjFun_Inj.Build A B setT (subfun AB @` setT) (subfun AB) (in2W subfun_inj).
End subfun.
Section subfun_eq.
Context {T} {A B : set T}.
Lemma subfun_imageT (AB : A `<=` B) (BA : B `<=` A) : subfun AB @` setT = setT.
Lemma subfun_inv_subproof (AB : A = B) :
olift (subfun (subsetCW AB)) = 'oinv_(subfun (subsetW AB)).
Proof.
OInv_Inv.Build A B (subfun (subsetW AB)) (subfun_inv_subproof AB).
End subfun_eq.
Section seteqfun.
Context {T : Type}.
Definition seteqfun {A B : set T} (AB : A = B) := subfun (subsetW AB).
Context {A B : set T} (AB : A = B).
HB.instance Definition _ := Inv.Build A B (seteqfun AB) (seteqfun (esym AB)).
Lemma seteqfun_can2_subproof : Inv_Can2 A B setT setT (seteqfun AB).
HB.instance Definition _ := seteqfun_can2_subproof.
End seteqfun.
Inclusion
Section incl.
Context {T} {A B : set T}.
Definition incl (AB : A `<=` B) := @id T.
HB.instance Definition _ (AB : A `<=` B) := Inv.Build _ _ (incl AB) id.
HB.instance Definition _ (AB : A `<=` B) := isFun.Build _ _ A B (incl AB) AB.
HB.instance Definition _ (AB : A `<=` B) :=
Inv_Can.Build _ _ A (incl AB) (fun _ _ => erefl).
Definition eqincl (AB : A = B) := incl (subsetW AB).
HB.instance Definition _ AB := Inversible.on (eqincl AB).
Lemma eqincl_surj AB : Inv_Can2 _ _ A B (eqincl AB).
HB.instance Definition _ AB := eqincl_surj AB.
End incl.
Notation inclT A := (incl (@subsetT _ _)).
Ad hoc function
Section mkfun.
Context {aT} {rT} {A : set aT} {B : set rT}.
Notation isfun f := {homo f : x / A x >-> B x}.
Definition mkfun f (fAB : isfun f) := f.
HB.instance Definition _ f fAB := @isFun.Build _ _ A B (@mkfun f fAB) fAB.
Definition mkfun_fun f fAB := [fun of @mkfun f fAB].
HB.instance Definition _ (f : {inj A >-> rT}) fAB := Inject.on (@mkfun f fAB).
HB.instance Definition _ (f : {splitinj A >-> rT}) fAB :=
SplitInj.on (@mkfun f fAB).
HB.instance Definition _ (f : {surj A >-> B}) fAB :=
Surject.on (@mkfun f fAB).
HB.instance Definition _ (f : {splitsurj A >-> B}) fAB :=
SplitSurj.on (@mkfun f fAB).
End mkfun.
set_val
Section set_val.
Context {T} {A : set T}.
Definition set_val : A -> T := eqincl (set_mem_set A) \o val.
HB.instance Definition _ := Bij.on set_val.
Lemma oinv_set_val : 'oinv_set_val = insub
Proof.
by []. Qed.
Proof.
by []. Qed.
#[global]
Hint Extern 0 (is_true (set_val _ \in _)) => solve [apply: valP] : core.
Squash
HB.instance Definition _ T := CanV.Build T $|T| setT setT squash (fun _ _ => I)
(in1W unsquashK).
HB.instance Definition _ T := SplitInj.copy (@unsquash T) squash^-1%FUN.
Definition ssquash {T} := [splitsurj of @squash T].
pickle and unpickle
HB.instance Definition _ (T : countType) :=
Inj.Build _ _ setT (@choice.pickle T) (in2W (pcan_inj choice.pickleK)).
HB.instance Definition _ (T : countType) :=
isFun.Build _ _ setT setT (@choice.pickle T) (fun _ _ => I).
set0fun
Lemma set0fun_inj {P T} : injective (@set0fun P T).
Proof.
HB.instance Definition _ P T :=
Inj.Build (@set0 T) P setT set0fun (in2W set0fun_inj).
HB.instance Definition _ P T :=
isFun.Build _ _ setT setT (@set0fun P T) (fun _ _ => I).
cast_ord
HB.instance Definition _ {m n} {eq_mn : m = n} :=
Can2.Build 'I_m 'I_n setT setT (cast_ord eq_mn)
(fun _ _ => I) (fun _ _ => I)
(in1W (cast_ordK _)) (in1W (cast_ordKV _)).
enum_val & enum_rank
HB.instance Definition _ (T : finType) :=
Can2.Build T _ setT setT enum_rank (fun _ _ => I) (fun _ _ => I)
(in1W enum_rankK) (in1W enum_valK).
HB.instance Definition _ (T : finType) :=
Can2.Build _ T setT setT enum_val (fun _ _ => I) (fun _ _ => I)
(in1W enum_valK) (in1W enum_rankK).
Finset val
Definition finset_val {T : choiceType} {X : {fset T}} (x : X) : [set` X] :=
exist (fun x => x \in [set` X]) (val x) (mem_set (valP x)).
Definition val_finset {T : choiceType} {X : {fset T}} (x : [set` X]) : X :=
[` set_mem (valP x)]%fset.
Lemma finset_valK {T : choiceType} {X : {fset T}} :
cancel (@finset_val T X) val_finset.
Proof.
Lemma val_finsetK {T : choiceType} {X : {fset T}} :
cancel (@val_finset T X) finset_val.
Proof.
HB.instance Definition _ {T : choiceType} {X : {fset T}} :=
Can2.Build X _ setT setT finset_val (fun _ _ => I) (fun _ _ => I)
(in1W finset_valK) (in1W val_finsetK).
HB.instance Definition _ {T : choiceType} {X : {fset T}} :=
Can2.Build _ X setT setT val_finset (fun _ _ => I) (fun _ _ => I)
(in1W val_finsetK) (in1W finset_valK).
'I_n and `I_n
HB.instance Definition _ n := Can2.Build _ _ setT setT (@ordII n)
(fun _ _ => I) (fun _ _ => I) (in1W ordIIK) (in1W IIordK).
HB.instance Definition _ n := SplitBij.copy (@IIord n) (ordII^-1).
## Glueing
Definition glue {T T'} {X Y : set T} {A B : set T'}
of [disjoint X & Y] & [disjoint A & B] :=
fun (f g : T -> T') (u : T) => if u \in X then f u else g u.
Section Glue12.
