Module mathcomp.classical.classical_sets
From HB Require Import structures.From mathcomp Require Import all_ssreflect ssralg matrix finmap ssrnum.
From mathcomp Require Import ssrint interval.
From mathcomp Require Import mathcomp_extra boolp wochoice.
# Set Theory
This file develops a basic theory of sets and types equipped with a
canonical inhabitant (pointed types):
- A decidable equality is defined for any type. It is thus possible to
define an eqType structure for any type using the mixin gen_eqMixin.
- This file adds the possibility to define a choiceType structure for
any type thanks to an axiom gen_choiceMixin giving a choice mixin.
- We chose to have generic mixins and no global instances of the eqType
and choiceType structures to let the user choose which definition of
equality to use and to avoid conflict with already declared instances.
Thanks to this basic set theory, we proved Zorn's Lemma, which states
that any ordered set such that every totally ordered subset admits an
upper bound has a maximal element. We also proved an analogous version
for preorders, where maximal is replaced with premaximal: $t$ is
premaximal if whenever $t < s$ we also have $s < t$.
About the naming conventions in this file:
- use T, T', T1, T2, etc., aT (domain type), rT (return type) for names
of variables in Type (or choiceType/pointedType/porderType)
+ use the same suffix or prefix for the sets as their containing type
(e.g., A1 in T1, etc.)
+ as a consequence functions are rather of type aT -> rT
- use I, J when the type corresponds to an index
- sets are named A, B, C, D, etc., or Y when it is ostensibly an image
set (i.e., of type set rT)
- indexed sets are rather named F
Example of notations:
| Coq notations | | Meaning |
|-----------------------------:|---|:------------------------------------
| set0 |==| $\emptyset$
| [set: A] |==| the full set of elements of type A
| `` `\|` `` |==| $\cup$
| `` `&` `` |==| $\cap$
| `` `\` `` |==| set difference
| `` `+` `` |==| symmetric difference
| `` ~` `` |==| set complement
| `` `<=` `` |==| $\subseteq$
| `` f @` A `` |==| image by f of A
| `` f @^-1` A `` |==| preimage by f of A
| [set x] |==| the singleton set $\{x\}$
| [set~ x] |==| the complement of $\{x\}$
| [set E \| x in P] |==| the set of E with x ranging in P
| range f |==| image by f of the full set
| \big[setU/set0]_(i <- s \| P i) f i |==| finite union
| \bigcup_(k in P) F k |==| countable union
| \bigcap_(k in P) F k |==| countable intersection
| trivIset D F |==| F is a sequence of pairwise disjoint
| | | sets indexed over the domain D
Detailed documentation:
## Sets
```
set T == type of sets on T
(x \in P) == boolean membership predicate from ssrbool
for set P, available thanks to a canonical
predType T structure on sets on T
[set x : T | P] == set of points x : T such that P holds
[set x | P] == same as before with T left implicit
[set E | x in A] == set defined by the expression E for x in
set A
[set E | x in A & y in B] == same as before for E depending on 2
variables x and y in sets A and B
setT == full set
set0 == empty set
range f == the range of f, i.e., [set f x | x in setT]
[set a] == set containing only a
[set a : T] == same as before with the type of a made
explicit
A `|` B == union of A and B
a |` A == A extended with a
[set a1; a2; ..; an] == set containing only the n elements ai
A `&` B == intersection of A and B
A `*` B == product of A and B, i.e., set of pairs
(a,b) such that A a and B b
A.`1 == set of points a such that there exists b so
that A (a, b)
A.`2 == set of points a such that there exists b so
that A (b, a)
~` A == complement of A
[set~ a] == complement of [set a]
A `\` B == complement of B in A
A `\ a == A deprived of a
`I_n := [set k | k < n]
\bigcup_(i in P) F == union of the elements of the family F whose
index satisfies P
\bigcup_(i : T) F == union of the family F indexed on T
\bigcup_(i < n) F := \bigcup_(i in `I_n) F
\bigcup_(i >= n) F := \bigcup_(i in [set i | i >= n]) F
\bigcup_i F == same as before with T left implicit
\bigcap_(i in P) F == intersection of the elements of the family
F whose index satisfies P
\bigcap_(i : T) F == union of the family F indexed on T
\bigcap_(i < n) F := \bigcap_(i in `I_n) F
\bigcap_(i >= n) F := \bigcap_(i in [set i | i >= n]) F
\bigcap_i F == same as before with T left implicit
smallest C G := \bigcap_(A in [set M | C M /\ G `<=` M]) A
A `<=` B <-> A is included in B
A `<` B := A `<=` B /\ ~ (B `<=` A)
A `<=>` B <-> double inclusion A `<=` B and B `<=` A
f @^-1` A == preimage of A by f
f @` A == image of A by f
This is a notation for `image A f`
A !=set0 := exists x, A x
[set` p] == a classical set corresponding to the
predType p
`[a, b] := [set` `[a, b]], i.e., a classical set
corresponding to the interval `[a, b]
`]a, b] := [set` `]a, b]]
`[a, b[ := [set` `[a, b[]
`]a, b[ := [set` `]a, b[]
`]-oo, b] := [set` `]-oo, b]]
`]-oo, b[ := [set` `]-oo, b[]
`[a, +oo[ := [set` `[a, +oo[]
`]a, +oo[ := [set` `]a, +oo[]
`]-oo, +oo[ := [set` `]-oo, +oo[]
is_subset1 A <-> A contains only 1 element
is_fun f <-> for each a, f a contains only 1 element
is_total f <-> for each a, f a is non empty
is_totalfun f <-> conjunction of is_fun and is_total
xget x0 P == point x in P if it exists, x0 otherwise;
P must be a set on a choiceType
fun_of_rel f0 f == function that maps x to an element of f x
if there is one, to f0 x otherwise
F `#` G <-> intersections beween elements of F an G are
all non empty
```
## Pointed types
```
pointedType == interface type for types equipped with a
canonical inhabitant
The HB class is Pointed.
point == canonical inhabitant of a pointedType
get P == point x in P if it exists, point otherwise
P must be a set on a pointedType.
```
## squash/unsquash
```
$| T | == the type `T : Type` is inhabited
$| T | has type `Prop`.
$| T | is a notation for `squashed T`.
squash x == object of type $| T | (with x : T)
unsquash s == extract an inhabitant of type `T`
(with s : $| T |)
```
Tactic:
- squash x:
solves a goal $| T | by instantiating with x or [the T of x]
## Pairwise-disjoint sets
```
trivIset D F == the sets F i, where i ranges over
D : set I, are pairwise-disjoint
cover D F := \bigcup_(i in D) F i
partition D F A == the non-empty sets F i,where i ranges over
D : set I, form a partition of A
pblock_index D F x == index i such that i \in D and x \in F i
pblock D F x := F (pblock_index D F x)
maximal_disjoint_subcollection F A B == A is a maximal (for inclusion)
disjoint subcollection of the collection
B of elements in F : I -> set T
```
## Upper and lower bounds
```
ubound A == the set of upper bounds of the set A
lbound A == the set of lower bounds of the set A
```
Predicates to express existence conditions of supremum and infimum of sets
of real numbers:
```
has_ubound A := ubound A != set0
has_sup A := A != set0 /\ has_ubound A
has_lbound A := lbound A != set0
has_inf A := A != set0 /\ has_lbound A
isLub A m := m is a least upper bound of the set A
supremums A := set of supremums of the set A
supremum x0 A == supremum of A or x0 if A is empty
infimums A := set of infimums of the set A
infimum x0 A == infimum of A or x0 if A is empty
F `#` G := the classes of sets F and G intersect
```
## Sections
```
xsection A x == with A : set (T1 * T2) and x : T1 is the
x-section of A
ysection A y == with A : set (T1 * T2) and y : T2 is the
y-section of A
```
## Relations
Notations for composition and inverse (scope: relation_scope):
```
B \; A == [set x | exists z, A (x.1, z) & B (z, x.2)]
A^-1 == [set xy | A (xy.2, xy.1)]
```
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope classical_set_scope.
Reserved Notation "[ 'set' x : T | P ]"
(at level 0, x at level 99, only parsing).
Reserved Notation "[ 'set' x | P ]"
(at level 0, x, P at level 99, format "[ 'set' x | P ]").
Reserved Notation "[ 'set' E | x 'in' A ]" (at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A ] ']'").
Reserved Notation "[ 'set' E | x 'in' A & y 'in' B ]"
(at level 0, E, x at level 99,
format "[ '[hv' 'set' E '/ ' | x 'in' A & y 'in' B ] ']'").
Reserved Notation "[ 'set' a ]"
(at level 0, a at level 99, format "[ 'set' a ]").
Reserved Notation "[ 'set' : T ]" (at level 0, format "[ 'set' : T ]").
Reserved Notation "[ 'set' a : T ]"
(at level 0, a at level 99, format "[ 'set' a : T ]").
Reserved Notation "A `|` B" (at level 52, left associativity).
Reserved Notation "a |` A" (at level 52, left associativity).
Reserved Notation "[ 'set' a1 ; a2 ; .. ; an ]"
(at level 0, a1 at level 99, format "[ 'set' a1 ; a2 ; .. ; an ]").
Reserved Notation "A `&` B" (at level 48, left associativity).
Reserved Notation "A `*` B" (at level 46, left associativity).
Reserved Notation "A `*`` B" (at level 46, left associativity).
Reserved Notation "A ``*` B" (at level 46, left associativity).
Reserved Notation "A .`1" (at level 2, left associativity, format "A .`1").
Reserved Notation "A .`2" (at level 2, left associativity, format "A .`2").
Reserved Notation "~` A" (at level 35, right associativity).
Reserved Notation "[ 'set' ~ a ]" (at level 0, format "[ 'set' ~ a ]").
Reserved Notation "A `\` B" (at level 50, left associativity).
Reserved Notation "A `\ b" (at level 50, left associativity).
Reserved Notation "A `+` B" (at level 54, left associativity).
Reserved Notation "\bigcup_ ( i < n ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \bigcup_ ( i < n ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i >= n ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \bigcup_ ( i >= n ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i < n ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \bigcap_ ( i < n ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i >= n ) F"
(at level 41, F at level 41, i, n at level 50,
format "'[' \bigcap_ ( i >= n ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i 'in' P ) F"
(at level 41, F at level 41, i, P at level 50,
format "'[' \bigcup_ ( i 'in' P ) '/ ' F ']'").
Reserved Notation "\bigcup_ ( i : T ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcup_ ( i : T ) '/ ' F ']'").
Reserved Notation "\bigcup_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \bigcup_ i '/ ' F ']'").
Reserved Notation "\bigcap_ ( i 'in' P ) F"
(at level 41, F at level 41, i, P at level 50,
format "'[' \bigcap_ ( i 'in' P ) '/ ' F ']'").
Reserved Notation "\bigcap_ ( i : T ) F"
(at level 41, F at level 41, i at level 50,
format "'[' \bigcap_ ( i : T ) '/ ' F ']'").
Reserved Notation "\bigcap_ i F"
(at level 41, F at level 41, i at level 0,
format "'[' \bigcap_ i '/ ' F ']'").
Reserved Notation "A `<` B" (at level 70, no associativity).
Reserved Notation "A `<=` B" (at level 70, no associativity).
Reserved Notation "A `<=>` B" (at level 70, no associativity).
Reserved Notation "f @^-1` A" (at level 24).
Reserved Notation "f @` A" (at level 24).
Reserved Notation "A !=set0" (at level 80).
Reserved Notation "[ 'set`' p ]" (at level 0, format "[ 'set`' p ]").
Reserved Notation "[ 'disjoint' A & B ]" (at level 0,
format "'[hv' [ 'disjoint' '/ ' A '/' & B ] ']'").
Reserved Notation "F `#` G"
(at level 48, left associativity, format "F `#` G").
Reserved Notation "'`I_' n" (at level 8, n at level 2, format "'`I_' n").
Definition set T := T -> Prop.
Definition in_set T (A : set T) : pred T := (fun x => `[<A x>]).
Canonical set_predType T := @PredType T (set T) (@in_set T).
Lemma in_setE T (A : set T) x : x \in A = A x :> Prop.
Definition inE := (inE, in_setE).
Bind Scope classical_set_scope with set.
Local Open Scope classical_set_scope.
Delimit Scope classical_set_scope with classic.
Definition mkset {T} (P : T -> Prop) : set T := P.
Arguments mkset _ _ _ /.
Notation "[ 'set' x : T | P ]" := (mkset (fun x : T => P)) : classical_set_scope.
Notation "[ 'set' x | P ]" := [set x : _ | P] : classical_set_scope.
Definition image {T rT} (A : set T) (f : T -> rT) :=
[set y | exists2 x, A x & f x = y].
Arguments image _ _ _ _ _ /.
Notation "[ 'set' E | x 'in' A ]" :=
(image A (fun x => E)) : classical_set_scope.
Definition image2 {TA TB rT} (A : set TA) (B : set TB) (f : TA -> TB -> rT) :=
[set z | exists2 x, A x & exists2 y, B y & f x y = z].
Arguments image2 _ _ _ _ _ _ _ /.
Notation "[ 'set' E | x 'in' A & y 'in' B ]" :=
(image2 A B (fun x y => E)) : classical_set_scope.
Section basic_definitions.
Context {T rT : Type}.
Implicit Types (T : Type) (A B : set T) (f : T -> rT) (Y : set rT).
Definition preimage f Y : set T := [set t | Y (f t)].
Definition setT := [set _ : T | True].
Definition set0 := [set _ : T | False].
Definition set1 (t : T) := [set x : T | x = t].
Definition setI A B := [set x | A x /\ B x].
Definition setU A B := [set x | A x \/ B x].
Definition nonempty A := exists a, A a.
Definition setC A := [set a | ~ A a].
Definition setD A B := [set x | A x /\ ~ B x].
Definition setX T1 T2 (A1 : set T1) (A2 : set T2) := [set z | A1 z.1 /\ A2 z.2].
Definition fst_set T1 T2 (A : set (T1 * T2)) := [set x | exists y, A (x, y)].
Definition snd_set T1 T2 (A : set (T1 * T2)) := [set y | exists x, A (x, y)].
Definition setXR T1 T2 (A1 : set T1) (A2 : T1 -> set T2) :=
[set z | A1 z.1 /\ A2 z.1 z.2].
Definition setXL T1 T2 (A1 : T2 -> set T1) (A2 : set T2) :=
[set z | A1 z.2 z.1 /\ A2 z.2].
Lemma mksetE (P : T -> Prop) x : [set x | P x] x = P x.
Proof.
by []. Qed.
Definition bigcap T I (P : set I) (F : I -> set T) :=
[set a | forall i, P i -> F i a].
Definition bigcup T I (P : set I) (F : I -> set T) :=
[set a | exists2 i, P i & F i a].
Definition subset A B := forall t, A t -> B t.
Local Notation "A `<=` B" := (subset A B).
Lemma subsetP A B : {subset A <= B} <-> (A `<=` B).
Proof.
Definition disj_set A B := setI A B == set0.
Definition proper A B := A `<=` B /\ ~ (B `<=` A).
End basic_definitions.
Arguments preimage T rT f Y t /.
Arguments set0 _ _ /.
Arguments setT _ _ /.
Arguments set1 _ _ _ /.
Arguments setI _ _ _ _ /.
Arguments setU _ _ _ _ /.
Arguments setC _ _ _ /.
Arguments setD _ _ _ _ /.
Arguments setX _ _ _ _ _ /.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setX.")]
Notation setM := setX (only parsing).
Arguments setXR _ _ _ _ _ /.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setXR.")]
Notation setMR := setXR (only parsing).
Arguments setXL _ _ _ _ _ /.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setXL.")]
Notation setML := setXL (only parsing).
Arguments fst_set _ _ _ _ /.
Arguments snd_set _ _ _ _ /.
Arguments subsetP {T A B}.
Notation range F := [set F i | i in setT].
Notation "[ 'set' a ]" := (set1 a) : classical_set_scope.
Notation "[ 'set' a : T ]" := [set (a : T)] : classical_set_scope.
Notation "[ 'set' : T ]" := (@setT T) : classical_set_scope.
Notation "A `|` B" := (setU A B) : classical_set_scope.
Notation "a |` A" := ([set a] `|` A) : classical_set_scope.
Notation "[ 'set' a1 ; a2 ; .. ; an ]" :=
(setU .. (a1 |` [set a2]) .. [set an]) : classical_set_scope.
Notation "A `&` B" := (setI A B) : classical_set_scope.
Notation "A `*` B" := (setX A B) : classical_set_scope.
Notation "A .`1" := (fst_set A) : classical_set_scope.
Notation "A .`2" := (snd_set A) : classical_set_scope.
Notation "A `*`` B" := (setXR A B) : classical_set_scope.
Notation "A ``*` B" := (setXL A B) : classical_set_scope.
Notation "~` A" := (setC A) : classical_set_scope.
Notation "[ 'set' ~ a ]" := (~` [set a]) : classical_set_scope.
Notation "A `\` B" := (setD A B) : classical_set_scope.
Notation "A `\ a" := (A `\` [set a]) : classical_set_scope.
Notation "[ 'disjoint' A & B ]" := (disj_set A B) : classical_set_scope.
Definition setY {T : Type} (A B : set T) := (A `\` B) `|` (B `\` A).
Arguments setY _ _ _ _ /.
Notation "A `+` B" := (setY A B) : classical_set_scope.
