Module mathcomp.analysis.topology_theory.matrix_topology
From HB Require Import structures.From mathcomp Require Import all_ssreflect all_algebra finmap all_classical.
From mathcomp Require Import signed topology_structure uniform_structure.
From mathcomp Require Import pseudometric_structure.
# Matrix topology
```
mx_ent m n A == entourages for the m x n matrices
mx_ball m n A == balls for the m x n matrices
```
Matrices `'M[T]_(m, n)` are endowed with the structures of:
- topology
- uniform space
- pseudometric space
- complete uniform space
- complete pseudometric space
Import Order.TTheory GRing.Theory Num.Theory.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
Section matrix_Topology.
Variables (m n : nat) (T : topologicalType).
Implicit Types M : 'M[T]_(m, n).
Lemma mx_nbhs_filter M : ProperFilter (nbhs M).
Proof.
apply: (filter_from_proper (filter_from_filter _ _)) => [|P Q M_P M_Q|P M_P].
- by exists (fun i j => setT) => ??; apply: filterT.
- exists (fun i j => P i j `&` Q i j) => [??|mx PQmx]; first exact: filterI.
by split=> i j; have [] := PQmx i j.
- exists (\matrix_(i, j) xget (M i j) (P i j)) => i j; rewrite mxE.
by apply: xgetPex; exact: filter_ex (M_P i j).
Qed.
- by exists (fun i j => setT) => ??; apply: filterT.
- exists (fun i j => P i j `&` Q i j) => [??|mx PQmx]; first exact: filterI.
by split=> i j; have [] := PQmx i j.
- exists (\matrix_(i, j) xget (M i j) (P i j)) => i j; rewrite mxE.
by apply: xgetPex; exact: filter_ex (M_P i j).
Qed.
Lemma mx_nbhs_singleton M (A : set 'M[T]_(m, n)) : nbhs M A -> A M.
Proof.
Lemma mx_nbhs_nbhs M (A : set 'M[T]_(m, n)) : nbhs M A -> nbhs M (nbhs^~ A).
Proof.
HB.instance Definition _ := Nbhs_isNbhsTopological.Build 'M[T]_(m, n)
mx_nbhs_filter mx_nbhs_singleton mx_nbhs_nbhs.
End matrix_Topology.
Section matrix_PointedTopology.
Variables (m n : nat) (T : pointedType).
Implicit Types M : 'M[T]_(m, n).
HB.instance Definition _ := Pointed.on 'M[T]_(m, n).
End matrix_PointedTopology.
Section matrix_Uniform.
Local Open Scope relation_scope.
Variables (m n : nat) (T : uniformType).
Implicit Types A : set ('M[T]_(m, n) * 'M[T]_(m, n)).
Definition mx_ent :=
filter_from
[set P : 'I_m -> 'I_n -> set (T * T) | forall i j, entourage (P i j)]
(fun P => [set MN : 'M[T]_(m, n) * 'M[T]_(m, n) |
forall i j, P i j (MN.1 i j, MN.2 i j)]).
Lemma mx_ent_filter : Filter mx_ent.
Proof.
Lemma mx_ent_refl A : mx_ent A -> diagonal `<=` A.
Proof.
Lemma mx_ent_inv A : mx_ent A -> mx_ent A^-1.
Proof.
Lemma mx_ent_split A : mx_ent A -> exists2 B, mx_ent B & B \; B `<=` A.
Proof.
move=> [B entB sBA].
have Bsplit : forall i j, exists C, entourage C /\ C \; C `<=` B i j.
by move=> ??; apply/exists2P/entourage_split_ex.
exists [set MN : 'M[T]_(m, n) * 'M[T]_(m, n) |
forall i j, get [set C | entourage C /\ C \; C `<=` B i j]
(MN.1 i j, MN.2 i j)].
by exists (fun i j => get [set C | entourage C /\ C \; C `<=` B i j]).
move=> MN [P CMN1P CPMN2]; apply/sBA => i j.
have /getPex [_] := Bsplit i j; apply; exists (P i j); first exact: CMN1P.
exact: CPMN2.
Qed.
have Bsplit : forall i j, exists C, entourage C /\ C \; C `<=` B i j.
by move=> ??; apply/exists2P/entourage_split_ex.
exists [set MN : 'M[T]_(m, n) * 'M[T]_(m, n) |
forall i j, get [set C | entourage C /\ C \; C `<=` B i j]
(MN.1 i j, MN.2 i j)].
by exists (fun i j => get [set C | entourage C /\ C \; C `<=` B i j]).
move=> MN [P CMN1P CPMN2]; apply/sBA => i j.
have /getPex [_] := Bsplit i j; apply; exists (P i j); first exact: CMN1P.
exact: CPMN2.
Qed.
Lemma mx_ent_nbhsE : nbhs = nbhs_ mx_ent.