Context {T T'} {X Y : set T} {A B : set T'}.
Context {XY : [disjoint X & Y]} {AB : [disjoint A & B]}.
Local Notation gl := (glue XY AB).
Definition glue1 (f g : T -> T') : {in X, gl f g =1 f}.
Proof.
Definition glue2 (f g : T -> T') : {in Y, gl f g =1 g}.
Proof.
Section Glue.
Context {T T'} {X Y : set T} {A B : set T'}.
Context {XY : [disjoint X & Y]} {AB : [disjoint A & B]}.
Local Notation gl := (glue XY AB).
Lemma glue_fun_subproof (f : {fun X >-> A}) (g : {fun Y >-> B}) :
isFun T T' (X `|` Y) (A `|` B) (gl f g).
Proof.
HB.instance Definition _ (f g : {oinv T >-> T'}) :=
OInv.Build _ _ (gl f g) (glue AB (eqbRL disj_set_some XY) 'oinv_f 'oinv_g).
HB.instance Definition _ (f : {oinvfun X >-> A}) (g : {oinvfun Y >-> B}) :=
OInversible.on (gl f g).
Lemma oinv_glue (f : {oinv T >-> T'}) (g : {oinv T >-> T'}) :
'oinv_(gl f g) = glue AB (eqbRL disj_set_some XY) 'oinv_f 'oinv_g.
Proof.
by []. Qed.
Lemma some_inv_glue_subproof (f g : {inv T >-> T'}) :
some \o (glue AB XY f^-1 g^-1) = 'oinv_(gl f g).
HB.instance Definition _ (f g : {inv T >-> T'}) :=
OInv_Inv.Build T T' (gl f g) (some_inv_glue_subproof f g).
HB.instance Definition _ (f : {invfun X >-> A}) (g : {invfun Y >-> B}) :=
Inversible.on (gl f g).
Lemma inv_glue (f : {invfun X >-> A}) (g : {invfun Y >-> B}) :
(gl f g)^-1 = glue AB XY f^-1 g^-1.
Proof.
by []. Qed.
Lemma glueo_can_subproof (f : {injfun X >-> A}) (g : {injfun Y >-> B}) :
OInv_Can _ _ (X `|` Y) (gl f g).
Proof.
HB.instance Definition _ (f : {splitinjfun X >-> A})
(g : {splitinjfun Y >-> B}) := Inject.on (gl f g).
Lemma glue_canv_subproof (f : {surj X >-> A}) (g : {surj Y >-> B}) :
OInv_CanV _ _ (X `|` Y) (A `|` B) (gl f g).
Proof.
split=> [z|y /set_mem [] yP]; rewrite oinv_glue.
- by move=> [] zP /=; [rewrite glue1|rewrite glue2]; rewrite ?inE//;
case: oinvP=> // x xX _; exists x => //; [left|right].
- by rewrite glue1 ?inE//; case: oinvP=> //= x xX _; rewrite glue1 ?inE.
- by rewrite glue2 ?inE//; case: oinvP=> //= x xX _; rewrite glue2 ?inE.
Qed.
- by move=> [] zP /=; [rewrite glue1|rewrite glue2]; rewrite ?inE//;
case: oinvP=> // x xX _; exists x => //; [left|right].
- by rewrite glue1 ?inE//; case: oinvP=> //= x xX _; rewrite glue1 ?inE.
- by rewrite glue2 ?inE//; case: oinvP=> //= x xX _; rewrite glue2 ?inE.
Qed.
HB.instance Definition _ (f : {surjfun X >-> A}) (g : {surjfun Y >-> B}) :=
Surject.on (gl f g).
HB.instance Definition _ (f : {splitsurj X >-> A}) (g : {splitsurj Y >-> B}) :=
Surject.on (gl f g).
HB.instance Definition _ (f : {splitsurjfun X >-> A}) (g : {splitsurjfun Y >-> B}) :=
Surject.on (gl f g).
HB.instance Definition _ (f : {bij X >-> A}) (g : {bij Y >-> B}) :=
Surject.on (gl f g).
HB.instance Definition _ (f : {splitbij X >-> A}) (g : {splitbij Y >-> B}) :=
Surject.on (gl f g).
End Glue.
Z-module addition is a bijection
Section addition.
Context {V : zmodType} (x : V).
HB.instance Definition _ := Inv.Build V V (+%R x) (+%R (- x)).
Lemma inv_addr : (+%R x)^-1 = (+%R (- x))
Proof.
by []. Qed.
Lemma addr_can2_subproof : Inv_Can2 V V setT setT (+%R x).
HB.instance Definition _ := addr_can2_subproof.
End addition.
Z-module opposite is a bijection
Section addition.
Context {V : zmodType} (x : V).
Local Open Scope ring_scope.
HB.instance Definition _ := Inv.Build V V (-%R) (-%R).
Lemma inv_oppr : (-%R)^-1%FUN = (-%R)
Proof.
by []. Qed.
Lemma oppr_can2_subproof : Inv_Can2 V V setT setT (-%R).
HB.instance Definition _ := oppr_can2_subproof.
End addition.
emtpyType
Section empty.
Context {T : emptyType} {T' : Type} {X : set T}.
Implicit Type Y : set T'.
HB.instance Definition _ := OInv.Build _ _ (@any T T') (fun=> None).
Lemma empty_can_subproof : OInv_Can T T' X any.
HB.instance Definition _ := empty_can_subproof.
Lemma empty_fun_subproof Y : isFun T T' X Y any.
Proof.
Lemma empty_canv_subproof : OInv_CanV T T' X set0 any
Proof.
by split. Qed.
End empty.
## Theory of surjection
Section surj_lemmas.
Variables aT rT : Type.
Implicit Types (A : set aT) (B : set rT) (f : aT -> rT).
Lemma surj_id A : set_surj A A (@idfun aT)
Proof.
Lemma surj_set0 B f : set_surj set0 B f -> B = set0.
Proof.
Lemma surjE f A B : set_surj A B f = (B `<=` f @` A)
Proof.
by []. Qed.
Lemma surj_image_eq B A f : f @` A `<=` B -> set_surj A B f -> f @` A = B.
Proof.
Lemma subl_surj A A' B f : A `<=` A' -> set_surj A B f -> set_surj A' B f.
Proof.
Lemma subr_surj A B B' f : B' `<=` B -> set_surj A B f -> set_surj A B' f.
Proof.