Notation "'`I_' n" := [set k | is_true (k < n)%N].
Notation "\bigcup_ ( i 'in' P ) F" :=
(bigcup P (fun i => F)) : classical_set_scope.
Notation "\bigcup_ ( i : T ) F" :=
(\bigcup_(i in @setT T) F) : classical_set_scope.
Notation "\bigcup_ ( i < n ) F" :=
(\bigcup_(i in `I_n) F) : classical_set_scope.
Notation "\bigcup_ ( i >= n ) F" :=
(\bigcup_(i in [set i | (n <= i)%N]) F) : classical_set_scope.
Notation "\bigcup_ i F" := (\bigcup_(i : _) F) : classical_set_scope.
Notation "\bigcap_ ( i 'in' P ) F" :=
(bigcap P (fun i => F)) : classical_set_scope.
Notation "\bigcap_ ( i : T ) F" :=
(\bigcap_(i in @setT T) F) : classical_set_scope.
Notation "\bigcap_ ( i < n ) F" :=
(\bigcap_(i in `I_n) F) : classical_set_scope.
Notation "\bigcap_ ( i >= n ) F" :=
(\bigcap_(i in [set i | (n <= i)%N]) F) : classical_set_scope.
Notation "\bigcap_ i F" := (\bigcap_(i : _) F) : classical_set_scope.
Notation "A `<=` B" := (subset A B) : classical_set_scope.
Notation "A `<` B" := (proper A B) : classical_set_scope.
Notation "A `<=>` B" := ((A `<=` B) /\ (B `<=` A)) : classical_set_scope.
Notation "f @^-1` A" := (preimage f A) : classical_set_scope.
Notation "f @` A" := (image A f) (only parsing) : classical_set_scope.
Notation "A !=set0" := (nonempty A) : classical_set_scope.
Notation "[ 'set`' p ]":= [set x | is_true (x \in p)] : classical_set_scope.
Notation pred_set := (fun i => [set` i]).
Notation "`[ a , b ]" :=
[set` Interval (BLeft a) (BRight b)] : classical_set_scope.
Notation "`] a , b ]" :=
[set` Interval (BRight a) (BRight b)] : classical_set_scope.
Notation "`[ a , b [" :=
[set` Interval (BLeft a) (BLeft b)] : classical_set_scope.
Notation "`] a , b [" :=
[set` Interval (BRight a) (BLeft b)] : classical_set_scope.
Notation "`] '-oo' , b ]" :=
[set` Interval -oo%O (BRight b)] : classical_set_scope.
Notation "`] '-oo' , b [" :=
[set` Interval -oo%O (BLeft b)] : classical_set_scope.
Notation "`[ a , '+oo' [" :=
[set` Interval (BLeft a) +oo%O] : classical_set_scope.
Notation "`] a , '+oo' [" :=
[set` Interval (BRight a) +oo%O] : classical_set_scope.
Notation "`] -oo , '+oo' [" :=
[set` Interval -oo%O +oo%O] : classical_set_scope.
Lemma nat_nonempty : [set: nat] !=set0
Proof.
by exists 1%N. Qed.
#[global] Hint Resolve nat_nonempty : core.
Lemma preimage_itv T d (rT : porderType d) (f : T -> rT) (i : interval rT) (x : T) :
((f @^-1` [set` i]) x) = (f x \in i).
Proof.
Lemma preimage_itv_o_infty T d (rT : porderType d) (f : T -> rT) y :
f @^-1` `]y, +oo[%classic = [set x | (y < f x)%O].
Lemma preimage_itv_c_infty T d (rT : porderType d) (f : T -> rT) y :
f @^-1` `[y, +oo[%classic = [set x | (y <= f x)%O].
Lemma preimage_itv_infty_o T d (rT : orderType d) (f : T -> rT) y :
f @^-1` `]-oo, y[%classic = [set x | (f x < y)%O].
Lemma preimage_itv_infty_c T d (rT : orderType d) (f : T -> rT) y :
f @^-1` `]-oo, y]%classic = [set x | (f x <= y)%O].
Lemma eq_set T (P Q : T -> Prop) : (forall x : T, P x = Q x) ->
[set x | P x] = [set x | Q x].
Proof.
Coercion set_type T (A : set T) := {x : T | x \in A}.
Definition SigSub {T} {pT : predType T} {P : pT} x : x \in P -> {x | x \in P} :=
exist (fun x => x \in P) x.
Lemma set0fun {P T : Type} : @set0 T -> P
Proof.
Lemma pred_oappE {T : Type} (D : {pred T}) :
pred_oapp D = mem (some @` D)%classic.
Proof.
Lemma pred_oapp_set {T : Type} (D : set T) :
pred_oapp (mem D) = mem (some @` D)%classic.
Proof.
Section basic_lemmas.
Context {T : Type}.
Implicit Types A B C D : set T.
Lemma mem_set {A} {u : T} : A u -> u \in A
Proof.
Proof.
Proof.
Proof.
by []. Qed.
Proof.
by []. Qed.
Lemma memNset (A : set T) (u : T) : ~ A u -> u \in A = false.
Proof.
Lemma notin_setE (A : set T) x : (x \notin A : Prop) = ~ (A x).
Lemma setTPn (A : set T) : A != setT <-> exists t, ~ A t.
Proof.
split => [/negP|[t]]; last by apply: contra_notP => /negP/negPn/eqP ->.
apply: contra_notP => /forallNP h.
by apply/eqP; rewrite predeqE => t; split => // _; apply: contrapT.
Qed.
apply: contra_notP => /forallNP h.
by apply/eqP; rewrite predeqE => t; split => // _; apply: contrapT.
Qed.
Notation setTP := setTPn (only parsing).
Lemma in_set0 (x : T) : (x \in set0) = false
Proof.
Proof.
Lemma in_setC (x : T) A : (x \in ~` A) = (x \notin A).
Proof.
Lemma in_setI (x : T) A B : (x \in A `&` B) = (x \in A) && (x \in B).
Lemma in_setD (x : T) A B : (x \in A `\` B) = (x \in A) && (x \notin B).
Proof.
Lemma in_setU (x : T) A B : (x \in A `|` B) = (x \in A) || (x \in B).
Lemma in_setX T' (x : T * T') A E : (x \in A `*` E) = (x.1 \in A) && (x.2 \in E).
Lemma set_valP {A} (x : A) : A (val x).
Lemma eqEsubset A B : (A = B) = (A `<=>` B).
Proof.
Lemma seteqP A B : (A = B) <-> (A `<=>` B)
Proof.
Lemma set_true : [set` predT] = setT :> set T.
Proof.
Lemma set_false : [set` pred0] = set0 :> set T.
Proof.
Lemma set_predC (P : {pred T}) : [set` predC P] = ~` [set` P].
Lemma set_andb (P Q : {pred T}) : [set` predI P Q] = [set` P] `&` [set` Q].
Lemma set_orb (P Q : {pred T}) : [set` predU P Q] = [set` P] `|` [set` Q].
Lemma fun_true : (fun=> true) = setT :> set T.
Lemma fun_false : (fun=> false) = set0 :> set T.
Lemma set_mem_set A : [set` A] = A.
Lemma mem_setE (P : pred T) : mem [set` P] = mem P.
Lemma subset_refl A : A `<=` A
Proof.
by []. Qed.
Lemma subset_trans B A C : A `<=` B -> B `<=` C -> A `<=` C.
Proof.
by move=> sAB sBC ? ?; apply/sBC/sAB. Qed.
Lemma sub0set A : set0 `<=` A
Proof.
by []. Qed.
Lemma properW A B : A `<` B -> A `<=` B
Proof.
by case. Qed.
Lemma properxx A : ~ A `<` A
Proof.
by move=> [?]; apply. Qed.
Lemma setC0 : ~` set0 = setT :> set T.
Proof.
Lemma setCK : involutive (@setC T).
Lemma setCT : ~` setT = set0 :> set T
Definition setC_inj := can_inj setCK.
Lemma setIC : commutative (@setI T).
Proof.
Lemma setIS C A B : A `<=` B -> C `&` A `<=` C `&` B.
Proof.
by move=> sAB t [Ct At]; split => //; exact: sAB. Qed.
Lemma setSI C A B : A `<=` B -> A `&` C `<=` B `&` C.
Lemma setISS A B C D : A `<=` C -> B `<=` D -> A `&` B `<=` C `&` D.
Proof.
Lemma setIT : right_id setT (@setI T).
Proof.
Lemma setTI : left_id setT (@setI T).
Proof.
Lemma setI0 : right_zero set0 (@setI T).
Proof.
Lemma set0I : left_zero set0 (@setI T).
Lemma setICl : left_inverse set0 setC (@setI T).
Proof.
Lemma setICr : right_inverse set0 setC (@setI T).
Lemma setIA : associative (@setI T).
Proof.
Lemma setICA : left_commutative (@setI T).
Lemma setIAC : right_commutative (@setI T).
Lemma setIACA : @interchange (set T) setI setI.
Lemma setIid : idempotent (@setI T).
Proof.
Lemma setIIl A B C : A `&` B `&` C = (A `&` C) `&` (B `&` C).
Lemma setIIr A B C : A `&` (B `&` C) = (A `&` B) `&` (A `&` C).
Lemma setUC : commutative (@setU T).
Lemma setUS C A B : A `<=` B -> C `|` A `<=` C `|` B.
Proof.
by move=> sAB t [Ct|At]; [left|right; exact: sAB]. Qed.
Lemma setSU C A B : A `<=` B -> A `|` C `<=` B `|` C.
Lemma setUSS A B C D : A `<=` C -> B `<=` D -> A `|` B `<=` C `|` D.
Proof.
Lemma setTU : left_zero setT (@setU T).
Proof.
Lemma setUT : right_zero setT (@setU T).
Proof.
Lemma set0U : left_id set0 (@setU T).
Proof.
Lemma setU0 : right_id set0 (@setU T).
Proof.
Lemma setUCl : left_inverse setT setC (@setU T).
Lemma setUCr : right_inverse setT setC (@setU T).
Lemma setUA : associative (@setU T).
Lemma setUCA : left_commutative (@setU T).
Lemma setUAC : right_commutative (@setU T).
Lemma setUACA : @interchange (set T) setU setU.
Lemma setUid : idempotent (@setU T).
Lemma setUUl A B C : A `|` B `|` C = (A `|` C) `|` (B `|` C).
Lemma setUUr A B C : A `|` (B `|` C) = (A `|` B) `|` (A `|` C).
Lemma setU_id2r C A B :
(forall x, (~` B) x -> A x = C x) -> (A `|` B) = (C `|` B).
Proof.
Lemma setDE A B : A `\` B = A `&` ~` B
Proof.
by []. Qed.
Lemma setDUK A B : A `<=` B -> A `|` (B `\` A) = B.
Proof.
Lemma setDKU A B : A `<=` B -> (B `\` A) `|` A = B.
Lemma setDU A B C : A `<=` B -> B `<=` C -> C `\` A = (C `\` B) `|` (B `\` A).
Proof.
Lemma setDv A : A `\` A = set0.
Proof.
Lemma setUv A : A `|` ~` A = setT.
Lemma setvU A : ~` A `|` A = setT
Lemma setUCK A B : (A `|` B) `|` ~` B = setT.
Lemma setUKC A B : ~` A `|` (A `|` B) = setT.
Lemma setICK A B : (A `&` B) `&` ~` B = set0.
Lemma setIKC A B : ~` A `&` (A `&` B) = set0.
Lemma setDIK A B : A `&` (B `\` A) = set0.
Lemma setDKI A B : (B `\` A) `&` A = set0.
Lemma setD1K a A : A a -> a |` A `\ a = A.
Proof.
Lemma setI1 A a : A `&` [set a] = if a \in A then [set a] else set0.
Proof.
Lemma set1I A a : [set a] `&` A = if a \in A then [set a] else set0.
Lemma subset0 A : (A `<=` set0) = (A = set0).
Lemma subTset A : (setT `<=` A) = (A = setT).
Lemma sub1set x A : ([set x] `<=` A) = (x \in A).
Lemma subsetT A : A `<=` setT
Proof.
by []. Qed.
Lemma subsetW {A B} : A = B -> A `<=` B
Proof.
by move->. Qed.
Definition subsetCW {A B} : A = B -> B `<=` A := subsetW \o esym.
Lemma disj_set2E A B : [disjoint A & B] = (A `&` B == set0).
Proof.
by []. Qed.
Lemma disj_set2P {A B} : reflect (A `&` B = set0) [disjoint A & B]%classic.
Proof.
exact/eqP. Qed.
Lemma disj_setPS {A B} : reflect (A `&` B `<=` set0) [disjoint A & B]%classic.
Proof.
Lemma disj_set_sym A B : [disjoint B & A] = [disjoint A & B].
Proof.
Lemma disj_setPCl {A B} : reflect (A `<=` B) [disjoint A & ~` B]%classic.
Proof.
Lemma disj_setPCr {A B} : reflect (A `<=` B) [disjoint ~` B & A]%classic.
Proof.
Lemma disj_setPLR {A B} : reflect (A `<=` ~` B) [disjoint A & B]%classic.
Proof.
Lemma disj_setPRL {A B} : reflect (B `<=` ~` A) [disjoint A & B]%classic.
Proof.
Lemma subsets_disjoint A B : A `<=` B <-> A `&` ~` B = set0.
Proof.
Lemma disjoints_subset A B : A `&` B = set0 <-> A `<=` ~` B.
Proof.
Lemma subsetC1 x A : (A `<=` [set~ x]) = (x \in ~` A).
Proof.
rewrite !inE; apply/propext; split; first by move/[apply]; apply.
by move=> NAx y; apply: contraPnot => ->.
Qed.
by move=> NAx y; apply: contraPnot => ->.
Qed.
Lemma setSD C A B : A `<=` B -> A `\` C `<=` B `\` C.
Lemma setTD A : setT `\` A = ~` A.
Proof.
Lemma set0P A : (A != set0) <-> (A !=set0).
Proof.
Lemma setF_eq0 : (T -> False) -> all_equal_to (set0 : set T).
Proof.
Lemma subset_nonempty A B : A `<=` B -> A !=set0 -> B !=set0.
Proof.
by move=> sAB [x Ax]; exists x; apply: sAB. Qed.
Lemma subsetC A B : A `<=` B -> ~` B `<=` ~` A.
Proof.
by move=> sAB ? nBa ?; apply/nBa/sAB. Qed.
Lemma subsetCl A B : ~` A `<=` B -> ~` B `<=` A.
Lemma subsetCr A B : A `<=` ~` B -> B `<=` ~` A.
Lemma subsetC2 A B : ~` A `<=` ~` B -> B `<=` A.
Lemma subsetCP A B : ~` A `<=` ~` B <-> B `<=` A.
Lemma subsetCPl A B : ~` A `<=` B <-> ~` B `<=` A.
Lemma subsetCPr A B : A `<=` ~` B <-> B `<=` ~` A.
Lemma subsetUl A B : A `<=` A `|` B
Proof.
by move=> x; left. Qed.
Lemma subsetUr A B : B `<=` A `|` B
Proof.
by move=> x; right. Qed.
Lemma subUset A B C : (B `|` C `<=` A) = ((B `<=` A) /\ (C `<=` A)).
Proof.
rewrite propeqE; split => [|[BA CA] x]; last by case; [exact: BA | exact: CA].
by move=> sBC_A; split=> x ?; apply sBC_A; [left | right].
Qed.
by move=> sBC_A; split=> x ?; apply sBC_A; [left | right].
Qed.
Lemma setIidPl A B : A `&` B = A <-> A `<=` B.
Proof.
Lemma setIidPr A B : A `&` B = B <-> B `<=` A.
Lemma setIidl A B : A `<=` B -> A `&` B = A
Proof.
Proof.
Lemma setUidPl A B : A `|` B = A <-> B `<=` A.
Proof.
Lemma setUidPr A B : A `|` B = B <-> A `<=` B.
Lemma setUidl A B : B `<=` A -> A `|` B = A
Proof.
Proof.
Lemma subsetI A B C : (A `<=` B `&` C) = ((A `<=` B) /\ (A `<=` C)).
Proof.
Lemma setDidPl A B : A `\` B = A <-> A `&` B = set0.
Proof.
rewrite setDE disjoints_subset predeqE; split => [AB t|AB t].
by rewrite -AB => -[].
by split=> [[]//|At]; move: (AB t At).
Qed.
by rewrite -AB => -[].
by split=> [[]//|At]; move: (AB t At).
Qed.
Lemma setDidl A B : A `&` B = set0 -> A `\` B = A.
Proof.
Lemma subIset A B C : A `<=` C \/ B `<=` C -> A `&` B `<=` C.
Proof.
case=> sub a; by [move=> [/sub] | move=> [_ /sub]]. Qed.
Lemma subIsetl A B : A `&` B `<=` A
Proof.
by move=> x []. Qed.
Lemma subIsetr A B : A `&` B `<=` B
Proof.
by move=> x []. Qed.
Lemma subDsetl A B : A `\` B `<=` A.
Lemma subDsetr A B : A `\` B `<=` ~` B.
Lemma subsetI_neq0 A B C D :
A `<=` B -> C `<=` D -> A `&` C !=set0 -> B `&` D !=set0.
Proof.
by move=> AB CD [x [/AB Bx /CD Dx]]; exists x. Qed.
