Module mathcomp.classical.filter
From HB Require Import structures.From mathcomp Require Import all_ssreflect all_algebra finmap generic_quotient.
From mathcomp Require Import archimedean.
From mathcomp Require Import boolp classical_sets functions wochoice.
From mathcomp Require Import cardinality mathcomp_extra fsbigop set_interval.
# Filters
The theory of (powerset) filters and tools for manipulating them.
This file introduces convergence for filters. It also provides the
interface of filtered types for associating a "canonical filter" to each
element. And lastly it provides typeclass instances for verifying when
a (set_system T) is really a filter in T, as a Filter or Properfilter.
## Structure of filter
```
filteredType U == interface type for types whose
elements represent sets of sets on U
These sets are intended to be filters
on U but this is not enforced yet.
The HB class is called Filtered.
It extends Pointed.
nbhs p == set of sets associated to p (in a
filtered type)
pfilteredType U == a pointed and filtered type
hasNbhs == factory for filteredType
continuous f == f is continuous w.r.t the topology
filterI_iter F n == nth stage of recursively building the
filter of finite intersections of F
finI_from D f == set of \bigcap_(i in E) f i where E is
a finite subset of D
```
We endow several standard types with the structure of filter, e.g.:
- products `(X1 * X2)%type`
- matrices `'M[X]_(m, n)`
- natural numbers `nat`
## Theory of filters
```
filter_from D B == set of the supersets of the elements
of the family of sets B whose indices
are in the domain D
This is a filter if (B_i)_(i in D)
forms a filter base.
filter_prod F G == product of the filters F and G
F `=>` G <-> G is included in F
F and G are sets of sets.
\oo == "eventually" filter on nat: set of
predicates on natural numbers that are
eventually true
F --> G <-> the canonical filter associated to G
is included in the canonical filter
associated to F
lim F == limit of the canonical filter
associated with F if there is such a
limit, i.e., an element l such that
the canonical filter associated to l
is a subset of F
[lim F in T] == limit of the canonical filter
associated to F in T where T has type
filteredType U
[cvg F in T] <-> the canonical filter associated to F
converges in T
cvg F <-> same as [cvg F in T] where T is
inferred from the type of the
canonical filter associated to F
Filter F == type class proving that the set of
sets F is a filter
ProperFilter F == type class proving that the set of
sets F is a proper filter
UltraFilter F == type class proving that the set of
sets F is an ultrafilter
filter_on T == interface type for sets of sets on T
that are filters
FilterType F FF == packs the set of sets F with the proof
FF of Filter F to build a filter_on T
structure
pfilter_on T == interface type for sets of sets on T
that are proper filters
PFilterPack F FF == packs the set of sets F with the proof
FF of ProperFilter F to build a
pfilter_on T structure
fmap f F == image of the filter F by the function
f
E @[x --> F] == image of the canonical filter
associated to F by the function
(fun x => E)
f @ F == image of the canonical filter
associated to F by the function f
fmapi f F == image of the filter F by the relation
f
E `@[x --> F] == image of the canonical filter
associated to F by the relation
(fun x => E)
f `@ F == image of the canonical filter
associated to F by the relation f
globally A == filter of the sets containing A
@frechet_filter T := [set S : set T | finite_set (~` S)]
a.k.a. cofinite filter
at_point a == filter of the sets containing a
within D F == restriction of the filter F to the
domain D
principal_filter x == filter containing every superset of x
principal_filter_type == alias for choice types with principal
filters
subset_filter F D == similar to within D F, but with
dependent types
powerset_filter_from F == the filter of downward closed subsets
of F.
Enables use of near notation to pick
suitably small members of F
in_filter F == interface type for the sets that
belong to the set of sets F
InFilter FP == packs a set P with a proof of F P to
build a in_filter F structure
```
## Near notations and tactics
The purpose of the near notations and tactics is to make the manipulation
of filters easier. Instead of proving $F\; G$, one can prove $G\; x$ for
$x$ "near F", i.e., for x such that H x for H arbitrarily precise as long
as $F\; H$. The near tactics allow for a delayed introduction of $H$:
$H$ is introduced as an existential variable and progressively
instantiated during the proof process.
### Notations
```
{near F, P} == the property P holds near the
canonical filter associated to F
P must have the form forall x, Q x.
Equivalent to F Q.
\forall x \near F, P x <-> F (fun x => P x).
\near x, P x := \forall y \near x, P y.
{near F & G, P} == same as {near H, P}, where H is the
product of the filters F and G
\forall x \near F & y \near G, P x y := {near F & G, forall x y, P x y}
\forall x & y \near F, P x y == same as before, with G = F
\near x & y, P x y := \forall z \near x & t \near y, P x y
x \is_near F == x belongs to a set P : in_filter F
```
### Tactics
- near=> x introduces x:
On the goal \forall x \near F, G x, introduces the variable x and an
"existential", and an unaccessible hypothesis ?H x and asks the user to
prove (G x) in this context.
Under the hood, it delays the proof of F ?H and waits for near: x.
Also exists under the form near=> x y.
- near: x discharges x:
On the goal H_i x, and where x \is_near F, it asks the user to prove
that (\forall x \near F, H_i x), provided that H_i x does not depend on
variables introduced after x.
Under the hood, it refines by intersection the existential variable ?H
attached to x, computes the intersection with F, and asks the user to
prove F H_i, right now.
- end_near should be used to close remaining existentials trivially.
- near F => x poses a variable near F, where F is a proper filter
It adds to the context a variable x that \is_near F, i.e., one may
assume H x for any H in F. This new variable x can be dealt with using
near: x, as for variables introduced by near=>.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Obligation Tactic := idtac.
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Reserved Notation "{ 'near' x , P }" (at level 0, format "{ 'near' x , P }").
Reserved Notation "'\forall' x '\near' x_0 , P"
(at level 200, x name, P at level 200,
format "'\forall' x '\near' x_0 , P").
Reserved Notation "'\near' x , P"
(at level 200, x at level 99, P at level 200,
format "'\near' x , P", only parsing).
Reserved Notation "{ 'near' x & y , P }"
(at level 0, format "{ 'near' x & y , P }").
Reserved Notation "'\forall' x '\near' x_0 & y '\near' y_0 , P"
(at level 200, x name, y name, P at level 200,
format "'\forall' x '\near' x_0 & y '\near' y_0 , P").
Reserved Notation "'\forall' x & y '\near' z , P"
(at level 200, x name, y name, P at level 200,
format "'\forall' x & y '\near' z , P").
Reserved Notation "'\near' x & y , P"
(at level 200, x, y at level 99, P at level 200,
format "'\near' x & y , P", only parsing).
Reserved Notation "F `=>` G" (at level 70, format "F `=>` G").
Reserved Notation "F --> G" (at level 70, format "F --> G").
Reserved Notation "[ 'lim' F 'in' T ]" (format "[ 'lim' F 'in' T ]").
Reserved Notation "[ 'cvg' F 'in' T ]" (format "[ 'cvg' F 'in' T ]").
Reserved Notation "x \is_near F" (at level 10, format "x \is_near F").
Reserved Notation "E @[ x --> F ]"
(at level 60, x name, format "E @[ x --> F ]").
Reserved Notation "E @[ x \oo ]"
(at level 60, x name, format "E @[ x \oo ]").
Reserved Notation "f @ F" (at level 60, format "f @ F").
Reserved Notation "E `@[ x --> F ]"
(at level 60, x name, format "E `@[ x --> F ]").
Reserved Notation "f `@ F" (at level 60, format "f `@ F").
Definition set_system U := set (set U).
Identity Coercion set_system_to_set : set_system >-> set.
HB.mixin Record isFiltered U T := {
nbhs : T -> set_system U
}.
#[short(type="filteredType")]
HB.structure Definition Filtered (U : Type) := {T of Choice T & isFiltered U T}.
Arguments nbhs {_ _} _ _ : simpl never.
#[short(type="pfilteredType")]
HB.structure Definition PointedFiltered (U : Type) := {T of Pointed T & isFiltered U T}.
HB.instance Definition _ T := Equality.on (set_system T).
HB.instance Definition _ T := Choice.on (set_system T).
HB.instance Definition _ T := Pointed.on (set_system T).
HB.instance Definition _ T := isFiltered.Build T (set_system T) id.
HB.mixin Record selfFiltered T := {}.
HB.factory Record hasNbhs T := { nbhs : T -> set_system T }.
HB.builders Context T of hasNbhs T.
HB.instance Definition _ := isFiltered.Build T T nbhs.
HB.instance Definition _ := selfFiltered.Build T.
HB.end.
#[short(type="nbhsType")]
HB.structure Definition Nbhs := {T of Choice T & hasNbhs T}.
#[short(type="pnbhsType")]
HB.structure Definition PointedNbhs := {T of Pointed T & hasNbhs T}.
Definition filter_from {I T : Type} (D : set I) (B : I -> set T) :
set_system T := [set P | exists2 i, D i & B i `<=` P].
HB.instance Definition _ m n X (Z : filteredType X) :=
isFiltered.Build 'M[X]_(m, n) 'M[Z]_(m, n) (fun mx => filter_from
[set P | forall i j, nbhs (mx i j) (P i j)]
(fun P => [set my : 'M[X]_(m, n) | forall i j, P i j (my i j)])).
HB.instance Definition _ m n (X : nbhsType) := selfFiltered.Build 'M[X]_(m, n).
Definition filter_prod {T U : Type}
(F : set_system T) (G : set_system U) : set_system (T * U) :=
filter_from (fun P => F P.1 /\ G P.2) (fun P => P.1 `*` P.2).
Section Near.
Local Notation "{ 'all1' P }" := (forall x, P x : Prop) (at level 0).
Local Notation "{ 'all2' P }" := (forall x y, P x y : Prop) (at level 0).
Local Notation "{ 'all3' P }" := (forall x y z, P x y z: Prop) (at level 0).
Local Notation ph := (phantom _).
Definition prop_near1 {X} {fX : filteredType X} (x : fX)
P (phP : ph {all1 P}) := nbhs x P.