Lemma can_surj g f (A : set aT) (B : set rT) :
{in B, cancel g f} -> g @` B `<=` A ->
set_surj A B f.
Proof.
move=> gK gBA y By; suff : A (g y) by exists (g y); rewrite ?gK ?inE.
by have := image_subP.1 gBA y; apply.
Qed.
by have := image_subP.1 gBA y; apply.
Qed.
Lemma surj_epi sT A B (f : aT -> rT) (g g' : rT -> sT) :
set_surj A B f -> {in A, g \o f =1 g' \o f} -> {in B, g =1 g'}.
Proof.
Lemma epiP A B (f : aT -> rT) : set_surj A B f <->
forall sT (g g' : rT -> sT), {in A, g \o f =1 g' \o f} -> {in B, g =1 g'}.
Proof.
End surj_lemmas.
Arguments can_surj {aT rT} g [f A B].
Arguments surj_epi {aT rT sT} A {B} f {g}.
Lemma surj_comp T1 T2 T3 (A : set T1) (B : set T2) (C : set T3) f g:
set_surj A B f -> set_surj B C g -> set_surj A C (g \o f).
Lemma image_eq {aT rT} {A : set aT} {B : set rT} (f : {surjfun A >-> B}) : f @` A = B.
Proof.
Lemma oinv_image_sub {aT rT : Type} {A : set aT} {B : set rT}
(f : {surj A >-> B}) {C : set rT} :
C `<=` B -> 'oinv_f @` C `<=` some @` (f @^-1` C).
Proof.
move=> CB x [/= y Cy <-]; case: 'oinvP_f => [|a Aa fay]; first exact: CB.
by exists a => //; rewrite fay.
Qed.
by exists a => //; rewrite fay.
Qed.
Lemma oinv_Iimage_sub {aT rT : Type} {A : set aT} (f : {inj A >-> rT}) {C : set rT} :
C `<=` f @` A -> some @` (A `&` f @^-1` C) `<=` 'oinv_f @` C.
Arguments oinv_Iimage_sub {aT rT A} f {C} _.
Lemma oinv_sub_image {aT rT} {A : set aT} {B : set rT} {f : {bij A >-> B}}
{C : set rT} (CB : C `<=` B) : 'oinv_f @` C = some @` (A `&` f @^-1` C).
Proof.
apply/seteqP; split; last by apply: oinv_Iimage_sub; rewrite image_eq.
rewrite some_setI subsetI; split; last by apply: oinv_image_sub.
by apply: (subset_trans (image_subset CB)); rewrite image_eq.
Qed.
rewrite some_setI subsetI; split; last by apply: oinv_image_sub.
by apply: (subset_trans (image_subset CB)); rewrite image_eq.
Qed.
Lemma preimageEoinv {aT rT} {B : set rT} {f : {bij [set: aT] >-> B}}
{C : set rT} (CB : C `<=` B) : some @` (f @^-1` C) = 'oinv_f @` C.
Proof.
Lemma inv_image_sub {aT rT : Type} {A : set aT} {B : set rT}
(f : {splitsurj A >-> B}) {C : set rT} :
C `<=` B -> f^-1 @` C `<=` f @^-1` C.
Arguments inv_image_sub {aT rT A B} f {C} _.
Lemma inv_Iimage_sub {aT rT : Type} {A : set aT} (f : {splitinj A >-> rT}) {C : set rT} :
C `<=` f @` A -> A `&` f @^-1` C `<=` f^-1 @` C.
Arguments inv_Iimage_sub {aT rT A} f {C} _.
Lemma inv_sub_image {aT rT} {A : set aT} {B : set rT} {f : {splitbij A >-> B}}
{C : set rT} (CB : C `<=` B) :
f^-1 @` C = A `&` f @^-1` C.
Proof.
Lemma preimageEinv {aT rT} {B : set rT} {f : {splitbij [set: aT] >-> B}}
{C : set rT} (CB : C `<=` B) : f @^-1` C = f^-1 @` C.
Proof.
Lemma reindex_bigcup {aT rT I} (f : aT -> I) (P : set aT) (Q : set I)
(F : I -> set rT) : set_fun P Q f -> set_surj P Q f ->
\bigcup_(x in Q) F x = \bigcup_(x in P) F (f x).
Proof.
Lemma reindex_bigcap {aT rT I} (f : aT -> I) (P : set aT) (Q : set I)
(F : I -> set rT) : set_fun P Q f -> set_surj P Q f ->
\bigcap_(x in Q) F x = \bigcap_(x in P) F (f x).
Proof.
Lemma bigcap_bigcup T I J (D : set I) (E : set J) (F : I -> J -> set T) :
J ->
\bigcap_(i in D) \bigcup_(j in E) F i j =
\bigcup_(f in set_fun D E) \bigcap_(i in D) F i (f i).
Proof.
move=> j; apply/seteqP; split=> x.
move=> /(_ _ _)/cid2 ff.
have /(all_sig2_cond j) (i : I) : i \in D -> {x0 : J | E x0 & F i x0 x}.
by move=> /set_mem; apply: ff.
by move=> [f /(_ _ (mem_set _))Ef /(_ _ (mem_set _))Ff]; exists f.
by move=> [f fDE fF i Fi]; exists (f i); [apply: fDE|apply: fF].
Qed.
move=> /(_ _ _)/cid2 ff.
have /(all_sig2_cond j) (i : I) : i \in D -> {x0 : J | E x0 & F i x0 x}.
by move=> /set_mem; apply: ff.
by move=> [f /(_ _ (mem_set _))Ef /(_ _ (mem_set _))Ff]; exists f.
by move=> [f fDE fF i Fi]; exists (f i); [apply: fDE|apply: fF].
Qed.
Injections
Lemma trivIset_inj T I (D : set I) (F : I -> set T) :
(forall i, D i -> F i !=set0) -> trivIset D F -> set_inj D F.
Proof.
Bijections
Section set_bij_lemmas.
Context {aT rT : Type} {A : set aT} {B : set rT} {f : aT -> rT}.
Definition fun_set_bij of set_bij A B f := f.
Context (fbij : set_bij A B f).
Local Notation g := (fun_set_bij fbij).
Lemma set_bij_inj : {in A &, injective f}
Proof.
Lemma set_bij_homo : {homo f : x / A x >-> B x}
Proof.
Lemma set_bij_sub : f @` A `<=` B
Proof.
Lemma set_bij_surj : set_surj A B f
Proof.
HB.instance Definition _ : OCanV _ _ _ _ g := set_bij_surj.
