Module mathcomp.analysis.itv
From HB Require Import structures.From mathcomp Require Import ssreflect ssrfun ssrbool.
From mathcomp Require Import ssrnat eqtype choice order ssralg ssrnum ssrint.
From mathcomp Require Import interval.
From mathcomp Require Import mathcomp_extra boolp signed.
# Numbers within an interval
This file develops tools to make the manipulation of numbers within
a known interval easier, thanks to canonical structures. This adds types
like {itv R & `[a, b]}, a notation e%:itv that infers an enclosing
interval for expression e according to existing canonical instances and
%:inum to cast back from type {itv R & i} to R.
For instance, x : {i01 R}, we have (1 - x%:inum)%:itv : {i01 R}
automatically inferred.
## types for values within known interval
```
{i01 R} == interface type for elements in R that live in `[0, 1];
R must have a numDomainType structure.
Allows to solve automatically goals of the form x >= 0
and x <= 1 if x is canonically a {i01 R}. {i01 R} is
canonically stable by common operations.
{itv R & i} == more generic type of values in interval i : interval int
R must have a numDomainType structure. This type is shown
to be a porderType.
```
## casts from/to values within known interval
```
x%:itv == explicitly casts x to the most precise known {itv R & i}
according to existing canonical instances.
x%:i01 == explicitly casts x to {i01 R} according to existing
canonical instances.
x%:inum == explicit cast from {itv R & i} to R.
```
## sign proofs
```
[itv of x] == proof that x is in interval inferred by x%:itv
[lb of x] == proof that lb < x or lb <= x with lb the lower bound
inferred by x%:itv
[ub of x] == proof that x < ub or x <= ub with ub the upper bound
inferred by x%:itv
[lbe of x] == proof that lb <= x
[ube of x] == proof that x <= ub
```
## constructors
```
ItvNum xin == builds a {itv R & i} from a proof xin : x \in i
where x : R
```
A number of canonical instances are provided for common operations, if
your favorite operator is missing, look below for examples on how to add
the appropriate Canonical.
Canonical instances are also provided according to types, as a
fallback when no known operator appears in the expression. Look to
itv_top_typ below for an example on how to add your favorite type.
Reserved Notation "{ 'itv' R & i }"
(at level 0, R at level 200, i at level 200, format "{ 'itv' R & i }").
Reserved Notation "{ 'i01' R }"
(at level 0, R at level 200, format "{ 'i01' R }").
Reserved Notation "x %:itv" (at level 2, format "x %:itv").
Reserved Notation "x %:i01" (at level 2, format "x %:i01").
Reserved Notation "x %:inum" (at level 2, format "x %:inum").
Reserved Notation "[ 'itv' 'of' x ]" (format "[ 'itv' 'of' x ]").
Reserved Notation "[ 'lb' 'of' x ]" (format "[ 'lb' 'of' x ]").
Reserved Notation "[ 'ub' 'of' x ]" (format "[ 'ub' 'of' x ]").
Reserved Notation "[ 'lbe' 'of' x ]" (format "[ 'lbe' 'of' x ]").
Reserved Notation "[ 'ube' 'of' x ]" (format "[ 'ube' 'of' x ]").
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory Order.Syntax.
Import GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Local Open Scope order_scope.
Definition wider_itv (x y : interval int) := subitv y x.
Module Itv.
Section Itv.
Context (R : numDomainType).
Definition map_itv_bound S T (f : S -> T) (b : itv_bound S) : itv_bound T :=
match b with
| BSide b x => BSide b (f x)
| BInfty b => BInfty _ b
end.
Definition map_itv S T (f : S -> T) (i : interval S) : interval T :=
let 'Interval l u := i in Interval (map_itv_bound f l) (map_itv_bound f u).
Lemma le_map_itv_bound (x y : itv_bound int) :
x <= y ->
map_itv_bound (fun x => x%:~R : R) x <= map_itv_bound (fun x => x%:~R : R) y.
Proof.
Lemma subitv_map_itv (x y : interval int) :
x <= y ->
map_itv (fun x => x%:~R : R) x <= map_itv (fun x => x%:~R : R) y.
Proof.
Definition itv_cond (i : interval int) (x : R) :=
x \in map_itv (fun x => x%:~R : R) i.
Record def (i : interval int) := Def {
r :> R;
#[canonical=no]
P : itv_cond i r
}.
End Itv.
Notation spec i x := (itv_cond i%Z%R x).
Record typ := Typ {
sort : numDomainType;
#[canonical=no]
sort_itv : interval int;
#[canonical=no]
allP : forall x : sort, spec sort_itv x
}.
Definition mk {R} i r P : @def R i :=
@Def R i r P.
Definition from {R i}
{x : @def R i} (phx : phantom R x) := x.
Definition fromP {R i}
{x : @def R i} (phx : phantom R x) := P x.
Module Exports.
Notation "{ 'itv' R & i }" := (def R i%Z) : type_scope.
Notation "{ 'i01' R }" := (def R `[Posz 0, Posz 1]) : type_scope.
Notation "x %:itv" := (from (Phantom _ x)) : ring_scope.
Notation "[ 'itv' 'of' x ]" := (fromP (Phantom _ x)) : ring_scope.
Notation inum := r.
Notation "x %:inum" := (r x) : ring_scope.
Arguments r {R i}.
End Exports.
End Itv.
Export Itv.Exports.
Section POrder.
Variables (R : numDomainType) (i : interval int).
Local Notation nR := {itv R & i}.
HB.instance Definition _ := [isSub for @Itv.r R i].
HB.instance Definition _ := [Choice of nR by <:].
HB.instance Definition _ := [SubChoice_isSubPOrder of nR by <:
with ring_display].
End POrder.
Lemma itv_top_typ_subproof (R : numDomainType) (x : R) :
Itv.spec `]-oo, +oo[ x.
Proof.
by []. Qed.
Canonical itv_top_typ (R : numDomainType) := Itv.Typ (@itv_top_typ_subproof R).
Lemma typ_inum_subproof (xt : Itv.typ) (x : Itv.sort xt) :
Itv.spec (Itv.sort_itv xt) x.
Proof.
by move: xt x => []. Qed.
Canonical typ_inum (xt : Itv.typ) (x : Itv.sort xt) :=
Itv.mk (typ_inum_subproof x).
Notation unify_itv ix iy := (unify wider_itv ix iy).
Section Theory.
Context {R : numDomainType} {i : interval int}.
Local Notation sT := {itv R & i}.
Implicit Type x : sT.
Lemma itv_intro {x} : x%:inum = x%:inum :> R
Proof.
by []. Qed.
Definition empty_itv := `[Posz 1, Posz 0].
Lemma itv_bottom x : unify_itv empty_itv i -> False.
Proof.
Lemma itv_gt0 x : unify_itv `]Posz 0, +oo[ i -> 0%R < x%:inum :> R.
Proof.
Lemma itv_le0F x : unify_itv `]Posz 0, +oo[ i -> x%:inum <= 0%R :> R = false.
Proof.
Lemma itv_lt0 x : unify_itv `]-oo, Posz 0[ i -> x%:inum < 0%R :> R.
Proof.