Definition prop_near2 {X X'} {fX : filteredType X} {fX' : filteredType X'}
(x : fX) (x' : fX') := fun P of ph {all2 P} =>
filter_prod (nbhs x) (nbhs x') (fun x => P x.1 x.2).
End Near.
Notation "{ 'near' x , P }" := (@prop_near1 _ _ x _ (inPhantom P)) : type_scope.
Notation "'\forall' x '\near' x_0 , P" := {near x_0, forall x, P} : type_scope.
Notation "'\near' x , P" := (\forall x \near x, P) : type_scope.
Notation "{ 'near' x & y , P }" :=
(@prop_near2 _ _ _ _ x y _ (inPhantom P)) : type_scope.
Notation "'\forall' x '\near' x_0 & y '\near' y_0 , P" :=
{near x_0 & y_0, forall x y, P} : type_scope.
Notation "'\forall' x & y '\near' z , P" :=
{near z & z, forall x y, P} : type_scope.
Notation "'\near' x & y , P" := (\forall x \near x & y \near y, P) : type_scope.
Arguments prop_near1 : simpl never.
Arguments prop_near2 : simpl never.
Lemma nearE {T} {F : set_system T} (P : set T) :
(\forall x \near F, P x) = F P.
Proof.
by []. Qed.
Lemma eq_near {T} {F : set_system T} (P Q : set T) :
(forall x, P x <-> Q x) ->
(\forall x \near F, P x) = (\forall x \near F, Q x).
Proof.
Lemma nbhs_filterE {T : Type} (F : set_system T) : nbhs F = F.
Proof.
by []. Qed.
Module Export NbhsFilter.
Definition nbhs_simpl := (@nbhs_filterE).
End NbhsFilter.
Definition cvg_to {T : Type} (F G : set_system T) := G `<=` F.
Notation "F `=>` G" := (cvg_to F G) : classical_set_scope.
Lemma cvg_refl T (F : set_system T) : F `=>` F
Proof.
exact. Qed.
#[global] Hint Resolve cvg_refl : core.
Lemma cvg_trans T (G F H : set_system T) :
(F `=>` G) -> (G `=>` H) -> (F `=>` H).
Proof.
by move=> FG GH P /GH /FG. Qed.
Notation "F --> G" := (cvg_to (nbhs F) (nbhs G)) : classical_set_scope.
Definition type_of_filter {T} (F : set_system T) := T.
Definition lim_in {U : Type} (T : pfilteredType U) :=
fun F : set_system U => get (fun l : T => F --> l).
Notation "[ 'lim' F 'in' T ]" := (@lim_in _ T (nbhs F)) : classical_set_scope.
Definition lim {T : pnbhsType} (F : set_system T) := [lim F in T].
Notation "[ 'cvg' F 'in' T ]" := (F --> [lim F in T]) : classical_set_scope.
Notation cvg F := (F --> lim F).
Definition eventually := filter_from setT (fun N => [set n | (N <= n)%N]).
Notation "'\oo'" := eventually : classical_set_scope.
Section FilteredTheory.
HB.instance Definition _ X1 X2 (Z1 : filteredType X1) (Z2 : filteredType X2) :=
isFiltered.Build (X1 * X2)%type (Z1 * Z2)%type
(fun x => filter_prod (nbhs x.1) (nbhs x.2)).
HB.instance Definition _ (X1 X2 : nbhsType) :=
selfFiltered.Build (X1 * X2)%type.
Lemma cvg_prod T {U U' V V' : filteredType T} (x : U) (l : U') (y : V) (k : V') :
x --> l -> y --> k -> (x, y) --> (l, k).
Proof.
move=> xl yk X [[X1 X2] /= [HX1 HX2] H]; exists (X1, X2) => //=.
split; [exact: xl | exact: yk].
Qed.
split; [exact: xl | exact: yk].
Qed.
Lemma cvg_in_ex {U : Type} (T : pfilteredType U) (F : set_system U) :
[cvg F in T] <-> (exists l : T, F --> l).
Lemma cvg_ex (T : pnbhsType) (F : set_system T) :
cvg F <-> (exists l : T, F --> l).
Proof.
Lemma cvg_inP {U : Type} (T : pfilteredType U) (F : set_system U) (l : T) :
F --> l -> [cvg F in T].
Proof.
Lemma cvgP (T : pnbhsType) (F : set_system T) (l : T) : F --> l -> cvg F.
Proof.
Lemma cvg_in_toP {U : Type} (T : pfilteredType U) (F : set_system U) (l : T) :
[cvg F in T] -> [lim F in T] = l -> F --> l.
Proof.
Lemma cvg_toP (T : pnbhsType) (F : set_system T) (l : T) :
cvg F -> lim F = l -> F --> l.
Proof.
Lemma dvg_inP {U : Type} (T : pfilteredType U) (F : set_system U) :
~ [cvg F in T] -> [lim F in T] = point.
Lemma dvgP (T : pnbhsType) (F : set_system T) : ~ cvg F -> lim F = point.
Proof.
Lemma cvg_inNpoint {U} (T : pfilteredType U) (F : set_system U) :
[lim F in T] != point -> [cvg F in T].
Proof.
Lemma cvgNpoint (T : pnbhsType) (F : set_system T) : lim F != point -> cvg F.
Proof.
End FilteredTheory.
Arguments cvg_inP {U T F} l.
Arguments dvg_inP {U} T {F}.
Arguments cvgP {T F} l.
Arguments dvgP {T F}.
Lemma nbhs_nearE {U} {T : filteredType U} (x : T) (P : set U) :
nbhs x P = \near x, P x.
Proof.
by []. Qed.
Lemma near_nbhs {U} {T : filteredType U} (x : T) (P : set U) :
(\forall x \near nbhs x, P x) = \near x, P x.
Proof.
by []. Qed.
Lemma near2_curry {U V} (F : set_system U) (G : set_system V) (P : U -> set V) :
{near F & G, forall x y, P x y} = {near (F, G), forall x, P x.1 x.2}.
Proof.
by []. Qed.
Lemma near2_pair {U V} (F : set_system U) (G : set_system V) (P : set (U * V)) :
{near F & G, forall x y, P (x, y)} = {near (F, G), forall x, P x}.
Definition near2E := (@near2_curry, @near2_pair).
Lemma filter_of_nearI (X : Type) (fX : filteredType X)
(x : fX) : forall P,
nbhs x P = @prop_near1 X fX x P (inPhantom (forall x, P x)).
Proof.
by []. Qed.
Module Export NearNbhs.
Definition near_simpl := (@near_nbhs, @nbhs_nearE, filter_of_nearI).
Ltac near_simpl := rewrite ?near_simpl.
End NearNbhs.
Lemma near_swap {U V} (F : set_system U) (G : set_system V) (P : U -> set V) :
(\forall x \near F & y \near G, P x y) = (\forall y \near G & x \near F, P x y).
Proof.
Filters
Class Filter {T : Type} (F : set_system T) := {
filterT : F setT ;
filterI : forall P Q : set T, F P -> F Q -> F (P `&` Q) ;
filterS : forall P Q : set T, P `<=` Q -> F P -> F Q
}.
Global Hint Mode Filter - ! : typeclass_instances.
Class ProperFilter {T : Type} (F : set_system T) := {
filter_not_empty : ~ F set0 ;
filter_filter : Filter F
}.
Global Existing Instance filter_filter.
Global Hint Mode ProperFilter - ! : typeclass_instances.
Arguments filter_not_empty {T} F {_}.
Hint Extern 0 (~ _ set0) => solve [apply: filter_not_empty] : core.
Lemma filter_setT (T : Type) : Filter [set: set T].
Proof.
by constructor. Qed.
Lemma filterP_strong T (F : set_system T) {FF : Filter F} (P : set T) :
(exists Q : set T, exists FQ : F Q, forall x : T, Q x -> P x) <-> F P.
Proof.
Structure filter_on T := FilterType {
filter :> set_system T;
_ : Filter filter
}.
Definition filter_class T (F : filter_on T) : Filter F :=
let: FilterType _ class := F in class.
Arguments FilterType {T} _ _.
#[global] Existing Instance filter_class.
Coercion filter_filter : ProperFilter >-> Filter.
Structure pfilter_on T := PFilterPack {
pfilter :> (T -> Prop) -> Prop;
_ : ProperFilter pfilter
}.
Definition pfilter_class T (F : pfilter_on T) : ProperFilter F :=
let: PFilterPack _ class := F in class.
Arguments PFilterPack {T} _ _.
#[global] Existing Instance pfilter_class.
Canonical pfilter_filter_on T (F : pfilter_on T) :=
FilterType F (pfilter_class F).
Coercion pfilter_filter_on : pfilter_on >-> filter_on.
Definition PFilterType {T} (F : (T -> Prop) -> Prop)
{fF : Filter F} (fN0 : not (F set0)) :=
PFilterPack F (Build_ProperFilter fN0 fF).
Arguments PFilterType {T} F {fF} fN0.
HB.instance Definition _ T := gen_eqMixin (filter_on T).
HB.instance Definition _ T := gen_choiceMixin (filter_on T).
HB.instance Definition _ T := isPointed.Build (filter_on T)
(FilterType _ (filter_setT T)).
HB.instance Definition _ T := isFiltered.Build T (filter_on T) (@filter T).
Global Instance filter_on_Filter T (F : filter_on T) : Filter F.
Proof.
by case: F. Qed.
Proof.
by case: F. Qed.
Lemma nbhs_filter_onE T (F : filter_on T) : nbhs F = nbhs (filter F).
Proof.
by []. Qed.
Lemma near_filter_onE T (F : filter_on T) (P : set T) :
(\forall x \near F, P x) = \forall x \near filter F, P x.
Proof.
by []. Qed.
Program Definition trivial_filter_on T := FilterType [set setT : set T] _.
Next Obligation.
Lemma filter_nbhsT {T : Type} (F : set_system T) :
Filter F -> nbhs F setT.
Proof.
Lemma nearT {T : Type} (F : set_system T) : Filter F -> \near F, True.
Proof.
Lemma filter_not_empty_ex {T : Type} (F : set_system T) :
(forall P, F P -> exists x, P x) -> ~ F set0.