HB.instance Definition _ := isFun.Build _ _ A B g set_bij_homo.
HB.instance Definition _ := SurjFun_Inj.Build _ _ A B g set_bij_inj.
End set_bij_lemmas.
Coercion fun_set_bij : set_bij >-> Funclass.
Coercion set_bij_bijfun aT rT (A : set aT) (B : set rT) (f : aT -> rT)
(fS : set_bij A B f) := Bij.on (fun_set_bij fS).
Section Pbij.
Context {aT rT} {A : set aT} {B : set rT} {f : aT -> rT} (fbij : set_bij A B f).
#[local] HB.instance Definition _ : @Bij _ _ A B f := fbij.
Definition bij_of_set_bijection := [bij of f].
Lemma Pbij : {s : {bij A >-> B} | f = s}
End Pbij.
Coercion bij_of_set_bijection : set_bij >-> Bij.type.
Lemma bij {aT rT} {A : set aT} {B : set rT} {f : {bij A >-> B}} : set_bij A B f.
Proof.
split=> //. Qed.
phantom (_ -> _) f := @bij _ _ _ _ f.
Notation "''bij_' f" := (phant_bij (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Extern 0 (set_bij _ _ _) => solve [apply: bij] : core.
Section PbijTT.
Context {aT rT} {f : aT -> rT} (fbijTT : bijective f).
#[local] HB.instance Definition _ := @BijTT.Build _ _ f fbijTT.
Definition bijection_of_bijective := [splitbij of f].
Lemma PbijTT : {s : {splitbij [set: aT] >-> [set: rT]} | f = s}.
End PbijTT.
Lemma setTT_bijective aT rT (f : aT -> rT) :
set_bij [set: aT] [set: rT] f = bijective f.
Proof.
Lemma bijTT {aT rT} {f : {bij [set: aT] >-> [set: rT]}} : bijective f.
Proof.
of phantom (_ -> _) f := @bijTT _ _ f.
Notation "''bijTT_' f" := (phant_bijTT (Phantom (_ -> _) f)) : form_scope.
#[global] Hint Extern 0 (bijective _) => solve [apply: bijTT] : core.
## Patching and restrictions
Section patch.
Context {aT rT : Type} (d : aT -> rT) (A : set aT).
Definition patch (f : aT -> rT) u := if u \in A then f u else d u.
Lemma patchT f : {in A, patch f =1 f}
Proof.
Lemma patchC f : {in ~` A, patch f =1 d}.
Proof.
HB.instance Definition _ f :=
SurjFun.copy (patch f) [fun patch f in A].
Section inj.
Context (f : {inj A >-> rT}).
Let g := patch f.
Lemma patch_inj_subproof : Inj aT rT A g.
HB.instance Definition _ := patch_inj_subproof.
HB.instance Definition _ := Inject.copy (patch f) [fun g in A].
End inj.
End patch.
Notation restrict := (patch (fun=> point)).
Notation "f \_ D" := (restrict D f) : function_scope.
Lemma patchE aT (rT : pointedType) (f : aT -> rT) (B : set aT) x :
(f \_ B) x = if x \in B then f x else point.
Proof.
by []. Qed.
Lemma patch_pred {I T} (D : {pred I}) (d f : I -> T) :
patch d D f = fun i => if D i then f i else d i.
Lemma preimage_restrict (aT : Type) (rT : pointedType)
(f : aT -> rT) (D : set aT) (B : set rT) :
(f \_ D) @^-1` B = (if point \in B then ~` D else set0) `|` D `&` f @^-1` B.
Proof.
Lemma comp_patch {aT rT sT : Type} (g : aT -> rT) D (f : aT -> rT) (h : rT -> sT) :
h \o patch g D f = patch (h \o g) D (h \o f).
Lemma patch_setI {aT rT : Type} (g : aT -> rT) D D' (f : aT -> rT) :
patch g (D `&` D') f = patch g D (patch g D' f).
Lemma patch_set0 {aT rT : Type} (g : aT -> rT) (f : aT -> rT) :
patch g set0 f = g.
Lemma patch_setT {aT rT : Type} (g : aT -> rT) (f : aT -> rT) :
patch g setT f = f.
Lemma restrict_comp {aT} {rT sT : pointedType} (h : rT -> sT) (f : aT -> rT) D :
h point = point -> (h \o f) \_ D = h \o (f \_ D).
Arguments restrict_comp {aT rT sT} h f D.
Lemma trivIset_restr (T I : Type) (D D' : set I) (F : I -> set T) :
trivIset D' (F \_ D) = trivIset (D `&` D') F.
Proof.
## Restriction of domain and codomain
Section RestrictionLeft.
Context {U V : Type} (v : V) {A : set U} {B : set V}.
Local Notation restrict := (patch (fun=> v) A).
Definition sigL (f : U -> V) : A -> V := f \o set_val.
Lemma sigL_isfun (f : {fun A >-> B}) : isFun _ _ [set: A] B (sigL f).
Proof.
Definition sigLfun (f : {fun A >-> B}) := [fun of sigL f].
Definition valL_ (f : A -> V) : U -> V := ((@oapp _ _)^~ v) f \o 'oinv_set_val.
Lemma valL_isfun (f : {fun [set: A] >-> B}) :
isFun _ _ A B (valL_ (f : _ -> _)).
Proof.
Definition valLfun_ (f : {fun [set: A] >-> B}) := [fun of valL_ f].
Lemma sigLE (f : U -> V) x (xA : x \in A) :
sigL f (SigSub xA) = f x.
Proof.
done. Qed.
Lemma eq_sigLP (f g : U -> V):
{in A, f =1 g} <-> sigL f = sigL g.
Proof.
Lemma eq_sigLfunP (f g : {fun A >-> B}) :
{in A, f =1 g} <-> sigLfun f = sigLfun g.
Lemma sigLK : valL_ \o sigL = restrict.
Proof.
Lemma valLK : cancel valL_ sigL.
Proof.
Lemma valLfunK : cancel valLfun_ sigLfun.
Lemma sigL_valL : sigL \o valL_ = id.
Lemma sigL_valLfun : sigLfun \o valLfun_ = id.
Lemma sigL_restrict : sigL \o restrict = sigL.
Lemma image_sigL : range sigL = setT.
Lemma eq_restrictP (f g : U -> V): {in A, f =1 g} <-> restrict f = restrict g.
End RestrictionLeft.
Arguments sigL {U V} A f u /.
