Module mathcomp.classical.fsbigop
From mathcomp Require Import all_ssreflect ssralg ssrnum ssrint interval finmap.From mathcomp Require Import mathcomp_extra boolp classical_sets functions.
From mathcomp Require Import cardinality.
# Finitely-supported big operators
```
finite_support idx D F := D `&` F @^-1` [set~ idx]
\big[op/idx]_(i \in A) F i == iterated application of the operator op
with neutral idx over finite_support idx A F
\sum_(i \in A) F i == iterated addition, in ring_scope
```
Reserved Notation "\big [ op / idx ]_ ( i '\in' A ) F"
(at level 36, F at level 36, op, idx at level 10, i, A at level 50,
format "'[' \big [ op / idx ]_ ( i '\in' A ) '/ ' F ']'").
Reserved Notation "\sum_ ( i '\in' A ) F"
(at level 41, F at level 41, i, A at level 50,
format "'[' \sum_ ( i '\in' A ) '/ ' F ']'").
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import Order.TTheory GRing.Theory Num.Def Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Notation "\big [ op / idx ]_ ( i '\in' A ) F" :=
(\big[op/idx]_(i <- fset_set (A `&` ((fun i => F) @^-1` [set~ idx]))) F)
(only parsing) : big_scope.
Lemma finite_index_key : unit
Proof.
(F : I -> T) : seq I :=
locked_with finite_index_key (fset_set (D `&` F @^-1` [set~ idx] : set I)).
Notation "\big [ op / idx ]_ ( i '\in' D ) F" :=
(\big[op/idx]_(i <- finite_support idx D (fun i => F)) F)
: big_scope.
Lemma in_finite_support (T : Type) (J : choiceType) (i : T) (P : set J)
(F : J -> T) : finite_set (P `&` F @^-1` [set~ i]) ->
finite_support i P F =i P `&` F @^-1` [set~ i].
Proof.
Lemma finite_support_uniq (T : Type) (J : choiceType) (i : T) (P : set J)
(F : J -> T) : uniq (finite_support i P F).
Proof.
Lemma no_finite_support (T : Type) (J : choiceType) (i : T) (P : set J)
(F : J -> T) : infinite_set (P `&` F @^-1` [set~ i]) ->
finite_support i P F = [::].
Proof.
Lemma eq_finite_support {I : choiceType} {T : Type} (idx : T) (D : set I)
(F G : I -> T) : {in D, F =1 G} ->
finite_support idx D F = finite_support idx D G.
Proof.
Variant finite_support_spec R (T : choiceType)
(P : set T) (F : T -> R) (idx : R) : seq T -> Type :=
| NoFiniteSupport of infinite_set (P `&` F @^-1` [set~ idx]) :
finite_support_spec P F idx [::]
| FiniteSupport (X : {fset T}) of [set` X] `<=` P
& (forall i, P i -> i \notin X -> F i = idx)
& [set` X] = (P `&` F @^-1` [set~ idx]) :
finite_support_spec P F idx X.
Lemma finite_supportP R (T : choiceType) (P : set T) (F : T -> R) (idx : R) :
finite_support_spec P F idx (finite_support idx P F).
Proof.
Notation "\sum_ ( i '\in' A ) F" := (\big[+%R/0%R]_(i \in A) F) : ring_scope.
Lemma eq_fsbigl (R : Type) (idx : R) (op : R -> R -> R)
(T : choiceType) (f : T -> R) (P Q : set T) :
P = Q -> \big[op/idx]_(x \in P) f x = \big[op/idx]_(x \in Q) f x.
Proof.
by move=> ->. Qed.
Lemma eq_fsbigr (R : Type) (idx : R) (op : Monoid.com_law idx)
(T : choiceType) (f g : T -> R) (P : set T) :
{in P, f =1 g} -> (\big[op/idx]_(x \in P) f x = \big[op/idx]_(x \in P) g x).
Proof.
move=> fg; rewrite (eq_finite_support _ fg); apply: eq_big_seq => x.
by case: finite_supportP => //= X XP _ gidx xX; rewrite fg // ?inE; apply/XP.