Proof.
Definition Build_ProperFilter_ex {T : Type} (F : set_system T)
(filter_ex : forall P, F P -> exists x, P x)
(FF : Filter F) :=
Build_ProperFilter (filter_not_empty_ex filter_ex) FF.
Lemma filter_ex_subproof {T : Type} (F : set_system T) :
~ F set0 -> (forall P, F P -> exists x, P x).
Proof.
move=> NFset0 P FP; apply: contra_notP NFset0 => nex; suff <- : P = set0 by [].
by rewrite funeqE => x; rewrite propeqE; split=> // Px; apply: nex; exists x.
Qed.
by rewrite funeqE => x; rewrite propeqE; split=> // Px; apply: nex; exists x.
Qed.
Definition filter_ex {T : Type} (F : set_system T) {FF : ProperFilter F} :=
filter_ex_subproof (filter_not_empty F).
Arguments filter_ex {T F FF _}.
Lemma filter_getP {T : pointedType} (F : set_system T) {FF : ProperFilter F}
(P : set T) : F P -> P (get P).
Record in_filter T (F : set_system T) := InFilter {
prop_in_filter_proj : T -> Prop;
prop_in_filterP_proj : F prop_in_filter_proj
}.
Module Type PropInFilterSig.
Axiom t : forall (T : Type) (F : set_system T), in_filter F -> T -> Prop.
Axiom tE : t = prop_in_filter_proj.
End PropInFilterSig.
Module PropInFilter : PropInFilterSig.
Definition t := prop_in_filter_proj.
Lemma tE : t = prop_in_filter_proj
Proof.
by []. Qed.
Notation prop_of := PropInFilter.t.
Definition prop_ofE := PropInFilter.tE.
Notation "x \is_near F" := (@PropInFilter.t _ F _ x).
Definition is_nearE := prop_ofE.
Lemma prop_ofP T F (iF : @in_filter T F) : F (prop_of iF).
Proof.
Definition in_filterT T F (FF : Filter F) : @in_filter T F :=
InFilter (filterT).
Canonical in_filterI T F (FF : Filter F) (P Q : @in_filter T F) :=
InFilter (filterI (prop_in_filterP_proj P) (prop_in_filterP_proj Q)).
Lemma filter_near_of T F (P : @in_filter T F) (Q : set T) : Filter F ->
(forall x, prop_of P x -> Q x) -> F Q.
Fact near_key : unit
Proof.
exact. Qed.
Lemma mark_near (P : Prop) : locked_with near_key P -> P.
Proof.
Lemma near_acc T F (P : @in_filter T F) (Q : set T) (FF : Filter F)
(FQ : \forall x \near F, Q x) :
locked_with near_key (forall x, prop_of (in_filterI FF P (InFilter FQ)) x -> Q x).
Lemma near_skip_subproof T F (P Q : @in_filter T F) (G : set T) (FF : Filter F) :
locked_with near_key (forall x, prop_of P x -> G x) ->
locked_with near_key (forall x, prop_of (in_filterI FF P Q) x -> G x).
Proof.
Tactic Notation "near=>" ident(x) := apply: filter_near_of => x ?.
Ltac just_discharge_near x :=
tryif match goal with Hx : x \is_near _ |- _ => move: (x) (Hx); apply: mark_near end
then idtac else fail "the variable" x "is not a ""near"" variable".
Ltac near_skip :=
match goal with |- locked_with near_key (forall _, @PropInFilter.t _ _ ?P _ -> _) =>
tryif is_evar P then fail "nothing to skip" else apply: near_skip_subproof end.
Tactic Notation "near:" ident(x) :=
just_discharge_near x;
tryif do ![apply: near_acc; first shelve|near_skip]
then idtac
else fail "the goal depends on variables introduced after" x.
Ltac under_near i tac := near=> i; tac; near: i.
Tactic Notation "near=>" ident(i) "do" tactic3(tac) := under_near i ltac:(tac).
Tactic Notation "near=>" ident(i) "do" "[" tactic4(tac) "]" := near=> i do tac.
Tactic Notation "near" "do" tactic3(tac) :=
let i := fresh "i" in under_near i ltac:(tac).
Tactic Notation "near" "do" "[" tactic4(tac) "]" := near do tac.
Ltac end_near := do ?exact: in_filterT.
Ltac done :=
trivial; hnf; intros; solve
[ do ![solve [trivial | apply: sym_equal; trivial]
| discriminate | contradiction | split]
| match goal with H : ~ _ |- _ => solve [case H; trivial] end
| match goal with |- ?x \is_near _ => near: x; apply: prop_ofP end ].
Lemma have_near (U : Type) (fT : filteredType U) (x : fT) (P : Prop) :
ProperFilter (nbhs x) -> (\forall x \near x, P) -> P.
Arguments have_near {U fT} x.
Tactic Notation "near" constr(F) "=>" ident(x) :=
apply: (have_near F); near=> x.
Lemma near T (F : set_system T) P (FP : F P) (x : T)
(Px : prop_of (InFilter FP) x) : P x.
Proof.
Lemma nearW {T : Type} {F : set_system T} (P : T -> Prop) :
Filter F -> (forall x, P x) -> (\forall x \near F, P x).
Lemma filterE {T : Type} {F : set_system T} :
Filter F -> forall P : set T, (forall x, P x) -> F P.
Proof.
Lemma filter_app (T : Type) (F : set_system T) :
Filter F -> forall P Q : set T, F (fun x => P x -> Q x) -> F P -> F Q.
Proof.
by move=> FF P Q subPQ FP; near=> x do suff: P x.
Unshelve. all: by end_near. Qed.
Unshelve. all: by end_near. Qed.
Lemma filter_app2 (T : Type) (F : set_system T) :
Filter F -> forall P Q R : set T, F (fun x => P x -> Q x -> R x) ->
F P -> F Q -> F R.
Proof.
Lemma filter_app3 (T : Type) (F : set_system T) :
Filter F -> forall P Q R S : set T, F (fun x => P x -> Q x -> R x -> S x) ->
F P -> F Q -> F R -> F S.
Proof.
Lemma filterS2 (T : Type) (F : set_system T) :
Filter F -> forall P Q R : set T, (forall x, P x -> Q x -> R x) ->
F P -> F Q -> F R.
Proof.
Lemma filterS3 (T : Type) (F : set_system T) :
Filter F -> forall P Q R S : set T, (forall x, P x -> Q x -> R x -> S x) ->
F P -> F Q -> F R -> F S.
Proof.
Lemma filter_const {T : Type} {F} {FF: @ProperFilter T F} (P : Prop) :
F (fun=> P) -> P.
Proof.
Lemma in_filter_from {I T : Type} (D : set I) (B : I -> set T) (i : I) :
D i -> filter_from D B (B i).
Proof.
by exists i. Qed.
Lemma in_nearW {T : Type} (F : set_system T) (P : T -> Prop) (S : set T) :
Filter F -> F S -> {in S, forall x, P x} -> \near F, P F.
Proof.
Lemma near_andP {T : Type} F (b1 b2 : T -> Prop) : Filter F ->
(\forall x \near F, b1 x /\ b2 x) <->
(\forall x \near F, b1 x) /\ (\forall x \near F, b2 x).
Proof.
Lemma nearP_dep {T U} {F : set_system T} {G : set_system U}
{FF : Filter F} {FG : Filter G} (P : T -> U -> Prop) :
(\forall x \near F & y \near G, P x y) ->
\forall x \near F, \forall y \near G, P x y.
Proof.
Lemma filter2P T U (F : set_system T) (G : set_system U)
{FF : Filter F} {FG : Filter G} (P : set (T * U)) :
(exists2 Q : set T * set U, F Q.1 /\ G Q.2
& forall (x : T) (y : U), Q.1 x -> Q.2 y -> P (x, y))
<-> \forall x \near (F, G), P x.
Proof.
Lemma filter_ex2 {T U : Type} (F : set_system T) (G : set_system U)
{FF : ProperFilter F} {FG : ProperFilter G} (P : set T) (Q : set U) :
F P -> G Q -> exists x : T, exists2 y : U, P x & Q y.
Arguments filter_ex2 {T U F G FF FG _ _}.
Lemma filter_fromP {I T : Type} (D : set I) (B : I -> set T) (F : set_system T) :
Filter F -> F `=>` filter_from D B <-> forall i, D i -> F (B i).
Proof.
split; first by move=> FB i ?; apply/FB/in_filter_from.
by move=> FB P [i Di BjP]; apply: (filterS BjP); apply: FB.
Qed.
by move=> FB P [i Di BjP]; apply: (filterS BjP); apply: FB.
Qed.
Lemma filter_fromTP {I T : Type} (B : I -> set T) (F : set_system T) :
Filter F -> F `=>` filter_from setT B <-> forall i, F (B i).
Proof.
Lemma filter_from_filter {I T : Type} (D : set I) (B : I -> set T) :
(exists i : I, D i) ->
(forall i j, D i -> D j -> exists2 k, D k & B k `<=` B i `&` B j) ->
Filter (filter_from D B).
Proof.
move=> [i0 Di0] Binter; constructor; first by exists i0.
move=> P Q [i Di BiP] [j Dj BjQ]; have [k Dk BkPQ]:= Binter _ _ Di Dj.
by exists k => // x /BkPQ [/BiP ? /BjQ].
by move=> P Q subPQ [i Di BiP]; exists i => //; apply: subset_trans subPQ.
Qed.
move=> P Q [i Di BiP] [j Dj BjQ]; have [k Dk BkPQ]:= Binter _ _ Di Dj.
by exists k => // x /BkPQ [/BiP ? /BjQ].
by move=> P Q subPQ [i Di BiP]; exists i => //; apply: subset_trans subPQ.
Qed.
Lemma filter_fromT_filter {I T : Type} (B : I -> set T) :
(exists _ : I, True) ->
(forall i j, exists k, B k `<=` B i `&` B j) ->
Filter (filter_from setT B).
Proof.
move=> [i0 _] BI; apply: filter_from_filter; first by exists i0.
by move=> i j _ _; have [k] := BI i j; exists k.