Arguments sigLE {U V} A f x.
Arguments valL_ {U V} v {A} f u /.
Notation "''valL_' v" := (valL_ v) : form_scope.
Notation "''valLfun_' v" := (valLfun_ v) : form_scope.
Notation valL := (valL_ point).
Section RestrictionRight.
Context {U V : Type} {A : set V}.
Definition sigR (f : {fun [set: U] >-> A}) (u : U) : A :=
SigSub (mem_set ('funS_f I) : f u \in A).
HB.instance Definition _ f := Fun.copy (sigR f) (totalfun _).
Definition valR (f : U -> A) := set_val \o totalfun f.
HB.instance Definition _ f := Fun.on (valR f).
Definition valR_fun (f : U -> A) : {fun [set: U] >-> A} := [fun of valR f].
Lemma sigRK (f : {fun [set: U] >-> A}) : valR (sigR f) = f.
Proof.
by []. Qed.
Lemma sigR_funK (f : {fun [set: U] >-> A}) : valR_fun (sigR f) = f.
Lemma valRP (f : U -> A) x : A (valR f x)
Proof.
Lemma valRK : cancel valR_fun sigR.
End RestrictionRight.
Arguments sigR {U V A} f u /.
Section RestrictionLeftInv.
Context {U V : Type} (v : V) {A : set U} {B : set V}.
Local Notation rl := (sigL A).
Local Notation rr := sigR.
Local Notation el := 'valL_v.
Local Notation er := valR.
HB.instance Definition _ (f : {oinv U >-> V}) :=
@OInv.Build _ _ (rl f) (obind insub \o 'oinv_f).
HB.instance Definition _ (f : {oinvfun A >-> B}) := Fun.on (rl f).
Lemma oinv_sigL (f : {oinv U >-> V}) : 'oinv_(rl f) = obind insub \o 'oinv_f.
Proof.
by []. Qed.
Lemma sigL_inj_subproof (f : {inj A >-> V}) : @OInv_Can _ _ setT (rl f).
HB.instance Definition _ f := sigL_inj_subproof f.
HB.instance Definition _ (f : {injfun A >-> B}) := Fun.on (rl f).
Lemma sigL_surj_subproof (f : {surj A >-> B}) : @OInv_CanV _ _ setT B (rl f).
Proof.
HB.instance Definition _ (f : {surjfun A >-> B}) := Fun.on (rl f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (rl f).
HB.instance Definition _ (f : {oinvfun [set: V] >-> A}) :=
@OInv.Build _ _ (rr f) (rl 'oinv_f).
Lemma oinv_sigR (f : {oinvfun [set: V] >-> A}) :
'oinv_(rr f) = (rl 'oinv_f).
Proof.
by []. Qed.
Lemma sigR_inj_subproof (f : {injfun [set: V] >-> A}) :
@OInv_Can _ _ setT (rr f).
HB.instance Definition _ f := sigR_inj_subproof f.
Lemma sigR_surj_subproof (f : {surjfun [set: V] >-> A}) :
@OInv_CanV _ _ setT setT (rr f).
Proof.
Lemma sigR_some_inv (f : {invfun [set: V] >-> A}) :
olift (rl f^-1) = 'oinv_(rr f).
Proof.
HB.instance Definition _ (f : {invfun [set: V] >-> A}) :=
@OInv_Inv.Build _ _ (rr f) (rl f^-1) (sigR_some_inv f).
Lemma inv_sigR (f : {invfun [set: V] >-> A}) : (rr f)^-1 = (rl f^-1).
Proof.
by []. Qed.
HB.instance Definition _ (f : {splitinjfun [set: V] >-> A}) := Inject.on (rr f).
HB.instance Definition _ (f : {splitsurjfun [set: V] >-> A}) := Surject.on (rr f).
HB.instance Definition _ (f : {splitbij [set: V] >-> A}) := Fun.on (rr f).
Lemma sigL_some_inv (f : {splitbij A >-> [set: V]}) :
olift (rr [fun of f^-1]) = 'oinv_(rl f).
Proof.
OInv_Inv.Build _ _ (rl f) (sigL_some_inv f).
Lemma inv_sigL (f : {splitbij A >-> [set: V]}) :
(rl f)^-1 = (rr [fun of f^-1]).
Proof.
by []. Qed.
HB.instance Definition _ (f : {oinv A >-> V}) :=
@OInv.Build _ _ (el f) (omap set_val \o 'oinv_f).
HB.instance Definition _ (f : {oinvfun [set: A] >-> B}) := Fun.on (el f).
Lemma oinv_valL (f : {oinv A >-> V}) :
'oinv_(el f) = omap set_val \o 'oinv_f.
Proof.
by []. Qed.
Lemma oapp_comp_x {aT rT sT} (f : aT -> rT) (g : rT -> sT) (x : rT) y :
oapp (g \o f) (g x) y = g (oapp f x y).
Proof.
by case: y. Qed.
Lemma valL_inj_subproof (f : {inj [set: A] >-> V}) : @OInv_Can _ _ A (el f).
Proof.
HB.instance Definition _ (f : {injfun [set: A] >-> B}) := Inject.on (el f).
Lemma valL_surj_subproof (f : {surj [set: A] >-> B}) : @OInv_CanV _ _ A B (el f).
Proof.
HB.instance Definition _ (f : {surjfun [set: A] >-> B}) := Surject.on (el f).
HB.instance Definition _ (f : {bij [set: A] >-> B}) := Surject.on (el f).
Lemma valL_some_inv (f : {inv A >-> V}) : olift (er f^-1) = 'oinv_(el f).
Proof.
OInv_Inv.Build _ _ (el f) (valL_some_inv f).
HB.instance Definition _ (f : {invfun [set: A] >-> B}) := Fun.on (el f).
Lemma inv_valL (f : {inv A >-> V}) : (el f)^-1 = er f^-1.
Proof.
by []. Qed.
HB.instance Definition _ (f : {splitinj [set: A] >-> V}) := Inject.on (el f).
HB.instance Definition _ (f : {splitinjfun [set: A] >-> B}) := Fun.on (el f).
HB.instance Definition _ (f : {splitsurj [set: A] >-> B}) := Surject.on (el f).
HB.instance Definition _ (f : {splitsurjfun [set: A] >-> B}) := Fun.on (el f).
HB.instance Definition _ (f : {splitbij [set: A] >-> B}) := Fun.on (el f).
Lemma sigL_injP (f : U -> V) :
injective (rl f) <-> {in A &, injective f}.