Lemma itv_ge0F x : unify_itv `]-oo, Posz 0[ i -> 0%R <= x%:inum :> R = false.
Proof.
Lemma itv_ge0 x : unify_itv `[Posz 0, +oo[ i -> 0%R <= x%:inum :> R.
Proof.
Lemma itv_lt0F x : unify_itv `[Posz 0, +oo[ i -> x%:inum < 0%R :> R = false.
Proof.
Lemma itv_le0 x : unify_itv `]-oo, Posz 0] i -> x%:inum <= 0%R :> R.
Proof.
Lemma itv_gt0F x : unify_itv `]-oo, Posz 0] i -> 0%R < x%:inum :> R = false.
Proof.
Lemma lt1 x : unify_itv `]-oo, Posz 1[ i -> x%:inum < 1%R :> R.
Proof.
Lemma ge1F x : unify_itv `]-oo, Posz 1[ i -> 1%R <= x%:inum :> R = false.
Proof.
Lemma le1 x : unify_itv `]-oo, Posz 1] i -> x%:inum <= 1%R :> R.
Proof.
Lemma gt1F x : unify_itv `]-oo, Posz 1] i -> 1%R < x%:inum :> R = false.
Proof.
Lemma widen_itv_subproof x i' : unify_itv i' i -> Itv.spec i' x%:inum.
Proof.
Definition widen_itv x i' (uni : unify_itv i' i) :=
Itv.mk (widen_itv_subproof x uni).
Lemma widen_itvE x (uni : unify_itv i i) : @widen_itv x i uni = x.
Proof.
exact/val_inj. Qed.
End Theory.
Arguments itv_bottom {R i} _ {_}.
Arguments itv_gt0 {R i} _ {_}.
Arguments itv_le0F {R i} _ {_}.
Arguments itv_lt0 {R i} _ {_}.
Arguments itv_ge0F {R i} _ {_}.
Arguments itv_ge0 {R i} _ {_}.
Arguments itv_lt0F {R i} _ {_}.
Arguments itv_le0 {R i} _ {_}.
Arguments itv_gt0F {R i} _ {_}.
Arguments lt1 {R i} _ {_}.
Arguments ge1F {R i} _ {_}.
Arguments le1 {R i} _ {_}.
Arguments gt1F {R i} _ {_}.
Arguments widen_itv {R i} _ {_ _}.
Arguments widen_itvE {R i} _ {_}.
#[global] Hint Extern 0 (is_true (0%R < _)%O) => solve [apply: itv_gt0] : core.
#[global] Hint Extern 0 (is_true (_ < 0%R)%O) => solve [apply: itv_lt0] : core.
#[global] Hint Extern 0 (is_true (0%R <= _)%O) => solve [apply: itv_ge0] : core.
#[global] Hint Extern 0 (is_true (_ <= 0%R)%O) => solve [apply: itv_le0] : core.
#[global] Hint Extern 0 (is_true (_ < 1%R)%O) => solve [apply: lt1] : core.
#[global] Hint Extern 0 (is_true (_ <= 1%R)%O) => solve [apply: le1] : core.
Notation "x %:i01" := (widen_itv x%:itv : {i01 _}) (only parsing) : ring_scope.
Notation "x %:i01" := (@widen_itv _ _
(@Itv.from _ _ _ (Phantom _ x)) `[Posz 0, Posz 1] _)
(only printing) : ring_scope.
Local Open Scope ring_scope.
Section NumDomainStability.
Context {R : numDomainType}.
Lemma zero_inum_subproof : Itv.spec `[0, 0] (0 : R).
Canonical zero_inum := Itv.mk zero_inum_subproof.
Lemma one_inum_subproof : Itv.spec `[1, 1] (1 : R).
Canonical one_inum := Itv.mk one_inum_subproof.
Definition opp_itv_bound_subdef (b : itv_bound int) : itv_bound int :=
match b with
| BSide b x => BSide (~~ b) (intZmod.oppz x)
| BInfty b => BInfty _ (~~ b)
end.
Arguments opp_itv_bound_subdef /.
Lemma opp_itv_ge0_subproof b :
(BLeft 0%R <= opp_itv_bound_subdef b)%O = (b <= BRight 0%R)%O.
Lemma opp_itv_gt0_subproof b :
(BLeft 0%R < opp_itv_bound_subdef b)%O = (b < BRight 0%R)%O.
Lemma opp_itv_boundr_subproof (x : R) b :
(BRight (- x)%R <= Itv.map_itv_bound intr (opp_itv_bound_subdef b))%O
= (Itv.map_itv_bound intr b <= BLeft x)%O.
Lemma opp_itv_le0_subproof b :
(opp_itv_bound_subdef b <= BRight 0%R)%O = (BLeft 0%R <= b)%O.
Lemma opp_itv_lt0_subproof b :
(opp_itv_bound_subdef b < BRight 0%R)%O = (BLeft 0%R < b)%O.
Lemma opp_itv_boundl_subproof (x : R) b :
(Itv.map_itv_bound intr (opp_itv_bound_subdef b) <= BLeft (- x)%R)%O
= (BRight x <= Itv.map_itv_bound intr b)%O.
Definition opp_itv_subdef (i : interval int) : interval int :=
let 'Interval l u := i in
Interval (opp_itv_bound_subdef u) (opp_itv_bound_subdef l).
Arguments opp_itv_subdef /.
Lemma opp_inum_subproof (i : interval int)
(x : {itv R & i}) (r := opp_itv_subdef i) :
Itv.spec r (- x%:inum).
Proof.
rewrite {}/r; move: i x => [l u] [x /= /andP[xl xu]]; apply/andP; split.
- by case: u xu => [[] b i | [] //] /=; rewrite /Order.le/= mulrNz;
do ?[by rewrite lerNl opprK|by rewrite ltrNl opprK].
- by case: l xl => [[] b i | [] //] /=; rewrite /Order.le/= mulrNz;
do ?[by rewrite ltrNl opprK|by rewrite lerNl opprK].
Qed.
- by case: u xu => [[] b i | [] //] /=; rewrite /Order.le/= mulrNz;
do ?[by rewrite lerNl opprK|by rewrite ltrNl opprK].
- by case: l xl => [[] b i | [] //] /=; rewrite /Order.le/= mulrNz;
do ?[by rewrite ltrNl opprK|by rewrite lerNl opprK].
Qed.
Canonical opp_inum (i : interval int) (x : {itv R & i}) :=
Itv.mk (opp_inum_subproof x).
Definition add_itv_boundl_subdef (b1 b2 : itv_bound int) : itv_bound int :=
match b1, b2 with
| BSide b1 x1, BSide b2 x2 => BSide (b1 && b2) (intZmod.addz x1 x2)
| _, _ => BInfty _ true
end.
Arguments add_itv_boundl_subdef /.
Definition add_itv_boundr_subdef (b1 b2 : itv_bound int) : itv_bound int :=
match b1, b2 with
| BSide b1 x1, BSide b2 x2 => BSide (b1 || b2) (intZmod.addz x1 x2)
| _, _ => BInfty _ false
end.
Arguments add_itv_boundr_subdef /.