Qed.
by move=> i j _ _; have [k] := BI i j; exists k.
Qed.
Lemma filter_from_proper {I T : Type} (D : set I) (B : I -> set T) :
Filter (filter_from D B) ->
(forall i, D i -> B i !=set0) ->
ProperFilter (filter_from D B).
Proof.
move=> FF BN0; apply: Build_ProperFilter_ex => P [i Di BiP].
by have [x Bix] := BN0 _ Di; exists x; apply: BiP.
Qed.
by have [x Bix] := BN0 _ Di; exists x; apply: BiP.
Qed.
Global Instance eventually_filter : ProperFilter eventually.
Proof.
eapply @filter_from_proper; last by move=> i _; exists i => /=.
apply: filter_fromT_filter; first by exists 0%N.
move=> i j; exists (maxn i j) => n //=.
by rewrite geq_max => /andP[ltin ltjn].
Qed.
apply: filter_fromT_filter; first by exists 0%N.
move=> i j; exists (maxn i j) => n //=.
by rewrite geq_max => /andP[ltin ltjn].
Qed.
Canonical eventually_filterType := FilterType eventually _.
Canonical eventually_pfilterType := PFilterType eventually (filter_not_empty _).
Lemma filter_bigI T (I : choiceType) (D : {fset I}) (f : I -> set T)
(F : set_system T) :
Filter F -> (forall i, i \in D -> F (f i)) ->
F (\bigcap_(i in [set` D]) f i).
Proof.
move=> FF FfD.
suff: F [set p | forall i, i \in enum_fset D -> f i p] by [].
have {FfD} : forall i, i \in enum_fset D -> F (f i) by move=> ? /FfD.
elim: (enum_fset D) => [|i s ihs] FfD; first exact: filterS filterT.
apply: (@filterS _ _ _ (f i `&` [set p | forall i, i \in s -> f i p])).
by move=> p [fip fsp] j; rewrite inE => /orP [/eqP->|] //; apply: fsp.
apply: filterI; first by apply: FfD; rewrite inE eq_refl.
by apply: ihs => j sj; apply: FfD; rewrite inE sj orbC.
Qed.
suff: F [set p | forall i, i \in enum_fset D -> f i p] by [].
have {FfD} : forall i, i \in enum_fset D -> F (f i) by move=> ? /FfD.
elim: (enum_fset D) => [|i s ihs] FfD; first exact: filterS filterT.
apply: (@filterS _ _ _ (f i `&` [set p | forall i, i \in s -> f i p])).
by move=> p [fip fsp] j; rewrite inE => /orP [/eqP->|] //; apply: fsp.
apply: filterI; first by apply: FfD; rewrite inE eq_refl.
by apply: ihs => j sj; apply: FfD; rewrite inE sj orbC.
Qed.
Lemma filter_forall T (I : finType) (f : I -> set T) (F : set_system T) :
Filter F -> (forall i : I, \forall x \near F, f i x) ->
\forall x \near F, forall i, f i x.
Proof.
Lemma filter_imply [T : Type] [P : Prop] [f : set T] [F : set_system T] :
Filter F -> (P -> \near F, f F) -> \near F, P -> f F.
Proof.
Limits expressed with filters
Definition fmap {T U : Type} (f : T -> U) (F : set_system T) : set_system U :=
[set P | F (f @^-1` P)].
Arguments fmap _ _ _ _ _ /.
Lemma fmapE {U V : Type} (f : U -> V)
(F : set_system U) (P : set V) : fmap f F P = F (f @^-1` P).
Proof.
by []. Qed.
Notation "E @[ x --> F ]" :=
(fmap (fun x => E) (nbhs F)) : classical_set_scope.
Notation "E @[ x \oo ]" :=
(fmap (fun x => E) \oo) : classical_set_scope.
Notation "f @ F" := (fmap f (nbhs F)) : classical_set_scope.
Notation limn F := (lim (F @ \oo)).
Notation cvgn F := (cvg (F @ \oo)).
Global Instance fmap_filter T U (f : T -> U) (F : set_system T) :
Filter F -> Filter (f @ F).
Proof.
Global Instance fmap_proper_filter T U (f : T -> U) (F : set_system T) :
ProperFilter F -> ProperFilter (f @ F).
Proof.
Definition fmapi {T U : Type} (f : T -> set U) (F : set_system T) :
set_system _ :=
[set P | \forall x \near F, exists y, f x y /\ P y].
Notation "E `@[ x --> F ]" :=
(fmapi (fun x => E) (nbhs F)) : classical_set_scope.
Notation "f `@ F" := (fmapi f (nbhs F)) : classical_set_scope.
Lemma fmapiE {U V : Type} (f : U -> set V)
(F : set_system U) (P : set V) :
fmapi f F P = \forall x \near F, exists y, f x y /\ P y.
Proof.
by []. Qed.
Global Instance fmapi_filter T U (f : T -> set U) (F : set_system T) :
{near F, is_totalfun f} -> Filter F -> Filter (f `@ F).
Proof.
move=> f_totalfun FF; rewrite /fmapi; apply: Build_Filter.
- by apply: filterS f_totalfun => x [[y Hy] H]; exists y.
- move=> /= P Q FP FQ; near=> x.
have [//|y [fxy Py]] := near FP x.
have [//|z [fxz Qz]] := near FQ x.
have [//|_ fx_prop] := near f_totalfun x.
by exists y; split => //; split => //; rewrite [y](fx_prop _ z).
- move=> /= P Q subPQ FP; near=> x.
by have [//|y [fxy /subPQ Qy]] := near FP x; exists y.
Unshelve. all: by end_near. Qed.
- by apply: filterS f_totalfun => x [[y Hy] H]; exists y.
- move=> /= P Q FP FQ; near=> x.
have [//|y [fxy Py]] := near FP x.
have [//|z [fxz Qz]] := near FQ x.
have [//|_ fx_prop] := near f_totalfun x.
by exists y; split => //; split => //; rewrite [y](fx_prop _ z).
- move=> /= P Q subPQ FP; near=> x.
by have [//|y [fxy /subPQ Qy]] := near FP x; exists y.
Unshelve. all: by end_near. Qed.
#[global] Typeclasses Opaque fmapi.
Global Instance fmapi_proper_filter
T U (f : T -> U -> Prop) (F : set_system T) :
{near F, is_totalfun f} ->
ProperFilter F -> ProperFilter (f `@ F).
Proof.
move=> f_totalfun FF; apply: Build_ProperFilter_ex.
by move=> P; rewrite /fmapi/= => /filter_ex [x [y [??]]]; exists y.
exact: fmapi_filter.
Qed.
by move=> P; rewrite /fmapi/= => /filter_ex [x [y [??]]]; exists y.
exact: fmapi_filter.
Qed.
Lemma cvg_id T (F : set_system T) : x @[x --> F] --> F.
Proof.
exact. Qed.
Lemma fmap_comp {A B C} (f : B -> C) (g : A -> B) F:
Filter F -> (f \o g)%FUN @ F = f @ (g @ F).
Proof.
by []. Qed.
Lemma appfilter U V (f : U -> V) (F : set_system U) :
f @ F = [set P : set _ | \forall x \near F, P (f x)].
Proof.
by []. Qed.
Lemma cvg_app U V (F G : set_system U) (f : U -> V) :
F --> G -> f @ F --> f @ G.
Proof.
by move=> FG P /=; exact: FG. Qed.
Lemma cvgi_app U V (F G : set_system U) (f : U -> set V) :
F --> G -> f `@ F --> f `@ G.
Proof.
by move=> FG P /=; exact: FG. Qed.
Lemma cvg_comp T U V (f : T -> U) (g : U -> V)
(F : set_system T) (G : set_system U) (H : set_system V) :
f @ F `=>` G -> g @ G `=>` H -> g \o f @ F `=>` H.
Proof.
Lemma cvgi_comp T U V (f : T -> U) (g : U -> set V)
(F : set_system T) (G : set_system U) (H : set_system V) :
f @ F `=>` G -> g `@ G `=>` H -> g \o f `@ F `=>` H.
Proof.
Lemma near_eq_cvg {T U} {F : set_system T} {FF : Filter F} (f g : T -> U) :
{near F, f =1 g} -> g @ F `=>` f @ F.
Proof.
Lemma eq_cvg (T T' : Type) (F : set_system T) (f g : T -> T') (x : set_system T') :
f =1 g -> (f @ F --> x) = (g @ F --> x).
Proof.
Lemma eq_is_cvg_in (T T' : Type) (fT : pfilteredType T') (F : set_system T) (f g : T -> T') :
f =1 g -> [cvg (f @ F) in fT] = [cvg (g @ F) in fT].
Proof.
Lemma eq_is_cvg (T : Type) (T' : pnbhsType) (F : set_system T) (f g : T -> T') :
f =1 g -> cvg (f @ F) = cvg (g @ F).
Proof.
Lemma neari_eq_loc {T U} {F : set_system T} {FF : Filter F} (f g : T -> set U) :
{near F, f =2 g} -> g `@ F `=>` f `@ F.
Proof.
Lemma cvg_near_const (T U : Type) (f : T -> U) (F : set_system T) (G : set_system U) :
Filter F -> ProperFilter G ->
(\forall y \near G, \forall x \near F, f x = y) -> f @ F --> G.
Proof.
move=> FF FG fFG P /= GP; rewrite !near_simpl; apply: (have_near G).
by apply: filter_app fFG; near do apply: filterS => x /= ->.
Unshelve. all: by end_near. Qed.
by apply: filter_app fFG; near do apply: filterS => x /= ->.
Unshelve. all: by end_near. Qed.
Definition continuous_at (T U : nbhsType) (x : T) (f : T -> U) :=
(f%function @ x --> f%function x).
Notation continuous f := (forall x, continuous_at x f).
Lemma near_fun (T T' : nbhsType) (f : T -> T') (x : T) (P : T' -> Prop) :
{for x, continuous f} ->
(\forall y \near f x, P y) -> (\near x, P (f x)).
Proof.
exact. Qed.
Definition globally {T : Type} (A : set T) : set_system T :=
[set P : set T | forall x, A x -> P x].