Proof.
Lemma sigL_surjP (f : U -> V) :
set_surj [set: A] B (rl f) <-> set_surj A B f.
Proof.
Lemma sigL_funP (f : U -> V) :
set_fun [set: A] B (rl f) <-> set_fun A B f.
Lemma sigL_bijP (f : U -> V) :
set_bij [set: A] B (rl f) <-> set_bij A B f.
Proof.
split=> [[F /in2TT I S]|/Pbij[{}f->]//].
by split; [exact/sigL_funP|exact/sigL_injP|exact/sigL_surjP].
Qed.
by split; [exact/sigL_funP|exact/sigL_injP|exact/sigL_surjP].
Qed.
Lemma valL_injP (f : A -> V) : {in A &, injective (el f)} <-> injective f.
Lemma valL_surjP (f : A -> V) :
set_surj A B (el f) <-> set_surj setT B f.
Proof.
Lemma valLfunP (f : A -> V) :
set_fun A B (el f) <-> set_fun setT B f.
Lemma valL_bijP (f : A -> V) :
set_bij A B (el f) <-> set_bij setT B f.
End RestrictionLeftInv.
Section ExtentionLeftInv.
Context {U V : Type} {A : set U} {B : set V}.
Local Notation el := 'valL_None.
Local Notation er := valR.
HB.instance Definition _ (f : {oinv V >-> A}) :=
@OInv.Build _ _ (er f) (el 'oinv_f).
Lemma oinv_valR (f : {oinv V >-> A}) : 'oinv_(er f) = (el 'oinv_f).
Proof.
by []. Qed.
Lemma valR_inj_subproof (f : {inj [set: V] >-> A}) :
@OInv_Can _ _ setT (er f).
HB.instance Definition _ f := valR_inj_subproof f.
Lemma valR_surj_subproof (f : {surj [set: V] >-> [set: A]}) :
@OInv_CanV _ _ setT A (er f).
Proof.
HB.instance Definition _ (f : {bij [set: V] >-> [set: A]}) := Fun.on (er f).
End ExtentionLeftInv.
Section Restrictions2.
Context {U V : Type} (v : V) {A : set U} {B : set V}.
Local Notation valL := 'valL_v.
Local Notation valLfun := 'valLfun_v.
Definition sigLR := sigR \o (@sigLfun U V A B).
HB.instance Definition _ (f : {fun A >-> B}) :=
Fun.copy (sigLR f) (totalfun _).
Definition valLR : (A -> B) -> U -> V := valL \o valR_fun.
Definition valLRfun : (A -> B) -> {fun A >-> B} := valLfun \o valR_fun.
Lemma valLRE (f : A -> B) : valLR f = valL (valR f)
Proof.
by []. Qed.
Proof.
by []. Qed.
Lemma sigL2K (f : {fun A >-> B}) : {in A, valLR (sigLR f) =1 f}.
Lemma valLRK : cancel valLRfun sigLR.
Lemma valLRfun_inj : injective valLRfun.
HB.instance Definition _ (f : {oinvfun A >-> B}) := OInversible.on (sigLR f).
HB.instance Definition _ (f : {injfun A >-> B}) := Inject.on (sigLR f).
HB.instance Definition _ (f : {surjfun A >-> B}) := Surject.on (sigLR f).
HB.instance Definition _ (f : {bij A >-> B}) := Fun.on (sigLR f).
HB.instance Definition _ (f : {oinv A >-> B}) := OInvFun.on (valLR f).
HB.instance Definition _ (f : {inj [set: A] >-> B}) := Inject.on (valLR f).
HB.instance Definition _ (f : {surj [set: A] >-> [set: B]}) := Surject.on (valLR f).
HB.instance Definition _ (f : {bij [set: A] >-> [set: B]}) := Fun.on (valLR f).
Lemma sigLR_injP (f : {fun A >-> B}) :
injective (sigLR f) <-> {in A &, injective f}.
Proof.
Lemma valLR_injP (f : A -> B) :
{in A &, injective (valLR f)} <-> injective f.
Proof.
Lemma sigLR_surjP (f : {fun A >-> B}) :
set_surj setT setT (sigLR f) <-> set_surj A B f.
Proof.
Lemma valLR_surjP (f : A -> B) :
set_surj A B (valLR f) <-> set_surj setT setT f.
Proof.
Lemma sigLR_bijP (f : U -> V) :
set_bij A B f <->
exists (fAB : {homo f : x / A x >-> B x}),
bijective (sigLR [fun of mkfun fAB]).
Proof.
split=> [[F I S]|[fAB]].
exists F; rewrite -setTT_bijective.
by split; [|apply: in2W; apply/sigLR_injP|apply/sigLR_surjP].
rewrite -setTT_bijective /set_bij.
set g := [fun of mkfun fAB] => -[_ /in2TT I S]; pose h : _ -> _ := g.
rewrite -[f]/h {}/h; move: g => g in I S *.
by split; [apply/image_subP|apply/sigLR_injP|apply/sigLR_surjP].
Qed.
exists F; rewrite -setTT_bijective.
by split; [|apply: in2W; apply/sigLR_injP|apply/sigLR_surjP].
rewrite -setTT_bijective /set_bij.
set g := [fun of mkfun fAB] => -[_ /in2TT I S]; pose h : _ -> _ := g.
rewrite -[f]/h {}/h; move: g => g in I S *.
by split; [apply/image_subP|apply/sigLR_injP|apply/sigLR_surjP].
Qed.
Lemma sigLRfun_bijP f : bijective (sigLR f) <-> set_bij A B f.
Proof.
Lemma valLR_bijP f : set_bij A B (valLR f) <-> bijective f.
Proof.
End Restrictions2.
Section set_bij_basic_lemmas.
Context {aT rT : Type}.
Implicit Types (A : set aT) (B : set rT) (f : aT -> rT).
Lemma eq_set_bijRL A B f g : {in A, f =1 g} -> set_bij A B f -> set_bij A B g.
Lemma eq_set_bijLR A B f g : {in A, f =1 g} -> set_bij A B g -> set_bij A B f.
Lemma eq_set_bij A B f g : {in A, f =1 g} -> set_bij A B f = set_bij A B g.
Proof.
Lemma bij_omap A B f :
set_bij (some @` A) (some @` B) (omap f) <-> set_bij A B f.
Proof.
Lemma bij_olift A B f : set_bij A (some @` B) (olift f) <-> set_bij A B f.