Lemma subsetI_eq0 A B C D :
A `<=` B -> C `<=` D -> B `&` D = set0 -> A `&` C = set0.
Proof.
Lemma setD_eq0 A B : (A `\` B = set0) = (A `<=` B).
Proof.
Lemma properEneq A B : (A `<` B) = (A != B /\ A `<=` B).
Proof.
rewrite /proper andC propeqE; split => [[BA AB]|[/eqP]].
by split => //; apply/negP; apply: contra_not BA => /eqP ->.
by rewrite eqEsubset => AB BA; split => //; exact: contra_not AB.
Qed.
by split => //; apply/negP; apply: contra_not BA => /eqP ->.
by rewrite eqEsubset => AB BA; split => //; exact: contra_not AB.
Qed.
Lemma nonsubset A B : ~ (A `<=` B) -> A `&` ~` B !=set0.
Lemma setU_eq0 A B : (A `|` B = set0) = ((A = set0) /\ (B = set0)).
Lemma setCS A B : (~` A `<=` ~` B) = (B `<=` A).
Proof.
rewrite propeqE; split => [|BA].
by move/subsets_disjoint; rewrite setCK setIC => /subsets_disjoint.
by apply/subsets_disjoint; rewrite setCK setIC; apply/subsets_disjoint.
Qed.
by move/subsets_disjoint; rewrite setCK setIC => /subsets_disjoint.
by apply/subsets_disjoint; rewrite setCK setIC; apply/subsets_disjoint.
Qed.
Lemma setDT A : A `\` setT = set0.
Lemma set0D A : set0 `\` A = set0.
Lemma setD0 A : A `\` set0 = A.
Lemma setDS C A B : A `<=` B -> C `\` B `<=` C `\` A.
Lemma setDSS A B C D : A `<=` C -> D `<=` B -> A `\` B `<=` C `\` D.
Proof.
Lemma setCU A B : ~`(A `|` B) = ~` A `&` ~` B.
Proof.
rewrite predeqE => z.
by apply: asbool_eq_equiv; rewrite asbool_and !asbool_neg asbool_or negb_or.
Qed.
by apply: asbool_eq_equiv; rewrite asbool_and !asbool_neg asbool_or negb_or.
Qed.
Lemma setCI A B : ~` (A `&` B) = ~` A `|` ~` B.
Lemma setCD A B : ~` (A `\` B) = ~` A `|` B.
Lemma setDUr A B C : A `\` (B `|` C) = (A `\` B) `&` (A `\` C).
Lemma setIUl : left_distributive (@setI T) (@setU T).
Proof.
move=> A B C; rewrite predeqE => t; split.
by move=> [[At|Bt] Ct]; [left|right].
by move=> [[At Ct]|[Bt Ct]]; split => //; [left|right].
Qed.
by move=> [[At|Bt] Ct]; [left|right].
by move=> [[At Ct]|[Bt Ct]]; split => //; [left|right].
Qed.
Lemma setIUr : right_distributive (@setI T) (@setU T).
Lemma setUIl : left_distributive (@setU T) (@setI T).
Proof.
move=> A B C; rewrite predeqE => t; split.
by move=> [[At Bt]|Ct]; split; by [left|right].
by move=> [[At|Ct] [Bt|Ct']]; by [left|right].
Qed.
by move=> [[At Bt]|Ct]; split; by [left|right].
by move=> [[At|Ct] [Bt|Ct']]; by [left|right].
Qed.
Lemma setUIr : right_distributive (@setU T) (@setI T).
Lemma setUK A B : (A `|` B) `&` A = A.
Proof.
Lemma setKU A B : A `&` (B `|` A) = A.
Proof.
Lemma setIK A B : (A `&` B) `|` A = A.
Proof.
Lemma setKI A B : A `|` (B `&` A) = A.
Proof.
Lemma setDUl : left_distributive setD (@setU T).
Lemma setUKD A B : A `&` B `<=` set0 -> (A `|` B) `\` A = B.
Lemma setUDK A B : A `&` B `<=` set0 -> (B `|` A) `\` A = B.
Lemma setIDA A B C : A `&` (B `\` C) = (A `&` B) `\` C.
Lemma setIDAC A B C : (A `\` B) `&` C = A `&` (C `\` B).
Lemma setDD A B : A `\` (A `\` B) = A `&` B.
Lemma setDDl A B C : (A `\` B) `\` C = A `\` (B `|` C).
Lemma setDDr A B C : A `\` (B `\` C) = (A `\` B) `|` (A `&` C).
Lemma setDIr A B C : A `\` B `&` C = (A `\` B) `|` (A `\` C).
Lemma setUIDK A B : (A `&` B) `|` A `\` B = A.
Lemma setDUD A B C : (A `|` B) `\` C = A `\` C `|` B `\` C.
Proof.
apply/seteqP; split=> [x [[Ax|Bx] Cx]|x [[Ax]|[Bx] Cx]].
- by left.
- by right.
- by split=> //; left.
- by split=> //; right.
Qed.
- by left.
- by right.
- by split=> //; left.
- by split=> //; right.
Qed.
Lemma setX0 T' (A : set T) : A `*` set0 = set0 :> set (T * T').
Proof.
Lemma set0X T' (A : set T') : set0 `*` A = set0 :> set (T * T').
Proof.
Lemma setXTT T' : setT `*` setT = setT :> set (T * T').
Proof.
exact/predeqP. Qed.
Lemma setXT T1 T2 (A : set T1) : A `*` @setT T2 = fst @^-1` A.
Proof.
Lemma setTX T1 T2 (B : set T2) : @setT T1 `*` B = snd @^-1` B.
Proof.
Lemma setXI T1 T2 (X1 : set T1) (X2 : set T2) (Y1 : set T1) (Y2 : set T2) :
(X1 `&` Y1) `*` (X2 `&` Y2) = X1 `*` X2 `&` Y1 `*` Y2.
Proof.
Lemma setSX T1 T2 (C D : set T1) (A B : set T2) :
A `<=` B -> C `<=` D -> C `*` A `<=` D `*` B.
Proof.
by move=> AB CD x [] /CD Dx1 /AB Bx2. Qed.
Lemma setX_bigcupr T1 T2 I (F : I -> set T2) (P : set I) (A : set T1) :
A `*` \bigcup_(i in P) F i = \bigcup_(i in P) (A `*` F i).
Proof.
rewrite predeqE => -[x y]; split; first by move=> [/= Ax [n Pn Fny]]; exists n.
by move=> [n Pn [/= Ax Fny]]; split => //; exists n.
Qed.
by move=> [n Pn [/= Ax Fny]]; split => //; exists n.
Qed.
Lemma setX_bigcupl T1 T2 I (F : I -> set T2) (P : set I) (A : set T1) :
\bigcup_(i in P) F i `*` A = \bigcup_(i in P) (F i `*` A).
Proof.
rewrite predeqE => -[x y]; split; first by move=> [[n Pn Fnx] Ax]; exists n.
by move=> [n Pn [/= Ax Fny]]; split => //; exists n.
Qed.
by move=> [n Pn [/= Ax Fny]]; split => //; exists n.
Qed.
Lemma bigcupX1l T1 T2 (A1 : set T1) (A2 : T1 -> set T2) :
\bigcup_(i in A1) ([set i] `*` A2 i) = A1 `*`` A2.
Proof.
Lemma bigcupX1r T1 T2 (A1 : T2 -> set T1) (A2 : set T2) :
\bigcup_(i in A2) (A1 i `*` [set i]) = A1 ``*` A2.
Proof.
Lemma setY0 : right_id set0 (@setY T).
Lemma set0Y : left_id set0 (@setY T).
Lemma setYK A : A `+` A = set0.
Lemma setYC : commutative (@setY T).
Lemma setYTC A : A `+` [set: T] = ~` A.
Lemma setTYC A : [set: T] `+` A = ~` A.
Lemma setYA : associative (@setY T).
Proof.
Lemma setIYl : left_distributive (@setI T) (@setY T).
Proof.
Lemma setIYr : right_distributive (@setI T) (@setY T).
Lemma setY_def A B : A `+` B = (A `\` B) `|` (B `\` A).
Proof.
by []. Qed.
Lemma setYE A B : A `+` B = (A `|` B) `\` (A `&` B).
Proof.
Lemma setYU A B : (A `+` B) `+` (A `&` B) = A `|` B.
Proof.
Lemma setYI A B : (A `|` B) `\` (A `+` B) = A `&` B.
Proof.
Lemma setYD A B : A `+` (A `&` B) = A `\` B.
Lemma setYCT A : A `+` ~` A = [set: T].
Lemma setCYT A : ~` A `+` A = [set: T].
Lemma not_setD1 a A : ~ A a -> A `\ a = A.
Proof.
End basic_lemmas.
#[global]
Hint Resolve subsetUl subsetUr subIsetl subIsetr subDsetl subDsetr : core.
#[deprecated(since="mathcomp-analysis 0.6", note="Use setICl instead.")]
Notation setvI := setICl (only parsing).
#[deprecated(since="mathcomp-analysis 0.6", note="Use setICr instead.")]
Notation setIv := setICr (only parsing).
#[deprecated(since="mathcomp-analysis 1.2.0", note="Use notin_setE instead.")]
Notation notin_set := notin_setE (only parsing).
Arguments setU_id2r {T} C {A B}.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to in_setX.")]
Notation in_setM := in_setX (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setX0.")]
Notation setM0 := setX0 (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to set0X.")]
Notation set0M := set0X (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setXTT.")]
Notation setMTT := setXTT (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setXT.")]
Notation setMT := setXT (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setTX.")]
Notation setTM := setTX (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setXI.")]
Notation setMI := setXI (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setX_bigcupr.")]
Notation setM_bigcupr := setX_bigcupr (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setX_bigcupl.")]
Notation setM_bigcupl := setX_bigcupl (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to setSX.")]
Notation setSM := setSX (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to bigcupX1l.")]
Notation bigcupM1l := bigcupX1l (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to bigcupX1r.")]
Notation bigcupM1r := bigcupX1r (only parsing).
Section set_order.
Import Order.TTheory.
Lemma set_eq_le d (rT : porderType d) T (f g : T -> rT) :
[set x | f x = g x] = [set x | (f x <= g x)%O] `&` [set x | (f x >= g x)%O].
Lemma set_neq_lt d (rT : orderType d) T (f g : T -> rT) :
[set x | f x != g x ] = [set x | (f x < g x)%O] `|` [set x | (f x > g x)%O].
End set_order.
Lemma image2E {TA TB rT : Type} (A : set TA) (B : set TB) (f : TA -> TB -> rT) :
[set f x y | x in A & y in B] = uncurry f @` (A `*` B).
Proof.
Lemma set_nil (T : eqType) : [set` [::]] = @set0 T.
Proof.
Lemma set_cons1 (T : eqType) (x : T) : [set` [:: x]] = [set x].
Lemma set_seq_eq0 (T : eqType) (S : seq T) : ([set` S] == set0) = (S == [::]).
Proof.
Lemma set_fset_eq0 (T : choiceType) (S : {fset T}) :
([set` S] == set0) = (S == fset0).
Proof.
Section InitialSegment.
Lemma II0 : `I_0 = set0
Proof.
Lemma II1 : `I_1 = [set 0]
Proof.
Lemma IIn_eq0 n : `I_n = set0 -> n = 0.
Proof.
Lemma IIS n : `I_n.+1 = `I_n `|` [set n].
Proof.
Lemma IISl n : `I_n.+1 = n |` `I_n.
Lemma IIDn n : `I_n.+1 `\ n = `I_n.
Lemma setI_II m n : `I_m `&` `I_n = `I_(minn m n).
Proof.
Lemma setU_II m n : `I_m `|` `I_n = `I_(maxn m n).
Proof.
Lemma Iiota (n : nat) : [set` iota 0 n] = `I_n.
Definition ordII {n} (k : 'I_n) : `I_n := SigSub (@mem_set _ `I_n _ (ltn_ord k)).
Definition IIord {n} (k : `I_n) := Ordinal (set_valP k).
Definition ordIIK {n} : cancel (@ordII n) IIord.
Proof.
Lemma IIordK {n} : cancel (@IIord n) ordII.
Proof.
Lemma setC_I n : ~` `I_n = [set k | n <= k].
Lemma mem_not_I N n : (n \in ~` `I_N) = (N <= n).
End InitialSegment.
Lemma setT_unit : [set: unit] = [set tt].
Proof.
Lemma set_unit (A : set unit) : A = set0 \/ A = setT.
Proof.
Lemma setT_bool : [set: bool] = [set true; false].
Proof.
Lemma set_bool (B : set bool) :
[\/ B == [set true], B == [set false], B == set0 | B == setT].
Proof.
have [Bt|Bt] := boolP (true \in B); have [Bf|Bf] := boolP (false \in B).
- have -> : B = setT by apply/seteqP; split => // -[] _; exact: set_mem.
by apply/or4P; rewrite eqxx/= !orbT.
- suff : B = [set true] by move=> ->; apply/or4P; rewrite eqxx.
apply/seteqP; split => -[]// /mem_set; last by move=> _; exact: set_mem.
by rewrite (negbTE Bf).
- suff : B = [set false] by move=> ->; apply/or4P; rewrite eqxx/= orbT.
apply/seteqP; split => -[]// /mem_set; last by move=> _; exact: set_mem.
by rewrite (negbTE Bt).
- suff : B = set0 by move=> ->; apply/or4P; rewrite eqxx/= !orbT.
by apply/seteqP; split => -[]//=; rewrite 2!notin_setE in Bt, Bf.
Qed.
- have -> : B = setT by apply/seteqP; split => // -[] _; exact: set_mem.
by apply/or4P; rewrite eqxx/= !orbT.
- suff : B = [set true] by move=> ->; apply/or4P; rewrite eqxx.
apply/seteqP; split => -[]// /mem_set; last by move=> _; exact: set_mem.
by rewrite (negbTE Bf).
- suff : B = [set false] by move=> ->; apply/or4P; rewrite eqxx/= orbT.
apply/seteqP; split => -[]// /mem_set; last by move=> _; exact: set_mem.
by rewrite (negbTE Bt).
- suff : B = set0 by move=> ->; apply/or4P; rewrite eqxx/= !orbT.
by apply/seteqP; split => -[]//=; rewrite 2!notin_setE in Bt, Bf.
Qed.
Lemma fdisjoint_cset (T : choiceType) (A B : {fset T}) :
[disjoint A & B]%fset = [disjoint [set` A] & [set` B]].
Proof.
Section SetFset.
Context {T : choiceType}.
Implicit Types (x y : T) (A B : {fset T}).
Lemma set_fset0 : [set y : T | y \in fset0] = set0.
Proof.
Lemma set_fset1 x : [set y | y \in [fset x]%fset] = [set x].
Lemma set_fsetI A B : [set` (A `&` B)%fset] = [set` A] `&` [set` B].
Lemma set_fsetIr (P : {pred T}) (A : {fset T}) :
[set` [fset x | x in A & P x]%fset] = [set` A] `&` [set` P].
Lemma set_fsetU A B :
[set` (A `|` B)%fset] = [set` A] `|` [set` B].
Proof.
Lemma set_fsetU1 x A : [set y | y \in (x |` A)%fset] = x |` [set` A].
Lemma set_fsetD A B :
[set` (A `\` B)%fset] = [set` A] `\` [set` B].
Proof.
Lemma set_fsetD1 A x : [set y | y \in (A `\ x)%fset] = [set` A] `\ x.
Lemma set_imfset (key : unit) [K : choiceType] (f : T -> K) (p : finmempred T) :
[set` imfset key f p] = f @` [set` p].
Proof.
End SetFset.
Section SetMonoids.
Variable (T : Type).
Import Monoid.
HB.instance Definition _ := isComLaw.Build (set T) set0 setU setUA setUC set0U.
HB.instance Definition _ := isMulLaw.Build (set T) setT setU setTU setUT.
HB.instance Definition _ := isComLaw.Build (set T) setT setI setIA setIC setTI.
HB.instance Definition _ := isMulLaw.Build (set T) set0 setI set0I setI0.
HB.instance Definition _ := isAddLaw.Build (set T) setU setI setUIl setUIr.
HB.instance Definition _ := isAddLaw.Build (set T) setI setU setIUl setIUr.
HB.instance Definition _ := isComLaw.Build (set T) set0 setY setYA setYC set0Y.
HB.instance Definition _ := isAddLaw.Build (set T) setI setY setIYl setIYr.
End SetMonoids.
Section base_image_lemmas.
Context {aT rT : Type}.
Implicit Types (A B : set aT) (f : aT -> rT) (Y : set rT).
Lemma imageP f A a : A a -> (f @` A) (f a)
Proof.
by exists a. Qed.
Lemma imageT (f : aT -> rT) (a : aT) : range f (f a).
Proof.
End base_image_lemmas.
#[global]
Hint Extern 0 ((?f @` _) (?f _)) => solve [apply: imageP; assumption] : core.
#[global] Hint Extern 0 ((?f @` setT) _) => solve [apply: imageT] : core.
Section image_lemmas.
Context {aT rT : Type}.
Implicit Types (A B : set aT) (f : aT -> rT) (Y : set rT).
Lemma image_inj {f A a} : injective f -> (f @` A) (f a) = A a.
Lemma image_id A : id @` A = A.
Proof.
Lemma homo_setP {A Y f} :
{homo f : x / x \in A >-> x \in Y} <-> {homo f : x / A x >-> Y x}.