Definition add_itv_subdef (i1 i2 : interval int) : interval int :=
let 'Interval l1 u1 := i1 in
let 'Interval l2 u2 := i2 in
Interval (add_itv_boundl_subdef l1 l2) (add_itv_boundr_subdef u1 u2).
Arguments add_itv_subdef /.
Lemma add_inum_subproof (xi yi : interval int)
(x : {itv R & xi}) (y : {itv R & yi})
(r := add_itv_subdef xi yi) :
Itv.spec r (x%:inum + y%:inum).
Proof.
rewrite {}/r.
move: xi x yi y => [lx ux] [x /= /andP[xl xu]] [ly uy] [y /= /andP[yl yu]].
rewrite /Itv.itv_cond in_itv; apply/andP; split.
- move: lx ly xl yl => [xb lx | //] [yb ly | //].
by move: xb yb => [] []; rewrite /Order.le/= rmorphD/=;
do ?[exact: lerD|exact: ler_ltD|exact: ltr_leD|exact: ltrD].
- move: ux uy xu yu => [xb ux | //] [yb uy | //].
by move: xb yb => [] []; rewrite /Order.le/= rmorphD/=;
do ?[exact: lerD|exact: ler_ltD|exact: ltr_leD|exact: ltrD].
Qed.
move: xi x yi y => [lx ux] [x /= /andP[xl xu]] [ly uy] [y /= /andP[yl yu]].
rewrite /Itv.itv_cond in_itv; apply/andP; split.
- move: lx ly xl yl => [xb lx | //] [yb ly | //].
by move: xb yb => [] []; rewrite /Order.le/= rmorphD/=;
do ?[exact: lerD|exact: ler_ltD|exact: ltr_leD|exact: ltrD].
- move: ux uy xu yu => [xb ux | //] [yb uy | //].
by move: xb yb => [] []; rewrite /Order.le/= rmorphD/=;
do ?[exact: lerD|exact: ler_ltD|exact: ltr_leD|exact: ltrD].
Qed.
Canonical add_inum (xi yi : interval int)
(x : {itv R & xi}) (y : {itv R & yi}) :=
Itv.mk (add_inum_subproof x y).
End NumDomainStability.
Section RealDomainStability.
Context {R : realDomainType}.
Definition itv_bound_signl (b : itv_bound int) : KnownSign.sign :=
let b0 := BLeft 0%Z in
(if b == b0 then =0 else if (b <= b0)%O then <=0 else >=0)%snum_sign.
Definition itv_bound_signr (b : itv_bound int) : KnownSign.sign :=
let b0 := BRight 0%Z in
(if b == b0 then =0 else if (b <= b0)%O then <=0 else >=0)%snum_sign.
Definition interval_sign (i : interval int) : option KnownSign.real :=
let 'Interval l u := i in
(match itv_bound_signl l, itv_bound_signr u with
| =0, <=0
| >=0, =0
| >=0, <=0 => None
| =0, =0 => Some (KnownSign.Sign =0)
| <=0, =0
| <=0, <=0 => Some (KnownSign.Sign <=0)
| =0, >=0
| >=0, >=0 => Some (KnownSign.Sign >=0)
| <=0, >=0 => Some >=<0
end)%snum_sign.
Variant interval_sign_spec (l u : itv_bound int) : option KnownSign.real -> Set :=
| ISignNone : (u <= l)%O -> interval_sign_spec l u None
| ISignEqZero : l = BLeft 0 -> u = BRight 0 ->
interval_sign_spec l u (Some (KnownSign.Sign =0))
| ISignNeg : (l < BLeft 0%:Z)%O -> (u <= BRight 0%:Z)%O ->
interval_sign_spec l u (Some (KnownSign.Sign <=0))
| ISignPos : (BLeft 0%:Z <= l)%O -> (BRight 0%:Z < u)%O ->
interval_sign_spec l u (Some (KnownSign.Sign >=0))
| ISignBoth : (l < BLeft 0%:Z)%O -> (BRight 0%:Z < u)%O ->
interval_sign_spec l u (Some >=<0%snum_sign).
Lemma interval_signP l u :
interval_sign_spec l u (interval_sign (Interval l u)).
Proof.
rewrite /interval_sign/itv_bound_signl/itv_bound_signr.
have [lneg|lpos|->] := ltgtP l; have [uneg|upos|->] := ltgtP u.
- apply: ISignNeg => //; exact: ltW.
- exact: ISignBoth.
- exact: ISignNeg.
- by apply/ISignNone/ltW/(lt_le_trans uneg); rewrite leBRight_ltBLeft.
- by apply: ISignPos => //; exact: ltW.
- by apply: ISignNone; rewrite leBRight_ltBLeft.
- by apply: ISignNone; rewrite -ltBRight_leBLeft.
- exact: ISignPos.
- exact: ISignEqZero.
Qed.
have [lneg|lpos|->] := ltgtP l; have [uneg|upos|->] := ltgtP u.
- apply: ISignNeg => //; exact: ltW.
- exact: ISignBoth.
- exact: ISignNeg.
- by apply/ISignNone/ltW/(lt_le_trans uneg); rewrite leBRight_ltBLeft.
- by apply: ISignPos => //; exact: ltW.
- by apply: ISignNone; rewrite leBRight_ltBLeft.
- by apply: ISignNone; rewrite -ltBRight_leBLeft.
- exact: ISignPos.
- exact: ISignEqZero.
Qed.
Definition mul_itv_boundl_subdef (b1 b2 : itv_bound int) : itv_bound int :=
match b1, b2 with
| BSide true 0%Z, BSide _ _
| BSide _ _, BSide true 0%Z => BSide true 0%Z
| BSide b1 x1, BSide b2 x2 => BSide (b1 && b2) (intRing.mulz x1 x2)
| _, BInfty _
| BInfty _, _ => BInfty _ false
end.
Arguments mul_itv_boundl_subdef /.
Definition mul_itv_boundr_subdef (b1 b2 : itv_bound int) : itv_bound int :=
match b1, b2 with
| BSide true 0%Z, _
| _, BSide true 0%Z => BSide true 0%Z
| BSide false 0%Z, _
| _, BSide false 0%Z => BSide false 0%Z
| BSide b1 x1, BSide b2 x2 => BSide (b1 || b2) (intRing.mulz x1 x2)
| _, BInfty _
| BInfty _, _ => BInfty _ false
end.
Arguments mul_itv_boundr_subdef /.
Lemma mul_itv_boundl_subproof b1 b2 (x1 x2 : R) :
(BLeft 0%:Z <= b1 -> BLeft 0%:Z <= b2 ->
Itv.map_itv_bound intr b1 <= BLeft x1 ->
Itv.map_itv_bound intr b2 <= BLeft x2 ->
Itv.map_itv_bound intr (mul_itv_boundl_subdef b1 b2) <= BLeft (x1 * x2))%O.
Proof.
move: b1 b2 => [[] b1 | []//] [[] b2 | []//] /=; rewrite 4!bnd_simp.
- set bl := match b1 with 0%Z => _ | _ => _ end.
have -> : bl = BLeft (b1 * b2).
rewrite {}/bl; move: b1 b2 => [[|p1]|p1] [[|p2]|p2]; congr BLeft.
by rewrite mulr0.
rewrite -2!(ler0z R) bnd_simp intrM; exact: ler_pM.
