Module mathcomp.analysis.signed
From HB Require Import structures.From Coq Require Import ssreflect ssrfun ssrbool.
From mathcomp Require Import ssrnat eqtype choice order ssralg ssrnum ssrint.
From mathcomp Require Import mathcomp_extra.
# Positive, non-negative numbers, etc.
This file develops tools to make the manipulation of numbers with a known
sign easier, thanks to canonical structures. This adds types like
{posnum R} for positive values in R, a notation e%:pos that infers the
positivity of expression e according to existing canonical instances and
%:num to cast back from type {posnum R} to R.
For instance, given x, y : {posnum R}, we have
((x%:num + y%:num) / 2)%:pos : {posnum R} automatically inferred.
## Types for values with known sign
```
{posnum R} == interface type for elements in R that are positive; R
must have a zmodType structure.
Allows to solve automatically goals of the form x > 0 if
x is canonically a {posnum R}. {posnum R} is canonically
stable by common operations. All positive natural numbers
((n.+1)%:R) are also canonically in {posnum R}
{nonneg R} == interface types for elements in R that are non-negative;
R must have a zmodType structure. Automatically solves
goals of the form x >= 0. {nonneg R} is stable by
common operations. All natural numbers n%:R are also
canonically in {nonneg R}.
{compare x0 & nz & cond} == more generic type of values comparing to
x0 : T according to nz and cond (see below). T must have
a porderType structure. This type is shown to be a
porderType. It is also an orderTpe, as soon as T is a
numDomainType.
{num R & nz & cond} == {compare 0%R : R & nz & cond}. T must have a
zmodType structure.
{= x0} == {compare x0 & ?=0 & =0}
{= x0 : T} == same with an explicit type T
{> x0} == {compare x0 & !=0 & >=0}
{> x0 : T} == same with an explicit type T
{< x0} == {compare x0 & !=0 & <=0}
{< x0 : T} == same with an explicit type T
{>= x0} == {compare x0 & ?=0 & >=0}
{>= x0 : T} == same with an explicit type T
{<= x0} == {compare x0 & ?=0 & <=0}
{<= x0 : T} == same with an explicit type T
{>=< x0} == {compare x0 & ?=0 & >=<0}
{>=< x0 : T} == same with an explicit type T
{>< x0} == {compare x0 & !=0 & >=<0}
{>< x0 : T} == same with an explicit type T
{!= x0} == {compare x0 & !=0 & >?<0}
{!= x0 : T} == same with an explicit type T
{?= x0} == {compare x0 & ?=0 & >?<0}
{?= x0 : T} == same with an explicit type T
```
## Casts from/to values with known sign
```
x%:pos == explicitly casts x to {posnum R}, triggers the inference
of a {posnum R} structure for x.
x%:nng == explicitly casts x to {nonneg R}, triggers the inference
of a {nonneg R} structure for x.
x%:sgn == explicitly casts x to the most precise known
{compare x0 & nz & cond} according to existing canonical
instances.
x%:num == explicit cast from {compare x0 & nz & cond} to R. In
particular this works from {posnum R} and {nonneg R} to R.
x%:posnum == explicit cast from {posnum R} to R.
x%:nngnum == explicit cast from {nonneg R} to R.
```
## Nullity conditions nz
All nz above can be the following (in scope snum_nullity_scope delimited
by %snum_nullity)
```
!=0 == to encode x != 0
?=0 == unknown nullity
```
## Reality conditions cond
All cond above can be the following (in scope snum_sign_scope delimited by
by %snum_sign)
```
=0 == to encode x == 0
>=0 == to encode x >= 0
<=0 == to encode x <= 0
>=<0 == to encode x >=< 0
>?<0 == unknown reality
```
## Sign proofs
```
[sgn of x] == proof that x is of sign inferred by x%:sgn
[gt0 of x] == proof that x > 0
[lt0 of x] == proof that x < 0
[ge0 of x] == proof that x >= 0
[le0 of x] == proof that x <= 0
[cmp0 of x] == proof that 0 >=< x
[neq0 of x] == proof that x != 0
```
## Constructors
```
PosNum xgt0 == builds a {posnum R} from a proof xgt0 : x > 0 where x : R
NngNum xge0 == builds a {posnum R} from a proof xgt0 : x >= 0 where x : R
Signed.mk p == builds a {compare x0 & nz & cond} from a proof p that
some x satisfies sign conditions encoded by nz and cond
```
## Misc.
```
!! x == triggers pretyping to fill the holes of the term x. The
main use case is to trigger typeclass inference in the
body of a ssreflect have := !! body.
Credits: Enrico Tassi.
```
A number of canonical instances are provided for common operations, if
your favorite operator is missing, look below for examples on how to add
the appropriate Canonical.
Canonical instances are also provided according to types, as a
fallback when no known operator appears in the expression. Look to
nat_snum below for an example on how to add your favorite type.
Reserved Notation "{ 'compare' x0 & nz & cond }"
(at level 0, x0 at level 200, nz at level 200,
format "{ 'compare' x0 & nz & cond }").
Reserved Notation "{ 'num' R & nz & cond }"
(at level 0, R at level 200, nz at level 200,
format "{ 'num' R & nz & cond }").
Reserved Notation "{ = x0 }" (at level 0, format "{ = x0 }").
Reserved Notation "{ > x0 }" (at level 0, format "{ > x0 }").
Reserved Notation "{ < x0 }" (at level 0, format "{ < x0 }").
Reserved Notation "{ >= x0 }" (at level 0, format "{ >= x0 }").
Reserved Notation "{ <= x0 }" (at level 0, format "{ <= x0 }").
Reserved Notation "{ >=< x0 }" (at level 0, format "{ >=< x0 }").
Reserved Notation "{ >< x0 }" (at level 0, format "{ >< x0 }").
Reserved Notation "{ != x0 }" (at level 0, format "{ != x0 }").
Reserved Notation "{ ?= x0 }" (at level 0, format "{ ?= x0 }").
Reserved Notation "{ = x0 : T }" (at level 0, format "{ = x0 : T }").
Reserved Notation "{ > x0 : T }" (at level 0, format "{ > x0 : T }").
Reserved Notation "{ < x0 : T }" (at level 0, format "{ < x0 : T }").
Reserved Notation "{ >= x0 : T }" (at level 0, format "{ >= x0 : T }").
Reserved Notation "{ <= x0 : T }" (at level 0, format "{ <= x0 : T }").
Reserved Notation "{ >=< x0 : T }" (at level 0, format "{ >=< x0 : T }").
Reserved Notation "{ >< x0 : T }" (at level 0, format "{ >< x0 : T }").
Reserved Notation "{ != x0 : T }" (at level 0, format "{ != x0 : T }").
Reserved Notation "{ ?= x0 : T }" (at level 0, format "{ ?= x0 : T }").
Reserved Notation "=0" (at level 0, format "=0").
Reserved Notation ">=0" (at level 0, format ">=0").
Reserved Notation "<=0" (at level 0, format "<=0").
Reserved Notation ">=<0" (at level 0, format ">=<0").
Reserved Notation ">?<0" (at level 0, format ">?<0").
Reserved Notation "!=0" (at level 0, format "!=0").
Reserved Notation "?=0" (at level 0, format "?=0").
Reserved Notation "x %:sgn" (at level 2, format "x %:sgn").