Proof.
Lemma image_subP {A Y f} : f @` A `<=` Y <-> {homo f : x / A x >-> Y x}.
Proof.
by split=> fAY x => [Ax|[y + <-]]; apply: fAY=> //; exists x. Qed.
Lemma image_sub {f : aT -> rT} {A : set aT} {B : set rT} :
(f @` A `<=` B) = (A `<=` f @^-1` B).
Proof.
Lemma imsub1 x A f : f @` A `<=` [set x] -> forall a, A a -> f a = x.
Proof.
by move=> + a Aa; apply; exists a. Qed.
Lemma imsub1P x A f : f @` A `<=` [set x] <-> forall a, A a -> f a = x.
Proof.
Lemma image_setU f A B : f @` (A `|` B) = f @` A `|` f @` B.
Proof.
Lemma image_set0 f : f @` set0 = set0.
Proof.
Lemma image_set0_set0 A f : f @` A = set0 -> A = set0.
Proof.
Lemma image_set1 f t : f @` [set t] = [set f t].
Lemma subset_set1 A a : A `<=` [set a] -> A = set0 \/ A = [set a].
Proof.
Lemma subset_set2 A a b : A `<=` [set a; b] ->
[\/ A = set0, A = [set a], A = [set b] | A = [set a; b]].
Proof.
have [<-|ab Aab] := pselect (a = b).
by rewrite setUid => /subset_set1[]->; [apply: Or41|apply: Or42].
have [|/nonsubset[x [/[dup] /Aab []// -> Ab _]]] := pselect (A `<=` [set a]).
by move=> /subset_set1[]->; [apply: Or41|apply: Or42].
have [|/nonsubset[y [/[dup] /Aab []// -> Aa _]]] := pselect (A `<=` [set b]).
by move=> /subset_set1[]->; [apply: Or41|apply: Or43].
by apply: Or44; apply/seteqP; split=> // z /= [] ->.
Qed.
by rewrite setUid => /subset_set1[]->; [apply: Or41|apply: Or42].
have [|/nonsubset[x [/[dup] /Aab []// -> Ab _]]] := pselect (A `<=` [set a]).
by move=> /subset_set1[]->; [apply: Or41|apply: Or42].
have [|/nonsubset[y [/[dup] /Aab []// -> Aa _]]] := pselect (A `<=` [set b]).
by move=> /subset_set1[]->; [apply: Or41|apply: Or43].
by apply: Or44; apply/seteqP; split=> // z /= [] ->.
Qed.
Lemma sub_image_setI f A B : f @` (A `&` B) `<=` f @` A `&` f @` B.
Proof.
Lemma nonempty_image f A : f @` A !=set0 -> A !=set0.
Proof.
by case=> b [a]; exists a. Qed.
Lemma image_subset f A B : A `<=` B -> f @` A `<=` f @` B.
Proof.
by move=> AB _ [a Aa <-]; exists a => //; apply/AB. Qed.
Lemma preimage_set0 f : f @^-1` set0 = set0
Proof.
exact/predeqP. Qed.
Lemma preimage_setT f : f @^-1` setT = setT
Proof.
by []. Qed.
Lemma nonempty_preimage f Y : f @^-1` Y !=set0 -> Y !=set0.
Proof.
by case=> [t ?]; exists (f t). Qed.
Lemma preimage_image f A : A `<=` f @^-1` (f @` A).
Proof.
by move=> a Aa; exists a. Qed.
Lemma preimage_range {A B : Type} (f : A -> B) : f @^-1` (range f) = [set: A].
Proof.
Lemma image_preimage_subset f Y : f @` (f @^-1` Y) `<=` Y.
Proof.
by move=> _ [t /= Yft <-]. Qed.
Lemma image_preimage f Y : f @` setT = setT -> f @` (f @^-1` Y) = Y.
Proof.
Lemma eq_imagel T1 T2 (A : set T1) (f f' : T1 -> T2) :
(forall x, A x -> f x = f' x) -> f @` A = f' @` A.
Proof.
Lemma eq_image_id g A : (forall x, A x -> g x = x) -> g @` A = A.
Lemma preimage_setU f Y1 Y2 : f @^-1` (Y1 `|` Y2) = f @^-1` Y1 `|` f @^-1` Y2.
Proof.
exact/predeqP. Qed.
Lemma preimage_setI f Y1 Y2 : f @^-1` (Y1 `&` Y2) = f @^-1` Y1 `&` f @^-1` Y2.
Proof.
exact/predeqP. Qed.
Lemma preimage_setC f Y : ~` (f @^-1` Y) = f @^-1` (~` Y).
Proof.
Lemma preimage_subset f Y1 Y2 : Y1 `<=` Y2 -> f @^-1` Y1 `<=` f @^-1` Y2.
Proof.
by move=> Y12 t /Y12. Qed.
Lemma nonempty_preimage_setI f Y1 Y2 :
(f @^-1` (Y1 `&` Y2)) !=set0 <-> (f @^-1` Y1 `&` f @^-1` Y2) !=set0.
Proof.
by split; case=> t ?; exists t. Qed.
Lemma preimage_bigcup {I} (P : set I) f (F : I -> set rT) :
f @^-1` (\bigcup_ (i in P) F i) = \bigcup_(i in P) (f @^-1` F i).
Proof.
exact/predeqP. Qed.
Lemma preimage_bigcap {I} (P : set I) f (F : I -> set rT) :
f @^-1` (\bigcap_ (i in P) F i) = \bigcap_(i in P) (f @^-1` F i).
Proof.
exact/predeqP. Qed.
Lemma eq_preimage {I T : Type} (D : set I) (A : set T) (F G : I -> T) :
{in D, F =1 G} -> D `&` F @^-1` A = D `&` G @^-1` A.
Proof.
Lemma notin_setI_preimage T R D (f : T -> R) i :
i \notin f @` D -> D `&` f @^-1` [set i] = set0.
Proof.
Lemma comp_preimage T1 T2 T3 (A : set T3) (g : T1 -> T2) (f : T2 -> T3) :
(f \o g) @^-1` A = g @^-1` (f @^-1` A).
Proof.
by []. Qed.
Lemma preimage_id T (A : set T) : id @^-1` A = A
Proof.
by []. Qed.
Lemma preimage_comp T1 T2 (g : T1 -> rT) (f : T2 -> rT) (C : set T1) :
f @^-1` [set g x | x in C] = [set x | f x \in g @` C].
Proof.
Lemma preimage_setI_eq0 (f : aT -> rT) (Y1 Y2 : set rT) :
f @^-1` (Y1 `&` Y2) = set0 <-> f @^-1` Y1 `&` f @^-1` Y2 = set0.
Lemma preimage0eq (f : aT -> rT) (Y : set rT) : Y = set0 -> f @^-1` Y = set0.
Proof.
Lemma preimage0 {T R} {f : T -> R} {A : set R} :
A `&` range f `<=` set0 -> f @^-1` A = set0.
Proof.
Lemma preimage10P {T R} {f : T -> R} {x} : ~ range f x <-> f @^-1` [set x] = set0.
Proof.
split => [fx|]; first by rewrite preimage0// => ? [->].
by apply: contraPnot => -[t _ <-] /seteqP[+ _] => /(_ t) /=.
Qed.
by apply: contraPnot => -[t _ <-] /seteqP[+ _] => /(_ t) /=.
Qed.
Lemma preimage10 {T R} {f : T -> R} {x} : ~ range f x -> f @^-1` [set x] = set0.
Proof.
Lemma preimage_true {T} (P : {pred T}) : P @^-1` [set true] = [set` P].
Proof.
Lemma preimage_false {T} (P : {pred T}) : P @^-1` [set false] = ~` [set` P].
Lemma preimage_mem_true {T} (A : set T) : mem A @^-1` [set true] = A.
Proof.
Lemma preimage_mem_false {T} (A : set T) : mem A @^-1` [set false] = ~` A.
Proof.
End image_lemmas.
Arguments sub_image_setI {aT rT f A B} t _.
Lemma image2_subset {aT bT rT : Type} (f : aT -> bT -> rT)
(A B : set aT) (C D : set bT) : A `<=` B -> C `<=` D ->
[set f x y | x in A & y in C] `<=` [set f x y | x in B & y in D].
Proof.
Lemma image_comp T1 T2 T3 (f : T1 -> T2) (g : T2 -> T3) A :
g @` (f @` A) = (g \o f) @` A.
Proof.
Lemma subKimage {T T'} {P : set (set T')} (f : T -> T') (g : T' -> T) :
cancel f g -> [set A | P (f @` A)] `<=` [set g @` A | A in P].
Proof.
Lemma subimageK T T' (P : set (set T')) (f : T -> T') (g : T' -> T) :
cancel g f -> [set g @` A | A in P] `<=` [set A | P (f @` A)].
Proof.
Lemma eq_imageK {T T'} {P : set (set T')} (f : T -> T') (g : T' -> T) :
cancel f g -> cancel g f ->
[set g @` A | A in P] = [set A | P (f @` A)].
Lemma some_set0 {T} : some @` set0 = set0 :> set (option T).
Proof.
Lemma some_set1 {T} (x : T) : some @` [set x] = [set some x].
Proof.
Lemma some_setC {T} (A : set T) : some @` (~` A) = [set~ None] `\` (some @` A).
Proof.
Lemma some_setT {T} : some @` [set: T] = [set~ None].
Lemma some_setI {T} (A B : set T) : some @` (A `&` B) = some @` A `&` some @` B.
Proof.
Lemma some_setU {T} (A B : set T) : some @` (A `|` B) = some @` A `|` some @` B.
Lemma some_setD {T} (A B : set T) : some @` (A `\` B) = (some @` A) `\` (some @` B).
Lemma sub_image_some {T} (A B : set T) : some @` A `<=` some @` B -> A `<=` B.
Proof.
Lemma sub_image_someP {T} (A B : set T) : some @` A `<=` some @` B <-> A `<=` B.
Proof.
Lemma image_some_inj {T} (A B : set T) : some @` A = some @` B -> A = B.
Proof.
Lemma some_set_eq0 {T} (A : set T) : some @` A = set0 <-> A = set0.
Proof.
Lemma some_preimage {aT rT} (f : aT -> rT) (A : set rT) :
some @` (f @^-1` A) = omap f @^-1` (some @` A).
Proof.
apply/seteqP; split; first by move=> _ [a Afa <-]; exists (f a).
by move=> [x|] [a Aa //= [afx]]; exists x; rewrite // -afx.
Qed.
by move=> [x|] [a Aa //= [afx]]; exists x; rewrite // -afx.
Qed.
Lemma some_image {aT rT} (f : aT -> rT) (A : set aT) :
some @` (f @` A) = omap f @` (some @` A).
Proof.
Lemma disj_set_some {T} {A B : set T} :
[disjoint some @` A & some @` B] = [disjoint A & B].
Proof.
Section bigop_lemmas.
Context {T I : Type}.
Implicit Types (A : set T) (i : I) (P : set I) (F G : I -> set T).
Lemma bigcup_sup i P F : P i -> F i `<=` \bigcup_(j in P) F j.
Proof.
by move=> Pi a Fia; exists i. Qed.
Lemma bigcap_inf i P F : P i -> \bigcap_(j in P) F j `<=` F i.
Proof.
by move=> Pi a /(_ i); apply. Qed.
Lemma subset_bigcup_r P : {homo (fun x : I -> set T => \bigcup_(i in P) x i)
: F G / [set F i | i in P] `<=` [set G i | i in P] >-> F `<=` G}.
Proof.
Lemma subset_bigcap_r P : {homo (fun x : I -> set T => \bigcap_(i in P) x i)
: F G / [set F i | i in P] `<=` [set G i | i in P] >-> G `<=` F}.
Proof.
Lemma eq_bigcupr P F G : (forall i, P i -> F i = G i) ->
\bigcup_(i in P) F i = \bigcup_(i in P) G i.
Proof.
by move=> FG; rewrite eqEsubset; split; apply: subset_bigcup_r;
move=> A [i ? <-]; exists i => //; rewrite FG.
Qed.
move=> A [i ? <-]; exists i => //; rewrite FG.
Qed.
Lemma eq_bigcapr P F G : (forall i, P i -> F i = G i) ->
\bigcap_(i in P) F i = \bigcap_(i in P) G i.
Proof.
by move=> FG; rewrite eqEsubset; split; apply: subset_bigcap_r;
move=> A [i ? <-]; exists i => //; rewrite FG.
Qed.
move=> A [i ? <-]; exists i => //; rewrite FG.
Qed.
Lemma setC_bigcup P F : ~` (\bigcup_(i in P) F i) = \bigcap_(i in P) ~` F i.
Proof.
by rewrite eqEsubset; split => [t PFt i Pi ?|t PFt [i Pi ?]];
[apply PFt; exists i | exact: (PFt _ Pi)].
Qed.
[apply PFt; exists i | exact: (PFt _ Pi)].
Qed.
Lemma setC_bigcap P F : ~` (\bigcap_(i in P) (F i)) = \bigcup_(i in P) ~` F i.
Proof.
Lemma image_bigcup rT P F (f : T -> rT) :
f @` (\bigcup_(i in P) (F i)) = \bigcup_(i in P) f @` F i.
Proof.
apply/seteqP; split=> [_/= [x [i Pi Fix <-]]|]; first by exists i.
by move=> _ [i Pi [x Fix <-]]; exists x => //; exists i.
Qed.
by move=> _ [i Pi [x Fix <-]]; exists x => //; exists i.
Qed.
Lemma some_bigcap P F : some @` (\bigcap_(i in P) (F i)) =
[set~ None] `&` \bigcap_(i in P) some @` F i.
Proof.
apply/seteqP; split.
by move=> _ [x Fx <-]; split=> // i; exists x => //; apply: Fx.
by move=> [x|[//=]] [_ Fx]; exists x => //= i /Fx [y ? [<-]].
Qed.
by move=> _ [x Fx <-]; split=> // i; exists x => //; apply: Fx.
by move=> [x|[//=]] [_ Fx]; exists x => //= i /Fx [y ? [<-]].
Qed.
Lemma bigcup_set_type P F : \bigcup_(i in P) F i = \bigcup_(j : P) F (val j).
Proof.
Lemma eq_bigcupl P Q F : P `<=>` Q ->
\bigcup_(i in P) F i = \bigcup_(i in Q) F i.
Proof.
Lemma eq_bigcapl P Q F : P `<=>` Q ->
\bigcap_(i in P) F i = \bigcap_(i in Q) F i.
Proof.
Lemma eq_bigcup P Q F G : P `<=>` Q -> (forall i, P i -> F i = G i) ->
\bigcup_(i in P) F i = \bigcup_(i in Q) G i.
Proof.
Lemma eq_bigcap P Q F G : P `<=>` Q -> (forall i, P i -> F i = G i) ->
\bigcap_(i in P) F i = \bigcap_(i in Q) G i.
Proof.
Lemma bigcupU P F G : \bigcup_(i in P) (F i `|` G i) =
(\bigcup_(i in P) F i) `|` (\bigcup_(i in P) G i).
Proof.
apply/predeqP => x; split=> [[i Pi [Fix|Gix]]|[[i Pi Fix]|[i Pi Gix]]];
by [left; exists i|right; exists i|exists i =>//; left|exists i =>//; right].
Qed.
by [left; exists i|right; exists i|exists i =>//; left|exists i =>//; right].
Qed.
Lemma bigcapI P F G : \bigcap_(i in P) (F i `&` G i) =
(\bigcap_(i in P) F i) `&` (\bigcap_(i in P) G i).
Proof.
apply: setC_inj; rewrite !(setCI, setC_bigcap) -bigcupU.
by apply: eq_bigcupr => *; rewrite setCI.
Qed.
by apply: eq_bigcupr => *; rewrite setCI.
Qed.
Lemma bigcup_const P A : P !=set0 -> \bigcup_(_ in P) A = A.
Proof.
Lemma bigcap_const P A : P !=set0 -> \bigcap_(_ in P) A = A.
Proof.
Lemma bigcapIl P F A : P !=set0 ->
\bigcap_(i in P) (F i `&` A) = \bigcap_(i in P) F i `&` A.
Proof.
Lemma bigcapIr P F A : P !=set0 ->
\bigcap_(i in P) (A `&` F i) = A `&` \bigcap_(i in P) F i.
Proof.
Lemma bigcupUl P F A : P !=set0 ->
\bigcup_(i in P) (F i `|` A) = \bigcup_(i in P) F i `|` A.
Proof.
Lemma bigcupUr P F A : P !=set0 ->
\bigcup_(i in P) (A `|` F i) = A `|` \bigcup_(i in P) F i.
Proof.
Lemma bigcup_set0 F : \bigcup_(i in set0) F i = set0.
Proof.
Lemma bigcup_set1 F i : \bigcup_(j in [set i]) F j = F i.
Proof.
Lemma bigcap_set0 F : \bigcap_(i in set0) F i = setT.
Proof.
Lemma bigcap_set1 F i : \bigcap_(j in [set i]) F j = F i.
Proof.
Lemma bigcup_nonempty P F :
(\bigcup_(i in P) F i !=set0) <-> exists2 i, P i & F i !=set0.
Proof.
split=> [[t [i ? ?]]|[j ? [t ?]]]; by [exists i => //; exists t| exists t, j].
Qed.
Qed.
Lemma bigcup0 P F :
(forall i, P i -> F i = set0) -> \bigcup_(i in P) F i = set0.