Qed.
by case: finite_supportP => //= X XP _ gidx xX; rewrite fg // ?inE; apply/XP.
Qed.
Lemma fsbigTE (R : Type) (idx : R) (op : Monoid.com_law idx) (T : choiceType)
(A : {fset T}) (f : T -> R) :
(forall i, i \notin A -> f i = idx) ->
\big[op/idx]_(i \in [set: T]) f i = \big[op/idx]_(i <- A) f i.
Proof.
elim/Peq: R => R in idx op f *.
move=> Af; have Afin : finite_set (f @^-1` [set~ idx]).
by apply: (finite_subfset A) => x; apply: contra_notT => /Af.
rewrite [in RHS](big_fsetID _ [pred x | f x == idx])/=.
rewrite [X in _ = op X _]big_fset [X in _ = op X _]big1 ?Monoid.simpm//; last first.
by move=> i /= /eqP.
apply eq_fbigl => r.
rewrite in_finite_support// ?setTI// /preimage/=; apply/idP/idP => /=.
rewrite !inE/=; apply: contra_notP => /negP.
by rewrite negb_and negbK => /orP[|/eqP//]; exact: Af.
by rewrite !inE/= => /andP[_ /eqP].
Qed.
move=> Af; have Afin : finite_set (f @^-1` [set~ idx]).
by apply: (finite_subfset A) => x; apply: contra_notT => /Af.
rewrite [in RHS](big_fsetID _ [pred x | f x == idx])/=.
rewrite [X in _ = op X _]big_fset [X in _ = op X _]big1 ?Monoid.simpm//; last first.
by move=> i /= /eqP.
apply eq_fbigl => r.
rewrite in_finite_support// ?setTI// /preimage/=; apply/idP/idP => /=.
rewrite !inE/=; apply: contra_notP => /negP.
by rewrite negb_and negbK => /orP[|/eqP//]; exact: Af.
by rewrite !inE/= => /andP[_ /eqP].
Qed.
Lemma fsbig_mkcond (R : Type) (idx : R) (op : Monoid.com_law idx)
(T : choiceType) (A : set T) (f : T -> R) :
\big[op/idx]_(i \in A) f i =
\big[op/idx]_(i \in [set: T]) patch (fun=> idx) A f i.
Proof.
elim/Peq: R => R in idx op f *.
rewrite -big_mkcond/= -[in RHS]big_filter; apply: perm_big.
rewrite uniq_perm ?filter_uniq//= => i; rewrite mem_filter.
set g := fun i => if i \in A then f i else idx.
have gAf : setT `&` g @^-1` [set~ idx] = (A `&` f @^-1` [set~ idx]).
rewrite setTI; apply/predeqP => x; split; rewrite /preimage/g/=.
by case: ifPn; rewrite (inE, notin_setE).
by case: ifPn; rewrite (inE, notin_setE) => ? [].
case: finite_supportP => //.
rewrite -gAf; case: finite_supportP=> //=; first by rewrite ?inE andbF.
by move=> X _ gidx <-//.
move=> X XA fidx XE; case: finite_supportP; rewrite gAf -?XE//=.
move=> Y _ gidx /predeqP/=/(_ _)/propext YX.
by apply/idP/andP => [|[]]; rewrite YX// inE => Xi; split=> //; apply: XA.
Qed.
rewrite -big_mkcond/= -[in RHS]big_filter; apply: perm_big.
rewrite uniq_perm ?filter_uniq//= => i; rewrite mem_filter.
set g := fun i => if i \in A then f i else idx.
have gAf : setT `&` g @^-1` [set~ idx] = (A `&` f @^-1` [set~ idx]).
rewrite setTI; apply/predeqP => x; split; rewrite /preimage/g/=.
by case: ifPn; rewrite (inE, notin_setE).
by case: ifPn; rewrite (inE, notin_setE) => ? [].
case: finite_supportP => //.
rewrite -gAf; case: finite_supportP=> //=; first by rewrite ?inE andbF.
by move=> X _ gidx <-//.
move=> X XA fidx XE; case: finite_supportP; rewrite gAf -?XE//=.
move=> Y _ gidx /predeqP/=/(_ _)/propext YX.
by apply/idP/andP => [|[]]; rewrite YX// inE => Xi; split=> //; apply: XA.