Proof.
End set_bij_basic_lemmas.
Lemma bij_sub_sym {aT rT} {A C : set aT} {B D : set rT}
(f : {bij A >-> B}) : C `<=` A -> D `<=` B ->
set_bij D (some @` C) 'oinv_f <-> set_bij C D f.
Proof.
move=> CA DB; gen have oinv_bij : aT rT A C B D CA DB f /
set_bij C D f -> set_bij D (some @` C) 'oinv_f; last first.
split=> bij_oinv; last exact: oinv_bij.
by apply/bij_omap; rewrite -oinvV; apply: oinv_bij => //; apply: image_subset.
move=> /Pbij[fC ffC]; suff /eq_set_bij-> : {in D, 'oinv_f =1 'oinv_fC} by [].
move=> x xD; apply: 'inj_(oapp f x); rewrite ?mem_fun//=.
- by apply/subsetP : x xD.
- by have := mem_set ((image_subset CA) _ ('oinvS_fC (set_mem xD))).
by rewrite oinvK ?ffC ?oinvK// ?(subsetP.2 _ _ xD).
Qed.
set_bij C D f -> set_bij D (some @` C) 'oinv_f; last first.
split=> bij_oinv; last exact: oinv_bij.
by apply/bij_omap; rewrite -oinvV; apply: oinv_bij => //; apply: image_subset.
move=> /Pbij[fC ffC]; suff /eq_set_bij-> : {in D, 'oinv_f =1 'oinv_fC} by [].
move=> x xD; apply: 'inj_(oapp f x); rewrite ?mem_fun//=.
- by apply/subsetP : x xD.
- by have := mem_set ((image_subset CA) _ ('oinvS_fC (set_mem xD))).
by rewrite oinvK ?ffC ?oinvK// ?(subsetP.2 _ _ xD).
Qed.
Lemma splitbij_sub_sym {aT rT} {A C : set aT} {B D : set rT}
(f : {splitbij A >-> B}) : C `<=` A -> D `<=` B ->
set_bij D C f^-1 <-> set_bij C D f.
Proof.
Section set_bij_lemmas.
Context {aT rT : Type}.
Implicit Types (A : set aT) (B : set rT) (f : aT -> rT).
Lemma set_bij00 T U (f : T -> U) : set_bij set0 set0 f.
Proof.
Lemma inj_bij A f : {in A &, injective f} -> set_bij A (f @` A) f.
Lemma bij_subl A B C D (f : {bij A >-> B}) : C `<=` A -> f @` C = D ->
set_bij C D f.
End set_bij_lemmas.
Section set_bij_lemmas.
Context {aT rT : Type}.
Implicit Types (A : set aT) (B : set rT) (f : aT -> rT).
Lemma bij_subr A B C D (f : {bij A >-> B}) : C = A `&` (f @^-1` D) -> D `<=` B ->
set_bij C D f.
Proof.
Lemma bij_sub A B C D (f : {bij A >-> B}) : C `<=` A -> D `<=` B ->
{homo f : x / C x >-> D x} ->
{homo 'oinv_f : x / D x >-> (some @` C) x} ->
set_bij C D f.
Proof.
Lemma splitbij_sub A B C D (f : {splitbij A >-> B}) : C `<=` A -> D `<=` B ->
{homo f : x / C x >-> D x} ->
{homo f^-1 : x / D x >-> C x} ->
set_bij C D f.
Proof.
Lemma can2_bij A B (f : {fun A >-> B}) (g : {fun B >-> A}) :
{in A, cancel f g} -> {in B, cancel g f} -> set_bij A B f.
Proof.
Lemma bij_sub_setUrl A B B' f : [disjoint B & B'] ->
set_bij A (B `|` B') f -> set_bij (A `\` f @^-1` B') B f.
Proof.
Lemma bij_sub_setUrr A B B' f : [disjoint B & B'] ->
set_bij A (B `|` B') f -> set_bij (A `\` f @^-1` B) B' f.
Proof.
Lemma bij_sub_setUll A A' B f : [disjoint A & A'] ->
set_bij (A `|` A') B f -> set_bij A (B `\` f @` A') f.
Proof.
move=> /disj_setPS AA' /Pbij[{}f->].
apply: bij_sub => [|? []//||]; first exact: subsetUl.
move=> x Ax /=; split; first by apply: funS; left.
move=> [y] A'y /inj; rewrite !inE/= =>yx; apply: (AA' x).
by split=> //; rewrite -yx //; [right|left].
move=> z [Bz /= /not_exists2P /contrapT] A'fxz.
case: oinvP=> // x AA'x fxz; exists x => //.
by have := A'fxz x; rewrite fxz => -[|//]; case: AA'x.
Qed.
apply: bij_sub => [|? []//||]; first exact: subsetUl.
move=> x Ax /=; split; first by apply: funS; left.
move=> [y] A'y /inj; rewrite !inE/= =>yx; apply: (AA' x).
by split=> //; rewrite -yx //; [right|left].
move=> z [Bz /= /not_exists2P /contrapT] A'fxz.
case: oinvP=> // x AA'x fxz; exists x => //.
by have := A'fxz x; rewrite fxz => -[|//]; case: AA'x.
Qed.
Lemma bij_sub_setUlr A A' B f : [disjoint A & A'] ->
set_bij (A `|` A') B f -> set_bij A' (B `\` f @` A) f.
Proof.
End set_bij_lemmas.
Lemma bij_II_D1 T n (A : set T) (f : nat -> T) :
set_bij `I_n.+1 A f -> set_bij `I_n (A `\ f n) f.
Proof.
rewrite IIS -image_set1; apply: bij_sub_setUll.
by apply/disj_setPS => i [/= /[swap]->]; rewrite ltnn.
Qed.
by apply/disj_setPS => i [/= /[swap]->]; rewrite ltnn.
Qed.
Lemma set_bij_comp T1 T2 T3 (A : set T1) (B : set T2) (C : set T3) f g :
set_bij A B f -> set_bij B C g -> set_bij A C (g \o f).
Section pointed_inverse.
Context {T U} (dflt : U -> T) (A : set T).
Implicit Types (f : T -> U) (i : {inj A >-> U}).
Definition pinv_ f := ('split_dflt [fun f in A])^-1.
Local Notation pinv := pinv_.
HB.instance Definition _ f := Inv.Build _ _ (pinv f) f.
HB.instance Definition _ f := Fun.on (pinv f).
HB.instance Definition _ f := SplitInjFun.on (pinv f).