Proof.
Lemma bigcap0 P F :
(exists2 i, P i & F i = set0) -> \bigcap_(i in P) F i = set0.
Proof.
Lemma bigcapT P F :
(forall i, P i -> F i = setT) -> \bigcap_(i in P) F i = setT.
Proof.
Lemma bigcupT P F :
(exists2 i, P i & F i = setT) -> \bigcup_(i in P) F i = setT.
Proof.
Lemma bigcup0P P F :
(\bigcup_(i in P) F i = set0) <-> forall i, P i -> F i = set0.
Proof.
Lemma bigcapTP P F :
(\bigcap_(i in P) F i = setT) <-> forall i, P i -> F i = setT.
Proof.
Lemma setI_bigcupr F P A :
A `&` \bigcup_(i in P) F i = \bigcup_(i in P) (A `&` F i).
Proof.
rewrite predeqE => t; split => [[At [k ? ?]]|[k ? [At ?]]];
by [exists k |split => //; exists k].
Qed.
by [exists k |split => //; exists k].
Qed.
Lemma setI_bigcupl F P A :
\bigcup_(i in P) F i `&` A = \bigcup_(i in P) (F i `&` A).
Proof.
Lemma setU_bigcapr F P A :
A `|` \bigcap_(i in P) F i = \bigcap_(i in P) (A `|` F i).
Proof.
apply: setC_inj; rewrite setCU !setC_bigcap setI_bigcupr.
by under eq_bigcupr do rewrite -setCU.
Qed.
by under eq_bigcupr do rewrite -setCU.
Qed.
Lemma setU_bigcapl F P A :
\bigcap_(i in P) F i `|` A = \bigcap_(i in P) (F i `|` A).
Proof.
Lemma bigcup_mkcond P F :
\bigcup_(i in P) F i = \bigcup_i if i \in P then F i else set0.
Proof.
rewrite predeqE => x; split=> [[i Pi Fix]|[i _]].
by exists i => //; case: ifPn; rewrite (inE, notin_setE).
by case: ifPn; rewrite (inE, notin_setE) => Pi Fix; exists i.
Qed.
by exists i => //; case: ifPn; rewrite (inE, notin_setE).
by case: ifPn; rewrite (inE, notin_setE) => Pi Fix; exists i.
Qed.
Lemma bigcup_mkcondr P Q F :
\bigcup_(i in P `&` Q) F i = \bigcup_(i in P) if i \in Q then F i else set0.
Proof.
rewrite bigcup_mkcond [RHS]bigcup_mkcond; apply: eq_bigcupr => i _.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
Lemma bigcup_mkcondl P Q F :
\bigcup_(i in P `&` Q) F i = \bigcup_(i in Q) if i \in P then F i else set0.
Proof.
rewrite bigcup_mkcond [RHS]bigcup_mkcond; apply: eq_bigcupr => i _.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
Lemma bigcap_mkcond F P :
\bigcap_(i in P) F i = \bigcap_i if i \in P then F i else setT.
Proof.
apply: setC_inj; rewrite !setC_bigcap bigcup_mkcond; apply: eq_bigcupr => i _.
by case: ifP; rewrite ?setCT.
Qed.
by case: ifP; rewrite ?setCT.
Qed.
Lemma bigcap_mkcondr P Q F :
\bigcap_(i in P `&` Q) F i = \bigcap_(i in P) if i \in Q then F i else setT.
Proof.
rewrite bigcap_mkcond [RHS]bigcap_mkcond; apply: eq_bigcapr => i _.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
Lemma bigcap_mkcondl P Q F :
\bigcap_(i in P `&` Q) F i = \bigcap_(i in Q) if i \in P then F i else setT.
Proof.
rewrite bigcap_mkcond [RHS]bigcap_mkcond; apply: eq_bigcapr => i _.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
by rewrite in_setI; case: (i \in P) (i \in Q) => [] [].
Qed.
Lemma bigcup_imset1 P (f : I -> T) : \bigcup_(x in P) [set f x] = f @` P.
Lemma bigcup_setU F (X Y : set I) :
\bigcup_(i in X `|` Y) F i = \bigcup_(i in X) F i `|` \bigcup_(i in Y) F i.
Proof.
rewrite predeqE => t; split=> [[z]|].
by move=> [Xz|Yz]; [left|right]; exists z.
by move=> [[z Xz Fzy]|[z Yz Fxz]]; exists z => //; [left|right].
Qed.
by move=> [Xz|Yz]; [left|right]; exists z.
by move=> [[z Xz Fzy]|[z Yz Fxz]]; exists z => //; [left|right].
Qed.
Lemma bigcap_setU F (X Y : set I) :
\bigcap_(i in X `|` Y) F i = \bigcap_(i in X) F i `&` \bigcap_(i in Y) F i.
Proof.
Lemma bigcup_setU1 F (x : I) (X : set I) :
\bigcup_(i in x |` X) F i = F x `|` \bigcup_(i in X) F i.
Proof.
Lemma bigcap_setU1 F (x : I) (X : set I) :
\bigcap_(i in x |` X) F i = F x `&` \bigcap_(i in X) F i.
Proof.
Lemma bigcup_setD1 (x : I) F (X : set I) : X x ->
\bigcup_(i in X) F i = F x `|` \bigcup_(i in X `\ x) F i.
Proof.
Lemma bigcap_setD1 (x : I) F (X : set I) : X x ->
\bigcap_(i in X) F i = F x `&` \bigcap_(i in X `\ x) F i.
Proof.
Lemma setC_bigsetU U (s : seq T) (f : T -> set U) (P : pred T) :
(~` \big[setU/set0]_(t <- s | P t) f t) = \big[setI/setT]_(t <- s | P t) ~` f t.
Lemma setC_bigsetI U (s : seq T) (f : T -> set U) (P : pred T) :
(~` \big[setI/setT]_(t <- s | P t) f t) =
\big[setU/set0]_(t <- s | P t) ~` f t.
Lemma bigcupDr (F : I -> set T) (P : set I) (A : set T) : P !=set0 ->
\bigcap_(i in P) (A `\` F i) = A `\` \bigcup_(i in P) F i.
Proof.
Lemma setD_bigcupl (F : I -> set T) (P : set I) (A : set T) :
\bigcup_(i in P) F i `\` A = \bigcup_(i in P) (F i `\` A).
Proof.
Lemma bigcup_setX_dep {J : Type} (F : I -> J -> set T)
(P : set I) (Q : I -> set J) :
\bigcup_(k in P `*`` Q) F k.1 k.2 = \bigcup_(i in P) \bigcup_(j in Q i) F i j.
Proof.
Lemma bigcup_setX {J : Type} (F : I -> J -> set T) (P : set I) (Q : set J) :
\bigcup_(k in P `*` Q) F k.1 k.2 = \bigcup_(i in P) \bigcup_(j in Q) F i j.
Proof.
Lemma bigcup_bigcup T' (F : I -> set T) (P : set I) (G : T -> set T') :
\bigcup_(i in \bigcup_(n in P) F n) G i =
\bigcup_(n in P) \bigcup_(i in F n) G i.
Proof.
apply/seteqP; split; first by move=> x [n [m ? ?] h]; exists m => //; exists n.
by move=> x [n ? [m ?]] h; exists m => //; exists n.
Qed.
by move=> x [n ? [m ?]] h; exists m => //; exists n.
Qed.
Lemma bigcupID (Q : set I) (F : I -> set T) (P : set I) :
\bigcup_(i in P) F i =
(\bigcup_(i in P `&` Q) F i) `|` (\bigcup_(i in P `&` ~` Q) F i).
Proof.
Lemma bigcapID (Q : set I) (F : I -> set T) (P : set I) :
\bigcap_(i in P) F i =
(\bigcap_(i in P `&` Q) F i) `&` (\bigcap_(i in P `&` ~` Q) F i).
Proof.
Lemma bigcup_sub F A P :
(forall i, P i -> F i `<=` A) -> \bigcup_(i in P) F i `<=` A.
Proof.
by move=> FD t [n An Fnt]; exact: (FD n). Qed.
Lemma sub_bigcap F A P :
(forall i, P i -> A `<=` F i) -> A `<=` \bigcap_(i in P) F i.
Proof.
by move=> AF t At n Pn; exact: AF. Qed.
Lemma subset_bigcup P F G : (forall i, P i -> F i `<=` G i) ->
\bigcup_(i in P) F i `<=` \bigcup_(i in P) G i.
Proof.
Lemma bigcup_subset P Q F : P `<=` Q ->
\bigcup_(i in P) F i `<=` \bigcup_(i in Q) F i.
Proof.
by move=> PQ t [i /PQ Qi Fit]; exists i. Qed.
Lemma subset_bigcap P F G : (forall i, P i -> F i `<=` G i) ->
\bigcap_(i in P) F i `<=` \bigcap_(i in P) G i.
Proof.
End bigop_lemmas.
Arguments bigcup_setD1 {T I} x.
Arguments bigcap_setD1 {T I} x.
#[deprecated(since="mathcomp-analysis 1.3.0",note="renamed to bigcup_setX_dep")]
Notation bigcup_setM_dep := bigcup_setX_dep (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0",note="renamed to bigcup_setX")]
Notation bigcup_setM := bigcup_setX (only parsing).
Lemma setD_bigcup {T} (I : eqType) (F : I -> set T) (P : set I) (j : I) : P j ->
F j `\` \bigcup_(i in [set k | P k /\ k != j]) (F j `\` F i) =
\bigcap_(i in P) F i.
Proof.
move=> Pj; apply/seteqP; split => [t [Fjt UFt] i Pi|t UFt].
by have [->//|ij] := eqVneq i j; apply: contra_notP UFt => Fit; exists i.
by split=> [|[k [Pk kj]] [Fjt]]; [|apply]; exact: UFt.
Qed.
by have [->//|ij] := eqVneq i j; apply: contra_notP UFt => Fit; exists i.
by split=> [|[k [Pk kj]] [Fjt]]; [|apply]; exact: UFt.
Qed.
Definition bigcup2 T (A B : set T) : nat -> set T :=
fun i => if i == 0 then A else if i == 1 then B else set0.
Arguments bigcup2 T A B n /.
Lemma bigcup2E T (A B : set T) : \bigcup_i (bigcup2 A B) i = A `|` B.
Proof.
rewrite predeqE => t; split=> [|[At|Bt]]; [|by exists 0|by exists 1].
by case=> -[_ At|[_ Bt|//]]; [left|right].
Qed.
by case=> -[_ At|[_ Bt|//]]; [left|right].
Qed.
Lemma bigcup2inE T (A B : set T) : \bigcup_(i < 2) (bigcup2 A B) i = A `|` B.
Proof.
rewrite predeqE => t; split=> [|[At|Bt]]; [|by exists 0|by exists 1].
by case=> -[_ At|[_ Bt|//]]; [left|right].
Qed.
by case=> -[_ At|[_ Bt|//]]; [left|right].
Qed.
Definition bigcap2 T (A B : set T) : nat -> set T :=
fun i => if i == 0 then A else if i == 1 then B else setT.
Arguments bigcap2 T A B n /.
Lemma bigcap2E T (A B : set T) : \bigcap_i (bigcap2 A B) i = A `&` B.
Proof.
apply: setC_inj; rewrite setC_bigcap setCI -bigcup2E /bigcap2 /bigcup2.
by apply: eq_bigcupr => -[|[|[]]]//=; rewrite setCT.
Qed.
by apply: eq_bigcupr => -[|[|[]]]//=; rewrite setCT.
Qed.
Lemma bigcap2inE T (A B : set T) : \bigcap_(i < 2) (bigcap2 A B) i = A `&` B.
Proof.
apply: setC_inj; rewrite setC_bigcap setCI -bigcup2inE /bigcap2 /bigcup2.
by apply: eq_bigcupr => // -[|[|[]]].
Qed.
by apply: eq_bigcupr => // -[|[|[]]].
Qed.
Lemma bigcup_recl T (F : nat -> set T) :
\bigcup_n F n = F 0%N `|` \bigcup_(n in ~` `I_1) F n.
Proof.
Lemma bigcup_image {aT rT I} (P : set aT) (f : aT -> I) (F : I -> set rT) :
\bigcup_(x in f @` P) F x = \bigcup_(x in P) F (f x).
Proof.
rewrite eqEsubset; split=> x; first by case=> j [] i pi <- Xfix; exists i.
by case=> i Pi Ffix; exists (f i); [exists i|].
Qed.
by case=> i Pi Ffix; exists (f i); [exists i|].
Qed.
Lemma bigcap_set_type {I T} (P : set I) (F : I -> set T) :
\bigcap_(i in P) F i = \bigcap_(j : P) F (val j).
Proof.
Lemma bigcap_image {aT rT I} (P : set aT) (f : aT -> I) (F : I -> set rT) :
\bigcap_(x in f @` P) F x = \bigcap_(x in P) F (f x).
Proof.
Lemma bigcup_fset {I : choiceType} {U : Type}
(F : I -> set U) (X : {fset I}) :
\bigcup_(i in [set i | i \in X]) F i = \big[setU/set0]_(i <- X) F i :> set U.
Proof.
elim/finSet_rect: X => X IHX; have [->|[x xX]] := fset_0Vmem X.
by rewrite big_seq_fset0 -subset0 => x [].
rewrite -(fsetD1K xX) set_fsetU set_fset1 big_fsetU1 ?inE ?eqxx//=.
by rewrite bigcup_setU1 IHX// fproperD1.
Qed.
by rewrite big_seq_fset0 -subset0 => x [].
rewrite -(fsetD1K xX) set_fsetU set_fset1 big_fsetU1 ?inE ?eqxx//=.
by rewrite bigcup_setU1 IHX// fproperD1.
Qed.
Lemma bigcap_fset {I : choiceType} {U : Type}
(F : I -> set U) (X : {fset I}) :
\bigcap_(i in [set i | i \in X]) F i = \big[setI/setT]_(i <- X) F i :> set U.
Proof.
Lemma bigcup_fsetU1 {T U : choiceType} (F : T -> set U) (x : T) (X : {fset T}) :
\bigcup_(i in [set j | j \in x |` X]%fset) F i =
F x `|` \bigcup_(i in [set j | j \in X]) F i.
Proof.
Lemma bigcap_fsetU1 {T U : choiceType} (F : T -> set U) (x : T) (X : {fset T}) :
\bigcap_(i in [set j | j \in x |` X]%fset) F i =
F x `&` \bigcap_(i in [set j | j \in X]) F i.
Proof.
Lemma bigcup_fsetD1 {T U : choiceType} (x : T) (F : T -> set U) (X : {fset T}) :
x \in X ->
\bigcup_(i in [set i | i \in X]%fset) F i =
F x `|` \bigcup_(i in [set i | i \in X `\ x]%fset) F i.
Proof.
Lemma bigcap_fsetD1 {T U : choiceType} (x : T) (F : T -> set U) (X : {fset T}) :
x \in X ->
\bigcap_(i in [set i | i \in X]%fset) F i =
F x `&` \bigcap_(i in [set i | i \in X `\ x]%fset) F i.
Proof.
Section bigcup_seq.
Variables (T : choiceType) (U : Type).
Lemma bigcup_seq_cond (s : seq T) (f : T -> set U) (P : pred T) :
\bigcup_(t in [set x | (x \in s) && P x]) (f t) =
\big[setU/set0]_(t <- s | P t) (f t).
Proof.
elim: s => [/=|h s ih]; first by rewrite set_nil bigcup_set0 big_nil.
rewrite big_cons -ih predeqE => u; split=> [[t /andP[]]|].
- rewrite inE => /orP[/eqP ->{t} -> fhu|ts Pt ftu]; first by left.
case: ifPn => Ph; first by right; exists t => //; apply/andP; split.
by exists t => //; apply/andP; split.
- case: ifPn => [Ph [fhu|[t /andP[ts Pt] ftu]]|Ph [t /andP[ts Pt ftu]]].
+ by exists h => //; apply/andP; split => //; rewrite mem_head.
+ by exists t => //; apply/andP; split => //; rewrite inE orbC ts.
+ by exists t => //; apply/andP; split => //; rewrite inE orbC ts.
Qed.
rewrite big_cons -ih predeqE => u; split=> [[t /andP[]]|].
- rewrite inE => /orP[/eqP ->{t} -> fhu|ts Pt ftu]; first by left.
case: ifPn => Ph; first by right; exists t => //; apply/andP; split.
by exists t => //; apply/andP; split.
- case: ifPn => [Ph [fhu|[t /andP[ts Pt] ftu]]|Ph [t /andP[ts Pt ftu]]].
+ by exists h => //; apply/andP; split => //; rewrite mem_head.
+ by exists t => //; apply/andP; split => //; rewrite inE orbC ts.
+ by exists t => //; apply/andP; split => //; rewrite inE orbC ts.
Qed.
Lemma bigcup_seq (s : seq T) (f : T -> set U) :
\bigcup_(t in [set` s]) (f t) = \big[setU/set0]_(t <- s) (f t).
Proof.
Lemma bigcap_seq_cond (s : seq T) (f : T -> set U) (P : pred T) :
\bigcap_(t in [set x | (x \in s) && P x]) (f t) =
\big[setI/setT]_(t <- s | P t) (f t).
Proof.
Lemma bigcap_seq (s : seq T) (f : T -> set U) :
\bigcap_(t in [set` s]) (f t) = \big[setI/setT]_(t <- s) (f t).