Qed.
Lemma fsbig_mkcondr (R : Type) (idx : R) (op : Monoid.com_law idx)
(T : choiceType) (I J : set T) (a : T -> R) :
\big[op/idx]_(i \in I `&` J) a i =
\big[op/idx]_(i \in I) if i \in J then a i else idx.
Proof.
Lemma fsbig_mkcondl (R : Type) (idx : R) (op : Monoid.com_law idx)
(T : choiceType) (I J : set T) (a : T -> R) :
\big[op/idx]_(i \in I `&` J) a i =
\big[op/idx]_(i \in J) if i \in I then a i else idx.
Proof.
Lemma bigfs (R : Type) (idx : R) (op : Monoid.com_law idx) (T : choiceType)
(r : seq T) (P : {pred T}) (f : T -> R) : uniq r ->
(forall i, P i -> i \notin r -> f i = idx) ->
\big[op/idx]_(i <- r | P i) f i = \big[op/idx]_(i \in [set` P]) f i.
Proof.
Lemma fsbigE (R : Type) (idx : R) (op : Monoid.com_law idx) (T : choiceType)
(A : set T) (r : seq T) (f : T -> R) :
uniq r ->
[set` r] `<=` A ->
(forall i, A i -> i \notin r -> f i = idx) ->
\big[op/idx]_(i \in A) f i = \big[op/idx]_(i <- r | i \in A) f i.
Proof.
move=> r_uniq rQ fidx; rewrite [RHS]bigfs ?set_mem_set//=.
by move=> i; rewrite inE; apply: fidx.
Qed.
by move=> i; rewrite inE; apply: fidx.
Qed.
Lemma fsbig_seq (R : Type) (idx : R) (op : Monoid.com_law idx)
(I : choiceType) (r : seq I) (F : I -> R) :
uniq r ->
\big[op/idx]_(a <- r) F a = \big[op/idx]_(a \in [set` r]) F a.
Proof.
move=> ur; rewrite (fsbigE r)//=; last by move=> + ->.
by rewrite mem_setE big_seq_cond big_mkcondr.
Qed.
by rewrite mem_setE big_seq_cond big_mkcondr.
Qed.
Lemma fsbig1 (R : Type) (idx : R) (op : Monoid.law idx) (I : choiceType)
(P : set I) (F : I -> R) :
(forall i, P i -> F i = idx) -> \big[op/idx]_(i \in P) F i = idx.
Proof.
move=> PF0; rewrite big1_seq// => i/=; case: finite_supportP=> //=.
by move=> X XP _ _ Xi; rewrite PF0//; apply/XP.
Qed.
by move=> X XP _ _ Xi; rewrite PF0//; apply/XP.
Qed.
Lemma fsbig_dflt (R : Type) (idx : R) (op : Monoid.law idx) (I : choiceType)
(P : set I) (F : I -> R) :
infinite_set (P `&` F @^-1` [set~ idx])-> \big[op/idx]_(i \in P) F i = idx.
Proof.
Lemma fsbig_widen (T : choiceType) [R : Type] [idx : R]
(op : Monoid.com_law idx) (P D : set T) (f : T -> R) :
P `<=` D ->
D `\` P `<=` f @^-1` [set idx] ->
\big[op/idx]_(i \in P) f i = \big[op/idx]_(i \in D) f i.
Proof.
move=> PD DPf; rewrite fsbig_mkcond [RHS]fsbig_mkcond.
apply: eq_fsbigr => x _; rewrite /patch; case: ifPn; rewrite (inE, notin_setE).
by move=> Px; rewrite ifT// inE; apply: PD.
by move=> Px; case: ifP => //; rewrite inE => Dx; rewrite DPf.