- case: b1 => [[|p1]|//]; rewrite -2!(ler0z R) !bnd_simp ?intrM.
by move=> _ geb2 ? ?; apply: mulr_ge0 => //; apply/(le_trans geb2)/ltW.
move=> p1gt0 b2ge0 lep1x1 ltb2x2.
have: (Posz p1.+1)%:~R * x2 <= x1 * x2.
by rewrite ler_pM2r //; apply: le_lt_trans ltb2x2.
by apply: lt_le_trans; rewrite ltr_pM2l // ltr0z.
- case: b2 => [[|p2]|//]; rewrite -2!(ler0z R) !bnd_simp ?intrM.
by move=> geb1 _ ? ?; apply: mulr_ge0 => //; apply/(le_trans geb1)/ltW.
move=> b1ge0 p2gt0 ltb1x1 lep2x2.
have: b1%:~R * x2 < x1 * x2; last exact/le_lt_trans/ler_pM.
by rewrite ltr_pM2r //; apply: lt_le_trans lep2x2; rewrite ltr0z.
- rewrite -2!(ler0z R) bnd_simp intrM; exact: ltr_pM.
Qed.
- set bl := match b1 with 0%Z => _ | _ => _ end.
have -> : bl = BLeft (b1 * b2).
rewrite {}/bl; move: b1 b2 => [[|p1]|p1] [[|p2]|p2]; congr BLeft.
by rewrite mulr0.
rewrite -2!(ler0z R) bnd_simp intrM; exact: ler_pM.
- case: b1 => [[|p1]|//]; rewrite -2!(ler0z R) !bnd_simp ?intrM.
by move=> _ geb2 ? ?; apply: mulr_ge0 => //; apply/(le_trans geb2)/ltW.
move=> p1gt0 b2ge0 lep1x1 ltb2x2.
have: (Posz p1.+1)%:~R * x2 <= x1 * x2.
by rewrite ler_pM2r //; apply: le_lt_trans ltb2x2.
by apply: lt_le_trans; rewrite ltr_pM2l // ltr0z.
- case: b2 => [[|p2]|//]; rewrite -2!(ler0z R) !bnd_simp ?intrM.
by move=> geb1 _ ? ?; apply: mulr_ge0 => //; apply/(le_trans geb1)/ltW.
move=> b1ge0 p2gt0 ltb1x1 lep2x2.
have: b1%:~R * x2 < x1 * x2; last exact/le_lt_trans/ler_pM.
by rewrite ltr_pM2r //; apply: lt_le_trans lep2x2; rewrite ltr0z.
- rewrite -2!(ler0z R) bnd_simp intrM; exact: ltr_pM.
Qed.
Lemma mul_itv_boundrC_subproof b1 b2 :
mul_itv_boundr_subdef b1 b2 = mul_itv_boundr_subdef b2 b1.
Proof.
Lemma mul_itv_boundr_subproof b1 b2 (x1 x2 : R) :
(BLeft 0%R <= BLeft x1 -> BLeft 0%R <= BLeft x2 ->
BRight x1 <= Itv.map_itv_bound intr b1 ->
BRight x2 <= Itv.map_itv_bound intr b2 ->
BRight (x1 * x2) <= Itv.map_itv_bound intr (mul_itv_boundr_subdef b1 b2))%O.
Proof.
move: b1 b2 => [b1b b1 | []] [b2b b2 | []] //=; last first.
- move: b2 b2b => [[|p2]|p2] [] // _ + _ +; rewrite !bnd_simp => le1 le2.
+ by move: (le_lt_trans le1 le2); rewrite ltxx.
+ by move: (conj le1 le2) => /andP/le_anti <-; rewrite mulr0.
- move: b1 b1b => [[|p1]|p1] [] // + _ + _; rewrite !bnd_simp => le1 le2.
+ by move: (le_lt_trans le1 le2); rewrite ltxx.
+ by move: (conj le1 le2) => /andP/le_anti <-; rewrite mul0r.
case: b1 => [[|p1]|p1].
- case: b1b.
by rewrite !bnd_simp => l _ l' _; move: (le_lt_trans l l'); rewrite ltxx.
by move: b2b b2 => [] [[|p2]|p2]; rewrite !bnd_simp;
first (by move=> _ l _ l'; move: (le_lt_trans l l'); rewrite ltxx);
move=> l _ l' _; move: (conj l l') => /andP/le_anti <-; rewrite mul0r.
- rewrite if_same.
case: b2 => [[|p2]|p2].
+ case: b2b => _ + _ +; rewrite !bnd_simp => l l'.
by move: (le_lt_trans l l'); rewrite ltxx.
by move: (conj l l') => /andP/le_anti <-; rewrite mulr0.
+ move: b1b b2b => [] []; rewrite !bnd_simp;
rewrite -[intRing.mulz ?[a] ?[b]]/((Posz ?[a]) * ?[b])%R intrM.
* exact: ltr_pM.
* move=> x1ge0 x2ge0 ltx1p1 lex2p2.
have: x1 * p2.+1%:~R < p1.+1%:~R * p2.+1%:~R.
by rewrite ltr_pM2r // ltr0z.
exact/le_lt_trans/ler_pM.
* move=> x1ge0 x2ge0 lex1p1 ltx2p2.
have: p1.+1%:~R * x2 < p1.+1%:~R * p2.+1%:~R.
by rewrite ltr_pM2l // ltr0z.
exact/le_lt_trans/ler_pM.
* exact: ler_pM.
+ case: b2b => _ + _; rewrite 2!bnd_simp => l l'.
by move: (le_lt_trans l l'); rewrite ltr0z.
by move: (le_trans l l'); rewrite ler0z.
- case: b1b => + _ + _; rewrite 2!bnd_simp => l l'.
by move: (le_lt_trans l l'); rewrite ltr0z.
by move: (le_trans l l'); rewrite ler0z.
Qed.
- move: b2 b2b => [[|p2]|p2] [] // _ + _ +; rewrite !bnd_simp => le1 le2.
+ by move: (le_lt_trans le1 le2); rewrite ltxx.
+ by move: (conj le1 le2) => /andP/le_anti <-; rewrite mulr0.
- move: b1 b1b => [[|p1]|p1] [] // + _ + _; rewrite !bnd_simp => le1 le2.
+ by move: (le_lt_trans le1 le2); rewrite ltxx.
+ by move: (conj le1 le2) => /andP/le_anti <-; rewrite mul0r.
case: b1 => [[|p1]|p1].
- case: b1b.
by rewrite !bnd_simp => l _ l' _; move: (le_lt_trans l l'); rewrite ltxx.
by move: b2b b2 => [] [[|p2]|p2]; rewrite !bnd_simp;
first (by move=> _ l _ l'; move: (le_lt_trans l l'); rewrite ltxx);
move=> l _ l' _; move: (conj l l') => /andP/le_anti <-; rewrite mul0r.
- rewrite if_same.
case: b2 => [[|p2]|p2].
