Module mathcomp.analysis.topology_theory.num_topology
From HB Require Import structures.From mathcomp Require Import all_ssreflect all_algebra archimedean.
From mathcomp Require Import all_classical.
From mathcomp Require Import signed reals topology_structure uniform_structure.
From mathcomp Require Import pseudometric_structure order_topology.
# Topological notions for numerical types
We endow `numFieldType` with the types of topological notions (accessible
with `Import numFieldTopology.Exports.
Import Order.TTheory GRing.Theory Num.Theory.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
HB.instance Definition _ (R : numDomainType) := hasNbhs.Build R^o
(nbhs_ball_ (ball_ (fun x => `|x|))).
HB.instance Definition _ (R : numFieldType) :=
Nbhs_isPseudoMetric.Build R R^o
nbhs_ball_normE ball_norm_center ball_norm_symmetric ball_norm_triangle erefl.
Lemma real_order_nbhsE (R : realFieldType) (x : R^o) : nbhs x =
filter_from (fun i => itv_open_ends i /\ x \in i) (fun i => [set` i]).
Proof.
rewrite eqEsubset; split => U.
case => _ /posnumP[e] xeU.
exists (`]x - e%:num, x + e%:num[); first split; first by right.
by rewrite in_itv /= -real_lter_distl subrr // normr0.
apply: (subset_trans _ xeU) => z /=.
by rewrite in_itv /= -real_lter_distl //= distrC.
case => [][[[]l|[]]] [[]r|[]] [[]]//= _.
- move=> xlr lrU; exists (Order.min (x - l) (r - x)).
by rewrite /= lt_min ?lterBDr ?add0r ?(itvP xlr).
apply/(subset_trans _ lrU)/subset_ball_prop_in_itv.
suff : (`]x - Order.min (x - l) (r - x), x + Order.min (x - l) (r - x)[
<= `]l, r[)%O by move/subitvP => H ? ?; exact: H.
apply/andP; rewrite lteBSide; split => /=.
apply: (@le_trans _ _ (x - (x - l))); last by rewrite lerB // ge_min lexx.
by rewrite opprB addrCA subrr addr0.
apply: (@le_trans _ _ (x + (r - x))); last by rewrite addrCA subrr addr0.
by rewrite lerD // ge_min lexx orbT.
- move=> xl lU; exists (x - l) => /=; first by rewrite lterBDr add0r (itvP xl).
apply/(subset_trans _ lU)/subset_ball_prop_in_itv.
suff : (`]x - (x - l), x + (x - l)[ <= `]l, +oo[)%O.
by move/subitvP => H ?; exact: H.
by apply/andP; rewrite lteBSide/=; split; rewrite // opprB addrCA subrr addr0.
- move=> xr rU; exists (r - x) => /=; first by rewrite lterBDr add0r (itvP xr).
apply/(subset_trans _ rU)/subset_ball_prop_in_itv.
suff : (`]x - (r - x), x + (r - x)[ <= `]-oo, r[)%O.
by move/subitvP => H ?; exact: H.
by apply/andP; rewrite lteBSide/=; split; rewrite // addrCA subrr addr0.
- by move=> _; rewrite set_itvE subTset => ->; exists 1 => /=.
Qed.
case => _ /posnumP[e] xeU.
exists (`]x - e%:num, x + e%:num[); first split; first by right.
by rewrite in_itv /= -real_lter_distl subrr // normr0.
apply: (subset_trans _ xeU) => z /=.
by rewrite in_itv /= -real_lter_distl //= distrC.
case => [][[[]l|[]]] [[]r|[]] [[]]//= _.
- move=> xlr lrU; exists (Order.min (x - l) (r - x)).
by rewrite /= lt_min ?lterBDr ?add0r ?(itvP xlr).
apply/(subset_trans _ lrU)/subset_ball_prop_in_itv.
suff : (`]x - Order.min (x - l) (r - x), x + Order.min (x - l) (r - x)[
<= `]l, r[)%O by move/subitvP => H ? ?; exact: H.
apply/andP; rewrite lteBSide; split => /=.
apply: (@le_trans _ _ (x - (x - l))); last by rewrite lerB // ge_min lexx.
by rewrite opprB addrCA subrr addr0.
apply: (@le_trans _ _ (x + (r - x))); last by rewrite addrCA subrr addr0.
by rewrite lerD // ge_min lexx orbT.
- move=> xl lU; exists (x - l) => /=; first by rewrite lterBDr add0r (itvP xl).
apply/(subset_trans _ lU)/subset_ball_prop_in_itv.
suff : (`]x - (x - l), x + (x - l)[ <= `]l, +oo[)%O.
by move/subitvP => H ?; exact: H.
by apply/andP; rewrite lteBSide/=; split; rewrite // opprB addrCA subrr addr0.