Proof.
End bigcup_seq.
#[deprecated(since="mathcomp-analysis 0.6.4",note="Use bigcup_seq instead")]
Notation bigcup_set := bigcup_seq (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.4",note="Use bigcup_seq_cond instead")]
Notation bigcup_set_cond := bigcup_seq_cond (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.4",note="Use bigcap_seq instead")]
Notation bigcap_set := bigcap_seq (only parsing).
#[deprecated(since="mathcomp-analysis 0.6.4",note="Use bigcap_seq_cond instead")]
Notation bigcap_set_cond := bigcap_seq_cond (only parsing).
Lemma bigcup_pred [T : finType] [U : Type] (P : {pred T}) (f : T -> set U) :
\bigcup_(t in [set` P]) f t = \big[setU/set0]_(t in P) f t.
Proof.
apply/predeqP => u; split=> [[x Px fxu]|]; first by rewrite (bigD1 x)//; left.
move=> /mem_set; rewrite (@big_morph _ _ (fun X => u \in X) false orb).
- by rewrite big_has_cond => /hasP[x _ /andP[xP]]; rewrite inE => ufx; exists x.
- by move=> /= x y; apply/idP/orP; rewrite !inE.
- by rewrite in_set0.
Qed.
move=> /mem_set; rewrite (@big_morph _ _ (fun X => u \in X) false orb).
- by rewrite big_has_cond => /hasP[x _ /andP[xP]]; rewrite inE => ufx; exists x.
- by move=> /= x y; apply/idP/orP; rewrite !inE.
- by rewrite in_set0.
Qed.
Section smallest.
Context {T} (C : set T -> Prop) (G : set T).
Definition smallest := \bigcap_(A in [set M | C M /\ G `<=` M]) A.
Lemma sub_smallest X : X `<=` G -> X `<=` smallest.
Proof.
by move=> XG A /XG GA Y /= [PY]; apply. Qed.
Lemma sub_gen_smallest : G `<=` smallest
Proof.
Lemma smallest_sub X : C X -> G `<=` X -> smallest `<=` X.
Proof.
by move=> XC GX A; apply. Qed.
Lemma smallest_id : C G -> smallest = G.
Proof.
End smallest.
#[global] Hint Resolve sub_gen_smallest : core.
Lemma sub_smallest2r {T} (C : set T-> Prop) G1 G2 :
C (smallest C G2) -> G1 `<=` G2 -> smallest C G1 `<=` smallest C G2.
Proof.
Lemma sub_smallest2l {T} (C1 C2 : set T -> Prop) :
(forall G, C2 G -> C1 G) ->
forall G, smallest C1 G `<=` smallest C2 G.
Proof.
by move=> C12 G X sX M [/C12 C1M GM]; apply: sX. Qed.
Section bigop_nat_lemmas.
Context {T : Type}.
Implicit Types (A : set T) (F : nat -> set T).
Lemma bigcup_mkord n F : \bigcup_(i < n) F i = \big[setU/set0]_(i < n) F i.
Proof.
rewrite -(big_mkord xpredT F) -bigcup_seq.
by apply: eq_bigcupl; split=> i; rewrite /= mem_index_iota leq0n.
Qed.
by apply: eq_bigcupl; split=> i; rewrite /= mem_index_iota leq0n.
Qed.
Lemma bigcap_mkord n F : \bigcap_(i < n) F i = \big[setI/setT]_(i < n) F i.
Proof.
Lemma bigsetU_sup i n F : (i < n)%N -> F i `<=` \big[setU/set0]_(j < n) F j.
Proof.
Lemma bigsetU_bigcup F n : \big[setU/set0]_(i < n) F i `<=` \bigcup_k F k.
Proof.
Lemma bigsetU_bigcup2 (A B : set T) :
\big[setU/set0]_(i < 2) bigcup2 A B i = A `|` B.
Proof.
Lemma bigsetI_bigcap2 (A B : set T) :
\big[setI/setT]_(i < 2) bigcap2 A B i = A `&` B.
Proof.
Lemma bigcup_splitn n F :
\bigcup_i F i = \big[setU/set0]_(i < n) F i `|` \bigcup_i F (n + i).
Proof.
rewrite -bigcup_mkord -(bigcup_image _ (addn n)) -bigcup_setU.
apply: eq_bigcupl; split=> // k _.
have [ltkn|lenk] := ltnP k n; [left => //|right].
by exists (k - n); rewrite // subnKC.
Qed.
apply: eq_bigcupl; split=> // k _.
have [ltkn|lenk] := ltnP k n; [left => //|right].
by exists (k - n); rewrite // subnKC.
Qed.
Lemma bigcap_splitn n F :
\bigcap_i F i = \big[setI/setT]_(i < n) F i `&` \bigcap_i F (n + i).
Proof.
Lemma subset_bigsetU F :
{homo (fun n => \big[setU/set0]_(i < n) F i) : n m / (n <= m) >-> n `<=` m}.
Proof.
move=> m n mn; rewrite -!bigcup_mkord => x [i im Fix].
by exists i => //=; rewrite (leq_trans im).
Qed.
by exists i => //=; rewrite (leq_trans im).
Qed.
Lemma subset_bigsetI F :
{homo (fun n => \big[setI/setT]_(i < n) F i) : n m / (n <= m) >-> m `<=` n}.
Proof.
Lemma subset_bigsetU_cond (P : pred nat) F :
{homo (fun n => \big[setU/set0]_(i < n | P i) F i)
: n m / (n <= m) >-> n `<=` m}.
Proof.
move=> n m nm; rewrite big_mkcond [in X in _ `<=` X]big_mkcond/=.
exact: (@subset_bigsetU (fun i => if P i then F i else _)).
Qed.
exact: (@subset_bigsetU (fun i => if P i then F i else _)).
Qed.
Lemma subset_bigsetI_cond (P : pred nat) F :
{homo (fun n => \big[setI/setT]_(i < n | P i) F i)
: n m / (n <= m) >-> m `<=` n}.
Proof.
move=> n m nm; rewrite big_mkcond [in X in _ `<=` X]big_mkcond/=.
exact: (@subset_bigsetI (fun i => if P i then F i else _)).
Qed.
exact: (@subset_bigsetI (fun i => if P i then F i else _)).
Qed.
Lemma bigcup_addn F n : \bigcup_i F (n + i) = \bigcup_(i >= n) F i.
Proof.
Lemma bigcap_addn F n : \bigcap_i F (n + i) = \bigcap_(i >= n) F i.
Proof.
End bigop_nat_lemmas.
Definition is_subset1 {T} (A : set T) := forall x y, A x -> A y -> x = y.
Definition is_fun {T1 T2} (f : T1 -> T2 -> Prop) := Logic.all (is_subset1 \o f).
Definition is_total {T1 T2} (f : T1 -> T2 -> Prop) := Logic.all (nonempty \o f).
Definition is_totalfun {T1 T2} (f : T1 -> T2 -> Prop) :=
forall x, f x !=set0 /\ is_subset1 (f x).
Definition xget {T : choiceType} x0 (P : set T) : T :=
if pselect (exists x : T, `[<P x>]) isn't left exP then x0
else projT1 (sigW exP).
CoInductive xget_spec {T : choiceType} x0 (P : set T) : T -> Prop -> Type :=
| XGetSome x of x = xget x0 P & P x : xget_spec x0 P x True
| XGetNone of (forall x, ~ P x) : xget_spec x0 P x0 False.
Lemma xgetP {T : choiceType} x0 (P : set T) :
xget_spec x0 P (xget x0 P) (P (xget x0 P)).
Proof.
Lemma xgetPex {T : choiceType} x0 (P : set T) : (exists x, P x) -> P (xget x0 P).
Proof.
Lemma xgetI {T : choiceType} x0 (P : set T) (x : T): P x -> P (xget x0 P).
Proof.
Lemma xget_subset1 {T : choiceType} x0 (P : set T) (x : T) :
P x -> is_subset1 P -> xget x0 P = x.
Proof.
Lemma xget_unique {T : choiceType} x0 (P : set T) (x : T) :
P x -> (forall y, P y -> y = x) -> xget x0 P = x.
Proof.
Lemma xgetPN {T : choiceType} x0 (P : set T) :
(forall x, ~ P x) -> xget x0 P = x0.
Proof.
Definition fun_of_rel {aT} {rT : choiceType} (f0 : aT -> rT)
(f : aT -> rT -> Prop) := fun x => xget (f0 x) (f x).
Lemma fun_of_relP {aT} {rT : choiceType} (f : aT -> rT -> Prop) (f0 : aT -> rT) a :
f a !=set0 -> f a (fun_of_rel f0 f a).
Proof.
Lemma fun_of_rel_uniq {aT} {rT : choiceType}
(f : aT -> rT -> Prop) (f0 : aT -> rT) a :
is_subset1 (f a) -> forall b, f a b -> fun_of_rel f0 f a = b.
Proof.
Lemma forall_sig T (A : set T) (P : {x | x \in A} -> Prop) :
(forall u : {x | x \in A}, P u) =
(forall u : T, forall (a : A u), P (exist _ u (mem_set a))).
Proof.
rewrite propeqE; split=> [+ u a|PA [u a]]; first exact.
have Au : A u by rewrite inE in a.
by rewrite (Prop_irrelevance a (mem_set Au)); apply: PA.
Qed.
have Au : A u by rewrite inE in a.
by rewrite (Prop_irrelevance a (mem_set Au)); apply: PA.
Qed.
Lemma in_setP {U} (A : set U) (P : U -> Prop) :
{in A, forall x, P x} <-> forall x, A x -> P x.
Proof.
Lemma in_set2P {U V} (A : set U) (B : set V) (P : U -> V -> Prop) :
{in A & B, forall x y, P x y} <-> (forall x y, A x -> B y -> P x y).
Proof.
Lemma in1TT [T1] [P1 : T1 -> Prop] :
{in [set: T1], forall x : T1, P1 x : Prop} -> forall x : T1, P1 x : Prop.
Proof.
Lemma in2TT [T1 T2] [P2 : T1 -> T2 -> Prop] :
{in [set: T1] & [set: T2], forall (x : T1) (y : T2), P2 x y : Prop} ->
forall (x : T1) (y : T2), P2 x y : Prop.
Proof.
Lemma in3TT [T1 T2 T3] [P3 : T1 -> T2 -> T3 -> Prop] :
{in [set: T1] & [set: T2] & [set: T3], forall (x : T1) (y : T2) (z : T3), P3 x y z : Prop} ->
forall (x : T1) (y : T2) (z : T3), P3 x y z : Prop.
Proof.
Lemma inTT_bij [T1 T2 : Type] [f : T1 -> T2] :
{in [set: T1], bijective f} -> bijective f.
HB.mixin Record isPointed T := { point : T }.
#[short(type=pointedType)]
HB.structure Definition Pointed := {T of isPointed T & Choice T}.
HB.instance Definition _ (T : Type) (T' : T -> pointedType) :=
isPointed.Build (forall t : T, T' t) (fun=> point).
HB.instance Definition _ := isPointed.Build unit tt.
HB.instance Definition _ := isPointed.Build bool false.
HB.instance Definition _ := isPointed.Build Prop False.
HB.instance Definition _ := isPointed.Build nat 0.
HB.instance Definition _ (T T' : pointedType) :=
isPointed.Build (T * T')%type (point, point).
HB.instance Definition _ m n (T : pointedType) :=
isPointed.Build 'M[T]_(m, n) (\matrix_(_, _) point)%R.
HB.instance Definition _ (T : choiceType) := isPointed.Build (option T) None.
HB.instance Definition _ (T : choiceType) := isPointed.Build {fset T} fset0.
Notation get := (xget point).
Notation "[ 'get' x | E ]" := (get [set x | E])
(at level 0, x name, format "[ 'get' x | E ]", only printing) : form_scope.
Notation "[ 'get' x : T | E ]" := (get (fun x : T => E))
(at level 0, x name, format "[ 'get' x : T | E ]", only parsing) : form_scope.
Notation "[ 'get' x | E ]" := (get (fun x => E))
(at level 0, x name, format "[ 'get' x | E ]") : form_scope.
Section PointedTheory.
Context {T : pointedType}.
Lemma getPex (P : set T) : (exists x, P x) -> P (get P).
Lemma getI (P : set T) (x : T): P x -> P (get P).
Lemma get_subset1 (P : set T) (x : T) : P x -> is_subset1 P -> get P = x.
Proof.
Lemma get_unique (P : set T) (x : T) :
P x -> (forall y, P y -> y = x) -> get P = x.
Proof.
Lemma getPN (P : set T) : (forall x, ~ P x) -> get P = point.
Lemma setT0 : setT != set0 :> set T.
End PointedTheory.
Variant squashed T : Prop := squash (x : T).
Arguments squash {T} x.
Notation "$| T |" := (squashed T) : form_scope.
Tactic Notation "squash" uconstr(x) := (exists; refine x) ||
match goal with |- $| ?T | => exists; refine [the T of x] end.
Definition unsquash {T} (s : $|T|) : T :=
projT1 (cid (let: squash x := s in @ex_intro T _ x isT)).
Lemma unsquashK {T} : cancel (@unsquash T) squash
Proof.
by move=> []. Qed.
HB.mixin Record isEmpty T := {
axiom : T -> False
}.
#[short(type="emptyType")]
HB.structure Definition Empty := {T of isEmpty T & Finite T}.
HB.factory Record Choice_isEmpty T of Choice T := {
axiom : T -> False
}.
HB.builders Context T of Choice_isEmpty T.
Definition pickle : T -> nat := fun=> 0%N.
Definition unpickle : nat -> option T := fun=> None.
Lemma pickleK : pcancel pickle unpickle.
Proof.
Lemma fin_axiom : Finite.axiom ([::] : seq T).
HB.instance Definition _ := isFinite.Build T fin_axiom.
HB.instance Definition _ := isEmpty.Build T axiom.
HB.end.
HB.factory Record Type_isEmpty T := {
axiom : T -> False
}.
HB.builders Context T of Type_isEmpty T.
Definition eq_op (x y : T) := true.
Lemma eq_opP : Equality.axiom eq_op
HB.instance Definition _ := hasDecEq.Build T eq_opP.
Definition find of pred T & nat : option T := None.
Lemma findP (P : pred T) (n : nat) (x : T) : find P n = Some x -> P x.
Proof.
by []. Qed.
Lemma eq_find (P Q : pred T) : P =1 Q -> find P =1 find Q.
Proof.
by []. Qed.
HB.instance Definition _ := Choice_isEmpty.Build T axiom.
HB.end.
HB.instance Definition _ := Type_isEmpty.Build False id.
HB.instance Definition _ := isEmpty.Build void (@of_void _).
Definition no {T : emptyType} : T -> False := @axiom T.
Definition any {T : emptyType} {U} : T -> U := @False_rect _ \o no.
Lemma empty_eq0 {T : emptyType} : all_equal_to (set0 : set T).
Definition quasi_canonical_of T C (sort : C -> T) (alt : emptyType -> T):=
forall (G : T -> Type), (forall s : emptyType, G (alt s)) -> (forall x, G (sort x)) ->
forall x, G x.
Notation quasi_canonical_ sort alt := (@quasi_canonical_of _ _ sort alt).
Notation quasi_canonical T C := (@quasi_canonical_of T C id id).
Lemma qcanon T C (sort : C -> T) (alt : emptyType -> T) :
(forall x, (exists y : emptyType, alt y = x) + (exists y, sort y = x)) ->
quasi_canonical_ sort alt.
Arguments qcanon {T C sort alt} x.
Lemma choicePpointed : quasi_canonical choiceType pointedType.
Proof.
apply: qcanon => -[Ts [Tc Te]].
set T := Choice.Pack _.
have [/unsquash x|/(_ (squash _)) TF] := pselect $|T|.
right.
pose Tp := isPointed.Build T x.
pose TT : pointedType := HB.pack T Te Tc Tp.
by exists TT.
left.
pose TMixin := Choice_isEmpty.Build T TF.
pose TT : emptyType := HB.pack T Te Tc TMixin.
by exists TT.
Qed.
set T := Choice.Pack _.
have [/unsquash x|/(_ (squash _)) TF] := pselect $|T|.
right.
pose Tp := isPointed.Build T x.
pose TT : pointedType := HB.pack T Te Tc Tp.
by exists TT.
left.
pose TMixin := Choice_isEmpty.Build T TF.
pose TT : emptyType := HB.pack T Te Tc TMixin.
by exists TT.
Qed.
Lemma eqPpointed : quasi_canonical eqType pointedType.
Proof.
by apply: qcanon; elim/eqPchoice; elim/choicePpointed => [[T F]|T];
[left; exists (Empty.Pack F) | right; exists T].
Qed.
[left; exists (Empty.Pack F) | right; exists T].
Qed.
Proof.
by apply: qcanon; elim/Peq; elim/eqPpointed => [[T F]|T];
[left; exists (Empty.Pack F) | right; exists T].
Qed.
[left; exists (Empty.Pack F) | right; exists T].
Qed.
Section partitions.
Definition trivIset T I (D : set I) (F : I -> set T) :=
forall i j : I, D i -> D j -> F i `&` F j !=set0 -> i = j.
Lemma trivIset1 T I (i : I) (F : I -> set T) : trivIset [set i] F.
Proof.
by move=> j k <- <-. Qed.