+ case: b2b => _ + _ +; rewrite !bnd_simp => l l'.
by move: (le_lt_trans l l'); rewrite ltxx.
by move: (conj l l') => /andP/le_anti <-; rewrite mulr0.
+ move: b1b b2b => [] []; rewrite !bnd_simp;
rewrite -[intRing.mulz ?[a] ?[b]]/((Posz ?[a]) * ?[b])%R intrM.
* exact: ltr_pM.
* move=> x1ge0 x2ge0 ltx1p1 lex2p2.
have: x1 * p2.+1%:~R < p1.+1%:~R * p2.+1%:~R.
by rewrite ltr_pM2r // ltr0z.
exact/le_lt_trans/ler_pM.
* move=> x1ge0 x2ge0 lex1p1 ltx2p2.
have: p1.+1%:~R * x2 < p1.+1%:~R * p2.+1%:~R.
by rewrite ltr_pM2l // ltr0z.
exact/le_lt_trans/ler_pM.
* exact: ler_pM.
+ case: b2b => _ + _; rewrite 2!bnd_simp => l l'.
by move: (le_lt_trans l l'); rewrite ltr0z.
by move: (le_trans l l'); rewrite ler0z.
- case: b1b => + _ + _; rewrite 2!bnd_simp => l l'.
by move: (le_lt_trans l l'); rewrite ltr0z.
by move: (le_trans l l'); rewrite ler0z.
Qed.
Lemma mul_itv_boundr'_subproof b1 b2 (x1 x2 : R) :
(BLeft 0%:R <= BLeft x1 -> BRight 0%:Z <= b2 ->
BRight x1 <= Itv.map_itv_bound intr b1 ->
BRight x2 <= Itv.map_itv_bound intr b2 ->
BRight (x1 * x2) <= Itv.map_itv_bound intr (mul_itv_boundr_subdef b1 b2))%O.
Proof.
move=> x1ge0 b2ge0 lex1b1 lex2b2.
have [x2ge0 | x2lt0] := leP 0 x2; first exact: mul_itv_boundr_subproof.
have lem0 : (BRight (x1 * x2) <= BRight 0%R)%O.
by rewrite bnd_simp mulr_ge0_le0 // ltW.
apply: le_trans lem0 _.
move: b1 b2 lex1b1 lex2b2 b2ge0 => [b1b b1 | []] [b2b b2 | []] //=; last first.
- by move: b2 b2b => [[|?]|?] [].
- move: b1 b1b => [[|p1]|p1] [] //.
by rewrite leBRight_ltBLeft => /(le_lt_trans x1ge0); rewrite ltxx.
case: b1 => [[|p1]|p1].
- case: b1b; last by move: b2b b2 => [] [[|]|].
by rewrite leBRight_ltBLeft => /(le_lt_trans x1ge0); rewrite ltxx.
- rewrite if_same.
case: b2 => [[|p2]|p2]; first (by case: b2b); last by case: b2b.
by rewrite if_same => _ _ _ /=; rewrite leBSide ltrW_lteif // ltr0z.
- rewrite leBRight_ltBLeft => /(le_lt_trans x1ge0).
by case: b1b; rewrite bnd_simp ?ltr0z // ler0z.
Qed.
have [x2ge0 | x2lt0] := leP 0 x2; first exact: mul_itv_boundr_subproof.
have lem0 : (BRight (x1 * x2) <= BRight 0%R)%O.
by rewrite bnd_simp mulr_ge0_le0 // ltW.
apply: le_trans lem0 _.
move: b1 b2 lex1b1 lex2b2 b2ge0 => [b1b b1 | []] [b2b b2 | []] //=; last first.
- by move: b2 b2b => [[|?]|?] [].
- move: b1 b1b => [[|p1]|p1] [] //.
by rewrite leBRight_ltBLeft => /(le_lt_trans x1ge0); rewrite ltxx.
case: b1 => [[|p1]|p1].
- case: b1b; last by move: b2b b2 => [] [[|]|].
by rewrite leBRight_ltBLeft => /(le_lt_trans x1ge0); rewrite ltxx.
- rewrite if_same.
case: b2 => [[|p2]|p2]; first (by case: b2b); last by case: b2b.
by rewrite if_same => _ _ _ /=; rewrite leBSide ltrW_lteif // ltr0z.
- rewrite leBRight_ltBLeft => /(le_lt_trans x1ge0).
by case: b1b; rewrite bnd_simp ?ltr0z // ler0z.
Qed.
Definition mul_itv_subdef (i1 i2 : interval int) : interval int :=
let 'Interval l1 u1 := i1 in
let 'Interval l2 u2 := i2 in
let opp := opp_itv_bound_subdef in
let mull := mul_itv_boundl_subdef in
let mulr := mul_itv_boundr_subdef in
match interval_sign i1, interval_sign i2 with
| None, _ | _, None => `[1, 0]
| some s1, Some s2 =>
(match s1, s2 with
| =0, _ => `[0, 0]
| _, =0 => `[0, 0]
| >=0, >=0 => Interval (mull l1 l2) (mulr u1 u2)
| <=0, <=0 => Interval (mull (opp u1) (opp u2)) (mulr (opp l1) (opp l2))
| >=0, <=0 => Interval (opp (mulr u1 (opp l2))) (opp (mull l1 (opp u2)))
| <=0, >=0 => Interval (opp (mulr (opp l1) u2)) (opp (mull (opp u1) l2))
| >=0, >=<0 => Interval (opp (mulr u1 (opp l2))) (mulr u1 u2)
| <=0, >=<0 => Interval (opp (mulr (opp l1) u2)) (mulr (opp l1) (opp l2))
| >=<0, >=0 => Interval (opp (mulr (opp l1) u2)) (mulr u1 u2)
| >=<0, <=0 => Interval (opp (mulr u1 (opp l2))) (mulr (opp l1) (opp l2))
| >=<0, >=<0 => Interval
(Order.min (opp (mulr (opp l1) u2))
(opp (mulr u1 (opp l2))))
(Order.max (mulr (opp l1) (opp l2))
(mulr u1 u2))
end)%snum_sign
end.
Arguments mul_itv_subdef /.
Lemma map_itv_bound_min (x y : itv_bound int) :
Itv.map_itv_bound (fun x => x%:~R : R) (Order.min x y)
= Order.min (Itv.map_itv_bound intr x) (Itv.map_itv_bound intr y).
Proof.
have [lexy|ltyx] := leP x y; first by rewrite !minEle Itv.le_map_itv_bound.
by rewrite minElt -if_neg -leNgt Itv.le_map_itv_bound // ltW.
Qed.
by rewrite minElt -if_neg -leNgt Itv.le_map_itv_bound // ltW.
Qed.
Lemma map_itv_bound_max (x y : itv_bound int) :
Itv.map_itv_bound (fun x => x%:~R : R) (Order.max x y)
= Order.max (Itv.map_itv_bound intr x) (Itv.map_itv_bound intr y).
Proof.
have [lexy|ltyx] := leP x y; first by rewrite !maxEle Itv.le_map_itv_bound.
by rewrite maxElt -if_neg -leNgt Itv.le_map_itv_bound // ltW.