Proof.
rewrite predeq2E => M A; split.
move=> [B]; rewrite -nbhs_entourageE => M_B sBA.
set sB := fun i j => [set C | entourage C /\ xsection C (M i j) `<=` B i j].
have {}M_B : forall i j, sB i j !=set0 by move=> ??; apply/exists2P/M_B.
exists [set MN : 'M[T]_(m, n) * 'M[T]_(m, n) | forall i j,
get (sB i j) (MN.1 i j, MN.2 i j)].
by exists (fun i j => get (sB i j)) => // i j; have /getPex [] := M_B i j.
move=> N /xsectionP CMN; apply/sBA => i j; have /getPex [_] := M_B i j; apply.
exact/xsectionP/CMN.
move=> [B [C entC sCB] sBA]; exists (fun i j => xsection (C i j) (M i j)).
by rewrite -nbhs_entourageE => i j; exists (C i j).
by move=> N CMN; apply/sBA; apply/xsectionP/sCB => ? ?; exact/xsectionP/CMN.
Qed.
move=> [B]; rewrite -nbhs_entourageE => M_B sBA.
set sB := fun i j => [set C | entourage C /\ xsection C (M i j) `<=` B i j].
have {}M_B : forall i j, sB i j !=set0 by move=> ??; apply/exists2P/M_B.
exists [set MN : 'M[T]_(m, n) * 'M[T]_(m, n) | forall i j,
get (sB i j) (MN.1 i j, MN.2 i j)].
by exists (fun i j => get (sB i j)) => // i j; have /getPex [] := M_B i j.
move=> N /xsectionP CMN; apply/sBA => i j; have /getPex [_] := M_B i j; apply.
exact/xsectionP/CMN.
move=> [B [C entC sCB] sBA]; exists (fun i j => xsection (C i j) (M i j)).
by rewrite -nbhs_entourageE => i j; exists (C i j).
by move=> N CMN; apply/sBA; apply/xsectionP/sCB => ? ?; exact/xsectionP/CMN.
Qed.
HB.instance Definition _ := Nbhs_isUniform.Build 'M[T]_(m, n)
mx_ent_filter mx_ent_refl mx_ent_inv mx_ent_split mx_ent_nbhsE.
End matrix_Uniform.
Lemma cvg_mx_entourageP (T : puniformType) m n (F : set_system 'M[T]_(m,n))
(FF : Filter F) (M : 'M[T]_(m,n)) :
F --> M <->
forall A, entourage A -> \forall N \near F,
forall i j, (M i j, (N : 'M[T]_(m,n)) i j) \in A.
Proof.
split.
rewrite filter_fromP => FM A ?.
by apply: (FM (fun i j => xsection A (M i j))).
move=> FM; apply/cvg_entourageP => A [P entP sPA]; near=> N; apply/xsectionP.
move/subsetP : sPA; apply => /=; near: N; set Q := \bigcap_ij P ij.1 ij.2.
apply: filterS (FM Q _).
move=> N QN; rewrite inE/= => i j.
by have := QN i j; rewrite !inE => /(_ (i, j)); exact.
have -> : Q =
\bigcap_(ij in [set k | k \in [fset x in predT]%fset]) P ij.1 ij.2.
by rewrite predeqE => t; split=> Qt ij _; apply: Qt => //=; rewrite !inE.
by apply: filter_bigI => ??; apply: entP.
Unshelve. all: by end_near. Qed.
rewrite filter_fromP => FM A ?.
by apply: (FM (fun i j => xsection A (M i j))).
move=> FM; apply/cvg_entourageP => A [P entP sPA]; near=> N; apply/xsectionP.
move/subsetP : sPA; apply => /=; near: N; set Q := \bigcap_ij P ij.1 ij.2.
apply: filterS (FM Q _).
move=> N QN; rewrite inE/= => i j.
by have := QN i j; rewrite !inE => /(_ (i, j)); exact.
have -> : Q =
\bigcap_(ij in [set k | k \in [fset x in predT]%fset]) P ij.1 ij.2.
by rewrite predeqE => t; split=> Qt ij _; apply: Qt => //=; rewrite !inE.
by apply: filter_bigI => ??; apply: entP.
Unshelve. all: by end_near. Qed.
Section matrix_PointedTopology.
Variables (m n : nat) .
HB.instance Definition _ (T : ptopologicalType) := Filtered.on 'M[T]_(m, n).
HB.instance Definition _ (T : ptopologicalType) := Pointed.on 'M[T]_(m, n).
HB.instance Definition _ (T : ptopologicalType) :=
PointedFiltered.on 'M[T]_(m, n).
HB.instance Definition _ (T : ptopologicalType) :=
PointedTopological.on 'M[T]_(m, n).
HB.instance Definition _ (T : uniformType) := Uniform.on 'M[T]_(m, n).
HB.instance Definition _ (T : puniformType) := Pointed.on 'M[T]_(m, n).
HB.instance Definition _ (T : puniformType) := PointedUniform.on 'M[T]_(m, n).
End matrix_PointedTopology.
Section matrix_Complete.
Variables (T : completeType) (m n : nat).
Lemma mx_complete (F : set_system 'M[T]_(m, n)) :
ProperFilter F -> cauchy F -> cvg F.