Arguments globally {T} A _ /.
Lemma globally0 {T : Type} (A : set T) : globally set0 A
Proof.
by []. Qed.
Global Instance globally_filter {T : Type} (A : set T) :
Filter (globally A).
Proof.
constructor => //= P Q; last by move=> PQ AP x /AP /PQ.
by move=> AP AQ x Ax; split; [apply: AP|apply: AQ].
Qed.
by move=> AP AQ x Ax; split; [apply: AP|apply: AQ].
Qed.
Global Instance globally_properfilter {T : Type} (A : set T) a :
A a -> ProperFilter (globally A).
Proof.
Specific filters
Section frechet_filter.
Variable T : Type.
Definition frechet_filter := [set S : set T | finite_set (~` S)].
Global Instance frechet_properfilter : infinite_set [set: T] ->
ProperFilter frechet_filter.
Proof.
move=> infT; rewrite /frechet_filter.
constructor; first by rewrite /= setC0; exact: infT.
constructor; first by rewrite /= setCT.
- by move=> ? ?; rewrite /= setCI finite_setU.
- by move=> P Q PQ; exact/sub_finite_set/subsetC.
Qed.
constructor; first by rewrite /= setC0; exact: infT.
constructor; first by rewrite /= setCT.
- by move=> ? ?; rewrite /= setCI finite_setU.
- by move=> P Q PQ; exact/sub_finite_set/subsetC.
Qed.
End frechet_filter.
Global Instance frechet_properfilter_nat : ProperFilter (@frechet_filter nat).
Proof.
Section at_point.
Context {T : Type}.
Definition at_point (a : T) (P : set T) : Prop := P a.
Global Instance at_point_filter (a : T) : ProperFilter (at_point a).
Proof.
by constructor=> //; constructor=> // P Q subPQ /subPQ. Qed.
End at_point.
Filters for pairs
Global Instance filter_prod_filter T U (F : set_system T) (G : set_system U) :
Filter F -> Filter G -> Filter (filter_prod F G).
Proof.
Canonical prod_filter_on T U (F : filter_on T) (G : filter_on U) :=
FilterType (filter_prod F G) (filter_prod_filter _ _).
Global Instance filter_prod_proper {T1 T2 : Type}
{F : (T1 -> Prop) -> Prop} {G : (T2 -> Prop) -> Prop}
{FF : ProperFilter F} {FG : ProperFilter G} :
ProperFilter (filter_prod F G).
Proof.
apply: filter_from_proper => -[A B] [/=FA GB].
by have [[x ?] [y ?]] := (filter_ex FA, filter_ex GB); exists (x, y).
Qed.
by have [[x ?] [y ?]] := (filter_ex FA, filter_ex GB); exists (x, y).
Qed.
Lemma filter_prod1 {T U} {F : set_system T} {G : set_system U}
{FG : Filter G} (P : set T) :
(\forall x \near F, P x) -> \forall x \near F & _ \near G, P x.
Lemma filter_prod2 {T U} {F : set_system T} {G : set_system U}
{FF : Filter F} (P : set U) :
(\forall y \near G, P y) -> \forall _ \near F & y \near G, P y.
Program Definition in_filter_prod {T U} {F : set_system T} {G : set_system U}
(P : in_filter F) (Q : in_filter G) : in_filter (filter_prod F G) :=
@InFilter _ _ (fun x => prop_of P x.1 /\ prop_of Q x.2) _.
Next Obligation.
Lemma near_pair {T U} {F : set_system T} {G : set_system U}
{FF : Filter F} {FG : Filter G}
(P : in_filter F) (Q : in_filter G) x :
prop_of P x.1 -> prop_of Q x.2 -> prop_of (in_filter_prod P Q) x.
Proof.
Lemma cvg_fst {T U F G} {FG : Filter G} :
(@fst T U) @ filter_prod F G --> F.
Proof.
Lemma cvg_snd {T U F G} {FF : Filter F} :
(@snd T U) @ filter_prod F G --> G.
Proof.
Lemma near_map {T U} (f : T -> U) (F : set_system T) (P : set U) :
(\forall y \near f @ F, P y) = (\forall x \near F, P (f x)).
Proof.
by []. Qed.
Lemma near_map2 {T T' U U'} (f : T -> U) (g : T' -> U')
(F : set_system T) (G : set_system T') (P : U -> set U') :
Filter F -> Filter G ->
(\forall y \near f @ F & y' \near g @ G, P y y') =
(\forall x \near F & x' \near G , P (f x) (g x')).
Proof.
move=> FF FG; rewrite propeqE; split=> -[[A B] /= [fFA fGB] ABP].
exists (f @^-1` A, g @^-1` B) => //= -[x y /=] xyAB.
by apply: (ABP (_, _)); apply: xyAB.
exists (f @` A, g @` B) => //=; last first.
by move=> -_ [/= [x Ax <-] [x' Bx' <-]]; apply: (ABP (_, _)).
rewrite !nbhs_simpl /fmap /=; split.
by apply: filterS fFA=> x Ax; exists x.
by apply: filterS fGB => x Bx; exists x.
Qed.
exists (f @^-1` A, g @^-1` B) => //= -[x y /=] xyAB.
by apply: (ABP (_, _)); apply: xyAB.
exists (f @` A, g @` B) => //=; last first.
by move=> -_ [/= [x Ax <-] [x' Bx' <-]]; apply: (ABP (_, _)).
rewrite !nbhs_simpl /fmap /=; split.
by apply: filterS fFA=> x Ax; exists x.
by apply: filterS fGB => x Bx; exists x.
Qed.
Lemma near_mapi {T U} (f : T -> set U) (F : set_system T) (P : set U) :
(\forall y \near f `@ F, P y) = (\forall x \near F, exists y, f x y /\ P y).
Proof.
by []. Qed.
Lemma filter_pair_set (T T' : Type) (F : set_system T) (F' : set_system T') :
Filter F -> Filter F' ->
forall (P : set T) (P' : set T') (Q : set (T * T')),
(forall x x', P x -> P' x' -> Q (x, x')) -> F P /\ F' P' ->
filter_prod F F' Q.
Proof.
by move=> FF FF' P P' Q PQ [FP FP'];
near=> x do [have := PQ x.1 x.2; rewrite -surjective_pairing; apply];
[apply: cvg_fst | apply: cvg_snd].
Unshelve. all: by end_near. Qed.
near=> x do [have := PQ x.1 x.2; rewrite -surjective_pairing; apply];
[apply: cvg_fst | apply: cvg_snd].
Unshelve. all: by end_near. Qed.
Lemma filter_pair_near_of (T T' : Type) (F : set_system T) (F' : set_system T') :
Filter F -> Filter F' ->
forall (P : @in_filter T F) (P' : @in_filter T' F') (Q : set (T * T')),
(forall x x', prop_of P x -> prop_of P' x' -> Q (x, x')) ->
filter_prod F F' Q.
Proof.
Tactic Notation "near=>" ident(x) ident(y) :=
(apply: filter_pair_near_of => x y ? ?).
Tactic Notation "near" constr(F) "=>" ident(x) ident(y) :=
apply: (have_near F); near=> x y.
Module Export NearMap.
Definition near_simpl := (@near_simpl, @near_map, @near_mapi, @near_map2).
Ltac near_simpl := rewrite ?near_simpl.
End NearMap.
Lemma filterN {R : numDomainType} (P : pred R) (F : set_system R) :
(\forall x \near - x @[x --> F], (P \o -%R) x) = \forall x \near F, P x.
Proof.
Lemma cvg_pair {T U V F} {G : set_system U} {H : set_system V}
{FF : Filter F} {FG : Filter G} {FH : Filter H} (f : T -> U) (g : T -> V) :
f @ F --> G -> g @ F --> H ->
(f x, g x) @[x --> F] --> (G, H).
Proof.
move=> fFG gFH P; rewrite !near_simpl => -[[A B] /=[GA HB] ABP]; near=> x.
by apply: (ABP (_, _)); split=> //=; near: x; [apply: fFG|apply: gFH].
Unshelve. all: by end_near. Qed.
by apply: (ABP (_, _)); split=> //=; near: x; [apply: fFG|apply: gFH].
Unshelve. all: by end_near. Qed.
Lemma cvg_comp2 {T U V W}
{F : set_system T} {G : set_system U} {H : set_system V} {I : set_system W}
{FF : Filter F} {FG : Filter G} {FH : Filter H}
(f : T -> U) (g : T -> V) (h : U -> V -> W) :
f @ F --> G -> g @ F --> H ->
h (fst x) (snd x) @[x --> (G, H)] --> I ->
h (f x) (g x) @[x --> F] --> I.
Proof.
Definition cvg_to_comp_2 := @cvg_comp2.
Restriction of a filter to a domain
Section within.
Context {T : Type}.
Implicit Types (D : set T) (F : set_system T).
Definition within D F : set_system T := [set P | {near F, D `<=` P}].
Arguments within : simpl never.
Lemma near_withinE D F (P : set T) :
(\forall x \near within D F, P x) = {near F, D `<=` P}.
Proof.
by []. Qed.
Lemma withinT F D : Filter F -> within D F D.
Lemma near_withinT F D : Filter F -> \forall x \near within D F, D x.
Proof.
Lemma cvg_within {F} {FF : Filter F} D : within D F --> F.
Proof.
Lemma withinET {F} {FF : Filter F} : within setT F = F.
Proof.
rewrite eqEsubset /within; split => X //=;
by apply: filter_app => //=; apply: nearW => // x; apply.
Qed.
by apply: filter_app => //=; apply: nearW => // x; apply.
Qed.
End within.
Global Instance within_filter T D F : Filter F -> Filter (@within T D F).
Proof.
#[global] Typeclasses Opaque within.
Canonical within_filter_on T D (F : filter_on T) :=
FilterType (within D F) (within_filter _ _).
Lemma filter_bigI_within T (I : choiceType) (D : {fset I}) (f : I -> set T)
(F : set (set T)) (P : set T) :
Filter F -> (forall i, i \in D -> F [set j | P j -> f i j]) ->
F ([set j | P j -> (\bigcap_(i in [set` D]) f i) j]).