Qed.
apply: eq_fsbigr => x _; rewrite /patch; case: ifPn; rewrite (inE, notin_setE).
by move=> Px; rewrite ifT// inE; apply: PD.
by move=> Px; case: ifP => //; rewrite inE => Dx; rewrite DPf.
Qed.
Lemma fsbig_supp (T : choiceType) [R : Type] [idx : R]
(op : Monoid.com_law idx) (P : set T) (f : T -> R) :
\big[op/idx]_(i \in P) f i = \big[op/idx]_(i \in P `&` f @^-1` [set~ idx]) f i.
Proof.
Lemma fsbig_fwiden (T : choiceType) [R : eqType] [idx : R]
(op : Monoid.com_law idx)
(r : seq T) (P : set T) (f : T -> R) :
P `<=` [set` r] ->
uniq r ->
[set i | i \in r] `\` P `<=` f @^-1` [set idx] ->
\big[op/idx]_(i \in P) f i = \big[op/idx]_(i <- r) f i.
Proof.
Lemma fsbig_set0 (R : Type) (idx : R) (op : Monoid.com_law idx) (T : choiceType)
(F : T -> R) : \big[op/idx]_(x \in set0) F x = idx.
Lemma fsbig_set1 (R : Type) (idx : R) (op : Monoid.com_law idx) (T : choiceType) x
(F : T -> R) : \big[op/idx]_(y \in [set x]) F y = F x.
Proof.
Lemma __deprecated__full_fsbigID (R : Type) (idx : R) (op : Monoid.com_law idx)
(I : choiceType) (B : set I) (A : set I) (F : I -> R) :
finite_set (A `&` F @^-1` [set~ idx]) ->
\big[op/idx]_(i \in A) F i = op (\big[op/idx]_(i \in A `&` B) F i)
(\big[op/idx]_(i \in A `&` ~` B) F i).
Proof.
move=> finF.
have fsbig_setI C : \big[op/idx]_(i <-
[fset x | x in fset_set (A `&` F @^-1` [set~ idx]) & x \in C]%fset) F i =
\big[op/idx]_(i \in A `&` C) F i.
apply: eq_fbigl => i /=; apply/idP/idP.
rewrite !inE/= => /andP[+ Bi]; rewrite in_fset_set// inE => -[Ai Fi].
rewrite unlock in_fset_set ?inE// setIAC; first by rewrite inE in Bi.
exact/finite_setIl.
rewrite unlock in_fset_set; last by rewrite setIAC; exact/finite_setIl.
by rewrite inE => -[[Ai Bi] Fi0]; rewrite !inE/= in_fset_set// !mem_set.
rewrite (big_fsetID _ [pred i | i \in B])/= [locked_with _ _]unlock.
rewrite fsbig_setI; congr (op _ _); rewrite -fsbig_setI.
by apply eq_fbigl => i; rewrite !inE in_setC.
Qed.
have fsbig_setI C : \big[op/idx]_(i <-
[fset x | x in fset_set (A `&` F @^-1` [set~ idx]) & x \in C]%fset) F i =
\big[op/idx]_(i \in A `&` C) F i.
apply: eq_fbigl => i /=; apply/idP/idP.
rewrite !inE/= => /andP[+ Bi]; rewrite in_fset_set// inE => -[Ai Fi].
rewrite unlock in_fset_set ?inE// setIAC; first by rewrite inE in Bi.
exact/finite_setIl.
rewrite unlock in_fset_set; last by rewrite setIAC; exact/finite_setIl.
by rewrite inE => -[[Ai Bi] Fi0]; rewrite !inE/= in_fset_set// !mem_set.
rewrite (big_fsetID _ [pred i | i \in B])/= [locked_with _ _]unlock.
rewrite fsbig_setI; congr (op _ _); rewrite -fsbig_setI.
by apply eq_fbigl => i; rewrite !inE in_setC.
Qed.
Lemma fsbigID (R : Type) (idx : R) (op : Monoid.com_law idx)
(I : choiceType) (B : set I) (A : set I) (F : I -> R) :
finite_set A ->
\big[op/idx]_(i \in A) F i = op (\big[op/idx]_(i \in A `&` B) F i)
(\big[op/idx]_(i \in A `&` ~` B) F i).