Reserved Notation "x %:num" (at level 2, format "x %:num").
Reserved Notation "x %:posnum" (at level 2, format "x %:posnum").
Reserved Notation "x %:nngnum" (at level 2, format "x %:nngnum").
Reserved Notation "[ 'sgn' 'of' x ]" (format "[ 'sgn' 'of' x ]").
Reserved Notation "[ 'gt0' 'of' x ]" (format "[ 'gt0' 'of' x ]").
Reserved Notation "[ 'lt0' 'of' x ]" (format "[ 'lt0' 'of' x ]").
Reserved Notation "[ 'ge0' 'of' x ]" (format "[ 'ge0' 'of' x ]").
Reserved Notation "[ 'le0' 'of' x ]" (format "[ 'le0' 'of' x ]").
Reserved Notation "[ 'cmp0' 'of' x ]" (format "[ 'cmp0' 'of' x ]").
Reserved Notation "[ 'neq0' 'of' x ]" (format "[ 'neq0' 'of' x ]").
Reserved Notation "{ 'posnum' R }" (at level 0, format "{ 'posnum' R }").
Reserved Notation "{ 'nonneg' R }" (at level 0, format "{ 'nonneg' R }").
Reserved Notation "x %:pos" (at level 2, format "x %:pos").
Reserved Notation "x %:nng" (at level 2, format "x %:nng").
Reserved Notation "!! x" (at level 100, only parsing).
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory Order.Syntax.
Import GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Local Open Scope order_scope.
Declare Scope snum_scope.
Delimit Scope snum_scope with snum.
Declare Scope snum_sign_scope.
Delimit Scope snum_sign_scope with snum_sign.
Declare Scope snum_nullity_scope.
Delimit Scope snum_nullity_scope with snum_nullity.
Notation "!! x" := (ltac:(refine x)) (only parsing).
Class infer (P : Prop) := Infer : P.
#[global] Hint Mode infer ! : typeclass_instances.
#[global] Hint Extern 0 (infer _) => (exact) : typeclass_instances.
Lemma inferP (P : Prop) : P -> infer P
Proof.
by []. Qed.
Module Import KnownSign.
Variant nullity := NonZero | MaybeZero.
Coercion nullity_bool nz := if nz is NonZero then true else false.
Definition nz_of_bool b := if b then NonZero else MaybeZero.
Variant sign := EqZero | NonNeg | NonPos.
Variant real := Sign of sign | AnySign.
Variant reality := Real of real | Arbitrary.
Definition wider_nullity xnz ynz :=
match xnz, ynz with
| MaybeZero, _
| NonZero, NonZero => true
| NonZero, MaybeZero => false
end.
Definition wider_sign xs ys :=
match xs, ys with
| NonNeg, NonNeg | NonNeg, EqZero
| NonPos, NonPos | NonPos, EqZero
| EqZero, EqZero => true
| NonNeg, NonPos | NonPos, NonNeg
| EqZero, NonPos | EqZero, NonNeg => false
end.
Definition wider_real xr yr :=
match xr, yr with
| AnySign, _ => true
| Sign sx, Sign sy => wider_sign sx sy
| Sign _, AnySign => false
end.
Definition wider_reality xr yr :=
match xr, yr with
| Arbitrary, _ => true
| Real xr, Real yr => wider_real xr yr
| Real _, Arbitrary => false
end.
End KnownSign.
Module Signed.
Section Signed.
Context (disp : Order.disp_t) (T : porderType disp) (x0 : T).
Local Coercion is_real r := if r is Real _ then true else false.
Definition reality_cond (n : reality) (x : T) :=
match n with
| Real (Sign EqZero) => x == x0
| Real (Sign NonNeg) => x >= x0
| Real (Sign NonPos) => x <= x0
| Real AnySign => (x0 <= x) || (x <= x0)
| Arbitrary => true
end.
Record def (nz : nullity) (cond : reality) := Def {
r :> T;
#[canonical=no]
P : (nz ==> (r != x0)) && reality_cond cond r
}.
End Signed.
Notation spec x0 nz cond x :=
((nullity_bool nz%snum_nullity ==> (x != x0))
&& (reality_cond x0 cond%snum_sign x)).
Record typ d nz cond := Typ {
sort : porderType d;
#[canonical=no]
sort_x0 : sort;
#[canonical=no]
allP : forall x : sort, spec sort_x0 nz cond x
}.
Definition mk {d T} x0 nz cond r P : @def d T x0 nz cond :=
@Def d T x0 nz cond r P.
Definition from {d T x0 nz cond}
{x : @def d T x0 nz cond} (phx : phantom T x) := x.
Definition fromP {d T x0 nz cond}
{x : @def d T x0 nz cond} (phx : phantom T x) := P x.
Module Exports.
Coercion Sign : sign >-> real.
Coercion Real : real >-> reality.
Coercion is_real : reality >-> bool.
Bind Scope snum_sign_scope with sign.
Bind Scope snum_sign_scope with reality.
Bind Scope snum_nullity_scope with nullity.
Notation "=0" := EqZero : snum_sign_scope.
Notation ">=0" := NonNeg : snum_sign_scope.
Notation "<=0" := NonPos : snum_sign_scope.
Notation ">=<0" := AnySign : snum_sign_scope.
Notation ">?<0" := Arbitrary : snum_sign_scope.
Notation "!=0" := NonZero : snum_nullity_scope.
Notation "?=0" := MaybeZero : snum_nullity_scope.
Notation "{ 'compare' x0 & nz & cond }" := (def x0 nz cond) : type_scope.
Notation "{ 'num' R & nz & cond }" := (def (0%R : R) nz cond) : ring_scope.
Notation "{ = x0 : T }" := (def (x0 : T) MaybeZero EqZero) : type_scope.
Notation "{ > x0 : T }" := (def (x0 : T) NonZero NonNeg) : type_scope.
Notation "{ < x0 : T }" := (def (x0 : T) NonZero NonPos) : type_scope.
Notation "{ >= x0 : T }" := (def (x0 : T) MaybeZero NonNeg) : type_scope.
Notation "{ <= x0 : T }" := (def (x0 : T) MaybeZero NonPos) : type_scope.
Notation "{ >< x0 : T }" := (def (x0 : T) NonZero Real) : type_scope.
Notation "{ >=< x0 : T }" := (def (x0 : T) MaybeZero Real) : type_scope.
Notation "{ != x0 : T }" := (def (x0 : T) NonZero Arbitrary) : type_scope.
Notation "{ ?= x0 : T }" := (def (x0 : T) MaybeZero Arbitrary) : type_scope.
Notation "{ = x0 }" := (def x0 MaybeZero EqZero) : type_scope.
Notation "{ > x0 }" := (def x0 NonZero NonNeg) : type_scope.
Notation "{ < x0 }" := (def x0 NonZero NonPos) : type_scope.
Notation "{ >= x0 }" := (def x0 MaybeZero NonNeg) : type_scope.
Notation "{ <= x0 }" := (def x0 MaybeZero NonPos) : type_scope.
Notation "{ >< x0 }" := (def x0 NonZero Real) : type_scope.
Notation "{ >=< x0 }" := (def x0 MaybeZero Real) : type_scope.
Notation "{ != x0 }" := (def x0 NonZero Arbitrary) : type_scope.