Proof.
Definition subset_filter {T} (F : set_system T) (D : set T) :=
[set P : set {x | D x} | F [set x | forall Dx : D x, P (exist _ x Dx)]].
Arguments subset_filter {T} F D _.
Global Instance subset_filter_filter T F (D : set T) :
Filter F -> Filter (subset_filter F D).
Proof.
move=> FF; constructor; rewrite /subset_filter/=.
- exact: filterE.
- by move=> P Q; apply: filterS2=> x PD QD Dx; split.
- by move=> P Q subPQ; apply: filterS => R PD Dx; apply: subPQ.
Qed.
- exact: filterE.
- by move=> P Q; apply: filterS2=> x PD QD Dx; split.
- by move=> P Q subPQ; apply: filterS => R PD Dx; apply: subPQ.
Qed.
Lemma subset_filter_proper {T F} {FF : Filter F} (D : set T) :
(forall P, F P -> ~ ~ exists x, D x /\ P x) ->
ProperFilter (subset_filter F D).
Proof.
move=> DAP; apply: Build_ProperFilter; rewrite /subset_filter => subFD.
by have /(_ subFD) := DAP (~` D); apply => -[x [dx /(_ dx)]].
Qed.
by have /(_ subFD) := DAP (~` D); apply => -[x [dx /(_ dx)]].
Qed.
Section NearSet.
Context {Y : Type}.
Context (F : set_system Y) (PF : ProperFilter F).
Definition powerset_filter_from : set_system (set Y) := filter_from
[set M | [/\ M `<=` F,
(forall E1 E2, M E1 -> F E2 -> E2 `<=` E1 -> M E2) & M !=set0 ] ]
id.
Global Instance powerset_filter_from_filter : ProperFilter powerset_filter_from.
Proof.
split.
by move=> [W [_ _ [N +]]]; rewrite subset0 => /[swap] ->; apply.
apply: filter_from_filter.
by exists F; split => //; exists setT; exact: filterT.
move=> M N /= [entM subM [M0 MM0]] [entN subN [N0 NN0]].
exists [set E | exists P Q, [/\ M P, N Q & E = P `&` Q] ]; first split.
- by move=> ? [? [? [? ? ->]]]; apply: filterI; [exact: entM | exact: entN].
- move=> ? E2 [P [Q [MP MQ ->]]] entE2 E2subPQ; exists E2, E2.
split; last by rewrite setIid.
+ by apply: (subM _ _ MP) => // ? /E2subPQ [].
+ by apply: (subN _ _ MQ) => // ? /E2subPQ [].
- by exists (M0 `&` N0), M0, N0.
- move=> E /= [P [Q [MP MQ ->]]]; have entPQ : F (P `&` Q).
by apply: filterI; [exact: entM | exact: entN].
by split; [apply: (subM _ _ MP) | apply: (subN _ _ MQ)] => // ? [].
Qed.
by move=> [W [_ _ [N +]]]; rewrite subset0 => /[swap] ->; apply.
apply: filter_from_filter.
by exists F; split => //; exists setT; exact: filterT.
move=> M N /= [entM subM [M0 MM0]] [entN subN [N0 NN0]].
exists [set E | exists P Q, [/\ M P, N Q & E = P `&` Q] ]; first split.
- by move=> ? [? [? [? ? ->]]]; apply: filterI; [exact: entM | exact: entN].
- move=> ? E2 [P [Q [MP MQ ->]]] entE2 E2subPQ; exists E2, E2.
split; last by rewrite setIid.
+ by apply: (subM _ _ MP) => // ? /E2subPQ [].
+ by apply: (subN _ _ MQ) => // ? /E2subPQ [].
- by exists (M0 `&` N0), M0, N0.
- move=> E /= [P [Q [MP MQ ->]]]; have entPQ : F (P `&` Q).
by apply: filterI; [exact: entM | exact: entN].
by split; [apply: (subM _ _ MP) | apply: (subN _ _ MQ)] => // ? [].
Qed.
Lemma near_small_set : \forall E \near powerset_filter_from, F E.
Lemma small_set_sub (E : set Y) : F E ->
\forall E' \near powerset_filter_from, E' `<=` E.
Proof.
Lemma near_powerset_filter_fromP (P : set Y -> Prop) :
(forall A B, A `<=` B -> P B -> P A) ->
(\forall U \near powerset_filter_from, P U) <-> exists2 U, F U & P U.
Proof.
Lemma powerset_filter_fromP C :
F C -> powerset_filter_from [set W | F W /\ W `<=` C].
Proof.
End NearSet.
Lemma near_powerset_map {T U : Type} (f : T -> U) (F : set_system T)
(P : set U -> Prop) :
ProperFilter F ->
(\forall y \near powerset_filter_from (f x @[x --> F]), P y) ->
(\forall y \near powerset_filter_from F, P (f @` y)).
Proof.
move=> FF [] G /= [Gf Gs [D GD GP]].
have PpF : ProperFilter (powerset_filter_from F).
exact: powerset_filter_from_filter.
have /= := Gf _ GD; rewrite nbhs_simpl => FfD.
near=> M; apply: GP; apply: (Gs D) => //.
apply: filterS; first exact: preimage_image.
exact: (near (near_small_set _) M).
have : M `<=` f @^-1` D by exact: (near (small_set_sub FfD) M).
by move/image_subset/subset_trans; apply; exact: image_preimage_subset.
Unshelve. all: by end_near. Qed.
have PpF : ProperFilter (powerset_filter_from F).
exact: powerset_filter_from_filter.
have /= := Gf _ GD; rewrite nbhs_simpl => FfD.
near=> M; apply: GP; apply: (Gs D) => //.
apply: filterS; first exact: preimage_image.
exact: (near (near_small_set _) M).
have : M `<=` f @^-1` D by exact: (near (small_set_sub FfD) M).
by move/image_subset/subset_trans; apply; exact: image_preimage_subset.
Unshelve. all: by end_near. Qed.
Lemma near_powerset_map_monoE {T U : Type} (f : T -> U) (F : set_system T)
(P : set U -> Prop) :
(forall X Y, X `<=` Y -> P Y -> P X) ->
ProperFilter F ->
(\forall y \near powerset_filter_from F, P (f @` y)) =
(\forall y \near powerset_filter_from (f x @[x --> F]), P y).
Proof.
move=> Pmono FF; rewrite propeqE; split; last exact: near_powerset_map.
case=> G /= [Gf Gs [D GD GP]].
have PpF : ProperFilter (powerset_filter_from (f x @[x-->F])).
exact: powerset_filter_from_filter.
have /= := Gf _ GD; rewrite nbhs_simpl => FfD; have ffiD : fmap f F (f@` D).
by rewrite /fmap /=; apply: filterS; first exact: preimage_image.
near=> M; have FfM : fmap f F M by exact: (near (near_small_set _) M).
apply: (@Pmono _ (f @` D)); first exact: (near (small_set_sub ffiD) M).
exact: GP.
Unshelve. all: by end_near. Qed.
case=> G /= [Gf Gs [D GD GP]].
have PpF : ProperFilter (powerset_filter_from (f x @[x-->F])).
exact: powerset_filter_from_filter.
have /= := Gf _ GD; rewrite nbhs_simpl => FfD; have ffiD : fmap f F (f@` D).
by rewrite /fmap /=; apply: filterS; first exact: preimage_image.
near=> M; have FfM : fmap f F M by exact: (near (near_small_set _) M).
apply: (@Pmono _ (f @` D)); first exact: (near (small_set_sub ffiD) M).
exact: GP.
Unshelve. all: by end_near. Qed.
Section PrincipalFilters.
Definition principal_filter {X : Type} (x : X) : set_system X :=
globally [set x].
we introducing an alias for pointed types with principal filters
Definition principal_filter_type (P : Type) : Type := P.HB.instance Definition _ (P : choiceType) :=
Choice.copy (principal_filter_type P) P.
HB.instance Definition _ (P : pointedType) :=
Pointed.on (principal_filter_type P).
HB.instance Definition _ (P : choiceType) :=
hasNbhs.Build (principal_filter_type P) principal_filter.
HB.instance Definition _ (P : pointedType) :=
Filtered.on (principal_filter_type P).
Lemma principal_filterP {X} (x : X) (W : set X) : principal_filter x W <-> W x.
Proof.
by split=> [|? ? ->]; [exact|]. Qed.
Lemma principal_filter_proper {X} (x : X) : ProperFilter (principal_filter x).
Proof.
HB.instance Definition _ := hasNbhs.Build bool principal_filter.
End PrincipalFilters.
Section UltraFilters.
Class UltraFilter T (F : set_system T) := {
#[global] ultra_proper :: ProperFilter F ;
max_filter : forall G : set_system T, ProperFilter G -> F `<=` G -> G = F
}.
Lemma ultraFilterLemma T (F : set_system T) :
ProperFilter F -> exists G, UltraFilter G /\ F `<=` G.
Proof.
move=> FF.
set filter_preordset := ({G : set_system T & ProperFilter G /\ F `<=` G}).
set preorder :=
fun G1 G2 : {classic filter_preordset} => `[< projT1 G1 `<=` projT1 G2 >].
suff [G Gmax] : exists G : {classic filter_preordset}, premaximal preorder G.
have [GF sFG] := projT2 G; exists (projT1 G); split; last exact: sFG.
split; [exact: GF|move=> H HF sGH].
have sFH : F `<=` H by apply: subset_trans sGH.
have sHG : preorder (existT _ H (conj HF sFH)) G.
by move/asboolP in sGH; exact: (Gmax (existT _ H (conj HF sFH)) sGH).
by rewrite predeqE => A; split; [move/asboolP : sHG; exact|exact: sGH].
have sFF : F `<=` F by [].
apply: (ZL_preorder (existT _ F (conj FF sFF))).
- by move=> t; exact/asboolP.
- move=> r s t; rewrite /preorder => /asboolP sr /asboolP st.
exact/asboolP/(subset_trans _ st).