Qed.
by rewrite maxElt -if_neg -leNgt Itv.le_map_itv_bound // ltW.
Qed.
Lemma mul_inum_subproof (xi yi : interval int)
(x : {itv R & xi}) (y : {itv R & yi})
(r := mul_itv_subdef xi yi) :
Itv.spec r (x%:inum * y%:inum).
Proof.
rewrite {}/r.
move: xi x yi y => [lx ux] [x /= /andP[+ +]] [ly uy] [y /= /andP[+ +]].
rewrite -/(interval_sign (Interval lx ux)).
rewrite -/(interval_sign (Interval ly uy)).
have empty10 (z : R) l u : (u <= l)%O ->
(Itv.map_itv_bound [eta intr] l <= BLeft z)%O ->
(BRight z <= Itv.map_itv_bound [eta intr] u)%O -> False.
move=> leul; rewrite leBRight_ltBLeft => /le_lt_trans /[apply].
rewrite lt_def => /andP[/[swap]] => + /ltac:(apply/negP).
rewrite negbK; move: leul => /(Itv.le_map_itv_bound R) le1 le2.
by apply/eqP/le_anti; rewrite le1.
pose opp := opp_itv_bound_subdef.
pose mull := mul_itv_boundl_subdef.
pose mulr := mul_itv_boundr_subdef.
have [leuxlx|-> ->|lxneg uxneg|lxpos uxpos|lxneg uxpos] := interval_signP.
- move=> + + /ltac:(exfalso); exact: empty10.
- rewrite 2!bnd_simp => lex1 lex2 ley1 ley2.
have -> : x = 0 by apply: le_anti; rewrite lex1 lex2.
rewrite mul0r.
case: interval_signP; [|by move=> _ _; rewrite /Itv.itv_cond in_itv/= lexx..].
by move=> leul; exfalso; move: ley1 ley2; apply: empty10.
- move=> lelxx lexux.
have xneg : x <= 0.
move: (le_trans lexux (Itv.le_map_itv_bound R uxneg)).
by rewrite /= bnd_simp.
have [leuyly|-> ->|lyneg uyneg|lypos uypos|lyneg uypos] := interval_signP.
+ move=> + + /ltac:(exfalso); exact: empty10.
+ rewrite 2!bnd_simp => ley1 ley2.
have -> : y = 0 by apply: le_anti; rewrite ley1 ley2.
by rewrite mulr0 /Itv.itv_cond in_itv/= lexx.
+ move=> lelyy leyuy.
have yneg : y <= 0.
move: (le_trans leyuy (Itv.le_map_itv_bound R uyneg)).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (mull (opp ux) (opp uy))
(mulr (opp lx) (opp ly))).
rewrite -mulrNN /Itv.itv_cond itv_boundlr.
rewrite mul_itv_boundl_subproof ?mul_itv_boundr_subproof //.
* by rewrite bnd_simp oppr_ge0.
* by rewrite bnd_simp oppr_ge0.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_ge0_subproof.
* by rewrite opp_itv_ge0_subproof.
* by rewrite opp_itv_boundl_subproof.
* by rewrite opp_itv_boundl_subproof.
+ move=> lelyy leyuy.
have ypos : 0 <= y.
move: (le_trans (Itv.le_map_itv_bound R lypos) lelyy).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (opp (mulr (opp lx) uy))
(opp (mull (opp ux) ly))).
rewrite -[x * y]opprK -mulNr /Itv.itv_cond itv_boundlr.
rewrite opp_itv_boundl_subproof opp_itv_boundr_subproof.
rewrite mul_itv_boundl_subproof ?mul_itv_boundr_subproof //.
* by rewrite bnd_simp oppr_ge0.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_ge0_subproof.
* by rewrite opp_itv_boundl_subproof.
+ move=> lelyy leyuy.
rewrite -[Interval _ _]/(Interval (opp (mulr (opp lx) uy))
(mulr (opp lx) (opp ly))).
rewrite -[x * y]opprK -mulNr /Itv.itv_cond itv_boundlr.
rewrite opp_itv_boundl_subproof -mulrN.
rewrite 2?mul_itv_boundr'_subproof //.
* by rewrite bnd_simp oppr_ge0.
* by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_boundr_subproof.
* by rewrite bnd_simp oppr_ge0.
* by rewrite ltW.
* by rewrite opp_itv_boundr_subproof.
- move=> lelxx lexux.
have xpos : 0 <= x.
move: (le_trans (Itv.le_map_itv_bound R lxpos) lelxx).
by rewrite /= bnd_simp.
have [leuyly|-> ->|lyneg uyneg|lypos uypos|lyneg uypos] := interval_signP.
+ move=> + + /ltac:(exfalso); exact: empty10.
+ rewrite 2!bnd_simp => ley1 ley2.
have -> : y = 0 by apply: le_anti; rewrite ley1 ley2.
by rewrite mulr0 /Itv.itv_cond in_itv/= lexx.
+ move=> lelyy leyuy.
have yneg : y <= 0.
move: (le_trans leyuy (Itv.le_map_itv_bound R uyneg)).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (opp (mulr ux (opp ly)))
(opp (mull lx (opp uy)))).
rewrite -[x * y]opprK -mulrN /Itv.itv_cond itv_boundlr.
rewrite opp_itv_boundl_subproof opp_itv_boundr_subproof.
rewrite mul_itv_boundr_subproof ?mul_itv_boundl_subproof //.
* by rewrite opp_itv_ge0_subproof.
* by rewrite opp_itv_boundl_subproof.
* by rewrite bnd_simp oppr_ge0.
* by rewrite opp_itv_boundr_subproof.
+ move=> lelyy leyuy.
have ypos : 0 <= y.
move: (le_trans (Itv.le_map_itv_bound R lypos) lelyy).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (mull lx ly) (mulr ux uy)).
rewrite /Itv.itv_cond itv_boundlr.
by rewrite mul_itv_boundr_subproof ?mul_itv_boundl_subproof.
+ move=> lelyy leyuy.
rewrite -[Interval _ _]/(Interval (opp (mulr ux (opp ly))) (mulr ux uy)).
rewrite -[x * y]opprK -mulrN /Itv.itv_cond itv_boundlr.
rewrite opp_itv_boundl_subproof -mulrN opprK.
rewrite 2?mul_itv_boundr'_subproof //.
* by rewrite ltW.
* by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
* by rewrite opp_itv_boundr_subproof.
- move=> lelxx lexux.
have [leuyly|-> ->|lyneg uyneg|lypos uypos|lyneg uypos] := interval_signP.
+ move=> + + /ltac:(exfalso); exact: empty10.
+ rewrite 2!bnd_simp => ley1 ley2.
have -> : y = 0 by apply: le_anti; rewrite ley1 ley2.
by rewrite mulr0 /Itv.itv_cond in_itv/= lexx.
+ move=> lelyy leyuy.
have yneg : y <= 0.
move: (le_trans leyuy (Itv.le_map_itv_bound R uyneg)).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (opp (mulr ux (opp ly)))
(mulr (opp lx) (opp ly))).
rewrite -[x * y]opprK -mulrN /Itv.itv_cond itv_boundlr.
rewrite /mulr mul_itv_boundrC_subproof mulrC opp_itv_boundl_subproof.
rewrite [in X in _ && X]mul_itv_boundrC_subproof -mulrN.
rewrite mul_itv_boundr'_subproof ?mul_itv_boundr'_subproof //.