Proof.
#[deprecated(note="Use fsbigID instead")]
Notation full_fsbigID := __deprecated__full_fsbigID (only parsing).
Lemma fsbigU (R : Type) (idx : R) (op : Monoid.com_law idx)
(I : choiceType) (A B : set I) (F : I -> R) :
finite_set A -> finite_set B -> A `&` B `<=` F @^-1` [set idx] ->
\big[op/idx]_(i \in A `|` B) F i =
op (\big[op/idx]_(i \in A) F i) (\big[op/idx]_(i \in B) F i).
Proof.
Lemma fsbigU0 (R : Type) (idx : R) (op : Monoid.com_law idx)
(I : choiceType) (A B : set I) (F : I -> R) :
finite_set A -> finite_set B -> A `&` B `<=` set0 ->
\big[op/idx]_(i \in A `|` B) F i =
op (\big[op/idx]_(i \in A) F i) (\big[op/idx]_(i \in B) F i).
Proof.
Lemma fsbigD1 (R : Type) (idx : R) (op : Monoid.com_law idx)
(I : choiceType) (i : I) (A : set I) (F : I -> R) :
finite_set A -> A i ->
\big[op/idx]_(j \in A) F j = op (F i) (\big[op/idx]_(j \in A `\ i) F j).
Arguments fsbigD1 {R idx op I} i A F.
Lemma full_fsbig_distrr (R : Type) (zero : R) (times : Monoid.mul_law zero)
(plus : Monoid.add_law zero times) (I : choiceType) (a : R) (P : set I)
(F : I -> R) :
finite_set (P `&` F @^-1` [set~ zero]) ->
times a (\big[plus/zero]_(i \in P) F i) =
\big[plus/zero]_(i \in P) times a (F i).
Proof.
move=> finF; elim/Peq : R => R in zero times plus a F finF *.
have [->|a0] := eqVneq a zero.
by rewrite Monoid.mul0m fsbig1//; move=> i _; rewrite Monoid.mul0m.
rewrite big_distrr [RHS](full_fsbigID (F @^-1` [set zero])); last first.
apply: sub_finite_set finF => x /= [Px aFN0].
by split=> //; apply: contra_not aFN0 => ->; rewrite Monoid.simpm.
set b0 := bigop _ _ _.
set b1 := bigop _ _ _.
set b2 := bigop _ _ _.
rewrite (_ : b1 = zero) ?Monoid.simpm; last first.
by rewrite /b1 fsbig1// => i [_ ->]; rewrite Monoid.simpm.
apply/esym/fsbig_fwiden => //.
by move=> x [Px Fx0]; rewrite /= in_finite_support// inE.
move=> i []; rewrite /preimage/= in_finite_support //.
by rewrite !inE => -[Pi]; rewrite /preimage/= => Fi0; tauto.
Qed.
have [->|a0] := eqVneq a zero.
by rewrite Monoid.mul0m fsbig1//; move=> i _; rewrite Monoid.mul0m.
rewrite big_distrr [RHS](full_fsbigID (F @^-1` [set zero])); last first.
apply: sub_finite_set finF => x /= [Px aFN0].
by split=> //; apply: contra_not aFN0 => ->; rewrite Monoid.simpm.
set b0 := bigop _ _ _.
set b1 := bigop _ _ _.
set b2 := bigop _ _ _.
rewrite (_ : b1 = zero) ?Monoid.simpm; last first.
by rewrite /b1 fsbig1// => i [_ ->]; rewrite Monoid.simpm.
apply/esym/fsbig_fwiden => //.
by move=> x [Px Fx0]; rewrite /= in_finite_support// inE.
move=> i []; rewrite /preimage/= in_finite_support //.
by rewrite !inE => -[Pi]; rewrite /preimage/= => Fi0; tauto.
Qed.
Lemma fsbig_distrr (R : Type) (zero : R) (times : Monoid.mul_law zero)
(plus : Monoid.add_law zero times) (I : choiceType) (a : R) (P : set I)
(F : I -> R) :
finite_set P ->
times a (\big[plus/zero]_(i \in P) F i) =
\big[plus/zero]_(i \in P) times a (F i).