- move=> A Atot; have [[G AG] | A0] := pselect (A !=set0); last first.
exists (existT _ F (conj FF sFF)) => G AG.
by have /asboolP := A0; rewrite asbool_neg => /forallp_asboolPn /(_ G).
have [GF sFG] := projT2 G.
suff UAF : ProperFilter (\bigcup_(H in A) projT1 H).
have sFUA : F `<=` \bigcup_(H in A) projT1 H.
by move=> B FB; exists G => //; exact: sFG.
exists (existT _ (\bigcup_(H in A) projT1 H) (conj UAF sFUA)) => H AH.
by apply/asboolP => B HB /=; exists H.
apply: Build_ProperFilter_ex.
by move=> B [H AH HB]; have [HF _] := projT2 H; exact: (@filter_ex _ _ HF).
split; first by exists G => //; apply: filterT.
+ move=> B C [HB AHB HBB] [HC AHC HCC]; have [sHBC|sHCB] := Atot _ _ AHB AHC.
* exists HC => //; have [HCF _] := projT2 HC; apply: filterI HCC.
by move/asboolP : sHBC; exact.
* exists HB => //; have [HBF _] := projT2 HB; apply: filterI HBB _.
by move/asboolP : sHCB; exact.
+ move=> B C SBC [H AH HB]; exists H => //; have [HF _] := projT2 H.
exact: filterS HB.
Qed.
set filter_preordset := ({G : set_system T & ProperFilter G /\ F `<=` G}).
set preorder :=
fun G1 G2 : {classic filter_preordset} => `[< projT1 G1 `<=` projT1 G2 >].
suff [G Gmax] : exists G : {classic filter_preordset}, premaximal preorder G.
have [GF sFG] := projT2 G; exists (projT1 G); split; last exact: sFG.
split; [exact: GF|move=> H HF sGH].
have sFH : F `<=` H by apply: subset_trans sGH.
have sHG : preorder (existT _ H (conj HF sFH)) G.
by move/asboolP in sGH; exact: (Gmax (existT _ H (conj HF sFH)) sGH).
by rewrite predeqE => A; split; [move/asboolP : sHG; exact|exact: sGH].
have sFF : F `<=` F by [].
apply: (ZL_preorder (existT _ F (conj FF sFF))).
- by move=> t; exact/asboolP.
- move=> r s t; rewrite /preorder => /asboolP sr /asboolP st.
exact/asboolP/(subset_trans _ st).
- move=> A Atot; have [[G AG] | A0] := pselect (A !=set0); last first.
exists (existT _ F (conj FF sFF)) => G AG.
by have /asboolP := A0; rewrite asbool_neg => /forallp_asboolPn /(_ G).
have [GF sFG] := projT2 G.
suff UAF : ProperFilter (\bigcup_(H in A) projT1 H).
have sFUA : F `<=` \bigcup_(H in A) projT1 H.
by move=> B FB; exists G => //; exact: sFG.
exists (existT _ (\bigcup_(H in A) projT1 H) (conj UAF sFUA)) => H AH.
by apply/asboolP => B HB /=; exists H.
apply: Build_ProperFilter_ex.
by move=> B [H AH HB]; have [HF _] := projT2 H; exact: (@filter_ex _ _ HF).
split; first by exists G => //; apply: filterT.
+ move=> B C [HB AHB HBB] [HC AHC HCC]; have [sHBC|sHCB] := Atot _ _ AHB AHC.
* exists HC => //; have [HCF _] := projT2 HC; apply: filterI HCC.
by move/asboolP : sHBC; exact.
* exists HB => //; have [HBF _] := projT2 HB; apply: filterI HBB _.
by move/asboolP : sHCB; exact.
+ move=> B C SBC [H AH HB]; exists H => //; have [HF _] := projT2 H.
exact: filterS HB.
Qed.
Lemma filter_image (T U : Type) (f : T -> U) (F : set_system T) :
Filter F -> f @` setT = setT -> Filter [set f @` A | A in F].
Proof.
move=> FF fsurj; split.
- by exists setT => //; apply: filterT.
- move=> _ _ [A FA <-] [B FB <-].
exists (f @^-1` (f @` A `&` f @` B)); last by rewrite image_preimage.
have sAB : A `&` B `<=` f @^-1` (f @` A `&` f @` B).
by move=> x [Ax Bx]; split; exists x.
by apply: filterS sAB _; apply: filterI.
- move=> A B sAB [C FC fC_eqA].
exists (f @^-1` B); last by rewrite image_preimage.
by apply: filterS FC => p Cp; apply: sAB; rewrite -fC_eqA; exists p.
Qed.
- by exists setT => //; apply: filterT.
- move=> _ _ [A FA <-] [B FB <-].
exists (f @^-1` (f @` A `&` f @` B)); last by rewrite image_preimage.
have sAB : A `&` B `<=` f @^-1` (f @` A `&` f @` B).
by move=> x [Ax Bx]; split; exists x.
by apply: filterS sAB _; apply: filterI.
- move=> A B sAB [C FC fC_eqA].
exists (f @^-1` B); last by rewrite image_preimage.
by apply: filterS FC => p Cp; apply: sAB; rewrite -fC_eqA; exists p.
Qed.
Lemma proper_image (T U : Type) (f : T -> U) (F : set_system T) :
ProperFilter F -> f @` setT = setT -> ProperFilter [set f @` A | A in F].
Proof.
move=> FF fsurj; apply: Build_ProperFilter_ex; last exact: filter_image.
by move=> _ [A FA <-]; have /filter_ex [p Ap] := FA; exists (f p); exists p.
Qed.
by move=> _ [A FA <-]; have /filter_ex [p Ap] := FA; exists (f p); exists p.
Qed.
Lemma principal_filter_ultra {T : Type} (x : T) :
UltraFilter (principal_filter x).
Proof.
split=> [|G [G0 xG] FG]; first exact: principal_filter_proper.
rewrite eqEsubset; split => // U GU; apply/principal_filterP.
have /(filterI GU): G [set x] by exact/FG/principal_filterP.
by rewrite setIC set1I; case: ifPn => // /[!inE].
Qed.
rewrite eqEsubset; split => // U GU; apply/principal_filterP.
have /(filterI GU): G [set x] by exact/FG/principal_filterP.
by rewrite setIC set1I; case: ifPn => // /[!inE].
Qed.
Lemma in_ultra_setVsetC T (F : set_system T) (A : set T) :
UltraFilter F -> F A \/ F (~` A).
Proof.
move=> FU; case: (pselect (F (~` A))) => [|nFnA]; first by right.
left; suff : ProperFilter (filter_from (F `|` [set A `&` B | B in F]) id).
move=> /max_filter <-; last by move=> B FB; exists B => //; left.
by exists A => //; right; exists setT; [apply: filterT|rewrite setIT].
apply: filter_from_proper; last first.
move=> B [|[C FC <-]]; first exact: filter_ex.
apply: contrapT => /asboolP; rewrite asbool_neg => /forallp_asboolPn AC0.
by apply: nFnA; apply: filterS FC => p Cp Ap; apply: (AC0 p).
apply: filter_from_filter.
by exists A; right; exists setT; [apply: filterT|rewrite setIT].
move=> B C [FB|[DB FDB <-]].
move=> [FC|[DC FDC <-]]; first by exists (B `&` C)=> //; left; apply: filterI.
exists (A `&` (B `&` DC)); last by rewrite setICA.
by right; exists (B `&` DC) => //; apply: filterI.
move=> [FC|[DC FDC <-]].
exists (A `&` (DB `&` C)); last by rewrite setIA.
by right; exists (DB `&` C) => //; apply: filterI.
exists (A `&` (DB `&` DC)); last by move=> ??; rewrite setIACA setIid.
by right; exists (DB `&` DC) => //; apply: filterI.
Qed.
left; suff : ProperFilter (filter_from (F `|` [set A `&` B | B in F]) id).
move=> /max_filter <-; last by move=> B FB; exists B => //; left.
by exists A => //; right; exists setT; [apply: filterT|rewrite setIT].
apply: filter_from_proper; last first.
move=> B [|[C FC <-]]; first exact: filter_ex.
apply: contrapT => /asboolP; rewrite asbool_neg => /forallp_asboolPn AC0.
by apply: nFnA; apply: filterS FC => p Cp Ap; apply: (AC0 p).
apply: filter_from_filter.
by exists A; right; exists setT; [apply: filterT|rewrite setIT].
move=> B C [FB|[DB FDB <-]].
move=> [FC|[DC FDC <-]]; first by exists (B `&` C)=> //; left; apply: filterI.
exists (A `&` (B `&` DC)); last by rewrite setICA.
by right; exists (B `&` DC) => //; apply: filterI.
move=> [FC|[DC FDC <-]].
exists (A `&` (DB `&` C)); last by rewrite setIA.
by right; exists (DB `&` C) => //; apply: filterI.
exists (A `&` (DB `&` DC)); last by move=> ??; rewrite setIACA setIid.
by right; exists (DB `&` DC) => //; apply: filterI.
Qed.
Lemma ultra_image (T U : Type) (f : T -> U) (F : set_system T) :
UltraFilter F -> f @` setT = setT -> UltraFilter [set f @` A | A in F].
Proof.
move=> FU fsurj; split; first exact: proper_image.
move=> G GF sfFG; rewrite predeqE => A; split; last exact: sfFG.
move=> GA; exists (f @^-1` A); last by rewrite image_preimage.
have [//|FnAf] := in_ultra_setVsetC (f @^-1` A) FU.
have : G (f @` (~` (f @^-1` A))) by apply: sfFG; exists (~` (f @^-1` A)).
suff : ~ G (f @` (~` (f @^-1` A))) by [].
rewrite preimage_setC image_preimage // => GnA.
by have /filter_ex [? []] : G (A `&` (~` A)) by apply: filterI.
Qed.
move=> G GF sfFG; rewrite predeqE => A; split; last exact: sfFG.
move=> GA; exists (f @^-1` A); last by rewrite image_preimage.
have [//|FnAf] := in_ultra_setVsetC (f @^-1` A) FU.
have : G (f @` (~` (f @^-1` A))) by apply: sfFG; exists (~` (f @^-1` A)).
suff : ~ G (f @` (~` (f @^-1` A))) by [].
rewrite preimage_setC image_preimage // => GnA.
by have /filter_ex [? []] : G (A `&` (~` A)) by apply: filterI.