Notation "{ ?= x0 }" := (def x0 MaybeZero Arbitrary) : type_scope.
Notation "x %:sgn" := (from (Phantom _ x)) : ring_scope.
Notation "[ 'sgn' 'of' x ]" := (fromP (Phantom _ x)) : ring_scope.
Notation num := r.
Notation "x %:num" := (r x) : ring_scope.
Definition posnum (R : numDomainType) of phant R := {> 0%R : R}.
Notation "{ 'posnum' R }" := (@posnum _ (Phant R)) : ring_scope.
Notation "x %:posnum" := (@num _ _ 0%R !=0 >=0 x) : ring_scope.
Definition nonneg (R : numDomainType) of phant R := {>= 0%R : R}.
Notation "{ 'nonneg' R }" := (@nonneg _ (Phant R)) : ring_scope.
Notation "x %:nngnum" := (@num _ _ 0%R ?=0 >=0 x) : ring_scope.
Arguments r {disp T x0 nz cond}.
End Exports.
End Signed.
Export Signed.Exports.
Section POrder.
Variables (d : Order.disp_t) (T : porderType d).
Variables (x0 : T) (nz : nullity) (cond : reality).
Local Notation sT := {compare x0 & nz & cond}.
HB.instance Definition _ := [isSub for @Signed.r d T x0 nz cond].
HB.instance Definition _ : Order.POrder d sT := [POrder of sT by <:].
End POrder.
Lemma top_typ_subproof d (T : porderType d) (x0 x : T) :
Signed.spec x0 ?=0 >?<0 x.
Proof.
by []. Qed.
Canonical top_typ d (T : porderType d) (x0 : T) :=
Signed.Typ (top_typ_subproof x0).
Lemma real_domain_typ_subproof (R : realDomainType) (x : R) :
Signed.spec 0%R ?=0 >=<0 x.
Canonical real_domain_typ (R : realDomainType) :=
Signed.Typ (@real_domain_typ_subproof R).
Lemma real_field_typ_subproof (R : realFieldType) (x : R) :
Signed.spec 0%R ?=0 >=<0 x.
Proof.
Canonical real_field_typ (R : realFieldType) :=
Signed.Typ (@real_field_typ_subproof R).
Lemma nat_typ_subproof (x : nat) : Signed.spec 0%N ?=0 >=0 x.
Proof.
by []. Qed.
Canonical nat_typ := Signed.Typ nat_typ_subproof.
Lemma typ_snum_subproof d nz cond (xt : Signed.typ d nz cond)
(x : Signed.sort xt) :
Signed.spec (Signed.sort_x0 xt) nz cond x.
Proof.
by move: xt x => []. Qed.
This adds _ <- Signed.r ( typ_snum )
to canonical projections (c.f., Print Canonical Projections
Signed.r) meaning that if no other canonical instance (with a
registered head symbol) is found, a canonical instance of
Signed.typ, like the ones above, will be looked for.
Canonical typ_snum d nz cond (xt : Signed.typ d nz cond) (x : Signed.sort xt) :=Signed.mk (typ_snum_subproof x).
Class unify {T} f (x y : T) := Unify : f x y = true.
#[global] Hint Mode unify - - - + : typeclass_instances.
Class unify' {T} f (x y : T) := Unify' : f x y = true.
#[global] Instance unify'P {T} f (x y : T) : unify' f x y -> unify f x y := id.
#[global]
Hint Extern 0 (unify' _ _ _) => vm_compute; reflexivity : typeclass_instances.
Notation unify_nz nzx nzy :=
(unify wider_nullity nzx%snum_nullity nzy%snum_nullity).
Notation unify_r rx ry :=
(unify wider_reality rx%snum_sign ry%snum_sign).
#[global] Instance anysign_wider_real sign : unify_r (Real AnySign) (Real sign).
Proof.
by []. Qed.
#[global] Instance any_reality_wider_eq0 cond : unify_r cond =0.
Proof.
by case: cond => [[[]|]|]. Qed.
Section Theory.
Context {d : Order.disp_t} {T : porderType d} {x0 : T}.
Context {nz : nullity} {cond : reality}.
Local Notation sT := {compare x0 & nz & cond}.
Implicit Type x : sT.
Lemma signed_intro {x} : x%:num = x%:num :> T
Proof.
by []. Qed.
Lemma bottom x : unify_nz !=0 nz -> unify_r =0 cond -> False.
Lemma gt0 x : unify_nz !=0 nz -> unify_r >=0 cond -> x0 < x%:num :> T.
Proof.
Lemma le0F x : unify_nz !=0 nz -> unify_r >=0 cond -> x%:num <= x0 :> T = false.
Lemma lt0 x : unify_nz !=0 nz -> unify_r <=0 cond -> x%:num < x0 :> T.
Proof.
Lemma ge0F x : unify_nz !=0 nz -> unify_r <=0 cond -> x0 <= x%:num :> T = false.
Lemma ge0 x : unify_r >=0 cond -> x0 <= x%:num :> T.
Lemma lt0F x : unify_r >=0 cond -> x%:num < x0 :> T = false.
Lemma le0 x : unify_r <=0 cond -> x0 >= x%:num :> T.
Lemma gt0F x : unify_r <=0 cond -> x0 < x%:num :> T = false.
Lemma cmp0 x : unify_r (Real AnySign) cond -> (x0 >=< x%:num).
Proof.
case: x => [x /= /andP[]].
by move: cond nz => [[[]|]|] [] //= _;
do ?[by move=> /eqP ->; rewrite comparablexx];
move=> sx; rewrite /Order.comparable sx// orbT.
Qed.
by move: cond nz => [[[]|]|] [] //= _;
do ?[by move=> /eqP ->; rewrite comparablexx];
move=> sx; rewrite /Order.comparable sx// orbT.
Qed.
Lemma neq0 x : unify_nz !=0 nz -> x%:num != x0 :> T.
Lemma eq0F x : unify_nz !=0 nz -> x%:num == x0 :> T = false.
Lemma eq0 x : unify_r =0 cond -> x%:num = x0.
Lemma widen_signed_subproof x nz' cond' :
unify_nz nz' nz -> unify_r cond' cond ->
Signed.spec x0 nz' cond' x%:num.
Proof.
Definition widen_signed x nz' cond'
(unz : unify_nz nz' nz) (ucond : unify_r cond' cond) :=
Signed.mk (widen_signed_subproof x unz ucond).
Lemma widen_signedE x (unz : unify_nz nz nz) (ucond : unify_r cond cond) :
@widen_signed x nz cond unz ucond = x.
Proof.
exact/val_inj. Qed.
Lemma posE (x : sT) (unz : unify_nz !=0 nz) (ucond : unify_r >=0 cond) :
(widen_signed x%:num%:sgn unz ucond)%:num = x%:num.
Proof.
by []. Qed.
Lemma nngE (x : sT) (unz : unify_nz ?=0 nz) (ucond : unify_r >=0 cond) :
(widen_signed x%:num%:sgn unz ucond)%:num = x%:num.
Proof.
by []. Qed.
End Theory.
Arguments bottom {d T x0 nz cond} _ {_ _}.
Arguments gt0 {d T x0 nz cond} _ {_ _}.
Arguments le0F {d T x0 nz cond} _ {_ _}.
Arguments lt0 {d T x0 nz cond} _ {_ _}.
Arguments ge0F {d T x0 nz cond} _ {_ _}.