* by rewrite bnd_simp oppr_ge0.
* by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_boundr_subproof.
* by rewrite bnd_simp oppr_ge0.
* by rewrite ltW.
* by rewrite opp_itv_boundr_subproof.
+ move=> lelyy leyuy.
have ypos : 0 <= y.
move: (le_trans (Itv.le_map_itv_bound R lypos) lelyy).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (opp (mulr (opp lx) uy)) (mulr ux uy)).
rewrite -[x * y]opprK -mulNr /Itv.itv_cond itv_boundlr.
rewrite /mulr mul_itv_boundrC_subproof mulrC opp_itv_boundl_subproof.
rewrite [in X in _ && X]mul_itv_boundrC_subproof -mulrN opprK.
rewrite mul_itv_boundr'_subproof ?mul_itv_boundr'_subproof //.
* by rewrite ltW.
* by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
* by rewrite opp_itv_boundr_subproof.
+ move=> lelyy leyuy.
rewrite -[Interval _ _]/(Interval
(Order.min (opp (mulr (opp lx) uy))
(opp (mulr ux (opp ly))))
(Order.max (mulr (opp lx) (opp ly))
(mulr ux uy))).
rewrite /Itv.itv_cond itv_boundlr.
rewrite map_itv_bound_min map_itv_bound_max ge_min le_max.
rewrite -[x * y]opprK !opp_itv_boundl_subproof.
rewrite -[in X in ((X || _) && _)]mulNr -[in X in ((_ || X) && _)]mulrN.
rewrite -[in X in (_ && (X || _))]mulrNN !opprK.
have [xpos|xneg] := leP 0 x.
* rewrite [in X in ((_ || X) && _)]mul_itv_boundr'_subproof ?orbT //=;
rewrite ?[in X in (_ || X)]mul_itv_boundr'_subproof ?orbT //.
- by rewrite ltW.
- by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
- by rewrite opp_itv_boundr_subproof.
* rewrite [in X in ((X || _) && _)]mul_itv_boundr'_subproof //=;
rewrite ?[in X in (X || _)]mul_itv_boundr'_subproof //.
- by rewrite bnd_simp oppr_ge0 ltW.
- by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
- by rewrite opp_itv_boundr_subproof.
- by rewrite opp_itv_boundr_subproof.
- by rewrite bnd_simp oppr_ge0 ltW.
- by rewrite ltW.
- by rewrite opp_itv_boundr_subproof.
Qed.
move: xi x yi y => [lx ux] [x /= /andP[+ +]] [ly uy] [y /= /andP[+ +]].
rewrite -/(interval_sign (Interval lx ux)).
rewrite -/(interval_sign (Interval ly uy)).
have empty10 (z : R) l u : (u <= l)%O ->
(Itv.map_itv_bound [eta intr] l <= BLeft z)%O ->
(BRight z <= Itv.map_itv_bound [eta intr] u)%O -> False.
move=> leul; rewrite leBRight_ltBLeft => /le_lt_trans /[apply].
rewrite lt_def => /andP[/[swap]] => + /ltac:(apply/negP).
rewrite negbK; move: leul => /(Itv.le_map_itv_bound R) le1 le2.
by apply/eqP/le_anti; rewrite le1.
pose opp := opp_itv_bound_subdef.
pose mull := mul_itv_boundl_subdef.
pose mulr := mul_itv_boundr_subdef.
have [leuxlx|-> ->|lxneg uxneg|lxpos uxpos|lxneg uxpos] := interval_signP.
- move=> + + /ltac:(exfalso); exact: empty10.
- rewrite 2!bnd_simp => lex1 lex2 ley1 ley2.
have -> : x = 0 by apply: le_anti; rewrite lex1 lex2.
rewrite mul0r.
case: interval_signP; [|by move=> _ _; rewrite /Itv.itv_cond in_itv/= lexx..].
by move=> leul; exfalso; move: ley1 ley2; apply: empty10.
- move=> lelxx lexux.
have xneg : x <= 0.
move: (le_trans lexux (Itv.le_map_itv_bound R uxneg)).
by rewrite /= bnd_simp.
have [leuyly|-> ->|lyneg uyneg|lypos uypos|lyneg uypos] := interval_signP.
+ move=> + + /ltac:(exfalso); exact: empty10.
+ rewrite 2!bnd_simp => ley1 ley2.
have -> : y = 0 by apply: le_anti; rewrite ley1 ley2.
by rewrite mulr0 /Itv.itv_cond in_itv/= lexx.
+ move=> lelyy leyuy.
have yneg : y <= 0.
move: (le_trans leyuy (Itv.le_map_itv_bound R uyneg)).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (mull (opp ux) (opp uy))
(mulr (opp lx) (opp ly))).
rewrite -mulrNN /Itv.itv_cond itv_boundlr.
rewrite mul_itv_boundl_subproof ?mul_itv_boundr_subproof //.
* by rewrite bnd_simp oppr_ge0.
* by rewrite bnd_simp oppr_ge0.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_ge0_subproof.
* by rewrite opp_itv_ge0_subproof.
* by rewrite opp_itv_boundl_subproof.
* by rewrite opp_itv_boundl_subproof.
+ move=> lelyy leyuy.
have ypos : 0 <= y.
move: (le_trans (Itv.le_map_itv_bound R lypos) lelyy).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (opp (mulr (opp lx) uy))
(opp (mull (opp ux) ly))).
rewrite -[x * y]opprK -mulNr /Itv.itv_cond itv_boundlr.
rewrite opp_itv_boundl_subproof opp_itv_boundr_subproof.
rewrite mul_itv_boundl_subproof ?mul_itv_boundr_subproof //.
* by rewrite bnd_simp oppr_ge0.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_ge0_subproof.
* by rewrite opp_itv_boundl_subproof.
+ move=> lelyy leyuy.
rewrite -[Interval _ _]/(Interval (opp (mulr (opp lx) uy))
(mulr (opp lx) (opp ly))).
rewrite -[x * y]opprK -mulNr /Itv.itv_cond itv_boundlr.
rewrite opp_itv_boundl_subproof -mulrN.
rewrite 2?mul_itv_boundr'_subproof //.
* by rewrite bnd_simp oppr_ge0.
* by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_boundr_subproof.
* by rewrite bnd_simp oppr_ge0.
* by rewrite ltW.
* by rewrite opp_itv_boundr_subproof.
- move=> lelxx lexux.
have xpos : 0 <= x.
move: (le_trans (Itv.le_map_itv_bound R lxpos) lelxx).
by rewrite /= bnd_simp.
have [leuyly|-> ->|lyneg uyneg|lypos uypos|lyneg uypos] := interval_signP.
+ move=> + + /ltac:(exfalso); exact: empty10.
+ rewrite 2!bnd_simp => ley1 ley2.
have -> : y = 0 by apply: le_anti; rewrite ley1 ley2.
by rewrite mulr0 /Itv.itv_cond in_itv/= lexx.