Lemma ltn_trivIset T (F : nat -> set T) :
(forall n m, (m < n)%N -> F m `&` F n = set0) -> trivIset setT F.
Proof.
Lemma subsetC_trivIset T (F : nat -> set T) :
(forall n, F n.+1 `<=` ~` \big[setU/set0]_(i < n.+1) F i) -> trivIset setT F.
Proof.
move=> sF; apply: ltn_trivIset => n m h; rewrite setIC; apply/disjoints_subset.
by case: n h => // n h; apply: (subset_trans (sF n)); exact/subsetC/bigsetU_sup.
Qed.
by case: n h => // n h; apply: (subset_trans (sF n)); exact/subsetC/bigsetU_sup.
Qed.
Lemma trivIset_mkcond T I (D : set I) (F : I -> set T) :
trivIset D F <-> trivIset setT (fun i => if i \in D then F i else set0).
Proof.
Lemma trivIset_set0 {I T} (D : set I) : trivIset D (fun=> set0 : set T).
Lemma trivIsetP {T} {I : eqType} {D : set I} {F : I -> set T} :
trivIset D F <->
forall i j : I, D i -> D j -> i != j -> F i `&` F j = set0.
Proof.
Lemma trivIset_bigsetUI T (D : {pred nat}) (F : nat -> set T) : trivIset D F ->
forall n m, D m -> n <= m -> \big[setU/set0]_(i < n | D i) F i `&` F m = set0.
Proof.
move=> /trivIsetP tA; elim => [|n IHn] m Dm.
by move=> _; rewrite big_ord0 set0I.
move=> lt_nm; rewrite big_mkcond/= big_ord_recr -big_mkcond/=.
rewrite setIUl IHn 1?ltnW// set0U.
by case: ifPn => [Dn|NDn]; rewrite ?set0I// tA// ltn_eqF.
Qed.
by move=> _; rewrite big_ord0 set0I.
move=> lt_nm; rewrite big_mkcond/= big_ord_recr -big_mkcond/=.
rewrite setIUl IHn 1?ltnW// set0U.
by case: ifPn => [Dn|NDn]; rewrite ?set0I// tA// ltn_eqF.
Qed.
Lemma trivIset_setIl (T I : Type) (D : set I) (F : I -> set T) (G : I -> set T) :
trivIset D F -> trivIset D (fun i => G i `&` F i).
Proof.
by move=> tF i j Di Dj [x [[Gix Fix] [Gjx Fjx]]]; apply tF => //; exists x.
Qed.
Qed.
Lemma trivIset_setIr (T I : Type) (D : set I) (F : I -> set T) (G : I -> set T) :
trivIset D F -> trivIset D (fun i => F i `&` G i).
Proof.
by move=> tF i j Di Dj [x [[Fix Gix] [Fjx Gjx]]]; apply tF => //; exists x.
Qed.
Qed.
Lemma sub_trivIset I T (D D' : set I) (F : I -> set T) :
D `<=` D' -> trivIset D' F -> trivIset D F.
Proof.
by move=> DD' Ftriv i j /DD' + /DD' + /Ftriv->//. Qed.
Lemma trivIset_bigcup2 T (A B : set T) :
(A `&` B = set0) = trivIset setT (bigcup2 A B).
Proof.
Lemma trivIset_image T I I' (D : set I) (f : I -> I') (F : I' -> set T) :
trivIset D (F \o f) -> trivIset (f @` D) F.
Proof.
by move=> trivF i j [{}i Di <-] [{}j Dj <-] Ffij; congr (f _); apply: trivF.
Qed.
Qed.
Lemma trivIset_comp T I I' (D : set I) (f : I -> I') (F : I' -> set T) :
{in D &, injective f} ->
trivIset D (F \o f) = trivIset (f @` D) F.
Proof.
move=> finj; apply/propext; split; first exact: trivIset_image.
move=> trivF i j Di Dj Ffij; apply: finj; rewrite ?in_setE//.
by apply: trivF => //=; [exists i| exists j].
Qed.
move=> trivF i j Di Dj Ffij; apply: finj; rewrite ?in_setE//.
by apply: trivF => //=; [exists i| exists j].
Qed.
Lemma trivIset_preimage1 {aT rT} D (f : aT -> rT) :
trivIset D (fun x => f @^-1` [set x]).
Proof.
by move=> y z _ _ [x [<- <-]]. Qed.
Lemma trivIset_preimage1_in {aT} {rT : choiceType} (D : set rT) (A : set aT)
(f : aT -> rT) : trivIset D (fun x => A `&` f @^-1` [set x]).
Proof.
by move=> y z _ _ [x [[_ <-] [_ <-]]]. Qed.
Lemma trivIset_bigcup (I T : Type) (J : eqType) (D : J -> set I) (F : I -> set T) :
(forall n, trivIset (D n) F) ->
(forall n m i j, n != m -> D n i -> D m j -> F i `&` F j !=set0 -> i = j) ->
trivIset (\bigcup_k D k) F.
Proof.
move=> tB H; move=> i j [n _ Dni] [m _ Dmi] ij.
have [nm|nm] := eqVneq n m; first by apply: (tB m) => //; rewrite -nm.
exact: (H _ _ _ _ nm).
Qed.
have [nm|nm] := eqVneq n m; first by apply: (tB m) => //; rewrite -nm.
exact: (H _ _ _ _ nm).
Qed.
Lemma trivIsetT_bigcup T1 T2 (I : eqType) (D : I -> set T1) (F : T1 -> set T2) :
trivIset setT D ->
trivIset (\bigcup_i D i) F ->
trivIset setT (fun i => \bigcup_(t in D i) F t).
Proof.
move=> D0 h i j _ _ [t [[m Dim Fmt] [n Djn Fnt]]].
have mn : m = n by apply: h => //; [exists i|exists j|exists t].
rewrite {}mn {m} in Dim Fmt *.
by apply: D0 => //; exists n.
Qed.
have mn : m = n by apply: h => //; [exists i|exists j|exists t].
rewrite {}mn {m} in Dim Fmt *.
by apply: D0 => //; exists n.
Qed.
Definition cover T I D (F : I -> set T) := \bigcup_(i in D) F i.
Lemma coverE T I D (F : I -> set T) : cover D F = \bigcup_(i in D) F i.
Proof.
by []. Qed.
Lemma cover_restr T I D' D (F : I -> set T) :
D `<=` D' -> (forall i, D' i -> ~ D i -> F i = set0) ->
cover D F = cover D' F.
Proof.
Lemma eqcover_r T I D (F G : I -> set T) :
[set F i | i in D] = [set G i | i in D] ->
cover D F = cover D G.
Proof.
Definition partition T I D (F : I -> set T) (A : set T) :=
[/\ cover D F = A, trivIset D F & forall i, D i -> F i !=set0].
Definition pblock_index T (I : pointedType) D (F : I -> set T) (x : T) :=
[get i | D i /\ F i x].
Definition pblock T (I : pointedType) D (F : I -> set T) (x : T) :=
F (pblock_index D F x).
Notation trivIsets X := (trivIset X id).
Lemma trivIset_sets T I D (F : I -> set T) :
trivIset D F -> trivIsets [set F i | i in D].
Proof.
Lemma trivIset_widen T I D' D (F : I -> set T) :
D `<=` D' -> (forall i, D' i -> ~ D i -> F i = set0) ->
trivIset D F = trivIset D' F.
Proof.
move=> DD' DD'F.
rewrite propeqE; split=> [DF i j D'i D'j FiFj0|D'F i j Di Dj FiFj0].
have [Di|Di] := pselect (D i); last first.
by move: FiFj0; rewrite (DD'F i) // set0I => /set0P; rewrite eqxx.
have [Dj|Dj] := pselect (D j).
- exact: DF.
- by move: FiFj0; rewrite (DD'F j) // setI0 => /set0P; rewrite eqxx.
by apply D'F => //; apply DD'.
Qed.
rewrite propeqE; split=> [DF i j D'i D'j FiFj0|D'F i j Di Dj FiFj0].
have [Di|Di] := pselect (D i); last first.
by move: FiFj0; rewrite (DD'F i) // set0I => /set0P; rewrite eqxx.
have [Dj|Dj] := pselect (D j).
- exact: DF.
- by move: FiFj0; rewrite (DD'F j) // setI0 => /set0P; rewrite eqxx.
by apply D'F => //; apply DD'.
Qed.
Lemma perm_eq_trivIset {T : eqType} (s1 s2 : seq (set T)) (D : set nat) :
[set k | (k < size s1)] `<=` D -> perm_eq s1 s2 ->
trivIset D (fun i => nth set0 s1 i) -> trivIset D (fun i => nth set0 s2 i).
Proof.
move=> s1D; rewrite perm_sym => /(perm_iotaP set0)[s ss1 s12] /trivIsetP ts1.
apply/trivIsetP => i j Di Dj ij.
rewrite {}s12 {s2}; have [si|si] := ltnP i (size s); last first.
by rewrite (nth_default set0) ?size_map// set0I.
rewrite (nth_map O) //; have [sj|sj] := ltnP j (size s); last first.
by rewrite (nth_default set0) ?size_map// setI0.
have nth_mem k : k < size s -> nth O s k \in iota 0 (size s1).
by move=> ?; rewrite -(perm_mem ss1) mem_nth.
rewrite (nth_map O)// ts1 ?(nth_uniq,(perm_uniq ss1),iota_uniq)//; apply/s1D.
- by have := nth_mem _ si; rewrite mem_iota leq0n add0n.
- by have := nth_mem _ sj; rewrite mem_iota leq0n add0n.
Qed.
apply/trivIsetP => i j Di Dj ij.
rewrite {}s12 {s2}; have [si|si] := ltnP i (size s); last first.
by rewrite (nth_default set0) ?size_map// set0I.
rewrite (nth_map O) //; have [sj|sj] := ltnP j (size s); last first.
by rewrite (nth_default set0) ?size_map// setI0.
have nth_mem k : k < size s -> nth O s k \in iota 0 (size s1).
by move=> ?; rewrite -(perm_mem ss1) mem_nth.
rewrite (nth_map O)// ts1 ?(nth_uniq,(perm_uniq ss1),iota_uniq)//; apply/s1D.
- by have := nth_mem _ si; rewrite mem_iota leq0n add0n.
- by have := nth_mem _ sj; rewrite mem_iota leq0n add0n.
Qed.
End partitions.
#[deprecated(note="Use trivIset_setIl instead")]
Notation trivIset_setI := trivIset_setIl (only parsing).
Section Zorn.
Definition total_on T (A : set T) (R : T -> T -> Prop) :=
forall s t, A s -> A t -> R s t \/ R t s.
Let total_on_wo_chain (T : Type) (R : rel T) (P : {pred T}) :
(forall A, total_on A R -> exists t, forall s, A s -> R s t) ->
wo_chain R P -> exists2 z, z \in predT & upper_bound R P z.
Proof.
move: R P; elim/Peq : T => T R P Atot RP.
suff : total_on P R by move=> /Atot[t ARt]; exists t.
move=> s t Ps Pt; have [| |] := RP [predU (pred1 s) & (pred1 t)].
- by move=> x; rewrite !inE => /orP[/eqP ->{x}|/eqP ->{x}].
- by exists s; rewrite !inE eqxx.
- move=> x [[]]; rewrite !inE => /orP[/eqP ->{x}|/eqP ->{x}].
+ by move=> /(_ t); rewrite !inE eqxx orbT => /(_ isT) Rst _; left.
+ by move=> /(_ s); rewrite !inE eqxx => /(_ isT) Rts _; right.
Qed.
suff : total_on P R by move=> /Atot[t ARt]; exists t.
move=> s t Ps Pt; have [| |] := RP [predU (pred1 s) & (pred1 t)].
- by move=> x; rewrite !inE => /orP[/eqP ->{x}|/eqP ->{x}].
- by exists s; rewrite !inE eqxx.
- move=> x [[]]; rewrite !inE => /orP[/eqP ->{x}|/eqP ->{x}].
+ by move=> /(_ t); rewrite !inE eqxx orbT => /(_ isT) Rst _; left.
+ by move=> /(_ s); rewrite !inE eqxx => /(_ isT) Rts _; right.
Qed.
Lemma Zorn (T : Type) (R : rel T) :
(forall t, R t t) -> (forall r s t, R r s -> R s t -> R r t) ->
(forall s t, R s t -> R t s -> s = t) ->
(forall A : set T, total_on A R -> exists t, forall s, A s -> R s t) ->
exists t, forall s, R t s -> s = t.
Proof.
move: R; elim/Peq : T => T R Rxx Rtrans Ranti Atot.
have [//| |P _ RP|] := @Zorn's_lemma _ R predT _.
- by move=> ? ? ? _ _ _; exact: Rtrans.
- exact: total_on_wo_chain.
by move=> x _ Rx; exists x => s Rxs; apply: (Ranti _ _ _ Rxs) => //; exact: Rx.
Qed.
have [//| |P _ RP|] := @Zorn's_lemma _ R predT _.
- by move=> ? ? ? _ _ _; exact: Rtrans.
- exact: total_on_wo_chain.
by move=> x _ Rx; exists x => s Rxs; apply: (Ranti _ _ _ Rxs) => //; exact: Rx.
Qed.
Definition premaximal T (R : T -> T -> Prop) (t : T) :=
forall s, R t s -> R s t.
Lemma ZL_preorder (T : Type) (t0 : T) (R : rel T) :
(forall t, R t t) -> (forall r s t, R r s -> R s t -> R r t) ->
(forall A, total_on A R -> exists t, forall s, A s -> R s t) ->
exists t, premaximal R t.
Proof.
move: t0 R; elim/Peq : T => T t0 R Rxx Rtrans Atot.
have [//| | |z _ Hz] := @Zorn's_lemma T R predT.
- by move=> ? ? ? _ _ _; exact: Rtrans.
- by move=> A _ RA; exact: total_on_wo_chain.
by exists z => s Rzs; exact: Hz.
Qed.
have [//| | |z _ Hz] := @Zorn's_lemma T R predT.
- by move=> ? ? ? _ _ _; exact: Rtrans.
- by move=> A _ RA; exact: total_on_wo_chain.
by exists z => s Rzs; exact: Hz.
Qed.
End Zorn.
Section Zorn_subset.
Variables (T : Type) (P : set (set T)).
Lemma Zorn_bigcup :
(forall F : set (set T), F `<=` P -> total_on F subset ->
P (\bigcup_(X in F) X)) ->
exists A, P A /\ forall B, A `<` B -> ~ P B.
Proof.
move=> totP; pose R (sA sB : P) := `[< sval sA `<=` sval sB >].
have {}totR F (FR : total_on F R) : exists sB, forall sA, F sA -> R sA sB.
have FP : [set val x | x in F] `<=` P.
by move=> _ [X FX <-]; apply: set_mem; exact/valP.
have totF : total_on [set val x | x in F] subset.
move=> _ _ [X FX <-] [Y FY <-].
by have [/asboolP|/asboolP] := FR _ _ FX FY; [left|right].
exists (SigSub (mem_set (totP _ FP totF))) => A FA.
exact/asboolP/(bigcup_sup (imageP val _)).
have [| | |sA sAmax] := Zorn _ _ _ totR.
- by move=> ?; apply/asboolP; exact: subset_refl.
- by move=> ? ? ? /asboolP ? /asboolP st; apply/asboolP; exact: subset_trans st.
- by move=> [A PA] [B PB] /asboolP AB /asboolP BA; exact/eq_exist/seteqP.
- exists (val sA); case: sA => A PA /= in sAmax *; split; first exact: set_mem.
move=> B AB PB.
have : R (exist (fun x : T -> Prop => x \in P) A PA) (SigSub (mem_set PB)).
by apply/asboolP; exact: properW.
move=> /(sAmax (SigSub (mem_set PB)))[BA].
by move: AB; rewrite BA; exact: properxx.
Qed.
have {}totR F (FR : total_on F R) : exists sB, forall sA, F sA -> R sA sB.
have FP : [set val x | x in F] `<=` P.
by move=> _ [X FX <-]; apply: set_mem; exact/valP.
have totF : total_on [set val x | x in F] subset.
move=> _ _ [X FX <-] [Y FY <-].
by have [/asboolP|/asboolP] := FR _ _ FX FY; [left|right].
exists (SigSub (mem_set (totP _ FP totF))) => A FA.
exact/asboolP/(bigcup_sup (imageP val _)).
have [| | |sA sAmax] := Zorn _ _ _ totR.
- by move=> ?; apply/asboolP; exact: subset_refl.
- by move=> ? ? ? /asboolP ? /asboolP st; apply/asboolP; exact: subset_trans st.
- by move=> [A PA] [B PB] /asboolP AB /asboolP BA; exact/eq_exist/seteqP.
- exists (val sA); case: sA => A PA /= in sAmax *; split; first exact: set_mem.
move=> B AB PB.
have : R (exist (fun x : T -> Prop => x \in P) A PA) (SigSub (mem_set PB)).
by apply/asboolP; exact: properW.
move=> /(sAmax (SigSub (mem_set PB)))[BA].
by move: AB; rewrite BA; exact: properxx.
Qed.
End Zorn_subset.
Definition maximal_disjoint_subcollection T I (F : I -> set T) (A B : set I) :=
[/\ A `<=` B, trivIset A F & forall C,
A `<` C -> C `<=` B -> ~ trivIset C F ].
Section maximal_disjoint_subcollection.
Context {I T : Type}.
Variables (B : I -> set T) (D : set I).