Proof.
Lemma mulr_fsumr (R : idomainType) (I : choiceType) a (P : set I) (F : I -> R) :
a * (\sum_(i \in P) F i) = \sum_(i \in P) a * F i.
Proof.
have [->|aN0] := eqVneq a 0; first by rewrite mul0r big1// => i; rewrite mul0r.
case: (pselect (finite_set (P `&` F @^-1` [set~ 0]))) => PFfin.
exact: full_fsbig_distrr.
rewrite !fsbig_dflt ?mulr0//; apply: contra_not PFfin; apply: sub_finite_set.
by move=> x [Px /eqP Fx0]; split=> //=; apply/eqP; rewrite mulf_neq0.
Qed.
case: (pselect (finite_set (P `&` F @^-1` [set~ 0]))) => PFfin.
exact: full_fsbig_distrr.
rewrite !fsbig_dflt ?mulr0//; apply: contra_not PFfin; apply: sub_finite_set.
by move=> x [Px /eqP Fx0]; split=> //=; apply/eqP; rewrite mulf_neq0.
Qed.
Lemma mulr_fsuml (R : idomainType) (I : choiceType) a (P : set I) (F : I -> R) :
(\sum_(i \in P) F i) * a = \sum_(i \in P) (F i * a).
Proof.
Lemma fsbig_ord R (idx : R) (op : Monoid.com_law idx) n (F : nat -> R) :
\big[op/idx]_(a < n) F a = \big[op/idx]_(a \in `I_n) F a.
Proof.
Lemma fsbig_finite (R : Type) (idx : R) (op : Monoid.com_law idx) (T : choiceType)
(D : set T) (F : T -> R) : finite_set D ->
\big[op/idx]_(x \in D) F x = \big[op/idx]_(x <- fset_set D) F x.
Proof.
Section fsbig2.
Variables (R : Type) (idx : R) (op : Monoid.com_law idx).
Lemma reindex_fsbig {I J : choiceType} (h : I -> J) P Q
(F : J -> R) : set_bij P Q h ->
\big[op/idx]_(j \in Q) F j = \big[op/idx]_(i \in P) F (h i).
Proof.
elim/choicePpointed: I => I in h P *.
rewrite !emptyE => /Pbij[{}h ->].
by rewrite -[in LHS](image_eq h) image_set0 !fsbig_set0.
elim/choicePpointed: J => J in F h Q *; first by have := no (h point).
move=> /(@pPbij _ _ _)[{}h ->].
pose A := P `&` (F \o h) @^-1` [set~ idx].
pose B := Q `&` F @^-1` [set~ idx].
have /(@pPbij _ _ _)[g gh] : set_bij A B h.
apply: splitbij_sub; rewrite /A /B /preimage //=.
by move=> x [Px Fhx]; split=> //; apply: funS.
by move=> x [Qx Fx]; split; rewrite ?invK ?inE//; apply: funS.
case: finite_supportP; rewrite ?big_nil//=.
case: finite_supportP; rewrite ?big_nil//=.
move=> X XP _ XE []; rewrite -/B -(image_eq g) /A.
by apply: finite_image; rewrite -XE.
move=> Y YQ Fidx YE; case: finite_supportP.
move=> []; rewrite -/A -(image_eq [bij of g^-1%FUN]).
by apply: finite_image; rewrite /B -YE.
move=> X XP Fhidx XE; suff -> : Y = (h @` X)%fset.
by rewrite big_imfset// => ? ? ? ? /inj; apply; rewrite inE; apply: XP.
have BY j : (B j) = (j \in Y) by rewrite -[RHS]/([set` Y] j) YE.
have AX i : (A i) = (i \in X) by rewrite -[RHS]/([set` X] i) XE.
rewrite gh; apply/fsetP=> j; apply/idP/imfsetP => [Yj | [i iX ->]]; last first.
by rewrite -BY; apply: funS; rewrite AX.
by exists (g^-1%FUN j); rewrite ?invK ?inE ?BY// -AX; apply: funS; rewrite BY.