Arguments ge0 {d T x0 nz cond} _ {_}.
Arguments lt0F {d T x0 nz cond} _ {_}.
Arguments le0 {d T x0 nz cond} _ {_}.
Arguments gt0F {d T x0 nz cond} _ {_}.
Arguments cmp0 {d T x0 nz cond} _ {_}.
Arguments neq0 {d T x0 nz cond} _ {_}.
Arguments eq0F {d T x0 nz cond} _ {_}.
Arguments eq0 {d T x0 nz cond} _ {_}.
Arguments widen_signed {d T x0 nz cond} _ {_ _ _ _}.
Arguments widen_signedE {d T x0 nz cond} _ {_ _}.
Arguments posE {d T x0 nz cond} _ {_ _}.
Arguments nngE {d T x0 nz cond} _ {_ _}.
Notation "[ 'gt0' 'of' x ]" := (ltac:(refine (gt0 x%:sgn))).
Notation "[ 'lt0' 'of' x ]" := (ltac:(refine (lt0 x%:sgn))).
Notation "[ 'ge0' 'of' x ]" := (ltac:(refine (ge0 x%:sgn))).
Notation "[ 'le0' 'of' x ]" := (ltac:(refine (le0 x%:sgn))).
Notation "[ 'cmp0' 'of' x ]" := (ltac:(refine (cmp0 x%:sgn))).
Notation "[ 'neq0' 'of' x ]" := (ltac:(refine (neq0 x%:sgn))).
#[global] Hint Extern 0 (is_true (0%R < _)%O) => solve [apply: gt0] : core.
#[global] Hint Extern 0 (is_true (_ < 0%R)%O) => solve [apply: lt0] : core.
#[global] Hint Extern 0 (is_true (0%R <= _)%O) => solve [apply: ge0] : core.
#[global] Hint Extern 0 (is_true (_ <= 0%R)%O) => solve [apply: le0] : core.
#[global] Hint Extern 0 (is_true (_ \is Num.real)) => solve [apply: cmp0] : core.
#[global] Hint Extern 0 (is_true (0%R >=< _)%O) => solve [apply: cmp0] : core.
#[global] Hint Extern 0 (is_true (_ != 0%R)%O) => solve [apply: neq0] : core.
Notation "x %:pos" := (widen_signed x%:sgn : {posnum _}) (only parsing)
: ring_scope.
Notation "x %:nng" := (widen_signed x%:sgn : {nonneg _}) (only parsing)
: ring_scope.
Notation "x %:pos" := (@widen_signed _ _ _ _ _
(@Signed.from _ _ _ _ _ _ (Phantom _ x)) !=0 (Real (Sign >=0)) _ _)
(only printing) : ring_scope.
Notation "x %:nng" := (@widen_signed _ _ _ _ _
(@Signed.from _ _ _ _ _ _ (Phantom _ x)) ?=0 (Real (Sign >=0)) _ _)
(only printing) : ring_scope.
Local Open Scope ring_scope.
Section Order.
Variables (R : numDomainType) (nz : nullity) (r : real).
Local Notation nR := {num R & nz & r}.
Lemma signed_le_total : total (<=%O : rel nR).
Proof.
HB.instance Definition _ := Order.POrder_isTotal.Build ring_display nR
signed_le_total.
End Order.
Section POrderStability.
Context {disp : Order.disp_t} {T : porderType disp} {x0 : T}.
Definition min_nonzero_subdef (xnz ynz : nullity) (xr yr : reality) :=
nz_of_bool
(xnz && ynz
|| xnz && yr && match xr with Real (Sign <=0) => true | _ => false end
|| ynz && match yr with Real (Sign <=0) => true | _ => false end).
Arguments min_nonzero_subdef /.
Definition min_reality_subdef (xnz ynz : nullity) (xr yr : reality) : reality :=
match xr, yr with
| Real (Sign =0), Real (Sign =0)
| Real (Sign =0), Real (Sign >=0)
| Real (Sign >=0), Real (Sign =0) => =0
| Real (Sign >=0), Real (Sign >=0) => >=0
| Real (Sign <=0), Real _
| Real _, Real (Sign <=0) => <=0
| Real _, Real _ => >=<0
| _, _ => >?<0
end.
Arguments min_reality_subdef /.
Lemma min_snum_subproof (xnz ynz : nullity) (xr yr : reality)
(x : {compare x0 & xnz & xr}) (y : {compare x0 & ynz & yr})
(rnz := min_nonzero_subdef xnz ynz xr yr)
(rrl := min_reality_subdef xnz ynz xr yr) :
Signed.spec x0 rnz rrl (Order.min x%:num y%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; rewrite /Order.min;
do ?[by case: (bottom x)|by case: (bottom y)
|by case: ifP; rewrite ?eq0F// => xlty;
have := !! lt_trans xlty (lt0 y); rewrite lt_neqAle => /andP[]
|by rewrite ifT ?eq0F//; apply: lt_le_trans (ge0 y); exact: lt0
|by have := !! le0 y;
rewrite le_eqVlt => /predU1P[->|]; rewrite ?lt0 ?eq0F//;
case: ifP => _; rewrite ?eq0F// lt_neqAle => /andP[]].
have /orP[x0ley|] := !! cmp0 y.
by rewrite ifT ?eq0F//; apply: lt_le_trans x0ley; exact: lt0.
rewrite le_eqVlt => /predU1P[->|]; rewrite ?lt0 ?eq0F//.
by case: ifP => _; rewrite ?eq0F// lt_neqAle => /andP[].
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y;
do ?[by case: (bottom x)|by case: (bottom y)
|by apply: comparable_minr; exact: cmp0
|by rewrite minEle; case: ifP; rewrite ge0
|by rewrite ?eq0 minEle ?ge0
|by rewrite ?eq0 minElt; case: ifP; rewrite ?eq0// lt0F
|by rewrite minEle; case: ifP => [xlty|]; rewrite ?le0//;
apply: (le_trans xlty); rewrite le0
|by have /orP[x0ley|] := !! cmp0 y;
[rewrite minEle ifT ?le0//; apply: le_trans x0ley; exact: le0
|rewrite minEle; case: ifP => //; exact: le_trans]].
Qed.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; rewrite /Order.min;
do ?[by case: (bottom x)|by case: (bottom y)
|by case: ifP; rewrite ?eq0F// => xlty;
have := !! lt_trans xlty (lt0 y); rewrite lt_neqAle => /andP[]
|by rewrite ifT ?eq0F//; apply: lt_le_trans (ge0 y); exact: lt0
|by have := !! le0 y;
rewrite le_eqVlt => /predU1P[->|]; rewrite ?lt0 ?eq0F//;
case: ifP => _; rewrite ?eq0F// lt_neqAle => /andP[]].
have /orP[x0ley|] := !! cmp0 y.
by rewrite ifT ?eq0F//; apply: lt_le_trans x0ley; exact: lt0.
rewrite le_eqVlt => /predU1P[->|]; rewrite ?lt0 ?eq0F//.
by case: ifP => _; rewrite ?eq0F// lt_neqAle => /andP[].