- move=> xr rU; exists (r - x) => /=; first by rewrite lterBDr add0r (itvP xr).
apply/(subset_trans _ rU)/subset_ball_prop_in_itv.
suff : (`]x - (r - x), x + (r - x)[ <= `]-oo, r[)%O.
by move/subitvP => H ?; exact: H.
by apply/andP; rewrite lteBSide/=; split; rewrite // addrCA subrr addr0.
- by move=> _; rewrite set_itvE subTset => ->; exists 1 => /=.
Qed.
Module numFieldTopology.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : realType) := PseudoPointedMetric.copy R R^o.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : rcfType) := PseudoPointedMetric.copy R R^o.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : archiFieldType) := PseudoPointedMetric.copy R R^o.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : realFieldType) := PseudoPointedMetric.copy R R^o.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : numClosedFieldType) :=
PseudoPointedMetric.copy R R^o.
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : realFieldType) :=
Order_isNbhs.Build _ R (@real_order_nbhsE R).
#[export, non_forgetful_inheritance]
HB.instance Definition _ (R : numFieldType) := PseudoPointedMetric.copy R R^o.
Module Exports. HB.reexport. End Exports.
End numFieldTopology.
Import numFieldTopology.Exports.
Lemma nbhs0_ltW (R : realFieldType) (x : R) : (0 < x)%R ->
\forall r \near nbhs (0%R:R), (r <= x)%R.
Proof.
Lemma nbhs0_lt (R : realFieldType) (x : R) : (0 < x)%R ->
\forall r \near nbhs (0%R:R), (r < x)%R.
Proof.
Global Instance Proper_dnbhs_regular_numFieldType (R : numFieldType) (x : R^o) :
ProperFilter x^'.
Proof.
Global Instance Proper_dnbhs_numFieldType (R : numFieldType) (x : R) :
ProperFilter x^'.
Proof.
Lemma dense_rat (R : realType) : dense (@ratr R @` setT).
Proof.
move=> A [r Ar]; rewrite openE => /(_ _ Ar)/nbhs_ballP[_/posnumP[e] reA].
have /rat_in_itvoo[q /itvP qre] : r < r + e%:num by rewrite ltrDl.
exists (ratr q) => //; split; last by exists q.
apply: reA; rewrite /ball /= distrC ltr_distl qre andbT.
by rewrite (@le_lt_trans _ _ r)// ?qre// lerBlDl lerDr ltW.
Qed.
have /rat_in_itvoo[q /itvP qre] : r < r + e%:num by rewrite ltrDl.
exists (ratr q) => //; split; last by exists q.
apply: reA; rewrite /ball /= distrC ltr_distl qre andbT.
by rewrite (@le_lt_trans _ _ r)// ?qre// lerBlDl lerDr ltW.
Qed.
Lemma separated_open_countable
{R : realType} (I : Type) (B : I -> set R) (D : set I) :
(forall i, open (B i)) -> (forall i, B i !=set0) ->
trivIset D B -> countable D.
Proof.
move=> oB B0 tB; have [f fB] :
{f : I -> rat & forall i, D i -> B i (ratr (f i))}.
apply: (@choice _ _ (fun x y => D x -> B x (ratr y))) => i.
have [r [Bir [q _ qr]]] := dense_rat (B0 _) (oB i).
by exists q => Di; rewrite qr.
have inj_f : {in D &, injective f}.
move=> i j /[!inE] Di Dj /(congr1 ratr) ratrij.
have ? : (B i `&` B j) (ratr (f i)).
by split => //; [exact: fB|rewrite ratrij; exact: fB].
by apply/(tB _ _ Di Dj); exists (ratr (f i)).
apply/pcard_injP; have /card_bijP/cid[g bijg] := card_rat.
pose nat_of_rat (q : rat) : nat := set_val (g (to_setT q)).
have inj_nat_of_rat : injective nat_of_rat.
rewrite /nat_of_rat; apply: inj_comp => //; apply: inj_comp => //.
exact/bij_inj.
by exists (nat_of_rat \o f) => i j Di Dj /inj_nat_of_rat/inj_f; exact.
Qed.
{f : I -> rat & forall i, D i -> B i (ratr (f i))}.
apply: (@choice _ _ (fun x y => D x -> B x (ratr y))) => i.
have [r [Bir [q _ qr]]] := dense_rat (B0 _) (oB i).
by exists q => Di; rewrite qr.
have inj_f : {in D &, injective f}.
move=> i j /[!inE] Di Dj /(congr1 ratr) ratrij.
have ? : (B i `&` B j) (ratr (f i)).
by split => //; [exact: fB|rewrite ratrij; exact: fB].
by apply/(tB _ _ Di Dj); exists (ratr (f i)).
apply/pcard_injP; have /card_bijP/cid[g bijg] := card_rat.
pose nat_of_rat (q : rat) : nat := set_val (g (to_setT q)).
have inj_nat_of_rat : injective nat_of_rat.
rewrite /nat_of_rat; apply: inj_comp => //; apply: inj_comp => //.
exact/bij_inj.
by exists (nat_of_rat \o f) => i j Di Dj /inj_nat_of_rat/inj_f; exact.
Qed.