Qed.
rewrite !emptyE => /Pbij[{}h ->].
by rewrite -[in LHS](image_eq h) image_set0 !fsbig_set0.
elim/choicePpointed: J => J in F h Q *; first by have := no (h point).
move=> /(@pPbij _ _ _)[{}h ->].
pose A := P `&` (F \o h) @^-1` [set~ idx].
pose B := Q `&` F @^-1` [set~ idx].
have /(@pPbij _ _ _)[g gh] : set_bij A B h.
apply: splitbij_sub; rewrite /A /B /preimage //=.
by move=> x [Px Fhx]; split=> //; apply: funS.
by move=> x [Qx Fx]; split; rewrite ?invK ?inE//; apply: funS.
case: finite_supportP; rewrite ?big_nil//=.
case: finite_supportP; rewrite ?big_nil//=.
move=> X XP _ XE []; rewrite -/B -(image_eq g) /A.
by apply: finite_image; rewrite -XE.
move=> Y YQ Fidx YE; case: finite_supportP.
move=> []; rewrite -/A -(image_eq [bij of g^-1%FUN]).
by apply: finite_image; rewrite /B -YE.
move=> X XP Fhidx XE; suff -> : Y = (h @` X)%fset.
by rewrite big_imfset// => ? ? ? ? /inj; apply; rewrite inE; apply: XP.
have BY j : (B j) = (j \in Y) by rewrite -[RHS]/([set` Y] j) YE.
have AX i : (A i) = (i \in X) by rewrite -[RHS]/([set` X] i) XE.
rewrite gh; apply/fsetP=> j; apply/idP/imfsetP => [Yj | [i iX ->]]; last first.
by rewrite -BY; apply: funS; rewrite AX.
by exists (g^-1%FUN j); rewrite ?invK ?inE ?BY// -AX; apply: funS; rewrite BY.
Qed.
Lemma fsbig_image {I J : choiceType} P (h : I -> J) (F : J -> R) : set_inj P h ->
\big[op/idx]_(j \in h @` P) F j = \big[op/idx]_(i \in P) F (h i).
Proof.
Lemma __deprecated__reindex_inside {I J : choiceType} P Q (h : I -> J) (F : J -> R) :
bijective h -> P `<=` h @` Q -> Q `<=` h @^-1` P ->
\big[op/idx]_(j \in P) F j = \big[op/idx]_(i \in Q) F (h i).
Proof.
Lemma reindex_fsbigT {I J : choiceType} (h : I -> J) (F : J -> R) :
bijective h ->
\big[op/idx]_(j \in [set: J]) F j = \big[op/idx]_(i \in [set: I]) F (h i).
Proof.
End fsbig2.
Arguments reindex_fsbig {R idx op I J} _ _ _.
Arguments fsbig_image {R idx op I J} _ _.
Arguments __deprecated__reindex_inside {R idx op I J} _ _.
Arguments reindex_fsbigT {R idx op I J} _ _.
#[deprecated(note="use reindex_fsbig, fsbig_image or reindex_fsbigT instead")]
Notation reindex_inside := __deprecated__reindex_inside (only parsing).
#[deprecated(note="use reindex_fsbigT instead")]
Notation reindex_inside_setT := reindex_fsbigT (only parsing).
Lemma fsbigN1 (R : eqType) (idx : R) (op : Monoid.com_law idx)
(T1 T2 : choiceType) (Q : set T2) (f : T1 -> T2 -> R) (x : T1) :
\big[op/idx]_(y \in Q) f x y != idx -> exists2 y, Q y & f x y != idx.
Proof.
Lemma fsbig_split (T : choiceType) (R : eqType) (idx : R)
(op : Monoid.com_law idx) (P : set T) (f g : T -> R) : finite_set P ->
\big[op/idx]_(x \in P) op (f x) (g x) =
op (\big[op/idx]_(x \in P) f x) (\big[op/idx]_(x \in P) g x).
Proof.