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y;
do ?[by case: (bottom x)|by case: (bottom y)
|by apply: comparable_minr; exact: cmp0
|by rewrite minEle; case: ifP; rewrite ge0
|by rewrite ?eq0 minEle ?ge0
|by rewrite ?eq0 minElt; case: ifP; rewrite ?eq0// lt0F
|by rewrite minEle; case: ifP => [xlty|]; rewrite ?le0//;
apply: (le_trans xlty); rewrite le0
|by have /orP[x0ley|] := !! cmp0 y;
[rewrite minEle ifT ?le0//; apply: le_trans x0ley; exact: le0
|rewrite minEle; case: ifP => //; exact: le_trans]].
Qed.
Canonical min_snum (xnz ynz : nullity) (xr yr : reality)
(x : {compare x0 & xnz & xr}) (y : {compare x0 & ynz & yr}) :=
Signed.mk (min_snum_subproof x y).
Definition max_nonzero_subdef (xnz ynz : nullity) (xr yr : reality) :=
nz_of_bool
(xnz && ynz
|| xnz && match xr with Real (Sign >=0) => true | _ => false end
|| ynz && xr && match yr with Real (Sign >=0) => true | _ => false end).
Arguments max_nonzero_subdef /.
Definition max_reality_subdef (xnz ynz : nullity) (xr yr : reality) : reality :=
match xr, yr with
| Real (Sign =0), Real (Sign =0)
| Real (Sign =0), Real (Sign <=0)
| Real (Sign <=0), Real (Sign =0) => =0
| Real (Sign <=0), Real (Sign <=0) => <=0
| Real (Sign >=0), Real _
| Real _, Real (Sign >=0) => >=0
| Real _, Real _ => >=<0
| _, _ => >?<0
end.
Arguments max_reality_subdef /.
Lemma max_snum_subproof (xnz ynz : nullity) (xr yr : reality)
(x : {compare x0 & xnz & xr}) (y : {compare x0 & ynz & yr})
(rnz := max_nonzero_subdef xnz ynz xr yr)
(rrl := max_reality_subdef xnz ynz xr yr) :
Signed.spec x0 rnz rrl (Order.max x%:num y%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; rewrite maxElt;
do ?[by case: (bottom x)|by case: (bottom y)
|by case: ifP => [xlty|]; rewrite ?eq0F//;
do [suff : (x0 < y%:num)%O by rewrite lt_def => /andP[]];
apply: le_lt_trans xlty; exact: ge0
|by rewrite ifT ?eq0F//; apply: le_lt_trans (gt0 y); exact: le0
|by have := !! ge0 x;
rewrite le_eqVlt => /predU1P[<-|]; rewrite ?gt0 ?eq0F//;
case: ifP => _; rewrite ?eq0F// lt_def => /andP[]].
have /orP[|xlex0] := !! cmp0 x.
rewrite le_eqVlt => /predU1P[<-|]; rewrite ?gt0 ?eq0F//.
by case: ifP => _; rewrite ?eq0F// lt_def => /andP[].
by rewrite ifT ?eq0F//; apply: (le_lt_trans xlex0); exact: gt0.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y;
do ?[by case: (bottom x)|by case: (bottom y)
|by apply: comparable_maxr; exact: cmp0
|by rewrite ?eq0 maxEle ?le0
|by rewrite ?eq0 maxElt ifF// le_gtF// le0
|by rewrite maxEle; case: ifP; rewrite ?ge0//; exact/le_trans/ge0
|by rewrite maxElt; case: ifP => [xlty|]; rewrite ?le0//
|by have /orP[|xlex0] := !! cmp0 x;
[rewrite maxEle; case: ifP => // /[swap]; exact: le_trans
|rewrite maxEle ifT ?ge0//; apply: (le_trans xlex0); exact: ge0]].
Qed.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y; rewrite maxElt;
do ?[by case: (bottom x)|by case: (bottom y)
|by case: ifP => [xlty|]; rewrite ?eq0F//;
do [suff : (x0 < y%:num)%O by rewrite lt_def => /andP[]];
apply: le_lt_trans xlty; exact: ge0
|by rewrite ifT ?eq0F//; apply: le_lt_trans (gt0 y); exact: le0
|by have := !! ge0 x;
rewrite le_eqVlt => /predU1P[<-|]; rewrite ?gt0 ?eq0F//;
case: ifP => _; rewrite ?eq0F// lt_def => /andP[]].
have /orP[|xlex0] := !! cmp0 x.
rewrite le_eqVlt => /predU1P[<-|]; rewrite ?gt0 ?eq0F//.
by case: ifP => _; rewrite ?eq0F// lt_def => /andP[].
by rewrite ifT ?eq0F//; apply: (le_lt_trans xlex0); exact: gt0.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y;
do ?[by case: (bottom x)|by case: (bottom y)
|by apply: comparable_maxr; exact: cmp0
|by rewrite ?eq0 maxEle ?le0
|by rewrite ?eq0 maxElt ifF// le_gtF// le0
|by rewrite maxEle; case: ifP; rewrite ?ge0//; exact/le_trans/ge0
|by rewrite maxElt; case: ifP => [xlty|]; rewrite ?le0//
|by have /orP[|xlex0] := !! cmp0 x;
[rewrite maxEle; case: ifP => // /[swap]; exact: le_trans
|rewrite maxEle ifT ?ge0//; apply: (le_trans xlex0); exact: ge0]].
Qed.
Canonical max_snum (xnz ynz : nullity) (xr yr : reality)
(x : {compare x0 & xnz & xr}) (y : {compare x0 & ynz & yr}) :=
Signed.mk (max_snum_subproof x y).
End POrderStability.
Section NumDomainStability.
Context {R : numDomainType}.
Lemma zero_snum_subproof : Signed.spec 0 ?=0 =0 (0 : R).
Proof.
Canonical zero_snum := Signed.mk zero_snum_subproof.
Lemma one_snum_subproof : Signed.spec 0 !=0 >=0 (1 : R).
Canonical one_snum := Signed.mk one_snum_subproof.
Definition opp_reality_subdef (xnz : nullity) (xr : reality) : reality :=
match xr with
| Real (Sign =0) => =0
| Real (Sign >=0) => <=0
| Real (Sign <=0) => >=0
| Real AnySign => >=<0
| Arbitrary => >?<0
end.
Lemma opp_snum_subproof (xnz : nullity) (xr : reality)
(x : {num R & xnz & xr}) (r := opp_reality_subdef xnz xr) :
Signed.spec 0 xnz r (- x%:num).
Proof.
Canonical opp_snum (xnz : nullity) (xr : reality) (x : {num R & xnz & xr}) :=
Signed.mk (opp_snum_subproof x).
Definition add_samesign_subdef (xnz ynz : nullity) (xr yr : reality) :=
match xr, yr with
| Real (Sign >=0), Real (Sign =0)
| Real (Sign =0), Real (Sign >=0)
| Real (Sign <=0), Real (Sign =0)
| Real (Sign =0), Real (Sign <=0)
| Real (Sign =0), Real (Sign =0)
| Real (Sign >=0), Real (Sign >=0)
| Real (Sign <=0), Real (Sign <=0) => true
| _, _ => false
end.
Definition add_nonzero_subdef (xnz ynz : nullity) (xr yr : reality) :=
nz_of_bool (add_samesign_subdef xnz ynz xr yr && (xnz || ynz)).
Arguments add_nonzero_subdef /.