Proof.
move=> FF Fc.
have /(_ _ _) /cauchy_cvg /cvg_app_entourageP cvF :
cauchy ((fun M : 'M[T]_(m, n) => M _ _) @ F).
move=> i j A /= entA; rewrite near_simpl -near2E near_map2.
by apply: Fc; exists (fun _ _ => A).
apply/cvg_ex.
set Mlim := \matrix_(i, j) (lim ((fun M : 'M[T]_(m, n) => M i j) @ F) : T).
exists Mlim; apply/cvg_mx_entourageP => A entA; near=> M => i j; near F => M'.
rewrite inE.
apply: subset_split_ent => //; exists (M' i j) => /=.
by near: M'; rewrite mxE; exact: cvF.
move: (i) (j); near: M'; near: M; apply: nearP_dep; apply: Fc.
by exists (fun _ _ => (split_ent A)^-1%relation) => ?? //; apply: entourage_inv.
Unshelve. all: by end_near. Qed.
have /(_ _ _) /cauchy_cvg /cvg_app_entourageP cvF :
cauchy ((fun M : 'M[T]_(m, n) => M _ _) @ F).
move=> i j A /= entA; rewrite near_simpl -near2E near_map2.
by apply: Fc; exists (fun _ _ => A).
apply/cvg_ex.
set Mlim := \matrix_(i, j) (lim ((fun M : 'M[T]_(m, n) => M i j) @ F) : T).
exists Mlim; apply/cvg_mx_entourageP => A entA; near=> M => i j; near F => M'.
rewrite inE.
apply: subset_split_ent => //; exists (M' i j) => /=.
by near: M'; rewrite mxE; exact: cvF.
move: (i) (j); near: M'; near: M; apply: nearP_dep; apply: Fc.
by exists (fun _ _ => (split_ent A)^-1%relation) => ?? //; apply: entourage_inv.
Unshelve. all: by end_near. Qed.
HB.instance Definition _ := Uniform_isComplete.Build 'M[T]_(m, n) mx_complete.
End matrix_Complete.
matrices
Section matrix_PseudoMetric.Variables (m n : nat) (R : numDomainType) (T : pseudoMetricType R).
Implicit Types (x y : 'M[T]_(m, n)) (e : R).
Definition mx_ball x e y := forall i j, ball (x i j) e (y i j).
Local Lemma mx_ball_center x e : 0 < e -> mx_ball x e x.
Proof.
Local Lemma mx_ball_sym x y e : mx_ball x e y -> mx_ball y e x.
Proof.
Local Lemma mx_ball_triangle x y z e1 e2 :
mx_ball x e1 y -> mx_ball y e2 z -> mx_ball x (e1 + e2) z.
Proof.
Local Lemma mx_entourage : entourage = entourage_ mx_ball.
Proof.
rewrite predeqE=> A; split; last first.
move=> [_/posnumP[e] sbeA].
exists (fun _ _ => [set xy | ball xy.1 e%:num xy.2]) => //= _ _.
move=> [P]; rewrite -entourage_ballE => entP sPA.
set diag := fun e : {posnum R} => [set xy : T * T | ball xy.1 e%:num xy.2].
exists (\big[Num.min/1%:pos]_i \big[Num.min/1%:pos]_j xget 1%:pos
(fun e : {posnum R} => diag e `<=` P i j))%:num => //=.
move=> MN MN_min; apply: sPA => i j.
have /(xgetPex 1%:pos): exists e : {posnum R}, diag e `<=` P i j.
by have [_/posnumP[e]] := entP i j; exists e.
apply; apply: le_ball (MN_min i j).
apply: le_trans (@bigmin_le _ {posnum R} _ _ i _) _.
exact: bigmin_le.
Qed.
move=> [_/posnumP[e] sbeA].
exists (fun _ _ => [set xy | ball xy.1 e%:num xy.2]) => //= _ _.
move=> [P]; rewrite -entourage_ballE => entP sPA.
set diag := fun e : {posnum R} => [set xy : T * T | ball xy.1 e%:num xy.2].
exists (\big[Num.min/1%:pos]_i \big[Num.min/1%:pos]_j xget 1%:pos
(fun e : {posnum R} => diag e `<=` P i j))%:num => //=.
move=> MN MN_min; apply: sPA => i j.
have /(xgetPex 1%:pos): exists e : {posnum R}, diag e `<=` P i j.
by have [_/posnumP[e]] := entP i j; exists e.
apply; apply: le_ball (MN_min i j).
apply: le_trans (@bigmin_le _ {posnum R} _ _ i _) _.
exact: bigmin_le.
Qed.
HB.instance Definition _ := Uniform_isPseudoMetric.Build R 'M[T]_(m, n)
mx_ball_center mx_ball_sym mx_ball_triangle mx_entourage.
End matrix_PseudoMetric.
HB.instance Definition _ (R : numFieldType) (T : completePseudoMetricType R)
(m n : nat) := Uniform_isComplete.Build 'M[T]_(m, n) cauchy_cvg.