Lemma fsumr_ge0 (R : numDomainType) (I : choiceType) (P : set I) (F : I -> R) :
(forall i, P i -> 0 <= F i) -> 0 <= \sum_(i \in P) F i.
Proof.
move=> PF; case: finite_supportP; rewrite ?big_nil// => X XP F0 _.
by rewrite big_seq_cond big_mkcondr sumr_ge0// => i /XP/PF.
Qed.
by rewrite big_seq_cond big_mkcondr sumr_ge0// => i /XP/PF.
Qed.
Lemma fsumr_le0 (R : numDomainType) (I : choiceType) (P : set I) (F : I -> R) :
(forall i, P i -> F i <= 0) -> \sum_(i \in P) F i <= 0.
Proof.
move=> PF; case: finite_supportP; rewrite ?big_nil// => X XP F0 _.
by rewrite big_seq_cond big_mkcondr sumr_le0// => i /XP/PF.
Qed.
by rewrite big_seq_cond big_mkcondr sumr_le0// => i /XP/PF.
Qed.
Lemma fsumr_gt0 (R : realDomainType) (I : choiceType) (r : seq I) (P : set I)
(F : I -> R) :
0 < \sum_(i \in P) F i -> exists2 i, P i & 0 < F i.
Proof.
Lemma fsumr_lt0 (R : realDomainType) (I : choiceType) (P : set I)
(F : I -> R) :
\sum_(i \in P) F i < 0 -> exists2 i, P i & F i < 0.
Proof.
Lemma pfsumr_eq0 (R : realDomainType) (I : choiceType) (P : set I)
(F : I -> R) :
finite_set P ->
(forall i, P i -> 0 <= F i) ->
\sum_(i \in P) F i = 0 -> forall i, P i -> F i = 0.
Proof.
Lemma fsbig_setU {T} {I : choiceType} (A : set I) (F : I -> set T) :
finite_set A ->
\big[setU/set0]_(i \in A) F i = \bigcup_(i in A) F i.
Proof.
Lemma fsbig_setU_set1 {T : choiceType} (A : set T) :
finite_set A -> \big[setU/set0]_(x \in A) [set x] = A.
Proof.
Lemma pair_fsbig (R : Type) (idx : R) (op : Monoid.com_law idx)
(I J : choiceType) (P : set I) (Q : set J) (F : I -> J -> R) :
finite_set P -> finite_set Q ->
\big[op/idx]_(i \in P) \big[op/idx]_(j \in Q) F i j
= \big[op/idx]_(p \in P `*` Q) F p.1 p.2.
Proof.
move=> Pfin Qfin; have PQfin : finite_set (P `*` Q) by exact: finite_setX.
rewrite !fsbig_finite//=; under eq_bigr do rewrite fsbig_finite//=.
rewrite pair_big_dep_cond/= fset_setX//.
apply: eq_fbigl => -[i j] //=; apply/imfset2P/idP; rewrite inE //=.
by move=> [x + [y + [-> ->]]]; rewrite 4!inE/= !andbT/= => -> ->.
move=> /andP[Pi Qi]; exists i; rewrite 2?inE ?andbT//.
by exists j; rewrite 2?inE ?andbT.
Qed.
rewrite !fsbig_finite//=; under eq_bigr do rewrite fsbig_finite//=.
rewrite pair_big_dep_cond/= fset_setX//.
apply: eq_fbigl => -[i j] //=; apply/imfset2P/idP; rewrite inE //=.
by move=> [x + [y + [-> ->]]]; rewrite 4!inE/= !andbT/= => -> ->.
move=> /andP[Pi Qi]; exists i; rewrite 2?inE ?andbT//.
by exists j; rewrite 2?inE ?andbT.
Qed.
Lemma exchange_fsbig (R : Type) (idx : R) (op : Monoid.com_law idx)
(I J : choiceType) (P : set I) (Q : set J) (F : I -> J -> R) :
finite_set P -> finite_set Q ->
\big[op/idx]_(i \in P) \big[op/idx]_(j \in Q) F i j
= \big[op/idx]_(j \in Q) \big[op/idx]_(i \in P) F i j.