Definition add_reality_subdef (xnz ynz : nullity) (xr yr : reality) : reality :=
match xr, yr with
| Real (Sign =0), Real (Sign =0) => =0
| Real (Sign >=0), Real (Sign =0)
| Real (Sign =0), Real (Sign >=0)
| Real (Sign >=0), Real (Sign >=0) => >=0
| Real (Sign <=0), Real (Sign =0)
| Real (Sign =0), Real (Sign <=0)
| Real (Sign <=0), Real (Sign <=0) => <=0
| Real _, Real _ => >=<0
| _, _ => >?<0
end.
Arguments add_reality_subdef /.
Lemma add_snum_subproof (xnz ynz : nullity) (xr yr : reality)
(x : {num R & xnz & xr}) (y : {num R & ynz & yr})
(rnz := add_nonzero_subdef xnz ynz xr yr)
(rrl := add_reality_subdef xnz ynz xr yr) :
Signed.spec 0 rnz rrl (x%:num + y%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y;
by rewrite 1?addr_ss_eq0 ?(eq0F, ge0, le0, andbF, orbT).
have addr_le0 (a b : R) : a <= 0 -> b <= 0 -> a + b <= 0.
by rewrite -!oppr_ge0 opprD; apply: addr_ge0.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y;
do ?[by rewrite addr_ge0|by rewrite addr_le0|by rewrite -realE realD
|by case: (bottom x)|by case: (bottom y)|by rewrite !eq0 addr0].
Qed.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y;
by rewrite 1?addr_ss_eq0 ?(eq0F, ge0, le0, andbF, orbT).
have addr_le0 (a b : R) : a <= 0 -> b <= 0 -> a + b <= 0.
by rewrite -!oppr_ge0 opprD; apply: addr_ge0.
move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= x y;
do ?[by rewrite addr_ge0|by rewrite addr_le0|by rewrite -realE realD
|by case: (bottom x)|by case: (bottom y)|by rewrite !eq0 addr0].
Qed.
Canonical add_snum (xnz ynz : nullity) (xr yr : reality)
(x : {num R & xnz & xr}) (y : {num R & ynz & yr}) :=
Signed.mk (add_snum_subproof x y).
Definition mul_nonzero_subdef (xnz ynz : nullity) (xr yr : reality) :=
nz_of_bool (xnz && ynz).
Arguments mul_nonzero_subdef /.
Definition mul_reality_subdef (xnz ynz : nullity) (xr yr : reality) : reality :=
match xr, yr with
| Real (Sign =0), _ | _, Real (Sign =0) => =0
| Real (Sign >=0), Real (Sign >=0)
| Real (Sign <=0), Real (Sign <=0) => >=0
| Real (Sign >=0), Real (Sign <=0)
| Real (Sign <=0), Real (Sign >=0) => <=0
| Real _, Real _ => >=<0
| _ , _ => >?<0
end.
Arguments mul_reality_subdef /.
Lemma mul_snum_subproof (xnz ynz : nullity) (xr yr : reality)
(x : {num R & xnz & xr}) (y : {num R & ynz & yr})
(rnz := mul_nonzero_subdef xnz ynz xr yr)
(rrl := mul_reality_subdef xnz ynz xr yr) :
Signed.spec 0 rnz rrl (x%:num * y%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split.
by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []// x y;
rewrite mulf_neq0.
by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []/= x y //;
do ?[by rewrite mulr_ge0|by rewrite mulr_le0_ge0
|by rewrite mulr_ge0_le0|by rewrite mulr_le0|by rewrite -realE realM
|by case: (bottom x)|by case: (bottom y)|by rewrite eq0 ?mulr0// mul0r].
Qed.
by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []// x y;
rewrite mulf_neq0.
by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []/= x y //;
do ?[by rewrite mulr_ge0|by rewrite mulr_le0_ge0
|by rewrite mulr_ge0_le0|by rewrite mulr_le0|by rewrite -realE realM
|by case: (bottom x)|by case: (bottom y)|by rewrite eq0 ?mulr0// mul0r].
Qed.
Canonical mul_snum (xnz ynz : nullity) (xr yr : reality)
(x : {num R & xnz & xr}) (y : {num R & ynz & yr}) :=
Signed.mk (mul_snum_subproof x y).
Lemma natmul_snum_subproof (xnz nnz : nullity) (xr nr : reality)
(x : {num R & xnz & xr}) (n : {compare 0%N & nnz & nr})
(rnz := mul_nonzero_subdef xnz nnz xr nr)
(rrl := mul_reality_subdef xnz nnz xr nr) :
Signed.spec 0 rnz rrl (x%:num *+ n%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split.
by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n;
rewrite mulrn_eq0//= ?eq0F.
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //;
do ?[by case: (bottom x)|by case: (bottom n)
|by rewrite mulrn_wge0|by rewrite mulrn_wle0|by rewrite eq0 mul0rn
|by apply: real_comparable; rewrite ?real0 ?realrMn].
Qed.
by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n;
rewrite mulrn_eq0//= ?eq0F.
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //;
do ?[by case: (bottom x)|by case: (bottom n)
|by rewrite mulrn_wge0|by rewrite mulrn_wle0|by rewrite eq0 mul0rn
|by apply: real_comparable; rewrite ?real0 ?realrMn].
Qed.
Canonical natmul_snum (xnz nnz : nullity) (xr nr : reality)
(x : {num R & xnz & xr}) (n : {compare 0%N & nnz & nr}) :=
Signed.mk (natmul_snum_subproof x n).
Lemma intmul_snum_subproof (xnz nnz : nullity) (xr nr : reality)
(x : {num R & xnz & xr}) (n : {num int & nnz & nr})
(rnz := mul_nonzero_subdef xnz nnz xr nr)
(rrl := mul_reality_subdef xnz nnz xr nr) :
Signed.spec 0 rnz rrl (x%:num *~ n%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split.
by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n;
rewrite mulrz_neq0//= ?neq0.
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x n //;
do ?[by case: (bottom x)|by case: (bottom n)
|by rewrite mulrz_ge0|by rewrite mulrz_le0_ge0|by rewrite eq0 mul0rz
|by rewrite mulrz_ge0_le0|by rewrite mulrz_le0|by rewrite eq0 mulr0z
|by rewrite -realE rpredMz//; apply: cmp0].
Qed.
by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n;
rewrite mulrz_neq0//= ?neq0.
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x n //;
do ?[by case: (bottom x)|by case: (bottom n)
|by rewrite mulrz_ge0|by rewrite mulrz_le0_ge0|by rewrite eq0 mul0rz
|by rewrite mulrz_ge0_le0|by rewrite mulrz_le0|by rewrite eq0 mulr0z
|by rewrite -realE rpredMz//; apply: cmp0].
Qed.
Canonical intmul_snum (xnz nnz : nullity) (xr nr : reality)
(x : {num R & xnz & xr}) (n : {num int & nnz & nr}) :=
Signed.mk (intmul_snum_subproof x n).
Lemma inv_snum_subproof (xnz : nullity) (xr : reality)
(x : {num R & xnz & xr}) :
Signed.spec 0 xnz xr (x%:num^-1 : R).
Canonical inv_snum (xnz : nullity) (xr : reality) (x : {num R & xnz & xr}) :=
Signed.mk (inv_snum_subproof x).
Definition exprn_nonzero_subdef (xnz nnz : nullity)
(xr nr : reality) : nullity :=
nz_of_bool (xnz || match nr with Real (Sign =0) => true | _ => false end).