Qed.
End UltraFilters.
Section filter_supremums.
Global Instance smallest_filter_filter {T : Type} (F : set (set T)) :
Filter (smallest Filter F).
Proof.
Fixpoint filterI_iter {T : Type} (F : set (set T)) (n : nat) :=
if n is m.+1
then [set P `&` Q |
P in filterI_iter F m & Q in filterI_iter F m]
else setT |` F.
Lemma filterI_iter_sub {T : Type} (F : set (set T)) :
{homo filterI_iter F : i j / (i <= j)%N >-> i `<=` j}.
Proof.
Lemma filterI_iterE {T : Type} (F : set (set T)) :
smallest Filter F = filter_from (\bigcup_n (filterI_iter F n)) id.
Proof.
rewrite eqEsubset; split.
apply: smallest_sub => //; first last.
by move=> A FA; exists A => //; exists O => //; right.
apply: filter_from_filter; first by exists setT; exists O => //; left.
move=> P Q [i _ sFP] [j _ sFQ]; exists (P `&` Q) => //.
exists (maxn i j).+1 => //=; exists P.
by apply: filterI_iter_sub; first exact: leq_maxl.
by exists Q => //; apply: filterI_iter_sub; first exact: leq_maxr.
move=> + [+ [n _]]; elim: n => [A B|n IH/= A B].
move=> [-> /[!(@subTset T)] ->|]; first exact: filterT.
by move=> FB /filterS; apply; apply: sub_gen_smallest.
move=> [P sFP] [Q sFQ] PQB /filterS; apply; rewrite -PQB.
by apply: (filterI _ _); [exact: (IH _ _ sFP)|exact: (IH _ _ sFQ)].
Qed.
apply: smallest_sub => //; first last.
by move=> A FA; exists A => //; exists O => //; right.
apply: filter_from_filter; first by exists setT; exists O => //; left.
move=> P Q [i _ sFP] [j _ sFQ]; exists (P `&` Q) => //.
exists (maxn i j).+1 => //=; exists P.
by apply: filterI_iter_sub; first exact: leq_maxl.
by exists Q => //; apply: filterI_iter_sub; first exact: leq_maxr.
move=> + [+ [n _]]; elim: n => [A B|n IH/= A B].
move=> [-> /[!(@subTset T)] ->|]; first exact: filterT.
by move=> FB /filterS; apply; apply: sub_gen_smallest.
move=> [P sFP] [Q sFQ] PQB /filterS; apply; rewrite -PQB.
by apply: (filterI _ _); [exact: (IH _ _ sFP)|exact: (IH _ _ sFQ)].
Qed.
Definition finI_from (I : choiceType) T (D : set I) (f : I -> set T) :=
[set \bigcap_(i in [set` D']) f i |
D' in [set A : {fset I} | {subset A <= D}]].
Lemma finI_from_cover (I : choiceType) T (D : set I) (f : I -> set T) :
\bigcup_(A in finI_from D f) A = setT.
Proof.
rewrite predeqE => t; split=> // _; exists setT => //.
by exists fset0 => //; rewrite set_fset0 bigcap_set0.
Qed.
by exists fset0 => //; rewrite set_fset0 bigcap_set0.
Qed.
Lemma finI_from1 (I : choiceType) T (D : set I) (f : I -> set T) i :
D i -> finI_from D f (f i).
Proof.
move=> Di; exists [fset i]%fset; first by move=> ?; rewrite !inE => /eqP ->.
by rewrite bigcap_fset big_seq_fset1.
Qed.
by rewrite bigcap_fset big_seq_fset1.
Qed.
Lemma finI_from_countable (I : pointedType) T (D : set I) (f : I -> set T) :
countable D -> countable (finI_from D f).
Proof.
Lemma finI_fromI {I : choiceType} T D (f : I -> set T) A B :
finI_from D f A -> finI_from D f B -> finI_from D f (A `&` B) .
Proof.
case=> N ND <- [M MD <-]; exists (N `|` M)%fset.
by move=> ?; rewrite inE => /orP[/ND | /MD].
by rewrite -bigcap_setU set_fsetU.
Qed.
by move=> ?; rewrite inE => /orP[/ND | /MD].
by rewrite -bigcap_setU set_fsetU.
Qed.
Lemma filterI_iter_finI {I : choiceType} T D (f : I -> set T) :
finI_from D f = \bigcup_n (filterI_iter (f @` D) n).
Proof.
rewrite eqEsubset; split.
move=> A [N /= + <-]; have /finite_setP[n] := finite_fset N; elim: n N.
move=> ?; rewrite II0 card_eq0 => /eqP -> _; rewrite bigcap_set0.
by exists O => //; left.
move=> n IH N /eq_cardSP[x Ax + ND]; rewrite -set_fsetD1 => Nxn.
have NxD : {subset (N `\ x)%fset <= D}.
by move=> ?; rewrite ?inE => /andP [_ /ND /set_mem].
have [r _ xr] := IH _ Nxn NxD; exists r.+1 => //; exists (f x).
apply: (@filterI_iter_sub _ _ O) => //; right; exists x => //.
by rewrite -inE; apply: ND.
exists (\bigcap_(i in [set` (N `\ x)%fset]) f i) => //.
by rewrite -bigcap_setU1 set_fsetD1 setD1K.
move=> A [n _]; elim: n A.
move=> a [-> |[i Di <-]]; [exists fset0 | exists [fset i]%fset] => //.
- by rewrite set_fset0 bigcap_set0.
- by move=> ?; rewrite !inE => /eqP ->.
- by rewrite set_fset1 bigcap_set1.
by move=> n IH A /= [B snB [C snC <-]]; apply: finI_fromI; apply: IH.
Qed.
move=> A [N /= + <-]; have /finite_setP[n] := finite_fset N; elim: n N.
move=> ?; rewrite II0 card_eq0 => /eqP -> _; rewrite bigcap_set0.
by exists O => //; left.
move=> n IH N /eq_cardSP[x Ax + ND]; rewrite -set_fsetD1 => Nxn.
have NxD : {subset (N `\ x)%fset <= D}.
by move=> ?; rewrite ?inE => /andP [_ /ND /set_mem].
have [r _ xr] := IH _ Nxn NxD; exists r.+1 => //; exists (f x).
apply: (@filterI_iter_sub _ _ O) => //; right; exists x => //.
by rewrite -inE; apply: ND.
exists (\bigcap_(i in [set` (N `\ x)%fset]) f i) => //.
by rewrite -bigcap_setU1 set_fsetD1 setD1K.
move=> A [n _]; elim: n A.
move=> a [-> |[i Di <-]]; [exists fset0 | exists [fset i]%fset] => //.
- by rewrite set_fset0 bigcap_set0.
- by move=> ?; rewrite !inE => /eqP ->.
- by rewrite set_fset1 bigcap_set1.
by move=> n IH A /= [B snB [C snC <-]]; apply: finI_fromI; apply: IH.
Qed.
Lemma smallest_filter_finI {T : choiceType} (D : set T) f :
filter_from (finI_from D f) id = smallest (@Filter T) (f @` D).
Proof.
End filter_supremums.
Definition finI (I : choiceType) T (D : set I) (f : I -> set T) :=
forall D' : {fset I}, {subset D' <= D} ->
\bigcap_(i in [set i | i \in D']) f i !=set0.
Lemma finI_filter (I : choiceType) T (D : set I) (f : I -> set T) :
finI D f -> ProperFilter (filter_from (finI_from D f) id).
Proof.
move=> finIf; apply: (filter_from_proper (filter_from_filter _ _)).
- by exists setT; exists fset0 => //; rewrite predeqE.
- move=> A B [DA sDA IfA] [DB sDB IfB]; exists (A `&` B) => //.
exists (DA `|` DB)%fset.
by move=> ?; rewrite inE => /orP [/sDA|/sDB].
rewrite -IfA -IfB predeqE => p; split=> [Ifp|[IfAp IfBp] i].
by split=> i Di; apply: Ifp; rewrite /= inE Di // orbC.
by rewrite /= inE => /orP []; [apply: IfAp|apply: IfBp].
- by move=> _ [?? <-]; apply: finIf.
Qed.
- by exists setT; exists fset0 => //; rewrite predeqE.
- move=> A B [DA sDA IfA] [DB sDB IfB]; exists (A `&` B) => //.
exists (DA `|` DB)%fset.
by move=> ?; rewrite inE => /orP [/sDA|/sDB].
rewrite -IfA -IfB predeqE => p; split=> [Ifp|[IfAp IfBp] i].
by split=> i Di; apply: Ifp; rewrite /= inE Di // orbC.
by rewrite /= inE => /orP []; [apply: IfAp|apply: IfBp].
- by move=> _ [?? <-]; apply: finIf.
Qed.
Lemma filter_finI (T : choiceType) (F : set_system T) (D : set_system T)
(f : set T -> set T) :
ProperFilter F -> (forall A, D A -> F (f A)) -> finI D f.
Proof.
move=> FF sDFf D' sD; apply: (@filter_ex _ F); apply: filter_bigI.
by move=> A /sD; rewrite inE => /sDFf.
Qed.
by move=> A /sD; rewrite inE => /sDFf.
Qed.
Lemma meets_globallyl T (A : set T) G :
globally A `#` G = forall B, G B -> A `&` B !=set0.
Proof.
rewrite propeqE; split => [/(_ _ _ (fun=> id))//|clA A' B sA].
by move=> /clA; apply: subsetI_neq0.
Qed.
by move=> /clA; apply: subsetI_neq0.
Qed.
Lemma meets_globallyr T F (B : set T) :
F `#` globally B = forall A, F A -> A `&` B !=set0.
Proof.
Lemma meetsxx T (F : set_system T) (FF : Filter F) : F `#` F = ~ (F set0).
Proof.
Lemma proper_meetsxx T (F : set_system T) (FF : ProperFilter F) : F `#` F.