HB.instance Definition _ i := SplitBij.on (pinv i).
Lemma pinvK f : {in f @` A, cancel (pinv f) f}.
Lemma pinvKV f : {in A &, injective f} -> {in A, cancel f (pinv f)}.
Lemma injpinv_surj f : {in A &, injective f} ->
set_surj (f @` A) A (pinv f).
Lemma injpinv_image f : {in A &, injective f} ->
pinv f @` (f @` A) = A.
Lemma injpinv_bij f : {in A &, injective f} ->
set_bij (f @` A) A (pinv f).
Lemma surjpK B f : set_surj A B f -> {in B, cancel (pinv f) f}.
Lemma surjpinv_image_sub B f : set_surj A B f -> pinv f @` B `<=` A.
Proof.
Lemma surjpinv_inj B f : set_surj A B f -> {in B &, injective (pinv f)}.
Lemma surjpinv_bij B f (g := pinv f) : set_surj A B f ->
set_bij B (g @` B) g.
Proof.
Lemma bijpinv_bij B f : set_bij A B f -> set_bij B A (pinv f).
Section pPbij.
Context {B: set U} {f : T -> U} (fbij : set_bij A B f).
Lemma pPbij_ : {s : {splitbij A >-> B} | f = s}.
Proof.
Section pPinj.
Context {f : T -> U} (finj : {in A &, injective f}).
Lemma pPinj_ : {i : {splitinj A >-> U} | f = i}.
End pPinj.
Section injpPfun.
Context {B : set U} {f : {inj A >-> U}} (ffun : {homo f : x / A x >-> B x}).
Let g : _ -> _ := f.
#[local] HB.instance Definition _ := SplitInj.copy g ('split_dflt [fun g in A]).
#[local] HB.instance Definition _ := isFun.Build _ _ _ _ g ffun.
Lemma injpPfun_ : {i : {splitinjfun A >-> B} | f = i :> (_ -> _)}.
Proof.
Section funpPinj.
Context {B : set U} {f : {fun A >-> B}} (finj : {in A &, injective f}).
Lemma funpPinj_ : {i : {splitinjfun A >-> B} | f = i :> (_ -> _)}.
End funpPinj.
End pointed_inverse.
Notation "''pinv_' dflt" := (pinv_ dflt) : form_scope.
Notation pinv := 'pinv_(fun=> point).
Notation "''pPbij_' dflt" := (pPbij_ dflt) : form_scope.
Notation pPbij := 'pPbij_(fun=> point).
Notation selfPbij := 'pPbij_id.
Notation "''pPinj_' dflt" := (pPinj_ dflt) : form_scope.
Notation pPinj := 'pPinj_(fun=> point).
Notation "''injpPfun_' dflt" := (injpPfun_ dflt) : form_scope.
Notation injpPfun := 'injpPfun_(fun=> point).
Notation "''funpPinj_' dflt" := (funpPinj_ dflt) : form_scope.
Notation funpPinj := 'funpPinj_(fun=> point).
Section function_space.
Local Open Scope ring_scope.
Import GRing.Theory.
Definition cst {T T' : Type} (x : T') : T -> T' := fun=> x.
Lemma preimage_cst {aT rT : Type} (a : aT) (A : set aT) :
@cst rT _ a @^-1` A = if a \in A then setT else set0.
Proof.
Obligation Tactic := idtac.
Program Definition fct_zmodMixin (T : Type) (M : zmodType) :=
@GRing.isZmodule.Build (T -> M) \0 (fun f x => - f x) (fun f g => f \+ g)
_ _ _ _.
HB.instance Definition _ (T : Type) (M : zmodType) := fct_zmodMixin T M.
Program Definition fct_ringMixin (T : pointedType) (M : ringType) :=
@GRing.Zmodule_isRing.Build (T -> M) (cst 1) (fun f g => f \* g) _ _ _ _ _ _.
Next Obligation.
Program Definition fct_comRingType (T : pointedType) (M : comRingType) :=
GRing.Ring_hasCommutativeMul.Build (T -> M) _.
HB.instance Definition _ (T : pointedType) (M : comRingType) :=
fct_comRingType T M.
Section fct_lmod.
Variables (U : Type) (R : ringType) (V : lmodType R).
Program Definition fct_lmodMixin := @GRing.Zmodule_isLmodule.Build R (U -> V)
(fun k f => k \*: f) _ _ _ _.
HB.instance Definition _ := fct_lmodMixin.
End fct_lmod.
Lemma fct_sumE (I T : Type) (M : zmodType) r (P : {pred I}) (f : I -> T -> M)
(x : T) :
(\sum_(i <- r | P i) f i) x = \sum_(i <- r | P i) f i x.
Proof.
Lemma mul_funC (T : Type) {R : comSemiRingType} (f : T -> R) (r : R) :
r \*o f = r \o* f.
End function_space.
Section function_space_lemmas.
Local Open Scope ring_scope.
Import GRing.Theory.
Lemma addrfctE (T : Type) (K : zmodType) (f g : T -> K) :
f + g = (fun x => f x + g x).
Proof.
by []. Qed.
Lemma sumrfctE (T : Type) (K : zmodType) (s : seq (T -> K)) :
\sum_(f <- s) f = (fun x => \sum_(f <- s) f x).
Lemma opprfctE (T : Type) (K : zmodType) (f : T -> K) : - f = (fun x => - f x).
Proof.
by []. Qed.
Lemma mulrfctE (T : pointedType) (K : ringType) (f g : T -> K) :
f * g = (fun x => f x * g x).
Proof.
by []. Qed.
Lemma scalrfctE (T : pointedType) (K : ringType) (L : lmodType K)
k (f : T -> L) :
k *: f = (fun x : T => k *: f x).
Proof.
by []. Qed.
Lemma cstE (T T': Type) (x : T) : cst x = fun _: T' => x.
Proof.
by []. Qed.
Lemma exprfctE (T : pointedType) (K : ringType) (f : T -> K) n :
f ^+ n = (fun x => f x ^+ n).
Lemma compE (T1 T2 T3 : Type) (f : T1 -> T2) (g : T2 -> T3) :
g \o f = fun x => g (f x).
Proof.
by []. Qed.
Definition fctE :=
(cstE, compE, opprfctE, addrfctE, mulrfctE, scalrfctE, exprfctE).
End function_space_lemmas.
Lemma inv_funK T (R : unitRingType) (f : T -> R) : f\^-1\^-1%R = f.