Arguments exprn_nonzero_subdef /.
Definition exprn_reality_subdef (xnz nnz : nullity)
(xr nr : reality) : reality :=
match xr, nr with
| _, Real (Sign =0) => >=0
| Real (Sign =0), _ => (if nnz then =0 else >=0)%snum_sign
| Real (Sign >=0), _ => >=0
| Real _, _ => >=<0
| _, _ => >?<0
end.
Arguments exprn_reality_subdef /.
Lemma exprn_snum_subproof (xnz nnz : nullity) (xr nr : reality)
(x : {num R & xnz & xr}) (n : {compare 0%N & nnz & nr})
(rnz := exprn_nonzero_subdef xnz nnz xr nr)
(rrl := exprn_reality_subdef xnz nnz xr nr) :
Signed.spec 0 rnz rrl (x%:num ^+ n%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split.
by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n;
do ?[by case: (bottom x)|by case: (bottom n)];
rewrite expf_eq0/= ?eq0// ?eq0F ?andbF//.
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //;
do ?[by case: (bottom x)|by case: (bottom n)|by rewrite [_ || _]realX
|by rewrite eq0 expr0n|exact: exprn_ge0|by rewrite expr0 ler01].
Qed.
by move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n;
do ?[by case: (bottom x)|by case: (bottom n)];
rewrite expf_eq0/= ?eq0// ?eq0F ?andbF//.
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //;
do ?[by case: (bottom x)|by case: (bottom n)|by rewrite [_ || _]realX
|by rewrite eq0 expr0n|exact: exprn_ge0|by rewrite expr0 ler01].
Qed.
Canonical exprn_snum (xnz nnz : nullity) (xr nr : reality)
(x : {num R & xnz & xr}) (n : {compare 0%N & nnz & nr}) :=
Signed.mk (exprn_snum_subproof x n).
Lemma norm_snum_subproof {V : normedZmodType R} (x : V) :
Signed.spec 0 ?=0 >=0 `|x|.
Proof.
by rewrite /=. Qed.
Canonical norm_snum {V : normedZmodType R} (x : V) :=
Signed.mk (norm_snum_subproof x).
End NumDomainStability.
Section RcfStability.
Context {R : rcfType}.
Definition sqrt_nonzero_subdef (xnz : nullity) (xr : reality) :=
if xr is Real (Sign >=0) then xnz else MaybeZero.
Arguments sqrt_nonzero_subdef /.
Lemma sqrt_snum_subproof xnz xr (x : {num R & xnz & xr})
(nz := sqrt_nonzero_subdef xnz xr) :
Signed.spec 0 nz >=0 (Num.sqrt x%:num).
Proof.
Canonical sqrt_snum xnz xr (x : {num R & xnz & xr}) :=
Signed.mk (sqrt_snum_subproof x).
End RcfStability.
Section NumClosedStability.
Context {R : numClosedFieldType}.
Definition sqrtC_reality_subdef (xnz : nullity) (xr : reality) : reality :=
match xr with
| Real (Sign =0) => =0
| Real (Sign >=0) => >=0
| _ => >?<0
end.
Arguments sqrtC_reality_subdef /.
Lemma sqrtC_snum_subproof xnz xr (x : {num R & xnz & xr})
(r := sqrtC_reality_subdef xnz xr) :
Signed.spec 0 xnz r (sqrtC x%:num).
Proof.
Canonical sqrtC_snum xnz xr (x : {num R & xnz & xr}) :=
Signed.mk (sqrtC_snum_subproof x).
End NumClosedStability.
Section NatStability.
Local Open Scope nat_scope.
Implicit Type (n : nat).
Lemma zeron_snum_subproof : Signed.spec 0 ?=0 =0 0.
Proof.
by []. Qed.
Canonical zeron_snum := Signed.mk zeron_snum_subproof.
Lemma succn_snum_subproof n : Signed.spec 0 !=0 >=0 n.+1.
Proof.
by []. Qed.
Canonical succn_snum n := Signed.mk (succn_snum_subproof n).
Lemma double_snum_subproof nz r (x : {compare 0 & nz & r}) :
Signed.spec 0 nz r x%:num.*2.
Proof.
by move: nz r x => [] [[[]|]|] [[|n]]. Qed.
Canonical double_snum nz r x :=
Signed.mk (@double_snum_subproof nz r x).
Lemma addn_snum_subproof (xnz ynz : nullity) (xr yr : reality)
(x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr})
(rnz := add_nonzero_subdef xnz ynz xr yr)
(rrl := add_reality_subdef xnz ynz xr yr) :
Signed.spec 0 rnz rrl (x%:num + y%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split;
by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= [[|x]//= _] [[|y]].
Qed.
by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= [[|x]//= _] [[|y]].
Qed.
Canonical addn_snum (xnz ynz : nullity) (xr yr : reality)
(x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) :=
Signed.mk (addn_snum_subproof x y).
Lemma muln_snum_subproof (xnz ynz : nullity) (xr yr : reality)
(x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr})
(rnz := mul_nonzero_subdef xnz ynz xr yr)
(rrl := mul_reality_subdef xnz ynz xr yr) :
Signed.spec 0 rnz rrl (x%:num * y%:num).
Proof.
Canonical muln_snum (xnz ynz : nullity) (xr yr : reality)
(x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) :=
Signed.mk (muln_snum_subproof x y).
Lemma expn_snum_subproof (xnz nnz : nullity) (xr nr : reality)
(x : {compare 0 & xnz & xr}) (n : {compare 0 & nnz & nr})
(rnz := exprn_nonzero_subdef xnz nnz xr nr)
(rrl := exprn_reality_subdef xnz nnz xr nr) :
Signed.spec 0 rnz rrl (x%:num ^ n%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split.
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n;
do ?[by case: (bottom x)|by case: (bottom n)
|by rewrite ?eq0 ?expn0// expn_eq0 ?eq0F].
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //;
do ?[by case: (bottom x)|by case: (bottom n)|by rewrite eq0 exp0n].
Qed.
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []// x n;
do ?[by case: (bottom x)|by case: (bottom n)
|by rewrite ?eq0 ?expn0// expn_eq0 ?eq0F].
move: xr nr xnz nnz x n => [[[]|]|] [[[]|]|] [] []/= x [[|n]//= _] //;
do ?[by case: (bottom x)|by case: (bottom n)|by rewrite eq0 exp0n].
Qed.
Canonical expn_snum (xnz nnz : nullity) (xr nr : reality)
(x : {compare 0 & xnz & xr}) (n : {compare 0 & nnz & nr}) :=
Signed.mk (expn_snum_subproof x n).
Lemma minn_snum_subproof (xnz ynz : nullity) (xr yr : reality)
(x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr})
(rnz := min_nonzero_subdef xnz ynz xr yr)
(rrl := min_reality_subdef xnz ynz xr yr) :
Signed.spec 0 rnz rrl (min x%:num y%:num).
Proof.
rewrite {}/rnz {}/rrl; apply/andP; split;
by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= [[|x]//= _] [[|y]].
Qed.
by move: xr yr xnz ynz x y => [[[]|]|] [[[]|]|] [] []//= [[|x]//= _] [[|y]].
Qed.
Canonical minn_snum (xnz ynz : nullity) (xr yr : reality)
(x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) :=
Signed.mk (minn_snum_subproof x y).