Let P := fun X => X `<=` D /\ trivIset X B.
Let maxP (A : set (set I)) :
A `<=` P -> total_on A (fun x y => x `<=` y) -> P (\bigcup_(x in A) x).
Proof.
move=> AP h; split; first by apply: bigcup_sub => E /AP [].
move=> i j [x Ax] xi [y Ay] yj ij; have [xy|yx] := h _ _ Ax Ay.
- by apply: (AP _ Ay).2 => //; exact: xy.
- by apply: (AP _ Ax).2 => //; exact: yx.
Qed.
move=> i j [x Ax] xi [y Ay] yj ij; have [xy|yx] := h _ _ Ax Ay.
- by apply: (AP _ Ay).2 => //; exact: xy.
- by apply: (AP _ Ax).2 => //; exact: yx.
Qed.
Lemma ex_maximal_disjoint_subcollection :
{ E | maximal_disjoint_subcollection B E D }.
Proof.
have /cid[E [[ED tEB] maxE]] := Zorn_bigcup maxP.
by exists E; split => // F /maxE + FD; exact: contra_not.
Qed.
by exists E; split => // F /maxE + FD; exact: contra_not.
Qed.
End maximal_disjoint_subcollection.
Section UpperLowerTheory.
Import Order.TTheory.
Variables (d : Order.disp_t) (T : porderType d).
Implicit Types (A : set T) (x y z : T).
Definition ubound A : set T := [set y | forall x, A x -> (x <= y)%O].
Definition lbound A : set T := [set y | forall x, A x -> (y <= x)%O].
Lemma ubP A x : (forall y, A y -> (y <= x)%O) <-> ubound A x.
Proof.
by []. Qed.
Lemma lbP A x : (forall y, A y -> (x <= y)%O) <-> lbound A x.
Proof.
by []. Qed.
Lemma ub_set1 x y : ubound [set x] y = (x <= y)%O.
Lemma lb_set1 x y : lbound [set x] y = (x >= y)%O.
Lemma lb_ub_set1 x y : lbound (ubound [set x]) y -> (y <= x)%O.
Proof.
Lemma ub_lb_set1 x y : ubound (lbound [set x]) y -> (x <= y)%O.
Proof.
Lemma lb_ub_refl x : lbound (ubound [set x]) x.
Proof.
by move=> y; apply. Qed.
Lemma ub_lb_refl x : ubound (lbound [set x]) x.
Proof.
by move=> y; apply. Qed.
Lemma ub_lb_ub A x y : ubound A y -> lbound (ubound A) x -> (x <= y)%O.
Proof.
by move=> Ay; apply. Qed.
Lemma lb_ub_lb A x y : lbound A y -> ubound (lbound A) x -> (y <= x)%O.
Proof.
by move=> Ey; apply. Qed.
Definition down A : set T := [set x | exists y, A y /\ (x <= y)%O].
Definition has_ubound A := ubound A !=set0.
Definition has_sup A := A !=set0 /\ has_ubound A.
Definition has_lbound A := lbound A !=set0.
Definition has_inf A := A !=set0 /\ has_lbound A.
Lemma has_ub_set1 x : has_ubound [set x].
Proof.
Lemma has_inf0 : ~ has_inf (@set0 T).
Lemma has_sup0 : ~ has_sup (@set0 T).
Lemma has_sup1 x : has_sup [set x].
Proof.
by split; [exists x | exists x => y ->]. Qed.
Lemma has_inf1 x : has_inf [set x].
Proof.
by split; [exists x | exists x => y ->]. Qed.
Lemma subset_has_lbound A B : A `<=` B -> has_lbound B -> has_lbound A.
Proof.
by move=> AB [l Bl]; exists l => a Aa; apply/Bl/AB. Qed.
Lemma subset_has_ubound A B : A `<=` B -> has_ubound B -> has_ubound A.
Proof.
by move=> AB [l Bl]; exists l => a Aa; apply/Bl/AB. Qed.
Lemma downP A x : (exists2 y, A y & (x <= y)%O) <-> down A x.
Proof.
by split => [[y Ay xy]|[y [Ay xy]]]; [exists y| exists y]. Qed.
Definition isLub A m := ubound A m /\ forall b, ubound A b -> (m <= b)%O.
Definition supremums A := ubound A `&` lbound (ubound A).
Lemma supremums1 x : supremums [set x] = [set x].
Proof.
rewrite /supremums predeqE => y; split => [[]|->{y}]; last first.
by split; [rewrite ub_set1|exact: lb_ub_refl].
by rewrite ub_set1 => xy /lb_ub_set1 yx; apply/eqP; rewrite eq_le xy yx.
Qed.
by split; [rewrite ub_set1|exact: lb_ub_refl].
by rewrite ub_set1 => xy /lb_ub_set1 yx; apply/eqP; rewrite eq_le xy yx.
Qed.
Lemma is_subset1_supremums A : is_subset1 (supremums A).
Proof.
Definition supremum x0 A := if A == set0 then x0 else xget x0 (supremums A).
Lemma supremum_out x0 A : ~ has_sup A -> supremum x0 A = x0.
Proof.
Lemma supremum0 x0 : supremum x0 set0 = x0.
Lemma supremum1 x0 x : supremum x0 [set x] = x.
Proof.
Definition infimums A := lbound A `&` ubound (lbound A).
Lemma infimums1 x : infimums [set x] = [set x].
Proof.
rewrite /infimums predeqE => y; split => [[]|->{y}]; last first.
by split; [rewrite lb_set1|apply ub_lb_refl].
by rewrite lb_set1 => xy /ub_lb_set1 yx; apply/eqP; rewrite eq_le xy yx.
Qed.
by split; [rewrite lb_set1|apply ub_lb_refl].
by rewrite lb_set1 => xy /ub_lb_set1 yx; apply/eqP; rewrite eq_le xy yx.
Qed.
Lemma is_subset1_infimums A : is_subset1 (infimums A).
Proof.
Definition infimum x0 A := if A == set0 then x0 else xget x0 (infimums A).
End UpperLowerTheory.
Section UpperLowerOrderTheory.
Import Order.TTheory.
Variables (d : Order.disp_t) (T : orderType d).
Implicit Types (A : set T) (x y z : T).
Lemma ge_supremum_Nmem x0 A t :
supremums A !=set0 -> A t -> (supremum x0 A >= t)%O.
Proof.
Lemma le_infimum_Nmem x0 A t :
infimums A !=set0 -> A t -> (infimum x0 A <= t)%O.
Proof.
End UpperLowerOrderTheory.
Lemma nat_supremums_neq0 (A : set nat) : ubound A !=set0 -> supremums A !=set0.
Proof.
case => /=; elim => [A0|n ih]; first by exists O.
case: (pselect (ubound A n)) => [/ih //|An {ih}] An1.
exists n.+1; split => // m Am; case/existsNP : An => k /not_implyP[Ak /negP].
rewrite -Order.TotalTheory.ltNge => kn.
by rewrite (Order.POrderTheory.le_trans _ (Am _ Ak)).
Qed.
case: (pselect (ubound A n)) => [/ih //|An {ih}] An1.
exists n.+1; split => // m Am; case/existsNP : An => k /not_implyP[Ak /negP].
rewrite -Order.TotalTheory.ltNge => kn.
by rewrite (Order.POrderTheory.le_trans _ (Am _ Ak)).
Qed.
Definition meets T (F G : set (set T)) :=
forall A B, F A -> G B -> A `&` B !=set0.
Notation "F `#` G" := (meets F G) : classical_set_scope.
Section meets.
Lemma meetsC T (F G : set (set T)) : F `#` G = G `#` F.
Proof.
Lemma sub_meets T (F F' G G' : set (set T)) :
F `<=` F' -> G `<=` G' -> F' `#` G' -> F `#` G.
Proof.
by move=> sF sG FG A B /sF FA /sG GB; apply: (FG A B). Qed.
Lemma meetsSr T (F G G' : set (set T)) :
G `<=` G' -> F `#` G' -> F `#` G.
Proof.
Lemma meetsSl T (G F F' : set (set T)) :
F `<=` F' -> F' `#` G -> F `#` G.
Proof.
End meets.
Fact set_display : Order.disp_t
Proof.
by []. Qed.
Module SetOrder.
Module Internal.
Section SetOrder.
Context {T : Type}.
Implicit Types A B : set T.
Lemma le_def A B : `[< A `<=` B >] = (A `&` B == A).
Lemma lt_def A B : `[< A `<` B >] = (B != A) && `[< A `<=` B >].
Proof.
Lemma joinKI B A : A `&` (A `|` B) = A.
Lemma meetKU B A : A `|` (A `&` B) = A.
#[export]
HB.instance Definition _ : Choice (set T) := Choice.copy _ (set T).
#[export]
HB.instance Definition _ :=
Order.isMeetJoinDistrLattice.Build set_display (set T)
le_def lt_def (@setIC _) (@setUC _) (@setIA _) (@setUA _)
joinKI meetKU (@setIUl _) setIid.
Lemma SetOrder_sub0set A : (set0 <= A)%O.
Lemma SetOrder_setTsub A : (A <= setT)%O.
Proof.
exact/asboolP. Qed.
#[export]
HB.instance Definition _ := Order.hasBottom.Build set_display (set T)
SetOrder_sub0set.
#[export]
HB.instance Definition _ := Order.hasTop.Build set_display (set T)
SetOrder_setTsub.
Lemma subKI A B : B `&` (A `\` B) = set0.
Lemma joinIB A B : (A `&` B) `|` A `\` B = A.
#[export]
HB.instance Definition _ :=
Order.hasRelativeComplement.Build set_display (set T) subKI joinIB.
#[export]
HB.instance Definition _ := Order.hasComplement.Build set_display (set T)
(fun x => esym (setTD x)).
End SetOrder.
Module Exports. HB.reexport. End Exports.
End Internal.
Module Exports.
Export Internal.Exports.
Section exports.
Context {T : Type}.
Implicit Types A B : set T.
Lemma subsetEset A B : (A <= B)%O = (A `<=` B) :> Prop.
Proof.
Lemma properEset A B : (A < B)%O = (A `<` B) :> Prop.
Proof.
Lemma subEset A B : (A `\` B)%O = (A `\` B)
Proof.
by []. Qed.
Lemma complEset A : (~` A)%O = ~` A
Proof.
by []. Qed.
Lemma botEset : \bot%O = @set0 T
Proof.
by []. Qed.
Lemma topEset : \top%O = @setT T
Proof.
by []. Qed.
Lemma meetEset A B : (A `&` B)%O = (A `&` B)
Proof.
by []. Qed.
Lemma joinEset A B : (A `|` B)%O = (A `|` B)
Proof.
by []. Qed.
Lemma subsetPset A B : reflect (A `<=` B) (A <= B)%O.
Proof.
Lemma properPset A B : reflect (A `<` B) (A < B)%O.
Proof.
End exports.
End Exports.
End SetOrder.
Export SetOrder.Exports.
Section product.
Variables (T1 T2 : Type).
Implicit Type A B : set (T1 * T2).
Lemma subset_fst_set : {homo @fst_set T1 T2 : A B / A `<=` B}.
Proof.
by move=> A B AB x [y Axy]; exists y; exact/AB. Qed.
Lemma subset_snd_set : {homo @snd_set T1 T2 : A B / A `<=` B}.
Proof.
by move=> A B AB x [y Axy]; exists y; exact/AB. Qed.
Lemma fst_set_fst A : A `<=` A.`1 \o fst
Proof.
by move=> [x y]; exists y. Qed.
Lemma snd_set_snd A: A `<=` A.`2 \o snd
Proof.
by move=> [x y]; exists x. Qed.
Lemma fst_setX (X : set T1) (Y : set T2) : (X `*` Y).`1 `<=` X.
Proof.
by move=> x [y [//]]. Qed.
Lemma snd_setX (X : set T1) (Y : set T2) : (X `*` Y).`2 `<=` Y.
Proof.
by move=> x [y [//]]. Qed.
Lemma fst_setXR (X : set T1) (Y : T1 -> set T2) : (X `*`` Y).`1 `<=` X.
Proof.
by move=> x [y [//]]. Qed.
End product.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to fst_setX.")]
Notation fst_setM := fst_setX (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to snd_setX.")]
Notation snd_setM := snd_setX (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to fst_setXR instead.")]
Notation fst_setMR := fst_setXR (only parsing).
Section section.
Variables (T1 T2 : Type).
Implicit Types (A : set (T1 * T2)) (x : T1) (y : T2).
Definition xsection A x := [set y | (x, y) \in A].
Definition ysection A y := [set x | (x, y) \in A].
Lemma xsection_snd_set A x : xsection A x `<=` A.`2.
Lemma ysection_fst_set A y : ysection A y `<=` A.`1.
Lemma mem_xsection x y A : (y \in xsection A x) = ((x, y) \in A).
Lemma xsectionP x y A : xsection A x y <-> A (x, y).
Lemma mem_ysection x y A : (x \in ysection A y) = ((x, y) \in A).
Lemma ysectionP x y A : ysection A y x <-> A (x, y).
Lemma xsection0 x : xsection set0 x = set0.
Lemma ysection0 y : ysection set0 y = set0.
Lemma in_xsectionX X1 X2 x : x \in X1 -> xsection (X1 `*` X2) x = X2.
Proof.
Lemma in_ysectionX X1 X2 y : y \in X2 -> ysection (X1 `*` X2) y = X1.
Proof.
Lemma notin_xsectionX X1 X2 x : x \notin X1 -> xsection (X1 `*` X2) x = set0.
Proof.
move=> xX1; rewrite /xsection /= predeqE => y; split => //.
by rewrite /xsection/= inE => -[] /=; rewrite notin_setE in xX1.
Qed.
by rewrite /xsection/= inE => -[] /=; rewrite notin_setE in xX1.
Qed.
Lemma notin_ysectionX X1 X2 y : y \notin X2 -> ysection (X1 `*` X2) y = set0.
Proof.
move=> yX2; rewrite /xsection /= predeqE => x; split => //.
by rewrite /ysection/= inE => -[_]; rewrite notin_setE in yX2.
Qed.
by rewrite /ysection/= inE => -[_]; rewrite notin_setE in yX2.
Qed.
Lemma xsection_bigcup (F : nat -> set (T1 * T2)) x :
xsection (\bigcup_n F n) x = \bigcup_n xsection (F n) x.
Proof.
Lemma ysection_bigcup (F : nat -> set (T1 * T2)) y :
ysection (\bigcup_n F n) y = \bigcup_n ysection (F n) y.
Proof.
Lemma trivIset_xsection (F : nat -> set (T1 * T2)) x : trivIset setT F ->
trivIset setT (fun n => xsection (F n) x).
Proof.
Lemma trivIset_ysection (F : nat -> set (T1 * T2)) y : trivIset setT F ->
trivIset setT (fun n => ysection (F n) y).
Proof.
Lemma le_xsection x : {homo xsection ^~ x : X Y / X `<=` Y >-> X `<=` Y}.
Lemma le_ysection y : {homo ysection ^~ y : X Y / X `<=` Y >-> X `<=` Y}.
Lemma xsectionI A B x : xsection (A `&` B) x = xsection A x `&` xsection B x.
Lemma ysectionI A B y : ysection (A `&` B) y = ysection A y `&` ysection B y.
Lemma xsectionD X Y x : xsection (X `\` Y) x = xsection X x `\` xsection Y x.
Lemma ysectionD X Y y : ysection (X `\` Y) y = ysection X y `\` ysection Y y.
Lemma xsection_preimage_snd (B : set T2) x : xsection (snd @^-1` B) x = B.
Lemma ysection_preimage_fst (A : set T1) y : ysection (fst @^-1` A) y = A.
End section.
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to in_xsectionX.")]
Notation in_xsectionM := in_xsectionX (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to in_ysectionX.")]
Notation in_ysectionM := in_ysectionX (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to notin_xsectionX.")]
Notation notin_xsectionM := notin_xsectionX (only parsing).
#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed to notin_ysectionX.")]
Notation notin_ysectionM := notin_ysectionX (only parsing).
Declare Scope relation_scope.
Delimit Scope relation_scope with relation.
Notation "B \; A" :=
([set xy | exists2 z, A (xy.1, z) & B (z, xy.2)]) : relation_scope.
Notation "A ^-1" := ([set xy | A (xy.2, xy.1)]) : relation_scope.
Local Open Scope relation_scope.
Lemma set_compose_subset {X Y : Type} (A C : set (X * Y)) (B D : set (Y * X)) :
A `<=` C -> B `<=` D -> A \; B `<=` C \; D.
Proof.
by move=> AsubC BD [x z] /= [y] Bxy Ayz; exists y; [exact: BD | exact: AsubC].
Qed.
Qed.
Lemma set_compose_diag {T : Type} (E : set (T * T)) :
E \; range (fun x => (x, x)) = E.
Proof.
rewrite eqEsubset; split => [[_ _] [_ [_ _ [<- <-//]]]|[x y] Exy]/=.
by exists x => //; exists x.
Qed.
by exists x => //; exists x.
Qed.
Lemma set_prod_invK {T : Type} (E : set (T * T)) : E^-1^-1 = E.
Proof.
Definition diagonal {T : Type} := [set x : T * T | x.1 = x.2].
Lemma diagonalP {T : Type} (x y : T) : diagonal (x, y) <-> x = y.
Proof.
by []. Qed.
Local Close Scope relation_scope.