+ move=> lelyy leyuy.
have yneg : y <= 0.
move: (le_trans leyuy (Itv.le_map_itv_bound R uyneg)).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (opp (mulr ux (opp ly)))
(opp (mull lx (opp uy)))).
rewrite -[x * y]opprK -mulrN /Itv.itv_cond itv_boundlr.
rewrite opp_itv_boundl_subproof opp_itv_boundr_subproof.
rewrite mul_itv_boundr_subproof ?mul_itv_boundl_subproof //.
* by rewrite opp_itv_ge0_subproof.
* by rewrite opp_itv_boundl_subproof.
* by rewrite bnd_simp oppr_ge0.
* by rewrite opp_itv_boundr_subproof.
+ move=> lelyy leyuy.
have ypos : 0 <= y.
move: (le_trans (Itv.le_map_itv_bound R lypos) lelyy).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (mull lx ly) (mulr ux uy)).
rewrite /Itv.itv_cond itv_boundlr.
by rewrite mul_itv_boundr_subproof ?mul_itv_boundl_subproof.
+ move=> lelyy leyuy.
rewrite -[Interval _ _]/(Interval (opp (mulr ux (opp ly))) (mulr ux uy)).
rewrite -[x * y]opprK -mulrN /Itv.itv_cond itv_boundlr.
rewrite opp_itv_boundl_subproof -mulrN opprK.
rewrite 2?mul_itv_boundr'_subproof //.
* by rewrite ltW.
* by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
* by rewrite opp_itv_boundr_subproof.
- move=> lelxx lexux.
have [leuyly|-> ->|lyneg uyneg|lypos uypos|lyneg uypos] := interval_signP.
+ move=> + + /ltac:(exfalso); exact: empty10.
+ rewrite 2!bnd_simp => ley1 ley2.
have -> : y = 0 by apply: le_anti; rewrite ley1 ley2.
by rewrite mulr0 /Itv.itv_cond in_itv/= lexx.
+ move=> lelyy leyuy.
have yneg : y <= 0.
move: (le_trans leyuy (Itv.le_map_itv_bound R uyneg)).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (opp (mulr ux (opp ly)))
(mulr (opp lx) (opp ly))).
rewrite -[x * y]opprK -mulrN /Itv.itv_cond itv_boundlr.
rewrite /mulr mul_itv_boundrC_subproof mulrC opp_itv_boundl_subproof.
rewrite [in X in _ && X]mul_itv_boundrC_subproof -mulrN.
rewrite mul_itv_boundr'_subproof ?mul_itv_boundr'_subproof //.
* by rewrite bnd_simp oppr_ge0.
* by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
* by rewrite opp_itv_boundr_subproof.
* by rewrite opp_itv_boundr_subproof.
* by rewrite bnd_simp oppr_ge0.
* by rewrite ltW.
* by rewrite opp_itv_boundr_subproof.
+ move=> lelyy leyuy.
have ypos : 0 <= y.
move: (le_trans (Itv.le_map_itv_bound R lypos) lelyy).
by rewrite /= bnd_simp.
rewrite -[Interval _ _]/(Interval (opp (mulr (opp lx) uy)) (mulr ux uy)).
rewrite -[x * y]opprK -mulNr /Itv.itv_cond itv_boundlr.
rewrite /mulr mul_itv_boundrC_subproof mulrC opp_itv_boundl_subproof.
rewrite [in X in _ && X]mul_itv_boundrC_subproof -mulrN opprK.
rewrite mul_itv_boundr'_subproof ?mul_itv_boundr'_subproof //.
* by rewrite ltW.
* by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
* by rewrite opp_itv_boundr_subproof.
+ move=> lelyy leyuy.
rewrite -[Interval _ _]/(Interval
(Order.min (opp (mulr (opp lx) uy))
(opp (mulr ux (opp ly))))
(Order.max (mulr (opp lx) (opp ly))
(mulr ux uy))).
rewrite /Itv.itv_cond itv_boundlr.
rewrite map_itv_bound_min map_itv_bound_max ge_min le_max.
rewrite -[x * y]opprK !opp_itv_boundl_subproof.
rewrite -[in X in ((X || _) && _)]mulNr -[in X in ((_ || X) && _)]mulrN.
rewrite -[in X in (_ && (X || _))]mulrNN !opprK.
have [xpos|xneg] := leP 0 x.
* rewrite [in X in ((_ || X) && _)]mul_itv_boundr'_subproof ?orbT //=;
rewrite ?[in X in (_ || X)]mul_itv_boundr'_subproof ?orbT //.
- by rewrite ltW.
- by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
- by rewrite opp_itv_boundr_subproof.
* rewrite [in X in ((X || _) && _)]mul_itv_boundr'_subproof //=;
rewrite ?[in X in (X || _)]mul_itv_boundr'_subproof //.
- by rewrite bnd_simp oppr_ge0 ltW.
- by rewrite leBRight_ltBLeft opp_itv_gt0_subproof ltBRight_leBLeft ltW.
- by rewrite opp_itv_boundr_subproof.
- by rewrite opp_itv_boundr_subproof.
- by rewrite bnd_simp oppr_ge0 ltW.
- by rewrite ltW.
- by rewrite opp_itv_boundr_subproof.
Qed.
Canonical mul_inum (xi yi : interval int)
(x : {itv R & xi}) (y : {itv R & yi}) :=
Itv.mk (mul_inum_subproof x y).
End RealDomainStability.
Section Morph.
Context {R : numDomainType} {i : interval int}.
Local Notation nR := {itv R & i}.
Implicit Types x y : nR.
Local Notation inum := (@inum R i).
Lemma inum_eq : {mono inum : x y / x == y}
Proof.
by []. Qed.
Proof.
by []. Qed.
Proof.
by []. Qed.
End Morph.
Section Test1.
Variable R : numDomainType.
Variable x : {i01 R}.
Goal 0%:i01 = 1%:i01 :> {i01 R}.
Proof.
Abort.
Goal (- x%:inum)%:itv = (- x%:inum)%:itv :> {itv R & `[-1, 0]}.
Proof.
Abort.
Goal (1 - x%:inum)%:i01 = x.
Proof.
Abort.
End Test1.
Section Test2.
Variable R : realDomainType.
Variable x y : {i01 R}.
Goal (x%:inum * y%:inum)%:i01 = x%:inum%:i01.
Proof.
Abort.
End Test2.
Module Test3.
Section Test3.
Variable R : realDomainType.
Definition s_of_pq (p q : {i01 R}) : {i01 R} :=
(1 - ((1 - p%:inum)%:i01%:inum * (1 - q%:inum)%:i01%:inum))%:i01.
Lemma s_of_p0 (p : {i01 R}) : s_of_pq p 0%:i01 = p.
Canonical onem_itv01 (p : {i01 R}) : {i01 R} :=
@Itv.mk _ _ (onem p%:inum) [itv of 1 - p%:inum].
Definition s_of_pq' (p q : {i01 R}) : {i01 R} :=
(`1- (`1-(p%:inum) * `1-(q%:inum)))%:i01.
End Test3.
End Test3.