Lemma maxn_snum_subproof (xnz ynz : nullity) (xr yr : reality)
(x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr})
(rnz := max_nonzero_subdef xnz ynz xr yr)
(rrl := max_reality_subdef xnz ynz xr yr) :
Signed.spec 0 rnz rrl (maxn x%:num y%:num).
Proof.
Canonical maxn_snum (xnz ynz : nullity) (xr yr : reality)
(x : {compare 0 & xnz & xr}) (y : {compare 0 & ynz & yr}) :=
Signed.mk (maxn_snum_subproof x y).
End NatStability.
Section IntStability.
Lemma Posz_snum_subproof (xnz : nullity) (xr : reality)
(x : {compare 0%N & xnz & xr}) :
Signed.spec 0%Z xnz xr (Posz x%:num).
Proof.
Canonical Posz_snum (xnz : nullity) (xr : reality)
(x : {compare 0%N & xnz & xr}) :=
Signed.mk (Posz_snum_subproof x).
Lemma Negz_snum_subproof (n : nat) : Signed.spec 0%Z !=0 <=0 (Negz n).
Proof.
by []. Qed.
Canonical Negz_snum n := Signed.mk (Negz_snum_subproof n).
End IntStability.
Section Morph0.
Context {R : numDomainType} {cond : reality}.
Local Notation nR := {num R & ?=0 & cond}.
Implicit Types x y : nR.
Local Notation num := (@num _ _ (0 : R) ?=0 cond).
Lemma num_eq0 x : (x%:num == 0) = (x == (widen_signed 0%:sgn : nR)).
Proof.
by []. Qed.
End Morph0.
Section Morph.
Context {d : Order.disp_t} {T : porderType d}.
Context {x0 : T} {nz : nullity} {cond : reality}.
Local Notation sT := {compare x0 & nz & cond}.
Implicit Types x y : sT.
Local Notation num := (@num _ _ x0 nz cond).
Lemma num_eq : {mono num : x y / x == y}
Proof.
by []. Qed.
Proof.
by []. Qed.
Proof.
by []. Qed.
Lemma num_max : {morph num : x y / Order.max x y}.
End Morph.
Section MorphNum.
Context {R : numDomainType} {nz : nullity} {cond : reality}.
Local Notation nR := {num R & nz & cond}.
Implicit Types (a : R) (x y : nR).
Local Notation num := (@num _ _ (0 : R) nz cond).
Lemma num_abs_eq0 a : (`|a|%:nng == 0%:nng) = (a == 0).
Proof.
End MorphNum.
Section MorphReal.
Context {R : numDomainType} {nz : nullity} {r : real}.
Local Notation nR := {num R & nz & r}.
Implicit Type x y : nR.
Local Notation num := (@num _ _ (0 : R) nz r).
Lemma num_le_max a x y :
a <= Num.max x%:num y%:num = (a <= x%:num) || (a <= y%:num).
Proof.
Lemma num_ge_max a x y :
Num.max x%:num y%:num <= a = (x%:num <= a) && (y%:num <= a).
Proof.
Lemma num_le_min a x y :
a <= Num.min x%:num y%:num = (a <= x%:num) && (a <= y%:num).
Proof.
Lemma num_ge_min a x y :
Num.min x%:num y%:num <= a = (x%:num <= a) || (y%:num <= a).
Proof.
Lemma num_lt_max a x y :
a < Num.max x%:num y%:num = (a < x%:num) || (a < y%:num).
Proof.
Lemma num_gt_max a x y :
Num.max x%:num y%:num < a = (x%:num < a) && (y%:num < a).
Proof.
Lemma num_lt_min a x y :
a < Num.min x%:num y%:num = (a < x%:num) && (a < y%:num).
Proof.
Lemma num_gt_min a x y :
Num.min x%:num y%:num < a = (x%:num < a) || (y%:num < a).
Proof.
End MorphReal.
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `num_le_max`")]
Notation num_le_maxr := num_le_max (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `num_ge_max`")]
Notation num_le_maxl := num_ge_max (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `num_le_min`")]
Notation num_le_minr := num_le_min (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `num_ge_min`")]
Notation num_le_minl := num_ge_min (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `num_lt_max`")]
Notation num_lt_maxr := num_lt_max (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `num_gt_max`")]
Notation num_lt_maxl := num_gt_max (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `num_lt_min`")]
Notation num_lt_minr := num_lt_min (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `num_gt_min`")]
Notation num_lt_minl := num_gt_min (only parsing).
Section MorphGe0.
Context {R : numDomainType} {nz : nullity}.
Local Notation nR := {num R & ?=0 & >=0}.
Implicit Type x y : nR.
Local Notation num := (@num _ _ (0 : R) ?=0 >=0).
Lemma num_abs_le a x : 0 <= a -> (`|a|%:nng <= x) = (a <= x%:num).
Lemma num_abs_lt a x : 0 <= a -> (`|a|%:nng < x) = (a < x%:num).
End MorphGe0.
Section Posnum.
Context (R : numDomainType) (x : R) (x_gt0 : 0 < x).
Lemma posnum_subdef : (x != 0) && (0 <= x)
Proof.
End Posnum.
Definition NngNum (R : numDomainType) (x : R) (x_ge0 : 0 <= x) : {nonneg R} :=
(@Signed.mk _ _ 0 ?=0 >=0 x x_ge0).
CoInductive posnum_spec (R : numDomainType) (x : R) :
R -> bool -> bool -> bool -> Type :=
| IsPosnum (p : {posnum R}) : posnum_spec x (p%:num) false true true.
Lemma posnumP (R : numDomainType) (x : R) : 0 < x ->
posnum_spec x x (x == 0) (0 <= x) (0 < x).
Proof.
move=> x_gt0; case: real_ltgt0P (x_gt0) => []; rewrite ?gtr0_real // => _ _.
by rewrite -[x]/(PosNum x_gt0)%:num; constructor.
Qed.
by rewrite -[x]/(PosNum x_gt0)%:num; constructor.
Qed.
CoInductive nonneg_spec (R : numDomainType) (x : R) : R -> bool -> Type :=
| IsNonneg (p : {nonneg R}) : nonneg_spec x (p%:num) true.
Lemma nonnegP (R : numDomainType) (x : R) : 0 <= x -> nonneg_spec x x (0 <= x).
These proofs help integrate more arithmetic with signed.v. The issue is
Terms like `0 < 1-q` with subtraction don't work well. So we hide the
subtractions behind `PosNum` and `NngNum` constructors, see sequences.v
for examples.
Section onem_signed.Variable R : numDomainType.
Implicit Types r : R.
Lemma onem_PosNum r (r1 : r < 1) : `1-r = (PosNum (onem_gt0 r1))%:num.
Proof.
by []. Qed.
Lemma onemX_NngNum r (r1 : r <= 1) (r0 : 0 <= r) n :
`1-(r ^+ n) = (NngNum (onemX_ge0 n r0 r1))%:num.
Proof.
by []. Qed.
Lemma onem_nonneg_proof (p : {nonneg R}) : p%:num <= 1 -> 0 <= `1-(p%:num).
Definition onem_nonneg (p : {nonneg R}) (p1 : p%:num <= 1) :=
NngNum (onem_nonneg_proof p1).
End onem_signed.